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Abstract. We define invariants of null-homologous Legendrian and transverse knots in contact 3-
manifolds. The invariants are determined by elements of the knot Floer homology of the underlying
smooth knot. We compute these invariants, and show that they do not vanish for certain non-loose
knots in overtwisted 3-spheres. Moreover, we apply the invariants to find transversely non–simple
knot types in many overtwisted contact 3-manifolds.
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1. Introduction

The reformulation of knot Floer homology (introduced originally in [35, 39]) through grid
diagrams [26, 27] provided not only a combinatorial way of computing the knot Floer ho-
mology groups of knots in S3, but also showed a natural way of defining invariants of
Legendrian and transverse knots in the standard contact 3-sphere (S3, ξst) (see [37]). As
shown in [29, 44], such invariants can be effectively applied to study transverse simplicity
of knot types. The definition of these invariants relies heavily on the presentation of the
knot through a grid diagram, hence does not generalize directly to Legendrian and trans-
verse knots in other closed contact 3-manifolds. The aim of the present paper is to define
invariants for any null-homologous Legendrian (and transverse) knot L ⊂ (Y, ξ) (resp.
T ⊂ (Y, ξ)). As demonstrated by explicit computations, these constructions give inter-
esting invariants for Legendrian and transverse knots, even in cases where the ambient
contact structure is overtwisted.

Recall [35] that a smooth null-homologous knot K ⊂ Y in a closed 3-manifold Y
gives rise to the knot Floer homology groups ĤFK(Y,K) and HFK−(Y,K) (see also Sec-
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tion 2 for a short review of Heegaard Floer homology). These groups are computed as
homologies of appropriate chain complexes, which in turn result from doubly-pointed
Heegaard diagrams of the pair (Y,K). For an isotopic pair K1,K2 ⊂ Y the correspond-
ing chain complexes are quasi-isomorphic and hence the homologies are isomorphic. In
this sense the knot Floer homology groups (as abstract groups) are invariants of the iso-
topy class of the knot K . For the sake of simplicity, throughout this paper we use Floer
homology with coefficients in F := Z/2Z.

In this paper we define the invariants L(L) and L̂(L) of an oriented null-homologous
Legendrian knot L ⊂ (Y, ξ). For an introduction to Legendrian and transverse knots
see [10]. (We will always assume that Y is oriented and ξ is cooriented.) Recall that
the contact invariant c(Y, ξ) of a contact 3-manifold (Y, ξ)—as defined in [34]—is an
element (up to sign) of the Floer homology of −Y (rather than Y ). In the same vein, the
invariants L(L) and L̂(L) are determined by elements in the Floer homology of (−Y,L).
If Y admits an orientation reversing diffeomorphism µ (like S3 does), then the Floer
homology of (−Y,L) can be identified with the Floer homology of (Y, µ(L)).

More precisely, we will show that, given an oriented, null-homologous Legendrian
knot L in a closed contact 3-manifold (Y, ξ), one can choose certain auxiliary data D
which, together with L, determine a cycle x(L,D) in a complex defining the F[U ]-
modules HFK−(−Y,L, tξ ) or ĤFK(−Y,L, tξ ) (with trivial U -action), where tξ is the
Spinc structure on Y induced by ξ (see Section 2). A different choice D′ of the aux-
iliary data determines F[U ]-module automorphisms sending the class [x(L,D)] to the
class [x(L,D′)]. Formulating this a bit more formally, we can consider the set of pairs
(M,m), where M is an F[U ]-module and m ∈ M , and introduce an equivalence relation
by declaring two pairs (M,m) and (N, n) equivalent if there is an F[U ]-module isomor-
phism f : M → N such that f (m) = n. Let [M,m] denote the equivalence class of
(M,m). Then our main result can be stated as follows:

Theorem 1.1. Let L be an oriented, null-homologous Legendrian knot in the closed con-
tact 3-manifold (Y, ξ), and let tξ be the Spinc structure on Y induced by ξ . Then, after
choosing some suitable auxiliary data, it is possible to associate to L homology classes
αL(L) ∈ HFK−(−Y,L, tξ ) and αL̂(L) ∈ ĤFK(−Y,L, tξ ) such that

L(L) := [HFK−(−Y,L, tξ ), αL(L)] and L̂(L) := [ĤFK(−Y,L, tξ ), αL̂(L)]

do not depend on the choice of the auxiliary data, and in fact only depend on the Legen-
drian isotopy class of L.

We can define multiplication by U on the set of equivalence classes [M,m] by setting
U ·[M,m] := [M,U ·m]. We will say that L(L) is vanishing (respectively non-vanishing)
and write L(L) = 0 (respectively L(L) 6= 0) if L(L) = [HFK−(−Y,L, tξ ), 0] (respec-
tively L(L) 6= [HFK−(−Y,L, tξ ), 0]). Similar conventions will be used for L̂(L). Let
−L denote the knot L with reversed orientation. It turns out that the pairs L(±L) and
L̂(±L) have properties similar to those of the pair of invariants λ±(L) of [37].

One useful feature of the invariant L(±L) (shared with λ± from [37]) is that it has a
non-vanishing property, which can be formulated in terms of the contact invariant c(Y, ξ)
of the ambient contact 3-manifold (Y, ξ).
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Theorem 1.2. If the contact Ozsváth–Szabó invariant c(Y, ξ) ∈ ĤF(−Y, tξ ) of the con-
tact 3-manifold (Y, ξ) does not vanish, then L(L) 6= 0 for any oriented Legendrian knot
L ⊂ (Y, ξ). If c(Y, ξ) = 0 then for d large enough Ud · L(L) vanishes.

As will be explained later, such strong non-vanishing property does not hold for L̂. Since
a strongly symplectically fillable contact 3-manifold has non-zero contact invariant while
for an overtwisted structure c(Y, ξ) = 0, Theorem 1.2 immediately yields

Corollary 1.3. If (Y, ξ) is strongly symplectically fillable then for any null-homologous
Legendrian knot L ⊂ (Y, ξ) the invariant L(L) is non-vanishing. If (Y, ξ) is overtwisted,
then for any Legendrian knot L there is d ≥ 0 such that Ud · L(L) vanishes. ut

A stronger vanishing theorem holds for loose knots. Recall that a Legendrian knot L ⊂
(Y, ξ) is loose if its complement contains an overtwisted disk (and hence (Y, ξ) is nec-
essarily overtwisted). A Legendrian knot L ⊂ (Y, ξ) is non-loose (or exceptional in the
terminology of [8]) if (Y, ξ) is overtwisted, but the complement of L is tight.

Theorem 1.4. If L ⊂ (Y, ξ) is an oriented, null-homologous and loose Legendrian knot,
then L(L) = 0.

Transverse knots admit a preferred orientation, and can be approximated, uniquely up
to negative stabilization, by oriented Legendrian knots [9, 13]. This fact can be used to
define invariants of transverse knots:

Theorem 1.5. Suppose that T is a null-homologous transverse knot in the contact 3-
manifold (Y, ξ). Let L be a (compatibly oriented) Legendrian approximation of T . Then
T(T ) := L(L) and T̂(T ) := L̂(L) are invariants of the transverse knot type of T .

The proof of this statement relies on the invariance of the Legendrian invariant under
negative stabilization. After determining the invariants of stabilized Legendrian unknots
in the standard contact 3-sphere and the behaviour of the invariants under connected sum,
in fact, we will be able to determine the effect of both kinds of stabilization on the invari-
ant L, leading us to

Theorem 1.6. Suppose that L is an oriented Legendrian knot and let L+, resp. L− de-
note the oriented positive, resp. negative stabilizations of L. Then L(L−) = L(L) and
L(L+) = U · L(L).

The invariants can be effectively used in the study of non-loose Legendrian knots. Notice
that the invariant of a non-loose Legendrian knot is necessarily a U -torsion element, and
can be non-vanishing only if the knot and all its negative stabilizations are non-loose. In
Section 6 a family of non-loose torus knots in overtwisted contact S3’s are constructed,
for which we can determine the invariants L by direct computation.

Recall that a knot typeK in a contact 3-manifold is said to be transversely non-simple
if there are two transversely non-isotopic transverse knots in Y in the topological type of
K which have the same self-linking number. (For more background on transverse non-
simplicity, see [10, 13].) In an overtwisted contact structure, however, this definition ad-
mits refinements. (For more on knots in overtwisted contact structures, see [5, 6, 8, 16].)
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Namely, it is not hard to find examples of pairs of loose and non-loose (Legendrian or
transverse) knots with equal ‘classical’ invariants. By definition their complements admit
different contact structures (one is overtwisted, the other is tight), hence the knots are
clearly not Legendrian/transverse isotopic. Examples for this phenomenon will be dis-
cussed in Section 8. Finding pairs of Legendrian/transverse knots with equal classical
invariants, both loose or both non-loose, is a much more delicate question. Non-loose
pairs of Legendrian knots not Legendrian isotopic were found in [12]; by applying our
invariants we find transverse knots with similar properties:

Theorem 1.7. The knot type T(2,−7) # T(2,−9) ⊂ S
3 has two non-loose, transversely non-

isotopic transverse representatives with the same self-linking number with respect to the
overtwisted contact structure ξ12 with Hopf invariant d3(ξ12) = 12.

In fact, by further connected sums we get a more general statement:

Corollary 1.8. Let (Y, ξ) be a contact 3-manifold with c(Y, ξ) 6= 0. Let ζ be an over-
twisted contact structure on Y with tζ = tξ . Then in (Y, ζ ) there are null-homologous
knot types which admit two non-loose, transversely non-isotopic transverse representa-
tives with the same self-linking number.

Remarks 1.9. (a) Notice that to a Legendrian knot L in the standard contact 3-sphere
(S3, ξst) one can now associate several sets of invariants: λ±(L) of [37] and L(±L),
L̂(±L) of the present work. It would be interesting to compare these elements of the
knot Floer homology groups.

(b) We also note that recent work of Honda–Kazez–Matić [20] provides another invariant
for Legendrian knots L ⊂ (Y, ξ) through the sutured contact invariant of an appro-
priate complement of L in Y , using the sutured Floer homology of Juhász [21]. This
invariant seems to have slightly different features than the invariants defined in this
paper; the relationships between these invariants have yet to be understood.1

(c) In [12] arbitrarily many distinct non-loose Legendrian knots with the same classi-
cal invariants are constructed in overtwisted contact 3-manifolds. In [14] similar ex-
amples were constructed in the standard tight contact S3, using connected sums of
torus knots. These constructions, however, do not tell us anything about transverse
simplicity of the knot types.

(d) Note that connected summing preserves transverse simplicity [14] while torus knots
are transversely simple with respect to the standard tight contact S3 [13, 28]. There-
fore, in the standard contact 3-sphere there are no examples such as those of Theo-
rem 1.7.

The paper is organized as follows. In Section 2 we recall facts about open books and
contact structures, Heegaard Floer groups, and the contact Ozsváth–Szabó invariants. In
Section 3 we establish some preliminary results on Legendrian knots and open books, we
define our invariants and we prove Theorem 1.1. In Section 4 we compute the invariants

1 Added in proof: the relation between L̂ and the sutured invariant has been recently worked out
in [42].
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of a certain (stabilized) Legendrian unknot in the standard contact S3. This calculation is
both instructive and useful: it will be used in the proof of the stabilization invariance. In
Section 5 we prove Theorems 1.2, 1.4 and 1.5. In Section 6 we determine the invariant
L̂ for some non-loose Legendrian torus knots in certain overtwisted contact structures
on S3. In Section 7 we describe the behaviour of the invariants with respect to Legendrian
connected sum, and then derive Theorem 1.6. In Section 8 we discuss transverse simplic-
ity in overtwisted contact 3-manifolds, give a refinement of the Legendrian invariant and
prove Theorem 1.7 and Corollary 1.8 modulo some technical results which are deferred
to the Appendix.

2. Preliminaries

Our definition of the Legendrian knot invariant relies on the few basic facts listed below.

• There is a one-to-one correspondence between (isotopy classes of) contact structures
and open book decompositions (up to positive stabilization), as shown by Giroux [2,
11, 18].
• An idea of Giroux (cf. [2, 11]) allows one to construct an open book decomposition of
Y compatible with a contact structure ξ , which is also adapted to a given Legendrian
knot L ⊂ (Y, ξ).
• There is a contact invariant c(Y, ξ) of a closed contact 3-manifold (Y, ξ) originally

defined in [34] and recently reformulated by Honda–Kazez–Matić [19] (cf. also [20]).

We describe these ingredients in more detail in the following subsections. In Subsec-
tion 2.1 we recall how contact 3-manifold admit open book decompositions adapted to
given Legendrian knots. In Subsection 2.2 (which is not logically required by the rest of
this article, but which fits in neatly at this point) we explain how, conversely, an isotopy
class of embedded curves in a page of an open book decomposition gives rise to a unique
isotopy class of Legendrian knots in the associated contact 3-manifold. In Subsection 2.3
we recall the basics of Heegaard Floer homology, mainly to set up notation, and finally in
Subsection 2.4 we recall the construction of the contact invariant.

2.1. Generalities on open books and contact structures

Recall that an open book decomposition of a 3-manifold Y is a pair (B, ϕ) where B ⊂ Y
is a (fibred) link in Y and ϕ : Y −B → S1 is a locally trivial fibration such that the closure
of each fibre, St = ϕ−1(t) (a page of the open book), is a Seifert surface for the binding
B. The fibration ϕ can also be determined by its monodromy hϕ : S+1 → S+1, which
gives rise to an element of the mapping class group of the page (regarded as a surface
with boundary).

An open book decomposition (B, ϕ) can be modified by a classical operation called
stabilization [41]. The page S′ of the resulting open book (B ′, ϕ′) is obtained from the
page S of (B, ϕ) by adding a 1-handle H , while the monodromy of (B ′, ϕ′) is obtained
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by composing the monodromy of (B, ϕ) (extended trivially to S′) with a Dehn twist Dγ
along a simple closed curve γ ⊂ S′ intersecting the cocore of H transversely in a single
point. Depending on whether the Dehn twist is right- or left-handed, the stabilization is
called positive or negative. A positive stabilization is also called a Giroux stabilization.

Definition 2.1 (Giroux). A contact structure ξ and an open book decomposition are
compatible if ξ , as a cooriented 2-plane field, is the kernel of a contact 1-form α with
the property that dα is a symplectic form on each page, hence orients both the page and
the binding, and with this orientation the binding B is a link positively transverse to ξ . In
this situation we also say that the contact 1-form α is compatible with the open book.

A theorem of Thurston and Winkelnkemper [43] can be used to verify that each open book
admits a compatible contact structure. Moreover, Giroux [2, 11, 18] proved the following:

(1) Each contact structure is compatible with some open book decomposition.
(2) Two contact structures compatible with the same open book are isotopic.
(3) If a contact structure ξ is compatible with an open book (B, ϕ), then ξ is isotopic to

any contact structure compatible with a positive stabilization of (B, ϕ).

The construction of an open book compatible with a given contact structure rests on a
contact cell decomposition of the contact 3-manifold (Y, ξ) (see [11, Section 4] or [2,
Subsection 3.4]). In short, consider a CW -decomposition of Y such that its 1-skeleton
G is a Legendrian graph, each 2-cell D has the property that the twisting of the contact
structure along its boundary ∂D (with respect to the framing given by D) is −1, and the
3-cells are in Darboux balls of (Y, ξ). Then there is a compact surface R (a ribbon for G)
such that R retracts onto G, TpR = ξp for all p ∈ G and TpR 6= ξp for p ∈ R − G.
The 3-manifold Y admits an open book decomposition with binding ∂R and page R
which is compatible with ξ . We also have the following (see [11, Theorem 4.28] or [2,
Theorem 3.4]):

Theorem 2.2 (Giroux). Two open books compatible with the same contact structure ad-
mit isotopic Giroux stabilizations. ut

The proof of this statement rests on two facts. The first is given by

Lemma 2.3 ([11, Lemma 4.29] or [2, Proposition 3.7]). Each open book decomposition
compatible with (Y, ξ) admits a sequence of Giroux stabilizations such that the resulting
open book comes from a contact cell decomposition. ut

The second fact (see the proof of [11, Theorem 4.28]) is that any two contact cell de-
compositions can be connected by a sequence of operations of the following types: (1)
subdivision of a 2-cell by a Legendrian arc intersecting the dividing set (for its definition
see [13]) of the 2-cell once, (2) addition of a 1-cell c′ and a 2-cell D so that ∂D = c ∪ c′,
where c is part of the original 1-skeleton and the twisting of the contact structure along
∂D (with respect to D) is −1, and (3) addition of a 2-cell D whose boundary is already
in the 2-skeleton and satisfies the above twisting requirement. It is not hard to see that
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operations (1) and (2) induce positive stabilizations on the open book associated to the
cell decomposition, while (3) leaves the open book unchanged.

Thus, an invariant of open book decompositions which is constant under positive
stabilizations is, in fact, an isotopy invariant of the compatible contact structure. Since
in the construction of a contact cell decomposition for a contact 3-manifold (Y, ξ) one
can choose the CW -decomposition of Y in such a way that a Legendrian knot (or link)
L ⊂ (Y, ξ) is contained in its 1-skeleton G, we have:

Proposition 2.4 ([11, Corollary 4.23]). Given a Legendrian knot L in a closed, contact
3-manifold (Y, ξ), there is an open book decomposition compatible with ξ , containing L
on a page S and such that the contact framing of L is equal to the framing induced on L
by S. The open book can be chosen in such a way that L is homologically essential on the
page S. ut

Recall (see e.g. [11]) that any open book is obtained via a mapping torus construction
from a pair (sometimes called an abstract open book) (S, ϕ), where S is an oriented
surface with boundary and ϕ : S → S is an orientation preserving diffeomorphism which
restricts as the identity near ∂S. Our previous observations amount to saying that any
triple (Y, ξ, L), where L ⊂ Y is a Legendrian knot (or link) is obtained via the standard
mapping torus construction from a triple (S, L, ϕ), where L ⊂ S is a homologically
essential simple closed curve.

Definition 2.5. Let (S, ϕ) be an abstract open book, and let L ⊂ S be a homologically
essential simple closed curve. We say that the Giroux stabilization (S′, Rγ ◦ ϕ) is L-
elementary if after a suitable isotopy the curve γ intersects L transversely in at most one
point.

The construction of the Legendrian invariant rests on the following:

Proposition 2.6. Suppose that L ⊂ (Y, ξ) is a Legendrian knot in a contact 3-manifold.
If the triple (Y, ξ, L) is associated via the mapping torus construction with two differ-
ent triples T i = (Si, Li, ϕi), i = 1, 2, then (Y, ξ, L) is also associated with a triple
(S, L, ϕ), obtained from each of T1 and T2 by a finite sequence of L-elementary Giroux
stabilizations.

Proof. The proof of [11, Lemma 4.29] uses L-elementary stabilizations only (cf. [11,
Figure 12]) and (1)–(2) after Lemma 2.3 determine L-elementary stabilizations as well,
while (3) leaves the open book decomposition unchanged. ut

2.2. From curves on a page to Legendrian knots: uniqueness

Giroux’s results give a correspondence between Legendrian knots and knots on a page
in an open book decomposition. In fact, with a little extra work, this correspondence can
be suitably inverted. Although this other direction is not strictly needed for our present
applications (and hence the impatient reader is free to skip the present subsection), it does
fit in naturally in the discussion at this point. Specifically, in this subsection, we prove the
following:
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Theorem 2.7. Let (B, ϕ) be an open book decomposition of the closed, oriented 3-
manifold Y . Let ξ = ker(α) be a contact structure, with α a contact 1-form compatible
with (B, ϕ). Suppose that K ⊂ S := ϕ−1(1) is a smooth knot defining a non-trivial
homology class in H1(S;Z). Then the smooth isotopy class of K on the page uniquely
determines a Legendrian knot in (Y, ξ) up to Legendrian isotopy.

The proof of this theorem rests on two technical lemmas.

Lemma 2.8. Let (B, ϕ) be an open book decomposition of the closed, oriented 3-mani-
fold Y . Let Kt ⊂ S := ϕ−1(1) be a smooth family of knots which are homologically
non-trivial on the page and provide an isotopy from K0 to K1. Then there exists a smooth
family of contact 1-forms αKt ∈ �

1(Y ) compatible with (B, ϕ) and such that the restric-
tion of αKt to Kt vanishes.

Proof. In view of the argument given in [11, pp. 115–116], it suffices to show that there
exists a smooth family λt ∈ �1(S) such that, for each t :

(1) λt = (1 + s)dθ near ∂S, with coordinates (s, θ) ∈ [0, 1] × S1 near each boundary
component of S;

(2) dλt is a volume form on S;
(3) λt vanishes on Kt .

To construct the family λt we proceed as follows. For each t , choose a closed collar U
around Kt ⊂ S, parametrized by coordinates (s, θ) ∈ [−1, 1] × S1, so that ds ∧ dθ is a
volume form on U with the orientation induced from S. Let λ1,t ∈ �

1(S) be of the form
(1+ s)dθ near ∂S and of the form sdθ on U . We have∫

S

dλ1,t =

∫
∂S

λ1,t = 2π |∂S|.

Let ω be a volume form on S such that:

•
∫
S
ω = 2π |∂S|;

• ω = ds ∧ dθ near ∂S and on U .

(The first condition can be fulfilled since Kt ⊂ S is non-trivial in homology, hence each
component of its complement meets ∂S.) Let U ′ ⊂ U correspond to [−1/2, 1/2]× S1

⊂

[−1, 1]× S1. We have ∫
S\U ′

(ω − dλ1,t ) =

∫
S

(ω − dλ1,t ) = 0.

Since ω−dλ1,t = 0 near ∂(S \ U ′), by de Rham’s theorem there is a compactly supported
1-form βt ∈ �

1(S \ U ′) such that dβt = ω − dλ1,t on S \ U ′. Let β̃t be the extension of
βt to S by zero. Then

λt := λ1,t + β̃t ∈ �
1(S)

satisfies (1)–(3) above, and the dependence on t can be clearly arranged to be smooth. ut
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Lemma 2.9. Let (B, ϕ) be an open book decomposition of the closed, oriented 3-mani-
fold Y . Let ξ = ker(α) be a contact structure, with α a contact 1-form compatible with
(B, ϕ). Let K ⊂ (Y, ξ) be a smooth knot contained in the page S := ϕ−1(1) with K
homologically non-trivial in S. Then the quadruple (B, ϕ, α,K) determines, uniquely up
to Legendrian isotopy, a Legendrian knot

L = L(B, ϕ, α,K) ⊂ (Y, ξ)

smoothly isotopic to K .

Proof. Notice first that Giroux’s proof that two contact structures compatible with the
same open book are isotopic shows that the space C ⊂ �1(Y ) of contact 1-forms com-
patible with (B, ϕ) is connected and simply connected. In fact, given α0, α1 ∈ C, one
can first deform each of them inside C to α0,R, α1,R ∈ C, where R ≥ 0 is a constant,
so that when R is large enough, the path (1 − s)α0,R + sα1,R from α0,R to α1,R is in-
side C (see [11]). This proves that C is connected. A similar argument shows that C is
simply connected. In fact, given a loop L = {αz} ⊂ C, z ∈ S1, one can deform it to
LR = {αz,R} ⊂ C. By compactness, when R is large enough, LR can be shrunk in C
onto {α1,R} by taking convex linear combinations.

By our assumptions α ∈ C and by Lemma 2.8 there is a 1-form αK ∈ C whose
restriction to K vanishes. We can choose a path P in the space C connecting αK to α.
Then, setting ξK := ker(αK), by Gray’s theorem there is a contactomorphism

8 = 8(α, αK , P ) : (Y, ξK)→ (Y, ξ).

We defineL := 8(K). Since8 is smoothly isotopic to the identity,L is smoothly isotopic
to K . Hence, to prove the lemma it suffices to show that changing our choices of α, αK
or P only changes L by a Legendrian isotopy. Observe that if P ′ is another path from
αK to α, since C is simply connected there exists a family Pt of paths from αK to α
connecting P to P ′. This yields a family of contactomorphisms

8t : (Y, ξK)→ (Y, ξ)

and therefore a family of Legendrian knots Lt := 8t (K) ⊂ (Y, ξ) with L0 = L. Thus, L
only depends, up to Legendrian isotopy, on the endpoints αK and α of the path P . Sup-
pose now that we chose a different 1-form α′K ∈ C whose restriction to K vanishes. We
claim that there is then a smooth path αK,s ⊂ C from αK to α′K such that the restriction
of αK,s to K vanishes for every s. In fact, such a path can be found by first deforming
each of αK and α′K to the forms αK,R and α′K,R obtained by adding multiples of the
standard angular 1-form suitably modified near the binding, and then taking convex lin-
ear combinations (see [11]). Neither of the two operations alters the vanishing property
along K , therefore this proves the claim. Now we can find a smooth family Qs of paths
in C such thatQs joins αK,s to α for every s. This produces a family of Legendrian knots
φ(α, αK,s,Qs)(K) ⊂ (Y, ξ), thus proving the independence of L from αK up to Leg-
endrian isotopy. The independence from α can be established similarly: if α′ ∈ C and
ξ = ker(α′) then αs := (1 − s)α + sα′ ∈ C and ξ = ker(αs) for every s. Therefore,
we can find a smooth family of paths Rs in C, with Rs joining αK to αs for every s, and
proceed as before. ut
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Proof of Theorem 2.7. It suffices to show that ifKt ⊂ S is a family of smooth knots which
gives a smooth isotopy from K0 to K1, then the Legendrian knots L0 = L(B, ϕ, α,K0)

and L1 = L(B, ϕ, α,K1) determined via Lemma 2.9 are Legendrian isotopic. By Lem-
ma 2.8 there exists a smooth family of contact 1-forms αKt ∈ �

1(Y ) compatible with
(B, ϕ) and such that the restriction of αKt to Kt vanishes. Applying the construction of
Lemma 2.9 for each t we obtain the required Legendrian isotopy

Lt := L(B, ϕ, α,Kt ) ⊂ (Y, ξ). ut

2.3. Heegaard Floer homologies

The Heegaard Floer homology groups HF−(Y ), ĤF(Y ) of a 3-manifold were introduced
in [33] and extended in the case where Y is equipped with a null-homologous knotK ⊂ Y
to variants HFK−(Y,K), ĤFK(Y,K) in [35, 40]. For the sake of completeness we quickly
review the construction of these groups, emphasizing the aspects most important for our
present purposes.

We start with the closed case. An oriented 3-manifold Y can be conveniently presented
by a Heegaard diagram, which is an ordered triple (6, α, β), where 6 is an oriented
genus-g surface, α = {α1, . . . , αg} (and similarly β = {β1, . . . , βg}) is a g-tuple of
disjoint simple closed curves in 6, linearly independent in H1(6;Z). The α-curves can
be viewed as belt circles of the 1-handles, while the β-curves as attaching circles of the
2-handles in an appropriate handle decomposition of Y . We can assume that the α- and
β-curves intersect transversely. Consider the tori Tα = α1×· · ·×αg , Tβ = β1×· · ·×βg
in the gth symmetric power Symg(6) of 6 and define CF−(Y ) as the free F[U ]-module
generated by the elements of the transverse intersection Tα ∩ Tβ . (Recall that in this
paper we assume F = Z/2Z. The constructions admit a sign refinement to Z[U ], but we
do not need this for our current applications.) For appropriate symplectic, and compatible
almost complex structures (ω, J ) on Symg(6), x, y ∈ Tα ∩ Tβ , and relative homology
class φ ∈ π2(x, y), we define M(φ) as the moduli space of holomorphic maps from the
unit disk D ⊂ C to (Symg(6), J ) with the appropriate boundary conditions (cf. [33]).
Take µ(φ) to be the formal dimension of M(φ) and M̂(φ) = M(φ)/R the quotient of
the moduli space by the translation action of R.

An equivalence class of nowhere zero vector fields (under homotopy away from a
ball) on a closed 3-manifold is called a Spinc structure. It is easy to see that a cooriented
contact structure ξ on a closed 3-manifold naturally induces a Spinc structure: this is the
equivalence class of the oriented unit normal vector field of the 2-plane field ξ .

Fix a point w ∈ 6 − α − β, and for φ ∈ π2(x, y) denote the algebraic intersection
number #(φ∩{w}×Symg−16) by nw(φ). With these definitions in place, the differential
∂− : CF−(Y )→ CF−(Y ) is defined as

∂−x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y), µ(φ)=1

#M̂(φ) · Unw(φ) · y.
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With the aid of w the elements of Tα ∩ Tβ can be partitioned according to the Spinc

structures of Y , resulting in a decomposition

CF−(Y ) =
⊕

t∈Spinc(Y )
CF−(Y, t),

and the map ∂− respects this decomposition. If the technical condition of strong admis-
sibility (cf. [33]) is satisfied for the Heegaard diagram (6, α, β,w) of (Y, t), the chain
complex (CF−(Y, t), ∂−) results in a group HF−(Y, t) which is an invariant of the Spinc

3-manifold (Y, t). Strong admissibility of (6, α, β,w) for (Y, t) can be achieved as fol-
lows: consider a collection {γ1, . . . , γn} of curves in 6 generating H1(Y ;Q). It is easy to
see that such γi (i = 1, . . . , n) can be found for any Heegaard decomposition. Then, by
applying sufficiently many times a specific isotopy of the β-curves along each γi (called
‘spinning’, the exact amount depending on the value of c1(t) on a basis of H2(Y ;Q), cf.
[33]), one can arrange the diagram to be strongly admissible.

By specializing the F[U ]-module (CF−(Y, t), ∂−) to U = 0 we get a new chain
complex (ĈF(Y ), ∂̂), resulting in an invariant ĤF(Y, t) of the Spinc 3-manifold (Y, t). In
addition, if c1(t) is a torsion class, then the homology groups HF−(Y, t) and ĤF(Y, t)
come with a Q-grading (cf. [32]), and hence split as

HF−(Y, t) =
⊕
d

HF−d (Y, t), ĤF(Y, t) =
⊕
d

ĤFd(Y, t).

Since ĈF(Y ) is generated over F by the elements of Tα ∩ Tβ , the Floer homology
group ĤF(Y ) and hence also each ĤF(Y, t) are finitely generated F-modules. There is a
long exact sequence

· · · → HF−d (Y, t) ·U−→ HF−d−2(Y, t)→ ĤFd−2(Y, t)→ · · ·

which establishes a connection between the two versions of the theory.
Suppose now that we fix two distinct points

w, z ∈ 6 − α1 − · · · − αg − β1 − · · · − βg,

where (6, α, β,w) is a Heegaard diagram for Y . The ordered pair of points (w, z) deter-
mines an oriented knot K in Y by the following convention. We consider an embedded
oriented arc ζ in 6 from z to w in the complement of the α-arcs, and let η be an analo-
gous arc from w to z in the complement of the β-arcs. Pushing ζ and η into the α- and
β-handlebodies we obtain a pair of oriented arcs ζ ′ and η′ which meet 6 at w and z.
Their union now is an oriented knot K ⊂ Y . We call the tuple (6, α, β,w, z) a Heegaard
diagram compatible with the oriented knot K ⊂ Y . (This is the orientation convention
from [35]; it is opposite to the one from [27].)

We have a corresponding differential, defined by

∂−Kx =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y), µ(φ)=1, nz(φ)=0

#M̂(φ) · Unw(φ) · y.
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Using this map we get a chain complex (CFK−(Y ), ∂−K ). This group has an additional
grading, which can be formulated in terms of relative Spinc structures, which are possible
extensions of t|Y−νK to the 0-surgery Y0(K) along the null-homologous knotK . GivenK ,
there are infinitely many relative Spinc structures with a fixed background Spinc structure
on the 3-manifold Y . By choosing a Seifert surface F for the null-homologous knot K ,
we can extract a numerical invariant for relative Spinc structures, equal to half the value
of c1(s) on F (which is defined as the integral of the first Chern class of the corresponding
Spinc structure of the 0-surgery on the surface F̂ we get by capping off the surface F ).
Note that the sign of the result depends on the fixed orientation of K . The induced Z-
grading on the knot Floer complex is called its Alexander grading. When b1(Y ) = 0,
this integer, together with the background Spinc structure t, uniquely specifies the relative
Spinc structure; moreover, the choice of the Seifert surface becomes irrelevant, except for
the overall induced orientation on K .

For a null-homologous knotK ⊂ Y the homology group HFK−(Y,K, s) of the above
chain complex (with relative Spinc structure s) is an invariant of (Y,K, s), and is called the
knot Floer homology of K . The specialization U = 0 of the complex defines again a new
complex (ĈFK(Y,K, s), ∂̂K) with homology denoted by ĤFK(Y,K, s). The homology
groups ĤFK(Y,K, s) and HFK−(Y,K, s) are both finitely generated vector spaces over F.

An alternative way to view this construction is the following. Using one basepoint
w one can define the chain complex (CF−(Y, t), ∂−) as before, and with the aid of the
other basepoint z one can equip this chain complex with a filtration. As shown in [35], the
filtered chain homotopy type of the resulting complex is an invariant of the knot, and the
Floer homology groups can be defined as the homology of the associated graded object.

The restriction of a relative Spinc structure s to the complement of K extends to a
unique Spinc structure t on Y . The map induced by multiplication by U changes the
relative Spinc structure, but it preserves the background Spinc structure t ∈ Spinc(Y ).
Thus, we can view

CFK−(Y,K, t) :=
⊕

s restricts to t
CFK−(Y,K, s),

HFK−(Y,K, t) :=
⊕

s restricts to t
HFK−(Y,K, s)

and
ĤFK(Y,K, t) :=

⊕
s restricts to t

ĤFK(Y,K, s)

as modules over F[U ] (where the U -action on ĤFK(Y,K, t) is trivial). If t is torsion, then
there is an absolute Q-grading on these modules, as in the case of closed 3-manifolds.
As before, the two versions of knot Floer homologies are connected by the long exact
sequence

· · · → HFK−d (Y,K, t) ·U−→ HFK−d−2(Y,K, t)→ ĤFKd−2(Y,K, t)→ · · · .

A map F : HFK−(Y,K, t)→ ĤF(Y, t) can be defined, which is induced by the map

f : CFK−(Y,K, t)→ ĈF(Y, t)
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by setting U = 1 and taking z to play the role of w in the complex ĈF(Y, t). According
to the definition, this specialization simply disregards the role of the basepoint w. Indeed,
the fact that a generator of CFK−(Y,K) belongs to the summand CFK−(Y,K, t) is deter-
mined only by the point z. On the chain level this map fits into the short exact sequence

0→ CFK−(Y,K, t) U−1
−→ CFK−(Y,K, t)

f
→ ĈF(Y, t)→ 0, (2.1)

since f is obviously surjective.

Lemma 2.10. Let F : HFK−(Y,K, t) → ĤF(Y, t) be the map induced on homology
by f . The kernel of F consists of elements x of the form (U − 1)y. Moreover, an el-
ement x ∈ HFK−(Y,K, t) is both in the kernel of F and homogeneous, i.e. contained
in the summand determined by a fixed relative Spinc structure, if and only if x satisfies
Unx = 0 for some n ≥ 0.

Proof. The long exact sequence associated to the exact sequence (2.1) identifies kerF
with (U −1) ·HFK−(Y,K, t). The only statement left to be proved is the characterization
of homogeneous elements in kerF . If Unx = 0 then

x = (1− Un)x = (1− U)(x + Ux + · · · + Un−1x),

hence x is of the form x = (1−U)y. Conversely, if x = (1−U)y we may assume without
loss that y =

∑n−1
i=0 yi , where each yi is homogeneous, y0 = x and, for i = 0, . . . , n− 1,

Uyi belongs to the same relative Spinc structure as yi+1. A simple cancellation argument
shows that y1 = Uy0, y2 = Uy1, . . . , hence Unx = 0 by the finiteness of the sum. ut

2.4. Contact Ozsváth–Szabó invariants

Next we turn to the description of the contact Ozsváth–Szabó invariant of a closed con-
tact 3-manifold as given in [19]. (See [34] for the original definition of these invariants.)
Suppose that (B, ϕ) is an open book decomposition of the 3-manifold Y compatible with
the given contact structure ξ . Consider a basis {a1, . . . , an} of the page S+1, that is, take
a collection of disjoint properly embedded arcs {a1, . . . , an} such that S+1 −

⋃n
i=1 ai is

connected and simply connected (therefore it is homeomorphic to a disk). Let bi be a
properly embedded arc obtained by a small isotopy of ai so that the endpoints of ai are
isotoped along ∂S+1 in the direction given by the boundary orientation, and ai intersects
bi in a unique transverse point in int S+1 (cf. Figure 1 and [19, Figure 2]). Considering
ai = ai and bi = hϕ(bi) in S−1 = ϕ−1(−1) (where hϕ denotes a diffeomorphism repre-
senting the monodromy of the given open book), it is shown in [19] that the triple

(S+1 ∪ (−S−1), {ai ∪ ai}
n
i=1, {bi ∪ bi}

n
i=1) = (S+1 ∪ (−S−1), α, β)

is a Heegaard diagram for Y . (Notice that we have the freedom of choosing hϕ within its
isotopy class; this freedom will be used later, cf. Proposition 2.13.) For technical purposes,
however, we consider the triple

(S+1 ∪ (−S−1), {bi ∪ bi}
n
i=1, {ai ∪ ai}

n
i=1) = (S+1 ∪ (−S−1), β, α), (2.2)
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S

ai bi

Fig. 1. The arcs ai and bi .

which is now a Heegaard diagram for −Y . With this choice, and the careful placement of
the basepointw, we can achieve that the proposed chain in the chain complex for defining
the Heegaard Floer group is, in fact, a cycle. More formally, put the basepoint w in the
disk S+1 −

⋃n
i=1 ai outside of the small strips between the ai’s and the bi’s and consider

the element x(B, ϕ) = {ai ∩ bi} in the chain complex corresponding to the Heegard
diagram (2.2) above (pointed by w). It is not hard to see (cf. [19]) that with these choices
the Heegaard diagram is weakly admissible. In the following we always have to keep in
mind the reversal of the α- and β-curves when working with the contact (or Legendrian)
invariants.

Theorem 2.11 ([19], cf. also [20]). The chain x(B, ϕ) defined above is closed when
regarded as an element of the Heegaard Floer chain complex ĈF(−Y ). The homology
class [x(B, ϕ)] ∈ ĤF(−Y ) defined by x(B, ϕ) is independent (up to sign) of the chosen
basis and compatible open book decomposition. Therefore the homology class [x(B, ϕ)]
is an invariant of the contact structure (Y, ξ).

The original definition of this homology class is given in [34], which leads to a different
Heegaard diagram. It can be shown that the two invariants are identified after a sequence
of handle slides; though one can work directly with the above definition, as in [19]. We
adopt this point of view, supplying an alternative proof of the invariance of the contact
class (which will assist us in the definition of the Legendrian invariant).

Alternative proof of Theorem 2.11. In computing ∂x(B, ϕ) we need to encounter holo-
morphic disks which avoidw but start at x(B, ϕ). By the chosen order of ai and bi (result-
ing in a Heegaard diagram of −Y rather than Y ) we deduce that such a holomorphic disk
does not exist. In fact, there are no Whitney disks φ ∈ π2(x, y) for any y with nw(φ) = 0
and whose local multiplicities are all non-negative (cf. [19, Section 3]). Thus, the intersec-
tion point represents a cycle in the chain complex. The independence of [x(B, ϕ)] from
the basis is given in [19, Proposition 3.3]. The argument relies on the observation that
two bases of S+1 can be connected by a sequence of arc slides [19, Section 3.3], inducing
handle slides on the corresponding Heegaard diagrams. (We will discuss a sharper ver-
sion of this argument in Proposition 3.2.) As is verified in [19, Lemma 3.4], these handle
slides map the corresponding x’s into each other.

In order to show independence from the chosen open book decomposition, we only
need to verify that if (B ′, ϕ′) is the result of a Giroux stabilization of (B, ϕ), then there
are appropriate bases, giving Heegaard decompositions, for which the map

8 : ĈF(B, ϕ)→ ĈF(B ′, ϕ′)
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induced by the stabilization satisfies 8(x(B, ϕ)) = x(B ′, ϕ′). Let us assume that the
right-handed Dehn twist of the Giroux stabilization is equal to Dγ , where γ is a simple
closed curve in the page S′ of (B ′, ϕ′), and γ1 is the portion of it inside the page S of
(B, ϕ). Our aim is to find a basis {a1, . . . , an} for S which is disjoint from γ1. If S− γ1 is
connected, then choose a1 to be (a slight push-off of) γ1, and extend {a1} to a basis for S.
If S − γ1 is disconnected then the union of any bases of the components (possibly after
isotoping some endpoints along γ1) will be appropriate.

Now consider the basis for S′ obtained by extending the above basis for S with the
cocore an+1 of the new 1-handle. Since γ is disjoint from all ai (i ≤ n), we clearly
see that αn+1 = an+1 ∪ an+1 will be intersected only (and in a single point yn+1) by
βn+1 = bn+1 ∪ hϕ(bn+1). Therefore the map 8 sending a generator (y1, . . . , yn) of
ĈF(B, ϕ, {a1, . . . , an}) to (y1, . . . , yn, yn+1) (with the last coordinate being the unique
intersection αn+1 ∩ βn+1 = {yn+1}) establishes an isomorphism

8 : ĈF(B, ϕ, {a1, . . . , an})→ ĈF(B ′, ϕ′, {a1, . . . , an, an+1})

between the underlying Abelian groups. Since αn+1 contains a unique intersection point
with all the β-curves, a holomorphic disk encountered in the boundary map must be
constant at yn+1, hence 8 is a chain map. Since it maps x(B, ϕ) to x(B ′, ϕ′), the proof is
complete. (See also [20, Section 3].) ut

Remark 2.12. The basic properties (such as the vanishing for overtwisted and non-
vanishing for Stein fillable structures, and the transformation under contact (+1)-surgery)
can be directly verified for the above construction (cf. [19]).

In our later arguments we will need the fact that the Heegaard diagram can be chosen
to be strongly admissible, hence we address this issue presently, using an argument which
was first used in [38].

Proposition 2.13. For any Spinc structure t the monodromy map hϕ of the given open
book decomposition can be chosen in its isotopy class in such a way that the Heegaard
diagram defined before Theorem 2.11 is strongly admissible for t.

Proof. Recall that strong admissibility of a Heegaard diagram for a given Spinc structure
t can be achieved by isotoping the β-curves through spinning them around a set of curves
{γ1, . . . , γn} in the Heegaard surface 6 representing a basis of H1(Y ). It can be shown
that for a Heegaard diagram coming from an open book decomposition, we can choose
the curves γi all in the same page, hence all γi can be chosen to be in S−1. Since the
spinnings are simply isotopies in this page, we can change a fixed monodromy hϕ within
its isotopy class to realize the required spinnings. In this way we get a strongly admissible
Heegaard diagram for (Y, t). ut

3. Invariants of Legendrian knots

Suppose now that L ⊂ (Y, ξ) is a given Legendrian knot, and consider an open book
decomposition (B, ϕ) compatible with ξ containing L on a page. To define our Legen-
drian knot invariants we need to analyze the dependence on the choice of an appropriate
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basis and the open book decomposition as in Section 2, but now in the presence of the
Legendrian knot.

Legendrian knots and bases

Suppose that S is a surface with ∂S 6= ∅ and {a1, . . . , an} is a basis in S. If (after possibly
reordering the ai’s) the two arcs a1 and a2 have adjacent endpoints on some component of
∂S, that is, there is an arc τ ⊂ ∂S with endpoints on a1 and a2 and otherwise disjoint from
all ai’s, then define a1 + a2 as the isotopy class (rel endpoints) of the union a1 ∪ τ ∪ a2.
The modification

{a1, a2, . . . , an} 7→ {a1 + a2, a2, . . . , an}

is called an arc slide (cf. [19]). Suppose that L ⊂ S is a homologically essential simple
closed curve. The basis {a1, . . . , an} of S is adapted to L if L ∩ ai = ∅ for i ≥ 2 and L
intersects a1 in a unique transverse point.

Lemma 3.1. For any surface S and homologically essential knot L ⊂ S there is an
adapted basis.

Proof. The statement follows easily from the fact that L represents a non-trivial class in
H1(S, ∂S). ut

Suppose now that {a1, . . . , an} is an adapted basis for (S, L). An arc slide {ai, aj } 7→
{ai + aj , aj } is called admissible if the arc ai is not slid over the distinguished arc a1. The
aim of this subsection is to prove the following

Proposition 3.2. If {a1, . . . , an} and {A1, . . . , An} are two adapted bases for (S, L)
then there is a sequence of admissible arc slides which transform {a1, . . . , an} into
{A1, . . . , An}.

Proof. As a first step, we want to show that, up to applying a sequence of admissible arc
slides to the ai’s, we may assume (a1 ∪ · · · ∪ an) ∩ (A1 ∪ · · · ∪ An) = ∅. We start by
showing that a1 ∩ A1 = ∅ can be assumed. Suppose that a1 ∩ A1 6= ∅; we will find arc
slides reducing |a1∩A1|. To this end, consider the diskD2 obtained by cutting S along the
ai’s. Then A1∩D

2 is a collection of arcs, and (at least) one component intersects a1. This
component of A1 divides D2 into two components D1 and D2, and one of them, say D1,
contains a−1

1 (or a1). Sliding a1 over all the ai’s contained in the boundary semicircle
of D2 (cf. Figure 2(a)) we reduce |a1 ∩ A1| by one, so ultimately we can assume that
a1 ∩ A1 = ∅. Next we apply further arc slides to achieve ai ∩ A1 = ∅ (i ≥ 2). For this,
let us assume that a2 is the first arc intersecting A1 when traversing A1 starting from ∂S.
(Since A1 intersects L exactly once, after possibly starting at the other end of A1 we
can assume that it first meets a2 and then L.) As before, we can find a segment of A1
intersecting a2 and dividing D2

= S −
⋃
ai into two components, one of which contains

a1, a
−1
1 (since these are connected by L, and the segment we chose is disjoint from L);

cf. Figure 2(b). If a−1
2 is in the same semicircle as a1 (and so a−1

1 ) then we can slide a2
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L
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(a) (b)

(c) (d)

Fig. 2. Arc slides.

along the other semicircle to eliminate one intersection point from a2 ∩ A1. If a−1
2 is on

the other semicircle, then we cannot proceed in such a simple way (since a2 is allowed
to be slid over neither a1 nor a−1

2 ). Now consider the continuation of A1, which comes
out from a−1

2 and stays in the same component. It might go back to a2, and repeat this
spiraling some more times, but eventually it will go to another part of the boundary ofD2,
producing an arc, which starts from a2 (or a−1

2 ) and divides D2 in such a way that a1 and
a−1

2 (or a2) are on the same side of it. Then a2 can be slid across the opposite side so as
to reduce the intersection number in question.

After these slides we can assume that A1 ∩
⋃n
i=1 ai = ∅. This however allows us

to slide a1 until it becomes isotopic to A1 (cf. Figure 2(c)). Consider now A2. If A2
intersects some ai , then the segment of A2 connecting ∂S to the first such intersection
(with, say, a2) divides D2 into two components, and one of them contains both a1 and
a−1

1 (since A2 is disjoint from L). If a−1
2 is on the same semicircle as a1, then sliding

over the other semicircle reduces the number of intersections. The other possibility can
be handled exactly as before.

Finally, we get to the position when a1 is isotopic to A1 and (
⋃n
i=1 ai) ∩ (

⋃n
i=1Ai)

= ∅. Now we argue as follows: consider A2 and choose ai such that ai and a−1
i are

in different components of D2
− A2. Such an ai exists because A2 is non-separating.

Suppose without loss of generality that i = 2. Then on the side of A2 not containing a1
(and a−1

1 ) we can slide a2 until it becomes isotopic to A2 (see Figure 2(d)). Repeating
this procedure for each Ai completes the proof. ut

Invariants of Legendrian knots

Consider now a null-homologous Legendrian knot L ⊂ (Y, ξ) and fix an open book
decomposition (B, ϕ) compatible with ξ and containing L on the page S+1 := ϕ−1(1).
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Pick a basis A = {a1, . . . , an} ⊂ S+1 such that a1 ∩ L is a unique point and ai ∩ L = ∅
(i ≥ 2). Under the above conditions we will say that the triple (B, ϕ,A) is compatible
with the triple (Y, ξ, L).

Place the basepoint w as before. Putting the other basepoint z between the curves
a1 and b1 we recover a knot in S+1 smoothly isotopic to L: connect z and w in the
complement of ai , and then w and z in the complement of bi within the page S+1. This
procedure (hence the ordered pair (w, z)) equips L with an orientation. Moreover, if the
point z is moved from one domain between a1 and b1 to the other, the orientation induced
on L gets reversed. Thus, if L is already oriented then there is only one compatible choice
of position for z. Notice that z and w chosen as above determine a knot in S+1, unique
up to isotopy in S+1. In turn, by Theorem 2.7 the open book decomposition together
with such a knot uniquely determines a Legendrian knot (up to Legendrian isotopy) in
the corresponding contact structure. In short, (B, ϕ, S+1, A, z,w) determines the triple
(Y, ξ, L).

Recall that when defining the chain complex ĈF containing the contact invariant, we
reverse the roles of the α- and β-curves, which results in a Heegaard diagram for −Y
rather than Y . For the same reason, we do the switch between the α- and β-curves here as
well. According to our conventions, this change would reverse the orientation of the knot
L as well; to keep the fixed orientation onL, switch the position of the basepointsw and z.
The two possible locations of z andw we use in the definition of ĈF(−Y,L) are illustrated
in Figure 3; the orientation of L specifies the location of w. With x = x(B, ϕ) = (ai ∩bi)

b1 a1 b1 a1

L
w

w L

z z

or

Fig. 3. There are two regions between a1 and b1 in S+1; the placement of w is determined by the
orientation of L.

as before, it is easy to see that there are no non-negative Whitney disks φ ∈ π2(x, y) with
nz(φ) = 0 for any y, hence (as in [19, Section 3]) the intersection point x can be viewed as
a cycle in both CFK−(−Y,L, t) and ĈFK(−Y,L, t) for some Spinc structure t on Y . As
observed in [35, Subsection 2.3], the Spinc structure t is determined by the point z only,
being equal to sz(x) (see [35] for notation). This shows that the contact invariant c(Y, ξ)
lives in the summand of ĤF(−Y ) corresponding to t. On the other hand, it is known [34]
that c(Y, ξ) ∈ ĤF(−Y, tξ ), therefore we conclude t = tξ . Since L is null-homologous,
one needs to make sure that the Heegaard diagram is strongly admissible for (Y, tξ ); this
fact follows from Proposition 2.13. Next we will address invariance properties of the knot
Floer homology class represented by x(B, ϕ).

Proposition 3.3. Let L ⊂ (Y, ξ) be a Legendrian knot. Let (B, ϕ,A,w, z) and
(B ′, ϕ′, A′, w′, z′) be two open books compatible with (Y, ξ, L) and endowed with bases
and basepoints adapted to L. Then there are isomorphisms of F[U ]-modules

8− : HFK−(−Y,L, tξ )→ HFK−(−Y,L, tξ )
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and
8̂ : ĤFK(−Y,L, tξ )→ ĤFK(−Y,L, tξ )

such that

8−([x(B, ϕ,A)]) = [x(B ′, ϕ′, A′)] and 8̂([x(B, ϕ,A)]) = [x(B ′, ϕ′, A′)].

Recall from Section 1 that, if M and N are F[U ]-modules, we consider (M,m) and
(N, n) to be equivalent, and we write [M,m] = [N, n], if there is an isomorphism of
F[U ]-modules f : M → N such that f (m) = n.

In view of Proposition 3.3, we introduce the following

Definition 3.4. Let L ⊂ (Y, ξ) be an oriented Legendrian knot, and (B, ϕ,A,w, z) an
open book decomposition compatible with (Y, ξ, L) with an adapted basis and base-
points. Then we define

L(L) := [HFK−(−Y,L, tξ ), [x(B, ϕ,A)]].

Similarly, we define

L̂(L) := [ĤFK(−Y,L, tξ ), [x(B, ϕ,A)]].

Proof of Proposition 3.3. Suppose for the moment that (B ′, ϕ′) = (B, ϕ). Then Proposi-
tion 3.2 provides a sequence of arc slides transforming A′ to the chosen A. As explained
in [19], arc slides induce handle slides on the associated Heegaard diagrams, and the
invariance of the Floer homology element under these handle slides is verified in [19,
Lemma 3.4]. Notice that since we do not slide over the arc intersecting the Legendrian
knot L (and hence over the second basepoint defined by this arc), actually all the handle
slides induce F[U ]-module isomorphisms on the knot Floer groups (cf. [35]). This argu-
ment proves the statement in the special case (B ′, ϕ′) = (B, ϕ).

We now consider the special case when (B ′, ϕ′) is an L-elementary stabilization of
(B, ϕ). Suppose that the Dehn twist of the stabilization is along γ ⊂ S′, with γ1 ⊂ S.
Since we work with an L-elementary stabilization, |γ1 ∩ L| ≤ 1. If γ1 is separating then
γ1 ∩ L = ∅ and we choose the bases of S and S′ as in the proof of Theorem 2.11.
If γ1 is non-separating and γ1 ∩ L = ∅ then choose a2 = γ1 and extend it to an ap-
propriate basis. For γ1 ∩ L = {pt.} we take a1 = γ1 and extend it further. Denote
by T and T ′ the resulting bases of S and S′ respectively. The proof of Theorem 2.11
now applies verbatim to show the existence of automorphisms of HFK−(−Y,L, tξ ) and
ĤFK(−Y,L, ξ) mapping [x(B, ϕ, T )] to [x(B ′, ϕ′, T ′)]. On the other hand, by the first
part of the proof we know that there are other automorphisms sending [x(B, ϕ,A)] to
[x(B, ϕ, T )] and [x(B ′, ϕ′, T ′)] to [x(B ′, ϕ′, A′)]. This proves the statement when (B, ϕ′)
is an L-elementary stabilization of (B, ϕ).

In the general case, since (B, ϕ) and (B ′, ϕ′) are two open books compatible with
(Y, ξ, L), by Proposition 2.6 we know that there is a sequence of L-elementary stabiliza-
tions which turns each of them into the same stabilization (B ′′, ϕ′′). Thus, applying the
previous special case the required number of times concludes the proof. ut
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Remark 3.5. Let L ⊂ (Y, ξ) be a Legendrian knot and (B, ϕ,A,w, z) a compatible
open book with adapted basis and basepoints. It follows immediately from the definitions
that the map f from HFK−(−Y,L, s) to ĤFK(−Y,L, s) induced by setting U = 0 sends
the class of x(B, ϕ,A) in the first group to the class of x(B, ϕ,A) in the second group.
Moreover, the chain map inducing f can be viewed as the canonical map from the com-
plex CFK−(−Y,L, s) onto its quotient complex ĈFK(−Y,L, s). As such, it is natural
with respect to the transformations of the two complexes induced by the isotopies, stabi-
lizations and arc slides used in the proof of Proposition 3.3. Thus, it makes sense to write
f (L(L)) = L̂(L). Therefore L̂(L) 6= 0 readily implies L(L) 6= 0, although the converse
does not necessarily hold: a non-vanishing invariant L(L) determined by a class which is
in the image of the U -map gives rise to vanishing L̂(L). As we will see, such examples
do exist.

Corollary 3.6. Let L1, L2 ⊂ (Y, ξ) be oriented Legendrian knots. Suppose that there
exists an isotopy of oriented Legendrian knots from L1 to L2. Then L(L1) = L(L2) and
L̂(L1) = L̂(L2).

Proof. Let (B, ϕ,A) be an open book compatible with (Y, ξ, L1) with an adapted basis,
and let f1 be the time-1 map of the isotopy. Then the triple (f1(B), ϕ ◦ f

−1
1 , f1(A))

is compatible with and adapted to (Y, ξ, L2). The induced map on the chain complexes
maps x(B, ϕ,A) to x(f1(B), ϕ ◦ f

−1
1 , f1(A)), verifying the last statement. ut

Remark 3.7. In fact, we only used the fact that f1 : (Y, ξ) → (Y, ξ) is a contactomor-
phism mapping L1 into L2 (respecting their orientation). In conclusion, Legendrian knots
admitting such an identification have the same Legendrian invariants. The existence of f1
with these properties and the isotopy of the two knots is equivalent in the standard contact
3-sphere, but the two conditions are different in general.

Proof of Theorem 1.1. The theorem follows immediately from Proposition 3.3 and Corol-
lary 3.6. ut

4. An example

Suppose that L ⊂ (S3, ξst) is the Legendrian unknot with Thurston–Bennequin invari-
ant −1 in the standard tight contact 3-sphere. It is easy to see that the positive Hopf
link defines an open book on S3 which is compatible with ξst and it contains L on a
page. A basis in this case consists of a single arc cutting the annulus. The corresponding
genus-1 Heegaard diagram has now a single intersection point, which gives the generator
of HFK−(−S3, L) (the 3-sphere S3 has a unique Spinc structure, so we omit it from the
notation). The two possible choices w1 and w2 for the position of w, corresponding to
the two choices of an orientation for L, give the same class defining L(L), because in this
case w1 and w2 are in the same domain (cf. Figure 4(i)). Let L′ denote the stabilization
of L. The knot L′ can then be put on the page of the once stabilized open book, depicted
(together with the monodromies) in Figure 4(ii), where the unknot is represented by the
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L

L′

ba

w1

w2

z

b1a1

z

b2a2

w1

w2

(i) (ii)

Fig. 4. The page of the open book and the basis for the stabilized unknot.

curve with L′ next to it, and the thin circles represent curves along which Dehn twists
are to be performed to get the monodromy map. The page on the left represents the open
book decomposition for the Hopf band, while the page on the right is its stabilization.
The corresponding Heegaard diagram (with the use of the adapted basis of Figure 4(ii))
is shown in Figure 5. We record both possible choices of w by putting a w1 and a w2 on

P

w1
V T

X1

X2
z

w2

Fig. 5. Heegaard diagram for the unknot.

the diagram—the two choices correspond to the two possible orientations of L. Inciden-
tally, these two choices also correspond to the two possible stabilizations with respect to
a given orientation, since positive stabilization for an orientation is exactly the negative
stabilization for the reverse orientation. It still needs to be determined whether w2 gives
a positive or negative stabilization.

Lemma 4.1. The oriented knot determined by the pair z and w2 represents the negative
stabilization of the oriented unknot (i.e. the stabilization with rot = −1).

Proof. In order to compute the rotation number of the stabilization given by w2, first we
construct a Seifert surface for L′. To this end, consider the loop A1 given by the upper



1328 Paolo Lisca et al.

L′

R

C1

C2

Fig. 6. Computation of the rotation of L′.

part of L′ together with the dashed line C1 of Figure 6. This loop bounds a disk D1 in
the 3-manifold given by the open book decomposition, and the tangent vector field along
A1 obviously extends as a non-zero section of ξ to D1, since D1 can be regarded as an
appropriate Seifert surface for the unknot L before stabilization (cf. Figure 4). Define
A2 and D2 similarly, now using the lower part of L′. A Seifert surface for L′ can then
be given by the union of D1,D2 and the region R of Figure 6. If we extend the tangent
vector field along L′ to a section of ξ over C1, C2 first, the above observation shows that
the rotation number of L′ is the same as the obstruction to extending the above vector
field to R as a section of ξ . Notice that along R we have ξ = T R. The region R (with the
given vector field on its boundary) can be embedded into the disk with the tangent vector
field along its boundary, hence a simple Euler characteristic computation shows that the
obstruction we need to determine is equal to −1, concluding the proof. ut

Notice that the monodromy is pictured on the page S+1 (which also contains the knot),
but its effect is taken into account on S−1, which comes in the Heegaard surface with its
orientation reversed. Therefore when determining the α- and β-curves in the Heegaard
diagrams, right-handed Dehn twists of the monodromy induce left-handed Dehn twists
on the diagram and vice versa.

The three generators of the chain complex corresponding to the Heegaard diagram of
Figure 5 in the second symmetric product of the genus-2 surface are the pairs PX1, PX2
and T V . It is easy to see that there are holomorphic disks connecting T V and PX2
(passing through the basepoint w1) and T V and PX1 (passing through w2); and these are
the only two possible holomorphic disks not containing z.

When we use w1 as our second basepoint, the two disks out of T V show that the class
represented by PX1, and the class of PX2 muliplied by U , are homologous:

∂−(T V ) = PX1 + U · PX2.

In conclusion, in this case [PX2] generates HFK−(−S3, L′) and the invariant [PX1] is
determined by the class of U times the generator.

When using w2 as the second basepoint, we see that the class [PX2] will be equal to
U ·[PX1], hence in this case [PX1] is the generator. Since PX1 represents the Legendrian
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invariant, we conclude that in this case the equivalence class modulo automorphisms of
the generator of HFK−(−S3, L′) (over F[U ]) is equal to the Legendrian invariant of L′.
In summary, we get

Corollary 4.2. Suppose that L ⊂ (S3, ξ) is an oriented Legendrian unknot with tb(L) =
−1. Then L(L) is represented by the generator of the F[U ]-module HFK−(L) = F[U ].
If L− is the negative stabilization of L then L(L−) = L(L), while for the positive stabi-
lization L+ we have L(L+) = U · L(L). ut

5. Basic properties of the invariants

Non-vanishing and vanishing results

The invariant L has the non-vanishing property provided the contact invariant c(Y, ξ) of
the ambient 3-manifold is non-zero (which holds, for example, when the ambient contact
structure is strongly fillable). When c(Y, ξ) = 0 (e.g., if (Y, ξ) is overtwisted) then L(L)
is a U -torsion element.

Proof of Theorem 1.2. Consider the natural chain map

f : CFK−(−Y,L)→ ĈF(−Y )

given by settingU = 1 (cf. Lemma 2.10). Let (B, ϕ,A,w, z) be an open book compatible
with (Y, ξ, L) with an adapted basis and basepoints. Since the map F induced by f on
homology sends [x(B, ϕ,A)] to c(Y, ξ), the non-vanishing of L(L) when c(Y, ξ) 6= 0
obviously follows. If the above map sends [x(B, ϕ,A)] to zero, then by Lemma 2.10 (and
the fact that [x(B, ϕ,A)] is homogeneous) we conclude that Ud · L(L) = 0 for some
d ≥ 0, verifying Theorem 1.2. ut

A vanishing theorem can be proved for a loose knot, that is, for a Legendrian knot in a
contact 3-manifold with overtwisted complement. Before this result we need a prepara-
tory lemma from contact topology:

Lemma 5.1. Suppose that L ⊂ (Y, ξ) is a Legendrian knot such that (Y, ξ) contains an
overtwisted disk in the complement of L. Then the complement (Y−νL, ξ |Y−νL) admits a
connected sum decomposition (Y − νL, ξ1) # (S3, ξ2) with the property that ξ1 coincides
with ξ |Y−νL near ∂(Y − νL) and ξ2 is overtwisted.

Proof. Let us fix an overtwisted disk D disjoint from the knot L and consider a neigh-
bourhood V (diffeomorphic to D3) of D with the property that V is still disjoint from L.
By the classification of overtwisted contact structures on D3 with a fixed characteristic
foliation on the boundary [7, Theorem 3.1.1], we can take ξ1 on Y − νL and ξ2 on S3

such that ξ1 # ξ2 = ξ |Y−νL and ξ1 is equal to ξ near ∂(Y − νL), while ξ2 is overtwisted.
The statement of the lemma then follows at once. ut
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Proof of Theorem 1.4. Let us fix a decomposition of (Y, ξ) as before, that is, (Y, ξ) =
(Y, ξ1)#(S3, ξ2)with the properties thatL ⊂ (Y, ξ1) and ξ2 is overtwisted on S3. Consider
open book decompositions compatible with (Y, ξ1) and (S3, ξ2). Assume furthermore that
the first open book has a basis adapted to L, while the second open book has a basis
containing an arc which is displaced to the left by the monodromy. (The existence of such
a basis is shown in the proof of [19, Lemma 3.2].) The Murasugi sum of the two open
books and the union of the two bases provides an open book decomposition for (Y, ξ),
adapted to the knot L, together with an arc disjoint from L which is displaced to the
left by the monodromy. Since the basepoint w in the Heegaard diagram is in the strip
determined by the arc intersecting the knot, the holomorphic disk appearing in the proof
of [19, Lemma 3.2] avoids both basepoints and shows the vanishing of L(L). ut

Transverse knots

Next we turn to the verification of the formula relating the invariants of a negatively
stabilized Legendrian knot to the invariants of the original knot. We will spell out the
details for L only. Then we will discuss the implication of the stabilization result regarding
invariants of transverse knots. The effect of more general stabilizations on the invariant
will be addressed later using slightly more complicated techniques.

Proposition 5.2. Suppose that L is an oriented Legendrian knot and L− denotes the
oriented negative stabilization of L. Then L(L−) = L(L).

Proof. The proof relies on the choice of a convenient open book decomposition. To this
end, fix an open book decomposition (B, ϕ,A) compatible with (Y, ξ) and with a basis
adapted to L. Place w according to the given orientation. As shown in [11], after an
appropriate Giroux stabilization the open book also accomodates the stabilization of L.
The new open book with adapted basis (B−, ϕ−, A−) together with the new choice of w
(denoted by w−) is illustrated by Figure 7. As in Lemma 4.1, we can easily see that this

a b a b

ww
z z

w−
a′b′

c

Fig. 7. Change of the open book after negative stabilization of L. The monodromy changes by a
right-handed Dehn twist along the curve c.

choice provides the negative stabilization L−. (Recall that the stabilization changed the
monodromy of the open book by multiplying it with the right-handed Dehn twist Dc.)
In the new page the stabilization of L is determined up to isotopy simply by changing
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a b

w

a′
w−

b′

C1

C2

β

z

Fig. 8. Stabilization in the Heegaard diagram. The top and bottom boundary components of the
surface and the circles C1 and C2 should be thought of as identified via a reflection in the middle
(dotted) line of the picture.

the basepoint from w to w−. (Notice that by placing w− in the other domain in the strip
between a′ and b′ the orientation of the stabilized knot would be incorrect.) Now the
corresponding portion of the Heegaard diagram has the form shown by Figure 8. In the
picture, the top and bottom boundary components of the surface and the circles C1 and C2
should be thought of as identified via a reflection in the middle (dotted) line of the picture.
Moreover, the curve β is only partially represented, due to the action of the monodromy.
As before, in the diagram w gives rise to L while w− to L− (together with the common
z). It is straightforward from the picture that w and w− are in the same domain, hence the
statement follows. ut

It follows from Proposition 5.2 that the invariant L of a Legendrian approximation pro-
vides an invariant for a transverse knot.

Proof of Theorem 1.5. Fix a transverse knot T and consider a Legendrian approxima-
tion L of T . By [9, 13], up to negative stabilizations the Legendrian knot L only depends
on the transverse isotopy class of T . Therefore by Proposition 5.2, the equivalence classes
T(T ) = L(L) and T̂(T ) = L̂(L) are invariants of the transverse isotopy class of the
knot T , and hence the theorem follows. ut
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6. Non-loose torus knots in S3

In this section we describe some examples where the invariants defined in the paper
are explicitly determined. Some interesting consequences of these computations will be
drawn in the next section. For the sake of simplicity, we will work with the invariant L̂.

Positive Legendrian torus knots T(2,2n+1) in overtwisted contact S3’s

Let us consider the Legendrian knot L(n) given by the surgery diagram of Figure 9.
The meaning of the picture is that we perform contact (±1)-surgeries along the given

L(n)

+1
+1
−1

−1

−1
n

Fig. 9. Non-loose Legendrian torus knot T(2,2n+1) in S3 (n ≥ 1).

Legendrian knots, the result being a contact 3-manifold containing the unframed knot
L(n) as a Legendrian knot. (For contact (±1)-surgeries and surgery presentations see
[3, 30].)

Lemma 6.1. The contact structure ξn defined by the surgery diagram of Figure 9 is the
overtwisted contact structure on S3 with Hopf invariant d3(ξn) = 1−2n. The Legendrian
knot L(n) is smoothly isotopic to the torus knot T(2,2n+1) and is non-loose.

Proof. Figure 10 gives a smooth surgery diagram corresponding to Figure 9. The knot
type of L(n) and the underlying 3-manifold can be easily identified. The Kirby calculus
moves of Figure 11 show that Figure 10 is equivalent to the left-hand side of Figure 12.
Applying a number of “blow-downs” yields the right-hand side of Figure 12, verifying
that L(n) is isotopic to the positive torus knot T(2,2n+1) in S3.

Figures 9 and 10 can be used to determine the signature σ(X) and the Euler character-
istic χ(X) of the 4-manifold obtained by viewing the integral surgeries as 4-dimensional
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−2 −1−3

−4

−4

0 0 L(n)

(n)

Fig. 10. A smooth version of Figure 9.

−1−2

−4

−4

−3 0 0

(n)
L(n)

+1

L(n)

(n)
+1

+1
−1

−1

+1

+1

−2

−1

L(n)+1

+1

(n) −1

−1

−2

−2
−3

−2

−2

n− 1

L(n)

−1

Fig. 11. Kirby moves on Figure 10.

−1

−2
−3
−2

−2

n− 1

L(n)

n

L(n)

Fig. 12. L(n) is the torus knot T(2,2n+1).
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2-handle attachments to S3
× [0, 1]. (As is customary in Heegaard Floer theory, the 4-

manifold X denotes the cobordism between S3 and the 3-manifold we get after perform-
ing the prescribed surgeries.) In addition, the rotation numbers define a second cohomol-
ogy class c ∈ H 2(X;Z), and a simple computation shows

σ(X) = −n− 1, χ(X) = n+ 3, c2
= −9n− 1.

Since we apply two (+1)-surgeries, the formula

d3(ξ) =
1
4
(c2
− 3σ(X)− 2χ(X))+ q

(with q denoting the number of contact (+1)-surgeries) computes d3(ξn) of the contact
structure, providing 1− 2n < 0 for all n ∈ N. Since the unique tight contact structure ξst
on S3 has vanishing Hopf invariant d3(ξst), we see that ξn is overtwisted. Applying contact
(−1)-surgery along L(n) we get a tight contact structure, since this (−1)-surgery cancels
one of the (+1)-surgeries, and a single contact (+1)-surgery along the Legendrian unknot
provides the Stein fillable contact structure on S1

× S2. Therefore there is no overtwisted
disk in the complement of L(n) (since such a disk would persist after the surgery), and
consequently L(n) is non-loose. ut

As is explained in [25, Section 6], the Legendrian link underlying the surgery diagram
for ξn (together with the Legendrian knot L(n)) can be put on a page of an open book de-
composition with planar pages, which is compatible with the standard contact structure ξst
on S3. This can be seen by considering the annular open book decomposition containing
the Legendrian unknot (and its Legendrian push-offs), and then applying the stabiliza-
tion method described in [11] for the stabilized knots. The monodromy of this open book
decomposition can be computed from the Dehn twists resulting from the stabilizations,
together with the Dehn twists (right-handed for (−1) and left-handed for (+1)) defined
by the surgery curves. Notice that one of the left-handed Dehn twists is cancelled by
the monodromy of the annular open book decomposition we started our procedure with.
This procedure results in the monodromies given by the curves of Figure 13. We per-
form right-handed Dehn twists along solid curves and a left-handed Dehn twist along the
dashed one. The application of the lantern relation simplifies the monodromy factoriza-
tion to the one shown in Figure 14. Notice that in the monodromy factorization given by
Figure 13 there are Dehn twists along intersecting curves, hence these elements of the
mapping class group do not commute. Therefore, strictly speaking, an order of the Dehn
twists should be specified. Observe, however, that although the elements do not commute,
the fact that there is only one such pair of intersecting curves implies that the two possible
products are conjugate, and therefore give the same open book decomposition, allowing
us to suppress the specification of the order.

Figure 15 helps to visualize the curves on ‘half’ of the Heegaard surface, and also
indicates the chosen basis. The open book decomposition found above equips S3 with a
Heegaard decomposition compatible with L(n). The α- and β-curves of this decomposi-
tion are given in Figure 16. Recall that we get the bi arcs by the usual perturbation of the
ai’s and the action of the monodromy yields a Heegaard decomposition for S3 with the
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L(n)

(n)

Fig. 13. Monodromy of the open book decomposition compatible withL(n). Solid curves represent
right-handed Dehn twists, while the dashed one (parallel to L(n)) represents a left-handed Dehn
twist.

L(n)
(n)

Fig. 14. Simplified monodromy.

L(n)

a4 a3 a2 a1
(n)

Fig. 15. Another view of the monodromy. The diagram also indicates the chosen basis. (Notice that
here a4 intersects L(n) in a unique point and not a1.)



1336 Paolo Lisca et al.

L(n)

α4

α3

α2

α1

β1

β2

β3

β4

n

w

z

L

M

B3
X1 C2 X2

Y2B4Y1

B1

P

B2

Q

A1

A2

An

An+1

C1

D = D1

Fig. 16. The Heegaard decomposition compatible with L(n).

distinguished point x in Tα ∩Tβ determining the Legendrian invariant L̂(L(n)). A warn-
ing about orientations is in order. We illustrated the monodromy curves on the page S+1
containing the Legendrian knot L(n), but their action must be taken into account on the
page S−1, which comes in the Heegaard surface with its opposite orientation; hence right-
handed Dehn twists take curves to the left on the Heegaard surface and vice versa. The
basepoint z is placed in the ‘large’ region of the page S+1, while the point w is in the strip
between α4 and β4 shown in Figure 16. This choice determines the orientation on L(n).

Recall that since L(n) is isotopic to the positive torus knot T(2,2n+1), the Legen-
drian invariant is given by an element of ĤFK(−S3, T(2,2n+1)), which is isomorphic to
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ĤFK(S3, T(2,−(2n+1))). This latter group is determined readily from the Alexander poly-
nomial and the signature of the knot (since it is alternating) (cf. [36, 39]). In fact, we have

ĤFKn+s(S3, T(2,−(2n+1)), s) ∼=

{
F if |s| ≤ n,
0 otherwise. (6.1)

After these preparations we are ready to determine the invariants of the Legendrian
knots discussed above.

Proposition 6.2. The homology class L̂(L(n)) is determined by the unique non-trivial
homology class in Alexander grading 1− n in ĤFK(S3, T(2,−2n−1)).

Proof. We claim that in the Heegaard diagram of Figure 16 the point A1B1C1D1 (rep-
resenting the Legendrian invariant L̂(L(n))) is the only intersection point in Alexander
grading 1− n.

We sketch the argument establishing this. We can orient every α- and β-curve in the
diagram so that their intersection matrix (whose (i, j)th entry is the algebraic intersection
of αi with βj ) is

M =


n+ 1 −1 0 0
−1 4 −2 0

0 −2 2 −1
0 0 −1 1

 .
Note that for this particular diagram, the absolute values of the algebraic intersection
number and the geometric intersection numbers coincide.

A simple calculation shows that there are 16n + 19 intersecton points in Tα ∩ Tβ .
To calculate the relative Alexander gradings of intersection points, it is convenient to
organize them into types: specifically, the intersection points of Tα and Tβ correspond to
pairs (σ, v), where σ is a permutation and v is a 4-tuple in

∏
αi ∩ βσ(i), which in terms

of the notation of Figure 16 are given by quadruples of letters; specifically, intersection
points all have one of the following five types:

ABCD PQCD AXYD ABLM PQLM.

We begin by calculating relative Alexander gradings of intersection points of the same
type. Consider first the relative gradings between points of the form Ai??? and Ai+1???,
where now ??? is a fixed triple of intersection points. Start from an initial path δ which
travels from Ai to Ai+1 along α1, then back from Ai+1 to Ai along β1. We add to this
cycle copies of αi and βj to obtain a null-homologous cycle. This can be done since the
αi’s and βj ’s span H1(6), which follows from the fact that the ambient 3-manifold is S3.
Concretely, we need to solve the equation∑

ni[αi]+
∑

mj [βj ]+ [δ] = 0

for ni and mj . In fact, all we are concerned about is the difference in local multiplicities
at z and w in the null-homology of the above expression. Since z and w are separated
by α4, and our initial curve δ is supported on α1 and β1, this difference is given by the
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multiplicity n4 of α4 in the above expression. In view of the fact that #βi ∩ βj = 0, n4
can be obtained as the last coefficient of M−1v, where v is the vector whose ith coor-
dinate is #δ ∩ βj and M is the incidence matrix. We can find paths of the above type δ
connecting Ai and Ai+1 whose intersection numbers with the βj ’s are given by the vec-
tor (1, 0, 0, 0), hence giving that the Alexander grading of Ai??? is two smaller than the
Alexander grading of Ai+1???. We express this by saying that the relative gradings of the
Ai are given by 2i. Repeating this procedure for the other curves, we find that relative
gradings of B1, . . . , B4 (completed by a fixed triple to quadruples of intersection points)
are given by 0, 2n, 4n + 2, and 2n + 1 respectively; for C1 and C2 the relative gradings
are 0 and 2n + 1 respectively, for X1 and X2 they are 0 and 2n + 1, and they are also 0
and 2n+ 1 for Y1 and Y2. Putting these together, we can calculate the relative Alexander
gradings of any two intersection points of the same type.

To calculate the relative Alexander gradings of points of different types, we use three
rectangles. Specifically, intersection points of the form PQ?? and An+1B1?? (here ??
denotes some fixed pair of intersection points) have equal Alexander gradings, shown
by the rectangle with vertices PB1QAn+1, avoiding both w and z. A similar argument
relates points of typeX1Y1?? to the ones of typeB4C1??. The rectangleLDMC1 contains
w once, showing that the Alexander gradings of elements of the form LM?? are one less
than the Alexander gradings of elements of the form C1D??. This allows us to calculate
the relative Alexander gradings of any two intersection points.

Given this information, it is now straightforward to see that there are no other inter-
section points in the same Alexander grading as A1B1C1D1, and hence that it represents
a homologically non-trivial cycle in ĤFK(S3, T(2,−(2n+1))). Thus, we have shown that for
all n ∈ N, the class L̂(L(n)) is a non-trivial generator in ĤFK(S3, T(2,−(2n+1))).

In fact, the absolute Alexander grading of generators is pinned down by the following
symmetry property: the Alexander grading is normalized so that the parity of the number
of points of Alexander grading i coincides with the parity of the number of points of
Alexander grading −i. Using this property, one finds that A1B1C1D1 is supported in
Alexander grading 1− n. ut

Remark 6.3. Recall (cf. [36, 39]) that

HFK−(S3, T(2,−(2n+1))) ∼= Fn ⊕ F[U ], (6.2)

where the top generator of the free F[U ]-module is at (A = n,M = 2n) while the n
generators of the Fn summand are of bidegrees

(A = n− 1− 2i, M = 2n− 1− 2i), i = 0, . . . , n− 1.

It is not hard to show that the above computation implies that L(L(n)) is determined by
the unique non-zero U -torsion element of HFK−(S3, T(2,−(2n+1))) in Alexander grading
1− n.

Negative Legendrian torus knots T(2,−(2n−1)) in overtwisted contact S3’s

For k, l ≥ 0 let us consider the knot Lk,l in the contact 3-manifold (Yk,l, ξk,l) given by
the surgery presentation of Figure 17. Let n = k + l + 2.
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Lk,l

+1
+1
−1

−1

−1

l

k

Fig. 17. Non-loose Legendrian torus knot T(2,−(2n−1)) in S3.

Proposition 6.4. The contact 3-manifold specified by the surgery diagram of Figure 17
is (S3, ξk,l) with d3(ξk,l) = 2l + 2, hence ξk,l is overtwisted. The Legendrian knot Lk,l
as a smooth knot is isotopic to the negative (2, 2n − 1) torus knot T(2,−(2n−1)), and it is
non-loose in (S3, ξk,l).

Proof. The simple Kirby calculus argument illustrated in Figure 18 shows that the 3-
manifold Yk,l is S3, while the formula

d3(ξk,l) =
1
4 (c

2
− 3σ − 2b2)+ q

Lk,l

−1 0 0

−3
−3

−n

−n
−2 Lk,l

−2

1

11

−n
−2

−1

Lk,l
−2

−n

−1
1

Lk,l

−1

−n

0

Lk,l

T(2,−(2n−1)) ⊂ S
3 (after two slides)

Fig. 18. Kirby moves on the diagrams of Figure 17.
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of [4] computes the Hopf invariant of ξk,l . As always, σ and b2 denote the signature and
the second Betti number of the 4-manifold X specified by the underlying smooth surgery
diagram, while c ∈ H 2(X;Z) is specified by the rotation numbers of the contact surgery
curves, and q is the number of (+1)-surgeries. Simple algebra shows that

d3(ξk,l) = 2l + 2 ≥ 2,

and since the unique tight structure on S3 has vanishing Hopf invariant, we see that ξk,l is
overtwisted. Following the Kirby moves of Figure 18 with the knot Lk,l we arrive at the
last surgery picture of Figure 18, and by sliding Lk,l twice over the (−n)-framed unknot
and cancelling the pair we see that Lk,l is, in fact, isotopic to the negative (2, 2n − 1)
torus knot T(2,−(2n−1)) ⊂ S

3.
If contact (−1)-surgery on Lk,l provides a tight contact structure, then Lk,l is obvi-

ously non-loose, since any overtwisted disk in its complement would give an overtwisted
disk in the surgered manifold. In our case, however, contact (−1)-surgery simply can-
cels one of the (+1)-surgeries defining ξk,l , and since a single contact (+1)-surgery on
the Legendrian unknot provides the contact boundary of the Stein 1-handle (cf. [23]), we
conclude that (−1)-surgery along L provides a Stein fillable contact structure. ut

Remark 6.5. In fact, by stabilizing Lk,l on the left and then performing a contact (−1)-
surgery we still get a tight contact 3-manifold: it will be Stein fillable if we perform only
one stabilization, and not Stein fillable but tight for more stabilizations. The tightness of
the result of these latter surgeries was verified in [17] by computing the contact Ozsváth–
Szabó invariants of the resulting contact structures. Notice that this observation implies
that after arbitrarily many left stabilizations Lk,l remains non-loose, which, in view of
Proposition 5.2, is a necessary condition for L(Lk,l) to be non-vanishing. (Finally, note
that performing contact (−1)-surgery on Lk,l after a single right stabilization provides an
overtwisted contact structure; cf. now [17, Section 5]). In contrast, for the non-loose knots
L(n) of the previous subsection (also having non-trivial L-invariants) the same intuitive
argument does not work, since some negative surgery on the knot L(n) will produce
a contact structure on the 3-manifold S3

2n−1(T(2,2n+1)) and since this 3-manifold does
not admit any tight contact structure [24], the result of the surgery will be overtwisted
independently of the chosen stabilizations. Nevertheless, the overtwisted disk in the 3-
manifold obtained by only negative stabilizations cannot be in the complement of the
knot L(n), since such stabilizations are still non-loose (shown by the non-vanishing of
the invariant L̂(L(n))).

Next we want to determine the classical invariants of Lk,l . Considering the prob-
lem slightly more generally, let L ⊂ Y be a null-homologous Legendrian knot in a
contact 3-manifold (Y, ξ). Assume furthermore that Y is a rational homology 3-sphere.
The knot L has two ‘classical invariants’: the Thurston–Bennequin and rotation num-
bers tb(L), rot(L). Recall that the Thurston–Bennequin invariant of a Legendrian knot
is defined as the framing induced by the contact 2-plane field distribution on the knot,
hence, given an orientation for the knot, it naturally gives rise to a homology class TB ∈
H1(Y − L;Z) (supported in a tubular neighbourhood of L). Fixing a Seifert surface F
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for L, the oriented intersection number of TB with F provides a numerical invariant,
called the Thurston–Bennequin number tb(L) ∈ Z. This intersection number is indepen-
dent of the choice of the Seifert surface; moreover, the Thurston–Bennequin number is
independent of the orientation of L since the orientation of TB and the orientation of F
both depend on this choice. Analogously, the rotation rot of L is the relative Euler class
of ξ when restricted to Y −L, with the trivialization given by the tangents of L. Again, a
Seifert surface forL can be used to turn this class uniquely into an integer, also denoted by
rot(L). Note that unlike the Thurston–Bennequin number, the sign of the rotation number
does depend on the orientation of L.

Suppose that S = S+ ∪ S− ⊂ (S3, ξst) is a contact (±1)-surgery presentation of
the contact 3-manifold (Y, ξ), and L is a Legendrian knot in (S3, ξst) disjoint from S,
null-homologous in Y . The Thurston–Bennequin and rotation numbers of L in (Y, ξ) can
be obtained from the Thurston–Bennequin and rotation numbers of the individual com-
ponents of S and L through the following data. Let tb0 denote the Thurston–Bennequin
number of L as a knot in the standard contact 3-sphere (which, in terms of a front pro-
jection, is equal to the writhe minus half the number of cusps). Writing S =

⋃n
i=1 Li , let

ai be the integral surgery coefficient on the link component Li ; i.e. ai = tb(Li) ± 1 if
Li ∈ S±. Define the linking matrix

M(a0, a1, . . . , an) = (mi,j )
n
i,j=0 where mi,j :=

{
ai if i = j,
lk(Li, Lj ) if i 6= j ,

with the convention that L = L0 and S =
⋃n
i=1 Li . Similarly, let M(a1, . . . , an) denote

the matrix (mi,j )ni,j=1. Consider the integral rotation numbers r0, . . . , rn obtained from
our Legendrian knot L and Legendrian presentation as a link in S3.

Lemma 6.6. Suppose that S = S+ ∪ S− ⊂ (S3, ξst) is a contact (±1)-surgery presen-
tation of the contact 3-manifold (Y, ξ), and L is a Legendrian knot in (S3, ξst) disjoint
from S, null-homologous in Y . Then the Thurston–Bennequin and rotation numbers tb(L)
and rot(L) can be extracted from the above data by the formulae

tb(L) = tb0+
det(M(0, a1, . . . , an))

det(M(a1, . . . , an))
(6.3)

and

rot(L) = r0 −

〈(
r1
...
rn

)
,M−1

·

( lk(L0, L1)
...

lk(L0, Ln)

)〉
, (6.4)

where M = M(a1, . . . , an).

Proof. We turn to the verification of (6.4) after a few preliminary observations. Let µi ⊂
S3
− (L∪ S) be a meridian for Li ⊂ L∪ S, and λi be its corresponding longitude. Recall

that H1(S
3
− (L ∪ S)) is a free Z-module, generated by the meridians µi (we continue

with the convention that the i = 0 component of the link L ∪ S is L). We can express the
homology class of λi in terms of the other meridians by the expression

λi =
∑
j 6=i

lk(Li, Lj ) · µj .
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The homology groups of the surgered manifold are obtained from the homology groups
of the link complement by dividing out by the relations aiµi + λi = 0 for i = 1, . . . , n;
more precisely,H1(S

3
−(L∪S)) is freely generated byµ0, . . . , µn, whileH1(Y−L) ∼= Z

is obtained from this free group by dividing out the n relations

ai · µi +
∑
j 6=i

lk(Li, Lj ) · µj = 0, i = 1, . . . , n.

The rotation numbers ri can be thought of as follows. Let e(ξ, L∪S) ∈ H 2(S3, L∪S)
denote the relative Euler class of ξ relative to the trivialization it inherits along L∪S. The
rotation numbers are the coefficients in the expansion of the Poincaré dual PD[e(ξ, L∪S)]
∈ H1(S

3
− (L ∪ S)) in terms of the basis of meridians PD[e(ξ, L ∪ S)] =

∑n
i=0 ri · µi .

Similarly,H1(Y −L) ∼= Z is generated by µ0, the meridian of L, and the rotation number
rot(L) is calculated from PD(e(ξ, L)) = rot(L) · µ0. Note also that PD[e(ξ, L)] is the
image of PD[e(ξ, L ∪ S)] under the inclusion j : S3

− (L ∪ S) ⊂ Y − L. Thus, to find
rot(L), it suffices to express j∗(µi) in terms of µ0. Write

3 =

 lk(L0, L1)
...

lk(L0, Ln)

 and R =

 r1...
rn

 .
In view of our presentation forH1(S

3
−L), we see that for all i > 0 we have µi = ci ·µ0,

where ci is the ith entry of the vector −M−1
·3. It follows that

n∑
i=0

ri · µi = (r0 − 〈R,M
−1
·3〉) · µ0,

establishing (6.4).
We now turn to (6.3). Choose a0 so that the curve λ′ = a0 ·µ0+λ0 is null-homologous

in Y −L. Letting TB denote the Thurston–Bennequin framing curve of L = L0, we have

TB = tb0 ·µ0 + λ0 = tb(L) · µ0 + λ
′
;

thus tb(L)− tb0 = −a0. In view of our presentation for this first homology group, we see
that a0 is determined by the condition

0 =

∣∣∣∣∣∣∣∣∣
a0 lk(L0, L1) . . . lk(L0, Ln)

lk(L0, L1) a1 . . . lk(L0, L1)
...

...
. . .

...

lk(Ln, L0) lk(Ln, L1) . . . an

∣∣∣∣∣∣∣∣∣
= a0 · det(M(a1, . . . , an))+ det(M(0, a1, . . . , an)).

Formula (6.3) follows. ut
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Lemma 6.7. With the orientation given by Figure 17, the Thurston–Bennequin and rota-
tion numbers of the knot Lk,l are given by

tb(Lk,l) = −4(k + l)− 6 and rot(Lk,l) = −6l − 2k − 7.

Proof. Formulae (6.3) and (6.4) applied to the surgery diagrams defining Lk,l and simple
algebra give the statement of the lemma. ut

As is explained in the previous subsection (resting on observations from [25, Section 6]),
the surgery diagram for ξk,l (together with the Legendrian knot Lk,l) can be put on a page
of an open book decomposition with planar pages, which is compatible with the standard
contact structure ξst on S3. The diagram for all choices of k and l is less apparent, hence
we restrict our attention first to k = 0. In this case we get the monodromies defined by
the curves of Figure 19. The application of the lantern relation simplifies the monodromy
factorization to the one illustrated in Figure 20. Figure 21 helps in visualizing the curves

L0,l

l

Fig. 19. Monodromy of the open book decomposition compatible with L0,l .

L0,l
l

Fig. 20. The simplified monodromy of the open book for L0,l .



1344 Paolo Lisca et al.

L0,l

l + 1

Fig. 21. Another view of the open book for L0,l .

on ‘half’ of the Heegaard surface. The diagram also indicates the chosen basis. Notice
that in the monodromy illustrated in Figure 19 there are Dehn twists with intersecting
curves, hence these elements of the mapping class group do not commute. As before, the
two products are conjugate, hence there is no need to record the order.

In a similar spirit the general diagrams could be deduced—since we will not use them
in our computations, we will be content with working on a further special case when
k = 1 and l ≥ 1; the result is given by Figure 22. We just note here that in these cases
we need to apply the lantern relation twice to get commuting Dehn twists as illustrated in
Figure 22. For this reason, these monodromy factorizations contain two left-handed Dehn
twists. In Figure 23 the monodromy for L1,l with l ≥ 1 is represented on ‘half’ of the

L1,l

l − 1

Fig. 22. The monodromy factorization for L1,l with l ≥ 1.

L1,l

l − 1

Fig. 23. The open book for L1,l with l ≥ 1.
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L0,0

w

z

Fig. 24. The Heegaard decomposition for L0,0.

Heegaard surface. The open book decomposition found above equips S3 with a Heegaard
decomposition compatible with Lk,l ; the α- and β-curves of this decomposition for k = 0
are given by Figure 24 when l = 0 and by Figure 25 when l > 0. Recall that we get the
bi curves by the usual perturbation of the ai’s and the action of the monodromy yields a
Heegaard decomposition for S3 with the distinguished point x in Tα∩Tβ determining the
Legendrian invariant. As usual, the basepoint z is placed in the ‘large’ region of the page
S+1, while the point w giving rise to L̂ is in the strip between a1 and b1, as indicated in
the pictures. It is easy to see that moving w to the other domain in the strip gives L̂ = 0,
because there is a holomorphic disk running into x.

Recall that Lk,l is isotopic to the negative torus knot T(2,−(2n−1)). The group
ĤFK(−S3, T(2,−(2n−1))) is isomorphic to the Floer homology ĤFK(S3, T(2,2n−1)) of the
positive torus knot T(2,2n−1). In this case we have (cf. (6.1))

ĤFKs−n+1(S
3, T(2,2n−1), s) ∼=

{
F if |s| ≤ n− 1,
0 otherwise. (6.5)

After these preparations we are ready to determine the invariants of some of the Legen-
drian knots discussed above. The computation admits a relatively simple scheme when
k = 0, so we start with that case.

Theorem 6.8. Let L0,l be given the orientation specified by the diagram of Figure 24 or
Figure 25. Then L̂(L0,l) 6= 0.
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z

w

L0,l

A

B

C C′

Fig. 25. The Heegaard decomposition for L0,l , l > 0.

Proof. We show that the intersection point x0 ∈ ĈFK, which determines L̂(L0,l), is alone
in its Alexander grading.

Claim. Any other intersection point y in the Heegaard decomposition given by Figure 24
or 25 has Alexander grading A(y) strictly less than A(x0).
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The claim, in turn, will be proved by induction on l. For l = 0 (which means that we
are computing Legendrian invariants of a Legendrian left-handed trefoil knot in an over-
twisted S3) the explicit determination of the Alexander gradings of each of the 19 inter-
section points verifies the statement. To do this we only need to find domains connecting
any two intersection points, and their relative Alexander grading is the multiplicity of the
domain containing the basepoint w. A straightforward linear algebra argument similar to
the one outlined in the proof of Proposition 6.2 shows that all top three degrees contain
unique intersection points (giving rise to homology elements), while the remaining 16
intersection points are of strictly smaller Alexander grading.

The argument for the inductive step proceeds as follows: Notice that by deleting the
topmost α- and β-curves (containing the point A of Figure 25) in the Heegaard decompo-
sition H1 (and destabilizing the Heegaard surface) we get a Heegaard decomposition H0
adapted to T(2,2n−3). Repeating this procedure one more time we get a Heegaard decom-
position H−1, which will be a decomposition adapted to T(2,2n−5).

Note that the intersection matrix of the α- and β-curves has the form

−2 1 0 0 0 0 0
1 −2 1 0 0 0 0

0 1
. . .

. . . 0 0 0

0 0
. . . −2 1 0 0

0 0 0 1 −4 2 0
0 0 0 0 2 −2 1
0 0 0 0 0 1 −1


.

Now let us group the intersection points of the original diagram into typesA,B and C
depending on their coordinate on the topmost β-curve. It is easy to see that points in each
A and B are in 1-1 correspondence with intersections in H0, while points in C are in 1-1
correspondence with points in H−1. From the form of this matrix it is easy to see that the
relative gradings within the groups coincide with the relative gradings in their respective
Heegaard diagrams H0 and H−1. As usual, let x0 denote the intersection point represent-
ing the Legendrian invariant, and Bx0 the point with the same coordinates except on the
topmost α-circle, where A is substituted with B. Finally, Cx0 will denote the intersection
point where on the topmost β-circle we choose C (and so on the topmost α-circle we
should take C′) and otherwise we take the same intersection points as in x0. Our induc-
tive assumption is that x0, Bx0 and Cx0 are of highest Alexander gradings in the groups
A,B,C, respectively. Therefore to conclude the argument we only need to compare the
gradings of these intersection points. This relative computation can be performed locally
near the topmost α- and β-curves and we get A(x)−A(Bx) = 2 and A(x)−A(Cx) = 2.
By the inductive hypothesis this shows that x0 is the unique cycle in the top Alexander
grading, concluding the proof. ut

Note that the relation found in the proof of Theorem 6.8 amongst the Alexander gradings
of the intersection points of the diagrams Hi (i = ±1, 0) is a manifestation of the fact that
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the symmetrized Alexander polynomial 1n(t) := 1T(2,2n−1)(t) satisfies the identity

1n(t) = (t − t
−1)1n−1(t)−1n−2(t).

We consider two more cases, which can be handled by explicit methods: L1,1 and
L1,2. In these cases the Alexander grading alone is not sufficient to calculate the homol-
ogy class; we need a little analysis of holomorphic disks. We begin with the first of these:

Theorem 6.9. Let L1,1 be given the orientation specified by the diagram of Figure 26.
Then L̂(L1,1) 6= 0.

w

z

L1,1

E

R

S

D1

V1 D2 V2

C1

C2
M1

M2 C3

C4

C5

C6

P2
C7P1

B3B2Q1

X

Y

B1

A1

A2

Fig. 26. Adapted Heegaard diagram for L1,1.

Recall that L1,1 represents the negative torus knot T(2,−7).
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Proof. Consider the adapted Heegaard diagram for L1,1 exhibited in Figure 26. Analyz-
ing this diagram as in the other cases, we see that there are 149 elements in Tα∩Tβ , seven
of which with the same Alexander grading as the point x0 determining L̂(L1,1). Indeed, in
the notation suggested by that diagram, the seven intersection points in Alexander grading
A = 1 are

A2B2C7D1E, A2D1EP2Q1, A2D1EP1Q1, A2B1C6D1E,

XYC6D1E, A1B2C5D1E, A1B1C1D1E = x0.

Since x0 is a cycle, it can be thought of as determining a subcomplex of ĈFK(L1,1, 1). The
quotient complex is then generated by the six remaining generators in the given Alexander
gradings. Indeed, it is straightforward to find the positive homotopy classes connecting
these six generators with Maslov index one. There are six, and five of these are rectan-
gles, and hence admit holomorphic representatives. The sixth (connecting XYC6D1E to
A1B2C5D1E) is also a planar surface, and it is not difficult to verify directly that it, too,
always has a holomorphic representative. We assemble this information on the chain com-
plex in Figure 27. It is straightforward to verify that this complex is acyclic. It follows at

A2D1EP2Q1

A2B1C6D1E

A2B2C7D1E

A2D1EP1Q2

A1B2C5D1E

XYC6D1E

Fig. 27. Part of the chain complex for L1,1. This is the quotient of ĈFK(L1,1, 1) by the generator
A1B1C1D1E. Arrows indicate differentials.

once that x0 represents the non-trivial homology class in ĤFK(L1,1, 1). ut

In a similar vein, we have the following:

Theorem 6.10. Let L1,2 be given the orientation specified by the diagram of Figure 28.
Then L̂(L1,2) 6= 0.

Recall that L1,2 corresponds to T(2,−9).

Proof. The adapted Heegaard diagram is pictured in Figure 28. There are 347 intersection
points, 13 of which are in the same Alexander grading as x0. In terms of the numbering
conventions from Figure 28, these are

A2B1C3D1E1F, A2B2C2D1E1F, A1B2C4D1E1F, A1B2C1D2E1F,

A1B1C2D2E1F, A2B2C3D2E1F, A1B2MVE1F, A1D2E1P1Q1F,

A2D1E1P2E1F, A2D1E1P1Q2F, A2D2E1P2Q2F, XYC3D1E1F,

A1B1C1D1E1F = x0.

We can draw a graph whose vertices are these generators, and whose arrows denote
positive Whitney disks with Maslov index one, as pictured in Figure 29. Those domains
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w

z

L1,2

F

T

S

E1

R1 E2 R2

D5
N1

N2 D4

D3

D2V

M C4

D1

C1

P1
C2

P2

C3

B1

Q1

B2 B3

XY

A1

A2

1

2

3

4

5 67

8

9 10

Fig. 28. Adapted Heegaard diagram for L1,2. The domains (in the complement of the α- and β-
circles) labelled by 1, . . . , 10 play a role in Figure 29.

are written as sums of the 10 domains labelled by integers 1 through 10 in Figure 28. Note
that in Figure 29, we have abbreviated the names of generators (for example, dropping
F , which occurs in each). In that picture, all but four of the arrows represent rectangles
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B2C3

P2Q2

B1C2

P1Q1

B2C1

A1B2MV

A2B2C4D1E1

XYC3

A2B1C3

P2Q1

B2C2

P1Q2

B1C1

6 1 + 2 7 4 10 9 6 + 8 2 6 + 3

5 3

1 + 2 + 3 + 4 5 + 6

1 + 2 + 4 + 5

Fig. 29. Complex for L1,2. We have displayed here the 13 generators inA = −3. Arrows represent
domains connecting generators. All the thicker arrows actually represent quadrilaterals; there are
only four which are not: those containing 1, and those containing 6+ 8.

(and hence, immediately, non-trivial differentials in the chain complex). Inspection of this
graph immediately establishes that there are no other non-negative Whitney disks among
the given generators with Maslov index one (for example, the domain from P2Q1 =

A2D1E1P2Q1F to B2C4 = A2B2C4D1E1 is obtained as 6+3−2+8+6, which contains
2 with multiplicity −1). To show that B1C1 = A1B1C1D1F represents a homologically
non-trivial cycle, it suffices to show that the positive domain 6+ 8 supports holomorphic
representatives, which can be done by direct means. (Note that it is an annulus with an
appropriate cut.) ut

Remark 6.11. Recall that

HFK−(S3, T(2,2n−1)) ∼= Fn−1
⊕ F[U ],

where the top generator of the free F[U ]-module is at

(A = −(n− 1), M = −2(n− 1)),

while the n− 1 generators of the Fn−1 summand are of bidegrees

(A = n− 1− 2i, M = −2i), i = 0, . . . , n− 2.

(This follows readily from the calculation of ĤFK, stated in (6.5).) Once again, the
computation above can be adapted to show that the homogeneous U -torsion elements
L(L0,l),L(L1,1) and L(L1,2) in HFK−(S3, T(2,2n−1)) are also non-trivial.

Notice that there is an obvious bijection between the homogeneous U -torsion ele-
ments of HFK−(S3, T(2,2n−1)) and the Legendrian knots Lk,l with k + l = n − 2 con-
structed above. Moreover, this bijection can be chosen in such a way that if Lk,l corre-
sponds to xk,l ∈ HFK−(S3, T(2,2n+1)) then

d3(ξk,l) = 2A(xk,l)−M(xk,l).

It is reasonable to expect that the Legendrian invariants L̂(Lk,l) and L(Lk,l) are non-
zero for all k, l ≥ 0, and hence that L(Lk,l) is determined by xk,l . We will not address
this general computation in the present paper.
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7. Connected sums

Suppose that Li ⊂ (Yi, ξi) are oriented Legendrian knots in the contact 3-manifolds
(Yi, ξi), i = 1, 2. We want to relate the invariants of L1 and L2 to the invariants of the
connected sum L1 # L2 ⊂ (Y1 # Y2, ξ1 # ξ2) (see [14] for the definition of the connected
sum operation in the contact setting).

Fix open book decompositions (Bi, ϕi) adapted to Li ⊂ (Yi, ξi) (with pages Si) for
i = 1, 2. We may assume that suitable portions of the open books and the adapted bases
appear as in the left-hand picture of Figure 30, where, as usual, the ordered pairs (zi, wi)
determine the orientations of the knots. We can now perform the Legendrian connected
sum of (Y1, ξ1, L1) and (Y2, ξ2, L2) in such a way that we glue the open books as well
as the contact structures and the knots. Specifically, we take the Murasugi sum of the two
open books in the domains containing z2 and w1, and then we drop these two basepoints.
We can make sure that the resulting oriented knot L1 # L2 is smoothly determined on a
page of the resulting open book by the ordered pair (z1, w2), as illustrated in the central
picture of Figure 30. The bases of arcs can also be arranged to be the same as the ones
illustrated.

There is a corresponding map of chain complexes

8 : CFK−(−Y1, L1)⊗F[U ] CFK−(−Y2, L2)→ CFK−(−(Y1 # Y2), L1 # L2) (7.1)

which (denoting the intersection point determining L(Li) by x(Li)) maps the intersection
point x(L1)⊗x(L2) to the generator (x(L1), x(L2)) of the chain complex of the connected
sum. According to [35, Section 7] the above map induces an isomorphism on homology.
The union of the two bases is not adapted to the Legendrian knot L1 # L2, since each of
the two bases contains an arc intersecting it. Nevertheless, as will be shown in the proof
of Theorem 7.1, there is a sequence of arc slides which carries the new basis of curves
into an adapted basis for L1 # L2, inducing handle slides on the underlying Heegaard
diagram for (−(Y1 # Y2), L1 #L2). These handle slides induce a map of chain complexes
by counting holomorphic triangles (cf. [33, Section 9])

9 : CFK−(−(Y1 # Y2), L1 # L2)→ CFK−(−(Y1 # Y2), L1 # L2),

where the second chain complex now denotes the chain complex with respect to the
adapted Heegaard diagram.

Theorem 7.1. Suppose that L1 # L2 ⊂ (Y1 # Y2, ξ1 # ξ2) is the oriented connected
sum of the oriented Legendrian knots Li ⊂ (Yi, ξi), (i = 1, 2). Then there is a quasi-
isomorphism

F : CFK−(−Y1, L1)⊗F[U ] CFK−(−Y2, L2)→ CFK−(−(Y1 # Y2), L1 # L2)

which maps x(L1)⊗ x(L2) to x(L1 # L2).

Proof. There are three Heegaard diagrams for (−(Y1 # Y2), L1 # L2) coming into play:
the connected sum diagram (whose α- and β-circles are obtained by doubling the initial
bases), an intermediate diagram obtained by sliding the α-circles as dictated by the arc
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Fig. 30. Connected sums. Starting from two knots as pictured on the left, we form their connected
sum to obtain a Heegaard diagram as in the middle, where we have three sets of arcs, two sets of
which are isotopic to one another, and the third is obtained as an arc slide. In the middle picture,
the dark dots represent the initial generator x (which represents the product of the two Legendrian
invariants), the white dots represent the canonical generator for Tα∩Tα′ , and the grey dots represent
the intermediate generator x′; whereas on the picture on the right, the dark dots represent x′, the
white dots represent the canonical generator of Tβ ∩ Tβ ′ , and the grey dots represent the final
intersection point x′′ (which represents the Legendrian invariant for the connected sum).

slides in the middle diagram in Figure 30 (whose attaching circles are denoted α′ and β),
and the final one obtained by performing handle slides on the β-circles, as dictated by
arc slides of the bi as in the rightmost diagram in Figure 30 (whose attaching cicles
are α′ and β ′). Recall that the ai arcs determine the α-circles while the bi’s give rise
to the β-circles, and we are examining the Heegaard diagrams (6, β, α), (6, β, α′) and
(6, β ′, α′). In all three of these diagrams there is a unique intersection point of the α- and
β-tori which is supported in S+1: the first, x, represents the product of x(L1) and x(L2)

under the connected sum map (denoted above by 8), the second is denoted x′, and the
third, x′′, clearly determines the Legendrian invariant for L1 #L2. We claim that the three
generators are mapped to one another under the maps induced by handle slides.

As a warm-up, we argue first that x′ is indeed a cycle. As for the contact class, we
argue that for any y ∈ Tβ ′ ∩ Tα , if φ ∈ π2(x′, y) is any Whitney disk with all local
multiplicities non-negative, then x′ = y and φ is the constant disk. The argument is similar
to the argument from [19] recalled in the proof of Theorem 2.11 with one slight difference:
now the arcs in the basis disconnect S+1 into two regions, only one of which contains z.
However, it is still easy to see (by another look at Figure 30) that any positive domain
flowing out of x′ which has positive multiplicity on the other region (not containing z)
must also have positive multiplicity at z.

We now turn to the verification of the claim about the triangle maps. The Heegaard
triple in this case is (6, β, α, α′, w, z), and the diagram (6, α, α′, w, z) represents an
unknot in the g-fold connected sum of S2

× S1. Moreover, in that diagram there is a
unique intersection point2 ∈ Tα∩Tα′ representing the top-dimensional Floer homology
class. The handle slide map

91 : CFK−(6, β, α,w, z)→ CFK−(6, β, α′, w, z)
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is defined by

91(u) =
∑

y∈Tβ∩Tα′

∑
{ψ∈π2(u,2,y) |µ(ψ)=0, nz(ψ)=0}

#M(ψ) · Unw(ψ)y,

where, as usual, π2(u,2, y) denotes the space of homology classes of Whitney triangles
at u, 2, and y.

The claim that 91(x) = x′ follows from the facts that:

• there is a triangle ψ0 ∈ π2(x,2, x′), obtained as a disjoint union of the obvious small
triangles in S+1;
• any other triangle ψ ∈ π2(x,2, y) with nz(ψ) = 0 has a negative local multiplicity

somewhere.

The first is found by glancing at Figure 30. To see the second, notice that any homology
class ψ ∈ π2(x′,2, y) can be decomposed as ψ0 ∗ φ, where φ ∈ π2(x′, y). Moreover, if
ψ has only positive local multiplicities, then the same follows for φ; also, since nz(ψ) =
0 = nz(ψ0), it follows that nz(φ) = 0 as well. But by our above argument that x′ is a
cycle, it now follows that φ is constant.

Consider next the handle slide map

92 : (6, β, α′, w, z)→ (6, β ′, α′, w, z).

This is defined by pairing with an intersection point 2′ ∈ Tβ ′ ∩ Tβ representing the top-
dimensional non-trivial homology. The fact that 92(x′) = x′′, where x′′ determines the
Legendrian invariant for the connected sum, follows through a similar argument.

The composition 92 ◦ 91 ◦ 8 now induces an isomorphism on homology, carrying
x(L1)⊗ x(L2) to x(L1 # L2), which completes the proof of the theorem. ut

The above result quickly yields

Proof of Theorem 1.6. Interpret stabilization as the connected sum with the stabilized
Legendrian unknot in the standard contact 3-sphere, use the connected sum formula and
the model calculation given in Section 4. This gives quasi-isomorphisms

9− : CFK−(−Y,L)→ CFK−(−Y,L−)

and
9+ : CFK−(−Y,L)→ CFK−(−Y,L+)

such that
9−(x(L)) = x((L−) and U ·9+(x(L)) = x(L+),

concluding the proof of the theorem. ut

Note that Proposition 5.2 is a special case of Theorem 1.6; we gave a separate proof of
it earlier, since that proof is somewhat more direct. As an application of our previous
computations we can now prove the following result:
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Theorem 7.2. Let ξi denote the overtwisted contact structure on S3 with Hopf invari-
ant d3(ξi) = i ∈ Z. Then ξi contains non-loose Legendrian knots with non-vanishing
Legendrian invariants L̂ for each i ∈ Z.

Proof. By Proposition 6.4 and Lemma 6.1, for i > 0 even the Legendrian knot L0,i−1,
while for i < 0 odd the knot L(i) satisfies the claim. If i = 2j − 1 > 0 is odd then by
the connected sum formula L0,j−1 # L(1) is a good choice. For i = 2j < 0 even take
L(j) # L(1) and finally for i = 0 the knot L0,0 # L(1) # L(1) will do. ut

Corollary 7.3. Suppose that (Y, ξ) is a contact 3-manifold with non-vanishing contact
invariant c(Y, ξ) and ζ is an overtwisted contact structure on Y with tζ = tξ . Then (Y, ζ )
contains Legendrian (transverse) knots with non-vanishing Legendrian (resp. transverse)
invariants.

Proof. Consider a Legendrian unknotL (in a Darboux chart) in (Y, ξ)with c(Y, ξ) 6= 0. It
is not difficult to find, possibly after stabilization, an open book decomposition compatible
with (Y, ξ, L) together with an adapted basis, in such a way that the two basepoints z and
w determining L are, in fact, in the same domain. This observation immediately implies
ĤFK(−Y,L) = ĤF(−Y ), and the Legendrian invariant L̂ of L is easily seen to be non-
zero in ĤFK(−Y,L), being equal to c(Y, ξ). Any overtwisted contact structure ζ on Y
with tζ = tξ can be given as ξ #ξi , where ξi is the overtwisted contact structure on S3 with
d3(ξi) = i. This fact easily follows from Eliashberg’s classification of overtwisted contact
structures, together with the classification of homotopy types of 2-plane fields. Now the
connected sum of the Legendrian unknot with the Legendrian knot having non-trivial
Legendrian knot invariant in ξi (provided by Theorem 7.2) has non-trivial Legendrian
invariant by the connected sum formula. This knot and each of its negative stabilizations
are non-loose, and hence its transverse push-off is non-loose and has non-trivial transverse
invariant. ut

8. Transversely non-simple knots

A knot type K in S3 is traditionally called transversely simple if two transverse knots
T1, T2 in the standard contact structure ξst both of knot type K and equal self-linking
number are transversely isotopic. Transversely non-simple knot types were recently found
by Etnyre–Honda and Birman–Menasco [15, 1] (cf. also [29, 44]).

The notion of transverse simplicity obviously generalizes to any null-homologous
knot type (for the self-linking number to be well-defined) in any contact 3-manifold
(Y, ξ). In this form of the definition, however, it is easy to find transversely non-simple
knot types provided ξ is overtwisted: The binding of any open book decomposition com-
patible with ξ is a null-homologous, non-loose transverse knot, while the same binding
in (Y # S3, ξ # ξ0) (where ξ0 is the overtwisted contact structure on S3 homotopic to ξst
and the connected sum is taken away from the binding) is loose. Since ξ and ξ # ξ0 are
homotopic as 2-plane fields, hence isotopic as contact structures, the binding gives rise
to two transverse knots in ξ . The self-linking numbers of these two representatives are
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clearly equal, while one has tight, the other overtwisted complement; consequently, the
two knots cannot be transversely isotopic. In conclusion, for overtwisted contact struc-
tures in the definition of transverse simplicity we should require that the two knots are
either both non-loose or both loose (besides being smoothly isotopic and having identical
self-linking). Two transverse loose knots with equal knot type and self-linking number,
and with a common overtwisted disk in their complement, can be shown to be isotopic.
Without the existence of the common overtwisted disk, however, this question is surpris-
ingly subtle.

With the aid of the transverse invariant T and the model calculations for L1,1 and L1,2
discussed in the previous section (together with a refinement of the gradings on Heegaard
Floer homology, deferred to Section 9) we get

Theorem 8.1. Let K denote the knot type obtained by the connected sum of the negative
torus knots T(2,−7) and T(2,−9). Then in the overtwisted contact 3-manifold (S3, ξ12) with
Hopf invariant d3(ξ12) = 12 there are two non-loose Legendrian knots representing K,
with equal Thurston–Bennequin and rotation numbers, which are not Legendrian isotopic
and stay non-isotopic after arbitrarily many negative stabilizations.

The proof of Theorem 8.1 proceeds by considering a pair of appropriate Legendrian rep-
resentatives of K, the computation of their invariants, and finally the distinction of these
elements. Our candidate Legendrian knots are

L1 = L0,2 # L1,2 and L2 = L1,1 # L0,3.

The knots L1 and L2 are obviously smoothly isotopic to T(2,−7) # T(2,−9), and their
Thurston–Bennequin and rotation numbers can be easily deduced from their definition:

Lemma 8.2. The Thurston–Bennequin and rotation numbers of L1 and L2 are

tb(L1) = tb(L2) = −31 and rot(L1) = rot(L2) = −40,

with the orientations specified by Figure 17.

Proof. The formulae follow from the additivity of rotation numbers and the identity

tb(L # L′) = tb(L)+ tb(L′)+ 1

(cf. [14, Lemma 3.3]), together with the computations of Lemma 6.7. ut

Since L1 and L2 are knots in the connected sums of the corresponding overtwisted con-
tact structures, the claim about the resulting contact structure follows. (Recall that on S3

an overtwisted contact structure is determined up to isotopy by its Hopf invariant, which
is additive under connected sum.) The connected sum formula of Theorem 7.1 implies
that the Legendrian invariant of both knots is determined by the tensor product of the in-
variants of the summands. This argument shows that L̂(L1) and L̂(L2) are non-vanishing,
hence the knots L1, L2 are both non-loose. (Notice that, in general, the connected sum
of two non-loose knots might become loose.) The connected sum formula for knot Floer
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homology shows that in the Alexander and Maslov grading (A = 5, M = −2) of the
elements L̂(Li) the knot Floer homology group ĤFK(S3, T(2,7) # T(2,9)) is isomorphic
to F ⊕ F ⊕ F. (Only F ⊕ F comes from the HFK−-theory, hence is capable of contain-
ing L̂.) Therefore to conclude our proof for Theorem 8.1 we need to show that the knots
L1 and L2 are not isotopic. This step requires an auxiliary result from knot Floer homol-
ogy, showing that elements of the knot Floer group of a connected sum do remember the
Alexander and Maslov gradings of their components in the summands. This leads to a re-
finement of the invariant, which we explain now. (The necessary Heegaard Floer theoretic
result will be given in Section 9.)

Recall that the invariant L(L) was defined as an element of HFK−(−Y,L), deter-
mined up to any F[U ]-module isomorphism of this module. The ambiguity stems from
the fact that for (oriented) Legendrian isotopic knots L1, L2 the isotopy is not canoni-
cal, therefore the isomorphism between the knot Floer homologies HFK−(−Y,L1) and
HFK−(−Y,L2)will depend on the chosen isotopy. To prove vanishing and non-vanishing
results, it was sufficient to mod out by all the module automorphisms. When we want to
distinguish knots based on their invariants, however, we might need to understand the
necessary equivalence relations a little better. Notice that an isotopy between L1 and L2
induces a filtered chain homotopy between the filtered chain complexes CFK−(−Y,Li)
(where the filtration comes from the second basepoint), hence any algebraic structure
of the filtered chain complex provides further restrictions on the automorphisms of
HFK−(−Y,L) we need to take into account for the invariance property to hold. For ex-
ample, the length of a homogeneous element x (that is, the minimal n for which dn(x)
vanishes, where dn is the nth higher derivative in the spectral sequence associated to the
filtered chain complex CFK−(−Y,L)) is such a further structure, as exploited in [29]. In
a slightly different direction, in [31] two of the authors of the present paper have shown
that the mapping class group

MCG(Y, L) = Diff+(Y, L)/Diff+0 (Y, L)

of the complement of the knot admits a natural action on HFK−(−Y,L), and it is not hard
to see that the Legendrian invariant can be defined as an orbit of the action of MCG(Y, L)
rather than of the full automorphism group. In many cases the mapping class group of
a knot is relatively small, hence this refinement provides a significant sharpening of the
invariant—without even understanding the explicit action of the mapping class group on
the knot Floer homologies. In some cases, however, the mapping class group can be large
(although might admit a fairly trivial representation on the Floer homology), in which
case the description of the action cannot be avoided. For example, connected sums of
knots have infinite mapping class groups.

For connected sums, therefore, we describe a slightly different refinement of the in-
variant. For the sake of simplicity, we will be content with formulating the relevant results
for the ĤFK-theory only.

Definition 8.3. The F-vector space M =
⊕

sM∗(s) is Alexander bigraded if it admits a
splitting

M =
⊕
s

(
⊕

{s1,s2 | s1+s2=s}

M∗(s1, s2)).
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The pair (M,m) of an Alexander bigraded vector spaceM and an elementm ∈ M defines
an equivalence class [[M,m]] of such objects by saying that (M,m) and (N, n) are
equivalent if there is an isomorphism f : M → N with f (m) = n and f (M∗(s1, s2)) =
N(s1, s2). In other words, we require the isomorphisms to respect the Alexander bigrading
of the vector space.

For a null-homologous Legendrian knot L in the contact 3-manifold (Y, ξ) consider the
homology class αL̂(L) ∈ ĤFK(−Y,L, tξ ) given by the cycle x(B, ϕ,A) as in Defini-
tion 3.4. By slightly modifying the definition of Theorem 1.1, consider

L̃(L) := [[ĤFK(−Y,L, tξ ), αL̂(L)]].

Theorem 8.4. Suppose that L is a given null-homologous Legendrian knot in the contact
3-manifold (Y, ξ) representing the knot type K, which is the connected sum of two knot
types K1 and K2. Then for any knot K of type K the knot Floer homology ĤFK(−Y,K)
naturally admits an Alexander bigrading and L̃(L) is an invariant of its oriented Legen-
drian isotopy class. In particular, if L,L′ are two Legendrian representatives of K and
L̃(L) 6= L̃(L′) then L and L′ are not Legendrian isotopic.

Proof. The Künneth formula [35] provides an Alexander bigrading for the knot Floer ho-
mology of K = K1 #K2 by using the Alexander gradings of the knot Floer groups of K1
and K2. Theorem 9.1 now shows that the map f1 appearing in the proof of Corollary 3.6
induces an isomorphism on the knot Floer homology which respects this Alexander bi-
grading. Therefore the proof of the corollary, in fact, shows that for connected sums the
refined equivalence class L̃(L) is an invariant of the Legendrian isotopy class of L. ut

Proof of Theorem 8.1. As we saw above, the Legendrian knots L1 and L2 both represent
the knot type of K, and have equal Thurston–Bennequin and rotation numbers. Now

ĤFK(S3, m(K), 5) = ĤFK(S3, T(2,7), 3)⊗ ĤFK(S3, T(2,9), 2)

⊕ ĤFK(S3, T(2,7), 2)⊗ ĤFK(S3, T(2,9), 3)⊕ ĤFK(S3, T(2,7), 1)⊗ ĤFK(S3, T(2,9), 4),

and the cycle which determines L̂(L1) is in the first summand, while the cycle which
determines L̂(L2) is in the last. (The image of the quotient map from HFK− to ĤFK,
which contains L̂, is disjoint from the middle summand.) In other words, the Alexander
bigrading of L̂(L1) is (3, 2), while for L̂(L2) it is (1, 4). This readily implies that the
refined invariants L̃(L1) and L̃(L2) are distinct, and so by Theorem 8.4 the knots L1 and
L2 are not Legendrian isotopic. ut

Proof of Theorem 1.7. Let K denote the connected sum T(2,−7) # T(2,−9). Consider the
positive transverse push-offs T1 and T2 of the Legendrian knots L1 and L2. By defining
the refined transverse invariant T̃(Ti) as L̃(Li), the proof of Theorem 8.1 implies that
T1 and T2 are transversely non-isotopic. Since their self-linking numbers s`(Ti) can be
easily computed from the Thurston–Bennequin and rotation numbers of the Legendrian
knots Li , we infer that s`(T1) = s`(T2). Therefore K as defined above is a transversely
non-simple knot type in the overtwisted contact structure ξ12, concluding the proof. ut
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Notice that if the non-triviality of the Legendrian invariants of all Legendrian knots Li,j
can be established, the argument used in the proof of Theorem 1.7 actually provides
arbitrarily many transversely distinct transverse knots with the same classical invariants:
consider the connected sums Li,j #Lk,l with i+j = n−2 and k+l = m−2 ≥ n−2 fixed
(hence fixing the knot type and the Thurston–Bennequin numbers of the knots) and take
only those knots which satisfy i+k = n−2. It is not hard to see that these knots will have
the same rotation numbers, but the argument given in the proof of Theorem 1.7, assuming
that the invariants for the Li,j are non-trivial, shows that the transverse invariants of their
positive transverse push-offs do not agree. This would be a way of constructing arbitrarily
many distinct transverse knots with the same classical invariants in some overtwisted
contact S3.

Proof of Corollary 1.8. Consider the overtwisted contact structure ζ on Y with tζ = tξ
and write it as ζ ′ # ξ12, where ζ ′ is an overtwisted contact structure on Y with tζ ′ = tξ .
(Again, by simple homotopy-theoretic reasons and the classification of overtwisted con-
tact structures, the above decomposition is possible.) The connected sum of the Legen-
drian knot L in ζ ′ having non-trivial invariant L̃(L) with L1 and L2 of Theorem 1.7
obviously gives a pair of Legendrian knots with equal classical invariants in ζ , but with
transverse push-offs having distinct transverse invariants. The distinction of these ele-
ments relies on a straightforward modification of Theorem 9.1, where the components
in a fixed connected sum decomposition are not necessarily prime knots, but we fix the
isotopy class of the embedded sphere separating the knot into two connected components.
This construction concludes the proof. ut

9. Appendix: On knot Floer homology of connected sums

Recall from [35] that if (Y1,K1) and (Y2,K2) are two 3-manifolds equipped with knots,
then we can form their connected sum (Y1 # Y2,K1 # K2). In this case, the knot Floer
homology for the connected sum can be determined by the knot Floer homology of its
summands by a Künneth formula. Our aim here is to investigate naturality properties of
this decomposition. Specifically, we prove the following

Theorem 9.1. Let K be a knot obtained as a connected sum of two distinct prime knots
K1 and K2. Then there is an additional intrinsic grading on the knot Floer homology of
K with the property that

ĤFK(K, s) =
⊕

{s1,s2 | s1+s2=s}

ĤFK(K, s1, s2),

where ĤFK(K, s1, s2) = ĤFK(K1, s1) ⊗ ĤFK(K2, s2). More precisely, if D(K1) and
D(K2) are diagrams for K1 and K2 respectively, then there is an induced diagram
D(K1) #D(K2) for K1 #K2, together with an isomorphism

8 : H∗(ĈFK(D(K1)))⊗H∗(ĈFK(D(K2)))→ H∗(ĈFK(D(K1) #D(K2))).
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If D′(K1) and D′(K2) are a pair of different diagrams for K1 and K2, and D′(K1) #
D′(K2) denotes the induced sum of diagrams for K1 #K2, then there is an isomorphism
9 : H∗(ĈFK(D(K1) #D(K2)))→ H∗(ĈFK(D′(K1) #D′(K2))) such that the diagram

H∗(ĈFK(D(K1)))⊗H∗(ĈFK(D(K2)))
8

−−−−→ H∗(ĈFK(D(K1) #D(K2)))

ψ1⊗ψ2

y 9

y
H∗(ĈFK(D′(K1)))⊗H∗(ĈFK(D′(K2)))

8′

−−−−→ H∗(ĈFK(D′(K1) #D′(K2)))

(9.1)

commutes.

Let Y be a closed, oriented 3-manifold, K ⊂ Y be an oriented knot, and S ⊂ Y meeting
K transversely in exactly two points. Call S a splitting sphere for K . A splitting sphere
expressesK as a connected sum of two knotsK1 andK2. In the case where one of the two
summands is unknotted, we call the splitting sphere trivial. In this language, a knot K is
prime if every splitting sphere for K is trivial. Recall the following classical result [22].

Theorem 9.2. If K is the connected sum of two prime knots K1 and K2, then there is, up
to isotopy, a unique non-trivial splitting sphere S for K . ut

Let (6, α, β,w, z, γ ) be a doubly-pointed Heegaard diagram equipped with a curve
γ ⊂ 6 which is disjoint from all αi , βj , w, and z. Suppose moreover that γ is a sep-
arating curve, dividing 6 into two components F1 and F2, so that w ∈ F1 and z ∈ F2.
This decorated Heegaard diagram determines the following data:

• a 3-manifold Y (obtained from the Heegaard diagram),
• an oriented knot K ⊂ Y (determined by w and z),
• an embedded 2-sphere S meeting the Heegaard surface along γ (consisting of all Morse

flows between index zero and index three critical points passing through γ );

i.e. a decorated Heegaard diagram determines a knot K in Y together with a splitting
sphere S. We call (6, α, β,w, z, γ ) a decorated Heegaard diagram compatible with
(Y,K, S).

Definition 9.3. A decorated Heegaard move on (6, α, β,w, z, γ ) is a move of one of the
following types:

• (Isotopies) Isotopies of α and β, preserving the conditions that all curves among the α
and β are disjoint, and disjoint fromw, z, and γ ; isotopy of γ , preserving the condition
that it is disjoint from α, β, w, and z.
• (Handle slides) Handle slides among the α or β, supported in the complement of w, z,

and away from γ .
• (Stabilizations/destabilizations) Stabilization is obtained by forming the connected

sum of (6, α, β,w, z, γ ) with a genus one surface equipped with a pair of curves
αg+1 and βg+1 meeting transversely in a single point; destabilization is the inverse
operation.
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Proposition 9.4. Suppose that (6, α, β,w, z, γ ) and (6′, α′, β ′, w′, z′, γ ′) are two dec-
orated Heegaard diagrams compatible with (Y,K, S) and (Y ′,K ′, S′) respectively. If
(Y,K, S) is diffeomorphic to (Y ′,K ′, S′), then the decorated Heegaard diagram (6′, α′,

β ′, w′, z′, γ ′) is diffeomorphic to one obtained from (6, α, β,w, z, γ ) after a finite se-
quence of decorated Heegaard moves.

Proof. Fix a Morse function f0 compatible with (6, α, β,w, z, γ ). Let f1 be a different
Morse function compatible with (6, α, β,w, z, γ ), which agrees with f0 in a neighbour-
hood of S∪K . Then we can connect them by a generic one-parameter family ft , wherein
they undergo isotopies, handle slides and stabilizations/destabilizations. Since all func-
tions have the prescribed behaviour at w, z, and γ , the Heegaard moves will be supported
away from w, z, and γ . Changing f near S ∪K has the effect of isotopies of6 supported
near w, z, and γ . ut

Proof of Theorem 9.1. Let (6, α, β,w, z, γ ) be a Heegaard diagram for K = K1 # K2.
Then our additional grading is defined (up to an additive constant) as follows. Fix a point
m near γ . We define s′1(x) − s′1(y) = nm(φ) − nw(φ) where φ ∈ π2(x, y) is any homo-
topy class; similarly, s′2(x) − s′2(y) = nz(φ) − nm(φ). Since the handle slides between
compatible decorated projections cannot cross γ (or w or z), clearly, the triangle maps
induced by handle slides preserve these gradings (at least in the relative sense).

In fact, if D(K1) and D(K2) are diagrams for K1 and K2, we can form the connected
sum diagram by connecting z1 ∈ D(K1) with w2 ∈ D(K2), dropping these two base-
points, and using only w1 and z2 inD(K1)#D(K2). This is the doubly-pointed Heegaard
diagram for the connected sum, and if we draw γ around the connected sum annulus, then
it is decorated so as to be compatible with the non-trivial sphere S splitting K . Indeed,
the usual proof of the Künneth principle shows that the map

ĈFK(D(K1))⊗ ĈFK(D(K2))→ ĈFK(D(K1) #D(K2))

is a quasi-isomorphism. It is also easy to see that

(s1(x), s2(x)) = (s′1(x), s
′

2(x)),

at least up to an overall additive constant. Indeed, we can now define s′1 and s′2 to be
normalized so that they agree with s1 and s2. Finally, if we have two diagrams which
differ by decorated Heegaard moves, then the triangle maps clearly induce isomorphisms
required in (9.1). The statement follows at once since 9 preserves the bigrading (in an
absolute sense). ut
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[26] Manolescu, C., Ozsváth, P., Sarkar, S.: A combinatorial description of knot Floer homology.
Ann. of Math. 169, 633–660 (2009) Zbl pre05578753
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[37] Ozsváth, P., Szabó, Z., Thurston, D.: Legendrian knots, transverse knots and combinatorial
Floer homology. Geom. Topology 12, 941–980 (2008) Zbl 1144.57012 MR 2403802

[38] Plamenevskaya, O.: A combinatorial description of the Heegaard Floer contact invariant. Al-
gebr. Geom. Topology 7, 1201–1209 (2007) Zbl pre05220909 MR 2350279

[39] Rasmussen, J.: Floer homology of surgeries on two-bridge knots. Algebr. Geom. Topology 2,
757–789 (2002) Zbl 1013.57020 MR 1928176

[40] Rasmussen, J.: Floer homology and knot complements. Ph.D Thesis, Harvard (2003),
arXiv:math/0306378

[41] Stallings, J.: Construction of fibered knots and links. In: Algebraic and Geometric Topol-
ogy (Stanford 1976), Part 2, Proc. Sympos. Pure Math. 32, Amer. Math. Soc., 55–60 (1978)
Zbl 0394.57007 MR 0520522
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