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Abstract. Let R be an integral domain, X be a set of indeterminates over R, and R[[X ]]3 be the
full ring of formal power series in X over R. We show that the Picard group of R[[X ]]3 is isomor-
phic to the Picard group of R. An integral domain is called a π -domain if every principal ideal is a
product of prime ideals. An integral domain is a π -domain if and only if it is a Krull domain that
is locally a unique factorization domain. We show that R[[X ]]3 is a π -domain if R[[X1, . . . , Xn]]
is a π -domain for every n ≥ 1. In particular, R[[X ]]3 is a π -domain if R is a Noetherian regular
domain. We extend these results to rings with zero-divisors. A commutative ring R with identity
is called a π -ring if every principal ideal is a product of prime ideals. We show that R[[X ]]3 is a
π -ring if R is a Noetherian regular ring.

Keywords. Krull domain, π -domain, unique factorization domain, formal power series ring, in-
vertible ideal, class group, Picard group

1. Introduction

The question whether the power series ring over a unique factorization domain (UFD) is
a UFD had remained open for a long time until Samuel constructed a Noetherian coun-
terexample in [17]. However, there do exist UFDs R such that R[[X1, . . . , Xn]] is a UFD
for every n, e.g., regular UFDs, and more specifically principal ideal domains. All of
these examples are Noetherian. Non-Noetherian examples were constructed by Deckard
[7], Cashwell and Everette [5] as well as Nishimura [16] (see also Deckard and Durst
[8]) exploring power series rings in an infinite number of variables. Recall that in the
case of an infinite number of variables, there are several types of power series rings. Let
X = {Xλ}λ∈3 be a set of indeterminates overR, and S be the weak direct sum of the addi-
tive abelian semigroup N with itself |3| times, where N is the set of nonnegative integers.
Following the notation and definition in [10, 11], the full ring of formal power series in X
overR is defined to be the set of all functions f : S → R, where (f+g)(s) = f (s)+g(s)
and (fg)(s) =

∑
t+u=s f (t)g(u) for any s ∈ S, the notation

∑
t+u=s indicating that the

sum is taken over all ordered pairs (t, u) of elements of S with sum s. The full ring of
formal power series in X over R is denoted by R[[X ]]3 while R[[X ]]2 denotes the (X )-
adic completion of the polynomial ring R[X ]. The aforementioned authors showed that
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for an infinite set X of indeterminates over a domain R, R[[X ]]3 is a UFD as long as
R[[X1, . . . , Xn]] is a UFD for every n. Thus R[[X ]]3 is a non-Noetherian UFD such
that its arbitrary power series extensions are UFDs provided that R[[X1, . . . , Xn]] is a
UFD for every n. As for the divisor class groups, Samuel’s example [17] shows that
Cl(R[[X]]) � Cl(R) in general. Indeed, Cl(R[[X]]) ∼= Cl(R) ⊕ Cl(R[[X]]R∗) for a
Noetherian Krull domain R. However, for the Picard group of an integral domain R,
Pic(R[[X]]) ∼= Pic(R). From this fact, it follows that for a UFD R, R[[X]] is a UFD if
and only if R[[X]]R∗ is a UFD if and only if R[[X]] is a π -domain.

These results motivate us to investigate power series extensions of a π -domain. An
integral domain is called a π -domain if every principal ideal is a product of prime ideals.
Recall that an integral domain is a π -domain if and only if it is a Krull domain that
is locally a UFD. Thus π -domains lie between Krull domains and UFDs. Gilmer [10]
showed that for a Krull domain R, R[[X ]]3 is a Krull domain. So it is natural to ask if
R[[X ]]3 is a π -domain when R is a π -domain such that R[[X1, . . . , Xn]] is a π -domain
for each n ≥ 1. The main purpose of this paper is to answer this question. To help the
readers better understand π -domains, we quote a couple of their characterizations. An
integral domain is a π -domain if and only if every t-ideal is an invertible ideal if and only
if every principal ideal is a product of prime ideals if and only if every nonzero prime
ideal contains an invertible prime ideal [1, 2, 12]. The most well-known examples of π -
domains are Noetherian regular domains. A regular local ringR is a UFD (the Auslander–
Buchsbaum theorem [3]), eachR[[X1, . . . , Xn]] is a regular local ring, and in this case we
have already mentioned that its arbitrary power series extension R[[X ]]3 is also a UFD.
However, nothing is known about the global case, i.e., about R[[X ]]3 for a Noetherian
regular domain R. One of our main results is that R[[X ]]3 is a π -domain for a Noetherian
regular domainR. This provides examples of non-Noetherian π -domains whose full rings
of formal power series extensions are also π -domains. In fact, for an integral domain R,
we prove the stronger result that R[[X ]]3 is a π -domain if and only if R[[X1, . . . , Xn]] is
a π -domain for every n ≥ 1. In the process, we prove that Pic(R[[X ]]3) ∼= Pic(R) for an
integral domain R. We extend the results on integral domains to rings with zero-divisors.
A commutative ring R with identity is called a π -ring if every principal ideal is a product
of prime ideals. We show that R[[X ]]3 is a π -ring if R is a Noetherian regular ring.

2. Preliminaries

In this section we introduce concepts and basic properties of power series rings which
are needed in what follows. Our general reference for power series rings is Brewer’s [4].
Throughout this paper (except in Section 5), R will be an integral domain and X will
stand for a set of indeterminates. Note that an element f of R[[X ]]3 can be written as the
formal sum f =

∑
c(ai1 , . . . , ain)X

ai1
i1
· · ·X

ain
in

, where {Xi1 , . . . , Xin} ranges over the
finite subsets of X , aij ’s are nonnegative integers, and c(ai1 , . . . , ain) belongs to R. For a
finite subset F of X , define a map πF from R[[X ]]3 onto R[[F]] by evaluating atXi = 0
for all Xi 6∈ F . Clearly the map is a ring epimorphism, called the canonical projection
with respect to F . For each α ∈ R[[X ]]3, define the F-projection of α to be the element
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F(α), which is the image of α under the canonical projection with respect to F . For a
subset I of R[[X ]]3, we denote by F(I ) the set of all F-projections of elements of I .
In particular, if F = ∅, then the ∅-projections of α and I will be denoted by α(0) and
I0 := ∅(I ), respectively.

Given a finite subset F of X , we define a sequence over F to be a function which
assigns to every finite subset K of X containing F a definite element αK of R[[K]]. A se-
quence over F is called projective if K(αL) = αK whenever F ⊆ K ⊆ L. A sequence
over F is called associative if K(αL) ∼ αK in R[[K]] whenever F ⊆ K ⊆ L. Here
β ∼ γ means β = γ ν for some unit ν of the indicated domain.

We quote useful results from [5], adding a couple of minor new results.

Theorem 2.1. Let X be a set of indeterminates, and F be a finite subset of X . Then, for
α, β ∈ R[[X ]]3,

(1) F(αβ) = F(α)F(β) and F(α + β) = F(α)+ F(β),
(2) F(K(α)) = F(α) if K is a finite subset of X containing F ,
(3) if F(α) is a unit of R[[F]], then α is a unit of R[[X ]]3,
(4) if K(α) = K(β) for every finite subset K ⊇ F of X , then α = β,
(5) every projective sequence {αK} over F is of the form αK = K(α) for some α ∈

R[[X ]]3,
(6) for every associative sequence {αK} over F , there exists an element α ∈ R[[X ]]3

such that K(α) ∼ αK in R[[K]] for every finite subset K ⊇ F of X ,
(7) if I and J are ideals ofR[[X ]]3, thenF(I ) andF(J ) are ideals ofR[[F]]; moreover,

F(I + J ) = F(I )+ F(J ) and F(IJ ) = F(I )F(J ),
(8) for an ideal I of R[[X ]]3, we have F(K(I )) = F(I ) if K is a finite subset of X

containing F .

Proof. (1)–(6) are proved in [5]. From (1), (2), and the fact that the projection map is a
ring epimorphism, (7) and (8) follow. ut

We briefly review the definition of a divisorial ideal and relations between a Krull domain
and a π -domains.

LetR be an integral domain with quotient fieldK . By a fractional ideal F we mean an
R-submodule ofK . By F−1 (the inverse of F ) we mean the set of all x inK with xF ⊆ R.
Note that F−1 is also a fractional ideal. We say that F is invertible if FF−1

= R.
For a fractional ideal F , we denote by Fv the fractional ideal (F−1)−1. The fractional
ideal

∑
{Iv | I is a finitely generated fractional ideal contained in F } is denoted by Ft .

If F = Fv , then F is called a divisorial ideal. If F = Ft , then F is called a t-ideal. It
is well known that every divisorial ideal of a Krull domain R is a v-product of minimal
prime ideals of R—namely, for a divisorial ideal I , I = (P1 . . . Pk)v , where Pi’s are (not
necessarily distinct) minimal prime ideals of R. We refer the readers to [9, 11, 13] for
more information on divisorial ideals.

An integral domain in which every principal ideal is a product of finitely many prime
ideals is called a π -domain, which is a generalization of the unique factorization domain
(UFD). The following is a relation between Krull domains and π -domains. For a proof,
the readers are referred to [1, 2, 9, 11, 12, 14].
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Theorem 2.2. The following are equivalent for a domain R:

(1) R is a π -domain.
(2) RM is a UFD for each maximal ideal M of R, and every minimal prime ideal of R is

finitely generated.
(3) R is a Krull domain, and every minimal prime ideal of R is invertible.
(4) R is a Krull domain, and the product of any finite number of divisorial ideals is a

divisorial ideal.
(5) Every divisorial ideal is a finite product of prime ideals.
(6) Every t-ideal is a finite product of prime ideals.
(7) Every t-ideal is invertible.

If R is a π -domain, then it follows from Theorem 2.2 that every divisorial ideal of R is a
product of a finite number of minimal prime ideals of R—namely, for a divisorial ideal I
of R,

I = P
n1
1 · · ·P

n
k

k ,

where Pi’s are distinct minimal prime ideals of R.

3. Invertible ideals of a power series ring

In this section, we investigate a relation between invertible ideals of an integral domain
and those of its power series ring. Recall that the ∅-projection of an ideal I of a power
series ring is denoted by I0 := ∅(I ), which is the same as the set of all the constant terms
of elements in I .

Lemma 3.1. Let 8 : D → R be a ring epimorphism between integral domains. If I is
an invertible ideal of D and 8(I) 6= (0), then 8(I) is an invertible ideal of R.

Proof. Choose 0 6= a ∈ I such that 8(a) 6= 0. Then aD = I (aI−1) and aI−1
⊆ D. We

have

8(a)R = 8(aD) = 8(I (aI−1)) = 8(I)8(aI−1).

So 8(I) is an invertible ideal of R. ut

The next result is well known. For easy reference, we include its proof.

Theorem 3.2. Let R be an integral domain with quotient field K , and I be an invertible
ideal of R[[X]], where X is an indeterminate over R. Then

(i) if I0 6= (0), then I0 is also an invertible ideal of R,
(ii) there exists an invertible ideal I ′ of R such that I = f I ′[[X]], where f ∈ K[[X]];

moreover, if I0 6= (0), then we can take I0 for I ′.
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Proof. Choose an integer n ≥ 0 such that I ⊆ (Xn) and I * (Xn+1). Put J = X−nI .
Then J is an invertible ideal of R[[X]] such that J0 6= (0). Therefore it suffices to show
that if I is an invertible ideal of R[[X]] such that I0 6= (0), then I0 is invertible and
I = f I0[[X]] for some f ∈ K[[X]].

By Lemma 3.1, I0 is an invertible ideal of R. Put J = I (I−1
0 [[X]])a, where 0 6= a

∈ I0. Since a ∈ I0, J is an ideal of R[[X]]. Applying the ∅-projection of J , we have

J0 = ∅(J ) = ∅(I (I
−1
0 [[X]])a) = ∅(I )∅(I−1

0 [[X]])∅(a) = I0I
−1
0 a = aR.

Since a ∈ J0, we can choose an element j ∈ J such that j (0) = a. Thus J0 = j (0)R.
Since for each g ∈ J , g = g(0) + Xg1, where g1 ∈ R[[X]], we have g(0) ∈ J0.
Hence J ⊆ J0 + XR[[X]] = j (0)R + XR[[X]] ⊆ jR[[X]] + XR[[X]]. If g ∈ J , then
g = jh+Xg2, where h, g2 ∈ R[[X]]. Since g, j ∈ J , we have g2 ∈ (J : X). Therefore,
J = jR[[X]]+X(J : X).

We claim that J = (J : X). If g ∈ (J : X), then Xg ∈ J = I (I−1
0 [[X]])a. Thus

XgI0[[X]] ⊆ aI . Since aI is an invertible ideal of R[[X]], we have XgI0[[X]] = (aI )I ′

for some ideal I ′ of R[[X]]. Note that aI * (X) because I0 = ∅(I ) 6= (0). Since (X) is
an invertible prime ideal, we have I ′ ⊆ (X), i.e., I ′ = XI ′′ for some ideal I ′′ of R[[X]].
Hence XgI0[[X]] = (aI )I ′ = aXII ′′. By cancellation, we have gI0[[X]] = (aI )I ′′.
Therefore, g ∈ (aI )I−1

0 [[X]]I ′′ = J I ′′ ⊆ J . Thus the claim is proved.
Since J = (J : X), we have J = jR[[X]] + XJ , where j ∈ J . Note that since J

is invertible, J is a finitely generated R[[X]]-module. Since X is in the Jacobson radical
of R[[X]], by the Nakayama lemma, we have J = jR[[X]] = I (I−1

0 [[X]])a. Therefore,
I = a−1jI0[[X]] = f I0[[X]], where f = a−1j ∈ K[[X]]. ut

We generalize Theorem 3.2 to a finite number of indeterminates.

Corollary 3.3. Let R be an integral domain with quotient field K , and I be an invertible
ideal of R[[F]], where F is a finite set of indeterminates over R. Then there exists an
invertible ideal I ′ of R such that

I = f I ′[[F]] for some f ∈ K[[F]].

Moreover, if ∅(I ) = I0 6= (0), then I = f I0[[F]] for some f ∈ K[[F]].

In a π -domain, every principal ideal is a product of prime ideals instead of principal prime
ideals. So we have to consider a projective sequence of ideals instead of elements.

Definition 3.4. Let R be an integral domain and X be a set of indeterminates over R.
Let F be a finite subset of X and IK be an ideal of R[[K]] for each finite subset K
of X containing F . We call a sequence {IK}K⊇F of ideals a projective sequence over F
if K(IL) = IK whenever F ⊆ K ⊆ L.

Theorem 3.5. Let R be an integral domain and J ⊆ I be ideals of R[[X ]]3, where I is
an invertible ideal of R[[X ]]3. If K(I ) = K(J ) 6= (0) for some finite subset K of X , then
K(I ) is invertible, and I = J .
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Proof. Suppose that I is an invertible ideal of R[[X ]]3 containing an ideal J such that
K(I ) = K(J ) 6= (0) for some finite subset K of X . Then J = IJ ′, where J ′ := I−1J is
an ideal of R[[X ]]3. Since K(I ) = K(J ), it follows from the K-projection of J that

K(I ) = K(J ) = K(I )K(J ′).

Since K(I ) is an invertible ideal of R[[K]] by Lemma 3.1, we cancel K(I ) and obtain
the equality K(J ′) = R[[K]]. Therefore we can choose f ∈ J ′ such that K(f ) = 1. By
Theorem 2.1(3), f is a unit in R[[X ]]3. Thus J ′ = R[[X ]]3. Hence J = IJ ′ = I . ut

Theorem 3.6. Let I and J be ideals of R[[X ]]3, where R is an integral domain, such
that F(I ) = F(J ) for every finite subset F of X . If I is an invertible ideal, then I = J .

Proof. Choose 0 6= a ∈ I . Put H := (aI−1)J , which is an ideal of R[[X ]]3. Note that
since 0 6= a ∈ I , there exists a finite subset F of X such that K(a) 6= 0 for every finite
subset K ⊇ F of X . Thus K(I ) 6= 0 for every finite subset K ⊇ F of X . We have
K(H) = K(aI−1)K(J ). We show K(aI−1) = K(a)K(I )−1. By taking the K-projection
of the equation (a) = (aI−1)I , we get (K(a)) = K(aI−1)K(I ). By Lemma 3.1, K(I ) is
an invertible ideal of R[[K]], so K(aI−1) = K(a)K(I )−1. Now

K(H) = K(a)K(I )−1K(J ) = K(a)K(I )−1K(I ) = (K(a)).

Thus K(H) = (K(a)) for every finite subset K ⊇ F of X . We show H ⊆ (a). Let
h ∈ H . Choose γK ∈ R[[K]] such that K(h) = γKK(a) for every finite subset K ⊇ F
of X . It is easy to see that {γK}K⊇F is a projective sequence. By Theorem 2.1(5), there
exists γ ∈ R[[X ]]3 such that K(γ ) = γK for every finite subset K ⊇ F of X . Now
K(h) = K(γ )K(a) = K(γ a). By Theorem 2.1(4), h = γ a and henceH ⊆ (a). Applying
Theorem 3.5, we deduce H = (a), whence aI−1J = (a). Cancelling (a) from this
equation, we get the equality I−1J = R[[X ]]3, and hence I = J . ut

We present an example which justifies the condition that “I is an invertible ideal” in
Theorems 3.5 and 3.6.

Example 3.7. Let R be an integral domain and X be an infinite set of indeterminates.
Put {

(X )2 := {f | f ∈ R[[X ]]2, f (0) = 0},
(X )3 := {f | f ∈ R[[X ]]3, f (0) = 0}.

Put J := (X )2R[[X ]]3 and I := (X )3. It is clear that J ⊆ I . Let f ∈ I . Then for every
finite subset K of X , we have K(f ) ∈ (X )2 and K(f ) = K(K(f )), hence K(f ) ∈ K(J ).
So K(I ) ⊆ K(J ). Thus K(I ) = K(J ) for every finite subset K of X . We claim that
I 6= J . Put f := X1+X2+ · · · =

∑
∞

i=1Xi . Thus f ∈ I . We claim f 6∈ J . Suppose that
f ∈ J = (X )2R[[X ]]3. Then

f = X1 +X2 + · · · = f1g1 + · · · + fngn,



Formal power series rings over a π -domain 1435

where fi ∈ (X )2 and gi ∈ R[[X ]]3 for i = 1, . . . , n. Since fi(0) = 0 for each i,
comparing the first degree terms, we have

f = X1 +X2 + · · · = f11g10 + · · · + fn1gn0,

where fi1 is the first degree form of fi and gi0 = gi(0) for each i. But since fi ∈ (X )2,
fi0 has only finitely many monomials of degree 1. Thus f = X1 + X2 + · · · has only
finitely many monomials of degree 1, which is a contradiction.

Next we study when the condition “F(J ) ⊆ F(I ) for all F” forces J ⊆ I .

Theorem 3.8. Let I and J be ideals of R[[X ]]3, where R is an integral domain, such
that F(J ) ⊆ F(I ) for every finite subset F of X . If I is an invertible ideal, then J ⊆ I .

Proof. Let 0 6= a ∈ J . Then there exists a finite subset F such that K(a) 6= 0 for every
finite subset K ⊇ F of X . Since 0 6= K(a) ∈ K(J ) ⊆ K(I ), by Lemma 3.1, K(I ) is an
invertible ideal of R[[K]] for every finite subset K ⊇ F of X . Choose 0 6= b ∈ I . Put
H := abI−1, which is an ideal of R[[X ]]3. By taking the K-projection of the equation
(b) = (bI−1)I , we get (K(b)) = K(bI−1)K(I ). Since K(I ) is an invertible ideal of
R[[K]], we have K(bI−1) = K(b)K(I )−1. By applying the K-projection of H , since
K(a) ∈ K(I ), we have

K(H) = K(a)K(bI−1) = K(a)K(b)K(I )−1
⊆ (K(b)).

Thus K(H) ⊆ (K(b)) for every finite subset K ⊇ F of X . We show H ⊆ (b). Let
h ∈ H . Choose γK ∈ R[[K]] such that K(h) = γKK(b) for every finite subset K ⊇ F
of X . It is easy to see that {γK}K⊇F is a projective sequence. By Theorem 2.1(5), there
exists γ ∈ R[[X ]]3 such that K(γ ) = γK for every finite subset K ⊇ F of X . Now
K(h) = K(γ )K(b) = K(γ b). By Theorem 2.1(4), h = γ b and henceH = abI−1

⊆ (b).
Thus a ∈ I . Therefore J ⊆ I . ut

Cashwell and Everett [5] showed that a projective sequence of principal ideals has a
primitive ideal in the sense that the projective sequence is the projection of an ideal in
R[[X ]]3. We show that a projective sequence of invertible ideals also has a primitive
ideal in R[[X ]]3.

Theorem 3.9. Let R be an integral domain with quotient field K , and X be a set of
indeterminates over R. If {IF } is a projective sequence of invertible ideals of R[[F]]
over ∅, then there exists a unique invertible ideal I of the form f I0[[X ]]3 of R[[X ]]3,
where f ∈ K[[X ]]3 and I0 := I∅ is an invertible ideal of R, such that F(I ) = IF in
R[[F]] for every finite subset F of X .

Proof. Let {IF }F⊇∅ be a projective sequence of invertible ideals of R[[F]] over ∅. Put
I0 := I∅. Since IF is an invertible ideal of R[[F]] for each finite subsetF ofX , it follows
from Corollary 3.3 that

IF = fF I0[[F]], where fF ∈ K[[F]].

Since I0 6= (0), choose 0 6= b ∈ I0 so that bfF ∈ R[[F]] for every F .
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We claim that {bfF }F⊇∅ is an associative sequence. For any pair of finite subsets F
and K of X such that F ⊆ K, we have bIK = bfKI0[[K]] and bIF = bfF I0[[F]]. Since
b ∈ I0 and {IF }F⊇∅ is projective, it follows from the F-projection of bIK that

bfF I0[[F]] = bIF = F(bIK) = F(bfKI0[[K]]) = F(bfK)I0[[F]].

Since I0 is an invertible ideal ofR, I0[[F]] is also an invertible ideal ofR[[F]]. We cancel
I0[[F]] and obtain the equality bfFR[[F]] = F(bfK)R[[F]]. Therefore, bfF ∼ F(bfK)
for any pair of finite subsets F and K of X such that F ⊆ K. Thus the claim is proved.

Since {bfF }F⊇∅ is an associative sequence, by Theorem 2.1(6) there exists an element
f ∈ R[[X ]]3 such that F(f ) ∼ bfF for every finite subset F of X . Thus F(f )R[[F]] =
bfFR[[F]]. Put I = b−1f I0[[X ]]3. Since F(f ) ∼ bfF for every finite subset F of X ,
we have F(I ) = b−1F(f )I0[[F]] = fF I0[[F]] = IF . Thus F(I ) = IF for every finite
subset F of X . So I ⊆ R[[X ]]3. It is clear that I = b−1f I0[[X ]]3 is an invertible ideal
of R[[X ]]3. The uniqueness of I follows from Theorem 3.6. ut

Corollary 3.10. Let R be an integral domain with quotient field K , and X be a set of
indeterminates over R. If a sequence {IK}K⊇F of invertible ideals of R[[K]] over F is
projective, then there exists a unique invertible ideal I of the form f I ′[[X ]]3 in R[[X ]]3,
where f ∈ K[[X ]]3 and I ′ is an invertible ideal of R, such that K(I ) = IK in R[[F]]
for every finite subset K ⊇ F of X .

Proof. Put D := R[[F]]. Note that R[[X ]]3 = D[[X ′]]3, where X ′ = X \ F . Then
{IK}K⊇F = {IK′}K′⊇∅ is a projective sequence of invertible ideals of D[[K′]]. By The-
orem 3.9, there exists an invertible ideal I := gIF [[X ′]]3 of D[[X ′]]3 = R[[X ]]3 such
that K(I ) = IK for every finite subset K ⊇ F of X . Since IF is an invertible ideal of
D = R[[F]], by applying Corollary 3.3 to IF , we have

I = g(hI ′[[F]])[[X \ F]]3 = f I
′[[X ]]3,

where f = gh and I ′ is an invertible ideal of R. Note that f ∈ K[[X ]]3 since af ∈ I ⊆
R[[X ]]3, where 0 6= a ∈ I ′. ut

We establish a relation between invertible ideals of R[[X ]]3 and their projections.

Theorem 3.11. Let R be an integral domain with quotient field K . If I is an invertible
ideal of R[[X ]]3, then I = f I ′[[X ]]3, where I ′ is an invertible ideal of R and f ∈
K[[X ]]3. Moreover, if I0 = ∅(I ) 6= (0), then I = f I0[[X ]]3, where f ∈ K[[X ]]3.

Proof. Let I be an invertible ideal of R[[X ]]3. Put I0 = ∅(I ). We will divide the proof
into two cases; either I0 6= (0) or I0 = (0).

Case I : I0 6= (0) (note that I0 is an invertible ideal of R by Lemma 3.1).
By Lemma 3.1, K(I ) is an invertible ideal of R[[K]] for every finite subset K of X .

Since {K(I )}K⊇∅ is a projective sequence of invertible ideals, by Theorem 3.9 there exists
an invertible ideal I ′ = f I0[[X ]]3 of R[[X ]]3, where f ∈ K[[X ]]3 such that K(I ′) =
K(f )I0[[K]] = K(I ) for every finite subset K of X . We claim I ⊆ I ′ = f I0[[X ]]3. Let
i ∈ I . Since K(I ) = K(f )I0[[K]], we have K(i) = K(f )aK , where aK ∈ I0[[K]]. Note
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that {aK}K⊇∅ is a projective sequence. By Theorem 2.1(5), there exists a power series
a ∈ R[[X ]]3 such that K(a) = aK for every finite subset K of X . Clearly a ∈ I0[[X ]]3
since K(a) = aK ∈ I0[[K]] for every finite subset K of X . Therefore, for every finite
subset K of X , we have

K(i) = K(f )aK = K(f )K(a) = K(f a).

By Theorem 2.1(4), i=f a ∈ f I0[[X ]]3. Thus the claim is proved. Since I ′=f I0[[X ]]3
is an invertible ideal of R[[X ]]3 containing I , and K(I ) = K(I ′), we can apply Theorem
3.5 and obtain the equality I = I ′ = f I0[[X ]]3.

Case II : K(I ) 6= (0) for some finite subset K of X (note that K(I ) is an invertible
ideal of R[[K]] by Lemma 3.1).

Let D = R[[K]]. Then R[[X ]]3 = D[[X ′]]3, where X ′ = X \ K. By Case I,
I = gJ [[X ′]]3, where J = K(I ) is an invertible ideal of R[[K]]. By Corollary 3.3,
J = hI ′[[K]], where I ′ is an invertible ideal of R. Therefore, I = ghI ′[[K ∪ X ′]]3 =

f I ′[[X ]]3, where f = gh. Note that f ∈ K[[X ]]3 since af ∈ I ⊆ R[[X ]]3, where
0 6= a ∈ I ′. ut

Let R be an integral domain. The set I(R) of invertible fractional ideals of R is a group
under ideal multiplication. The set P(R) of principal fractional ideals of R forms a sub-
group of I(R). The factor group I(R)/P(R) is called the Picard group of R. In the
case when R is a Krull domain, let D(R) be the group of divisorial ideals of R. Then
D(R)/P(R) is called the divisor class group of R. We denote the divisor class group and
Picard group of R by Cl(R) and Pic(R), respectively.

It is well known that Pic(R) ∼= Pic(R[[X]]) in the single variable case. This result can
be generalized to an arbitrary number of variables using Theorem 3.11.

Corollary 3.12. LetR be an integral domain. The natural mapping J 7→ J [[X ]]3, where
J is an ideal of R, induces an isomorphism Pic(R) ∼= Pic(R[[X ]]3).

4. R[[X ]]3 is a π -domain if R is a formally stable π -domain

Let R be an integral domain and X be a set of indeterminates over R. If R[[X1, . . . , Xn]]
is a π -domain for each finite set {X1, . . . , Xn} of indeterminates over R, then we say that
R is a formally stable π -domain. Note that if R is a formally stable π -domain, then R is
also a π -domain. In this section, we will prove that if R is a formally stable π -domain,
then R[[X ]]3 is also a π -domain.

If R is a π -domain, then every principal ideal (a) of R is a product of a finite number
of prime ideals of R. Since the prime ideals in this factorization are invertible, the fac-
torization is unique. We denote by ‖a‖ and N(a) the number of prime ideals and distinct
prime ideals in the ideal factorization of (a), respectively.

Lemma 4.1. Let δ be a nonunit inR[[X ]]3, whereR is a formally stable π -domain. Then

(i) ‖K(δ)‖ ≤ ‖F(δ)‖ whenever F ⊆ K, where F and K are finite subsets of X ,
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(ii) there exists a finite subset Fδ , depending on δ, of X such that for every finite subset
K ⊇ Fδ of X , ‖K(δ)‖ = ‖Fδ(δ)‖; furthermore, if (Fδ(δ)) = P1,Fδ · · ·Pn,Fδ and
(K(δ)) = P1,K · · ·Pn,K, where Pi,F ’s and Pi,K’s are prime ideals of R[[F]] and
R[[K]], respectively, then Fδ(Pi,K) = Pi,Fδ for i = 1, . . . , n after rearranging the
indices.

Proof. (i) Since δ is a nonunit, it follows from Theorem 2.1 that F(δ) is a nonunit in
R[[F]] for any finite subset F of X . Thus ‖F(δ)‖ ≥ 0. Let F ⊆ K be any pair of finite
subsets of X such that ‖F(δ)‖ = n, and ‖K(δ)‖ = m. Suppose that n < m. Since R
is a formally stable π -domain, (F(δ)) = P1,F · · ·Pn,F and (K(δ)) = P1,K · · ·Pm,K,
where Pi,F ’s and Pj,K’s are (not necessarily distinct) prime ideals of R[[F]] and R[[K]],
respectively. From Theorem 2.1, we obtain

F(K(δ)) = F(P1,K · · ·Pm,K) = F(P1,K) · · ·F(Pm,K) = P1,F · · ·Pn,F = (F(δ)).

Since P1,F is a prime ideal of R[[F]], we may assume that F(P1,K) ⊆ P1,F . Moreover,
it follows from the invertibility of P1,F that F(P1,K) = P1,F I1,F for some ideal I1,F of
R[[F]]. Note that I1,F need not be a proper ideal. By cancellation, we get

I1,FF(P2,K) · · ·F(Pm,K) = P2,FP3,F · · ·Pn,F . (1)

Since n < m, if we continue this process on Pi,F ’s for i = 2, . . . , n, then there exists at
least one Pj,K such that R[[F]] = F(Pj,K)I , where I is an ideal of R[[F]]. Since Pj,K
is a proper ideal of R[[K]], F(Pj,K) is a proper ideal of R[[F]]. This is a contradiction.
Therefore, ‖K(δ)‖ ≤ ‖F(δ)‖.

(ii) Suppose that there are no finite subsets of X satisfying the condition above. Then
there exists an infinite chain {Fi} of finite subsets of X such that F1 ⊆ F2 ⊆ · · · and
‖F1(δ)‖ > ‖F2(δ)‖ > · · · , which contradicts the finiteness of ‖F1(δ)‖. Hence there
exists a finite subset Fδ , depending on δ, of X such that for every finite subset K ⊇ Fδ
of X , ‖K(δ)‖ = ‖Fδ(δ)‖.

Let (Fδ(δ))=P1,Fδ · · ·Pn,Fδ and (K(δ))=P1,K · · ·Pn,K. Since ‖K(δ)‖= ‖Fδ(δ)‖,
by the same argument as in the proof of (i), we may assume that Fδ(Pi,K) ⊆ Pi,Fδ and
Fδ(Pi,K) = Pi,FδIi,Fδ for i = 1, . . . , n, after rearranging the indices. By cancellation,
we can get

I1,Fδ · · · In,Fδ = R[[Fδ]]. (2)

Since Ii,Fδ is an ideal of R[[Fδ]], Ii,Fδ = R[[Fδ]] and Fδ(Pi,K) = Pi,Fδ for i =
1, . . . , n. ut

Remark. (1) For any finite subsetK of X containingFδ , if PK is a prime ideal of R[[K]]
appearing in the ideal factorization of K(δ), then Fδ(PK) is a prime ideal of R[[Fδ]]
appearing in the ideal factorization of Fδ(δ).

(2) Although PK and P ′K are prime ideals of R[[K]] appearing in the ideal factoriza-
tion of K(δ) such that Fδ(PK) = Fδ(P ′K), PK and P ′K need not be the same. Thus it may
happen that N(K(δ)) 6= N(Fδ(δ)) even if ‖K(δ)‖ = ‖Fδ(δ)‖.

Lemma 4.2. Let δ be a nonunit inR[[X ]]3, whereR is a formally stable π -domain. Then

(i) N(Fδ(δ)) ≤ N(K(δ)) for any finite subset K of X containing Fδ ,
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(ii) there exists a finite subset F0 of X such that for every finite subset K of X contain-
ing F0, N(F0(δ)) = N(K(δ)) and ‖F0(δ)‖ = ‖K(δ)‖.

Proof. (i) Let PK be a prime ideal of R[[K]] in the ideal factorization of K(δ). Since
Fδ(PK) is a prime ideal of R[[F]] containing Fδ(δ), it is exactly one of prime ideals of
R[[F]] in the ideal factorization of Fδ(δ). Therefore, N(Fδ(δ)) ≤ N(K(δ)).

(ii) For any pair of finite subsets K and L of X containing Fδ such that K ⊆ L,
we have N(Fδ(δ)) ≤ N(K(δ)) ≤ N(L(δ)) and ‖Fδ(δ)‖ = ‖K(δ)‖ = ‖L(δ)‖. Since
N(K(δ)) ≤ ‖K(δ)‖ = ‖Fδ(δ)‖, and ‖Fδ(δ)‖ is finite, we can choose a finite subset F0
of X containing Fδ such that for any finite subset K ⊇ F0 of X , N(F0(δ)) = N(K(δ))
and ‖F0(δ)‖ = ‖K(δ)‖. ut

Suppose that (F0(δ)) = P
m1
1,F0
· · ·P

mn
n,F0

, where Pi,F0 ’s are distinct prime ideals of
R[[F0]]. Since N(F0(δ)) = N(K(δ)) and ‖F0(δ)‖ = ‖K(δ)‖ for every finite subset
K ⊇ F0 of X , we may assume that (K(δ)) = P

m1
1,K · · ·P

mn
n,K and F0(Pi,K) = Pi,F0 for

each i, by rearranging the indices.
The following is an immediate consequence of the observation above.

Proposition 4.3. Let δ be a nonunit in R[[X ]]3, where R is a formally stable π -domain.
Suppose that (F0(δ)) = P

m1
1,F0
· · ·P

mn
n,F0

is the factorization of F0(δ), where F0 is a finite
subset of X defined in Lemma 4.2. Then, for every finite subset K of X containing F0,
(K(δ)) = Pm1

1,K · · ·P
mn
n,K, and {Pi,K}K⊇F is a projective sequence for i = 1, . . . , n.

Remark. In Proposition 4.3, {Pi,K}K⊇F0 is a projective sequence of invertible prime
ideals of R[[K]]. According to Corollary 3.10, there exists an invertible ideal Qi of the
form fP ′i [[X ]]3 in R[[X ]]3, where f ∈ K[[X ]]3 and P ′i is an invertible ideal of R, such
that K(Qi) = Pi,K for every finite subset K ⊇ F0 of X .

From a projective sequence of prime ideals, we will produce a prime ideal.

Lemma 4.4. Let R be an integral domain and F be a finite subset of X . Suppose that
{PK}K⊇F is a projective sequence of prime ideals, where K is an arbitrary finite subset
of X containing F . Then the set {α ∈ R[[X ]]3 | K(α) ∈ PK for every finite K ⊇ F} is
a prime ideal of R[[X ]]3.

Proof. Put P∞ = {α ∈ R[[X ]]3 | K(α) ∈ PK for every finite K ⊇ F}. Since 0 ∈ P∞,
P∞ is a nonempty set. Since the map α 7→ K(α) is a ring homomorphism, P∞ is an ideal
of R[[X ]]3. Suppose that α 6∈ P∞ and β 6∈ P∞. Since {PK}K⊇F is a projective sequence,
we can choose finite subsets Fα and Fβ of X containing F such that Fα(α) 6∈ PFα and
Fβ(β) 6∈ PFβ . Note that K(α) 6∈ PK and L(β) 6∈ PL for any finite subsets K ⊇ Fα and
L ⊇ Fβ . Put F ′ = Fα ∪ Fβ . Note that F ⊆ F ′, K(α) 6∈ PK, and K(β) 6∈ PK for every
finite subset K ⊇ F ′ of X . Since PK is a prime ideal, K(αβ) = K(α)K(β) 6∈ PK. Thus
αβ 6∈ P∞. Therefore P∞ is a prime ideal of R[[X ]]3. ut

Now we are ready to show thatR[[X ]]3 is a π -domain over a formally stable π -domainR.
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Theorem 4.5. Let R be an integral domain and X be a set of indeterminates. If
R[[X1, . . . , Xn]] is a π -domain for every integer n ≥ 1, then R[[X ]]3 is a π -domain.

Proof. Let δ be a nonunit element of R[[X ]]3. By Proposition 4.3, there exists a finite
subset F , depending on δ, of X such that for every finite subset K ⊇ F of X ,

(F(δ)) = Pm1
1,F · · ·P

mn
n,F and (K(δ)) = Pm1

1,K · · ·P
mn
n,K, (3)

where Pi,F ’s and Pi,K’s are distinct prime ideals of R[[F]] and R[[K]], respectively.
Moreover, {Pi,K}K⊇F is a projective sequence of invertible prime ideals for each i. Put
Pi,∞ = {α ∈ R[[X ]]3 | K(α) ∈ Pi,K for every finite K ⊇ F}. Note that K(Pi,∞) ⊆ Pi,K
for every finite subsetK ⊇ F of X . Since δ ∈ Pi,∞, it follows from Lemma 4.4 that Pi,∞
is a prime ideal of R[[X ]]3 containing δ.

We claim that (δ) = P
m1
1,∞ · · ·P

mn
n,∞.

Let x ∈ P
m1
1,∞ · · ·P

mn
n,∞. Since K(Pi,∞) ⊆ Pi,K for every finite subset K ⊇ F of X

and each i, it follows from Theorem 2.1(7) that

K(x) ∈ K(Pm1
1,∞ · · ·P

mn
n,∞) ⊆ P

m1
1,K · · ·P

mn
n,K = (K(δ)). (4)

Thus K(x) = K(δ)γK for some γK ∈ R[[K]]. For any pair of finite subsets K and L of X
such that F ⊆ K ⊆ L, we have L(x) = L(δ)γL and K(x) = K(δ)γK . Since K(L(x)) =
K(x) and K(L(δ)) = K(δ), we have K(γL) = γK . Therefore, {γK}K⊇F is a projective
sequence. In view of Theorem 2.1(5), there exists γ ∈ R[[X ]]3 such that K(γ ) = γK
for every finite subset K ⊇ F of X . Then K(x) = K(δ)γK = K(δ)K(γ ) = K(δγ ) for
every finite subset K ⊇ F of X . It follows from Theorem 2.1(4) that x = δγ . Therefore
P
m1
1,∞ · · ·P

mn
n,∞ ⊆ (δ).

It follows from the remark just after Proposition 4.3 that there exist invertible ideals
Qi in R[[X ]]3 such that K(Qi) = Pi,K for every finite subset K ⊇ F of X and each i.
Note thatQi ⊆ Pi,∞ for each i. SinceK(Qi) = Pi,K for every finite subsetK ⊇ F of X ,
we have{

Q
m1
1 · · ·Q

mn
n ⊆ P

m1
1,∞ · · ·P

mn
n,∞ ⊆ (δ),

K(Qm1
1 · · ·Q

mn
n ) = K(Q1)

m1 · · ·K(Qn)
mn = P

m1
1,K · · ·P

mn
n,K = (K(δ)).

Thus Q
m1
1 · · ·Q

mn
n ⊆ (δ) and their K-projections are the same. Therefore, by Theorem

3.5, Q
m1
1 · · ·Q

mn
n = (δ) and hence (δ) = P

m1
1,∞ · · ·P

mn
n,∞. ut

Remark. Since Pi,∞ is an invertible ideal of R[[X ]]3 containing Qi and K(Pi,∞) =
K(Qi) for a finite subset K, it follows from Theorem 3.5 that Pi,∞ = Qi = fP

′

i [[X ]]3
in R[[X ]]3, where f ∈ K[[X ]]3 and P ′i is an invertible ideal of R.

If R is a Noetherian regular domain, then R[[X1, . . . , Xn]] is also a Noetherian regu-
lar domain. Since a Noetherian regular domain is a π -domain, R is a formally stable π -
domain. In particular, if R is a Dedekind domain, then R is a formally stable π -domain.
The following is an immediate application of Theorem 4.5.
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Corollary 4.6. Let R be an integral domain and X be a set of indeterminates over R.

(i) If R is a Noetherian regular domain, then R[[X ]]3 is a π -domain.
(ii) If R is a Dedekind domain, then R[[X ]]3 is a π -domain.

In [6], Claborn showed that if R is a Noetherian regular domain, then Cl(R) ∼=
Cl(R[[X1, . . . , Xn]]) canonically and Cl(R[[X1, . . . , Xn]]R∗) = 0, where R∗ is the set
of nonzero elements of R. Since a regular domain is a π -domain, our next result is a gen-
eralization of Claborn’s results to a formally stable π -domain as well as to an arbitrary
set of indeterminates.

Theorem 4.7. IfR is a formally stable π -domain andX is a set of indeterminates overR,
then

(i) Cl(R) ∼= Cl(R[[X ]]3) canonically,
(ii) Cl((R[[X ]]3)R∗) = 0; thus (R[[X ]]3)R∗ is a UFD.

Proof. (i) By Theorem 4.5, R[[X ]]3 is a π -domain. By Theorem 2.2(6), every divisorial
ideal of R[[X ]]3 is invertible. Since Cl(R[[X ]]3) = Pic(R[[X ]]3), it follows from Corol-
lary 3.12 that Cl(R) ∼= Cl(R[[X ]]3).

(ii) Let J be a divisorial ideal of (R[[X ]]3)R∗ . It is easy to see that J = IR∗ , where
I is a divisorial ideal of R[[X ]]3 [12]. By Theorem 3.11, I = f I ′[[X ]]3, where I ′ is an
invertible ideal of R. Therefore, IR∗ = (f I ′[[X ]]3)R∗ = f (R[[X ]]3)R∗ . Thus J = IR∗
is a principal ideal. ut

Corollary 4.8. If R is a Noetherian regular domain and X is a set of indeterminates
over R, then

(i) Cl(R) ∼= Cl(R[[X ]]3) canonically,
(ii) Cl((R[[X ]]3)R∗) = 0; thus (R[[X ]]3)R∗ is a UFD.

5. Extension to rings with zero-divisors

Let R be a commutative ring with identity. We use the notation dimR for the Krull di-
mension of R. R is called a π -ring if every principal ideal is a product of prime ideals.
If R[[X1, . . . , Xn]] is a π -ring for each finite set {X1, . . . , Xn} of indeterminates over R,
then R is called a formally stable π -ring. Let X be a set of indeterminates over R. In this
section, we will prove that if R is a formally stable π -ring, then R[[X ]]3 is also a π -ring.
As a corollary, it will follow that R[[X ]]3 is a π -ring if R is a Noetherian regular ring.
We abbreviate a Noetherian regular ring as a regular ring.

A special primary ring R is a quasi-local ring with maximal ideal M such that each
proper ideal of R is a power of M . It is clear that if R is a special primary ring, then
dimR = 0.

Theorem 5.1 ([11]). A quasi-local π -ring R with dimension greater than zero is an in-
tegral domain.
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Lemma 5.2 ([11]). If {Ri}ni=1 is a finite set of ideals of R such that R = R1⊕ · · · ⊕Rn,
then R is a π -ring if and only if each Ri is a π -ring.

Theorem 5.3 ([11, 15]). R is a π -ring if and only ifR is a finite direct sum of π -domains
and special primary rings.

Theorem 5.4. If R is a formally stable π -ring, then R[[X ]]3 is a π -ring.

Proof. Replacing R by R[[X]], we may assume that R is a π -ring. By Theorem 5.3, R
can be written as

R = R1 ⊕ · · · ⊕ Rn,

where Ri is either a π -domain or a special primary ring. A special primary ring is clearly
a π -ring. So each Ri is a π -ring. Since R is a formally stable π -ring, R1[[X]] ⊕ · · · ⊕
Rn[[X]] = R[[X]] is a π -ring. By Lemma 5.2, each Ri[[X]] is a π -ring. We will show
that eachRi is in fact a π -domain. Assume thatRi is a special primary ring. SinceRi[[X]]
is a quasi-local π -ring and dimRi[[X]] ≥ 1, Ri[[X]] is an integral domain by Theorem
5.1 and hence Ri is an integral domain. So Ri is a π -domain.

Now we have R = R1 ⊕ · · · ⊕ Rn and each Ri is a π -domain. Since R is a formally
stable π -ring,

⊕n
i=1 Ri[[X1, . . . , Xm]] = R[[X1, . . . , Xm]] is a π -ring for each m ≥ 1.

By Lemma 5.2, each Ri[[X1, . . . , Xm]] is a π -domain. By Theorem 4.5, each Ri[[X ]]3
is a π -domain. Therefore, by Theorem 5.3, R[[X ]]3 = R1[[X ]]3 ⊕ · · · ⊕ Rn[[X ]]3 is a
π -ring. ut

It is well known that every regular ring is a finite direct sum of regular domains. Since a
regular domain is a π -domain, a regular ring is a π -ring by Theorem 5.3. Since R[[X]] is
also a regular ring if R is a regular ring, a regular ring is a formally stable π -ring.

Corollary 5.5. If R is a Noetherian regular ring and X is a set of indeterminates over
R, then R[[X ]]3 is a π -ring.
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