
DOI 10.4171/JEMS/190

J. Eur. Math. Soc. 12, 71–92 c© European Mathematical Society 2010

U. Kohlenbach · L. Leuştean
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Abstract. This paper provides a fixed point theorem for asymptotically nonexpansive mappings in
uniformly convex hyperbolic spaces as well as new effective results on the Krasnosel’skiı̆–Mann it-
erations of such mappings. The latter were found using methods from logic and the paper continues
a case study in the general program of extracting effective data from prima-facie ineffective proofs
in the fixed point theory of such mappings.
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1. Introduction

This paper provides a fixed point theorem for asymptotically nonexpansive mappings in
uniformly convex hyperbolic spaces (Theorem 3.3) as well as new effective results on the
Krasnosel’skiı̆–Mann iterations of such mappings (Theorem 3.5). The fixed point theo-
rem generalizes corresponding theorems for uniformly convex normed spaces ([6]) and
CAT(0)-spaces ([11]) while the effective bounds on the Krasnosel’skiı̆–Mann iterations
generalize results from [16] for the normed case which were obtained using techniques
from mathematical logic or, more specifically, a proof-theoretic method called (mono-
tone) functional interpretation (see [12, 4]). In this respect the current paper continues a
case study in the general program of ‘proof mining’ which is concerned with the extrac-
tion of effective uniform bounds from (prima-facie) ineffective proofs (see the discussion
in Section 5 and [14] for a survey as well as [15]). Monotone functional interpretation
systematically transforms any statement in a given proof into a new constructive version
for which explicit bounds are provided. In the case of convergence statements (which
this paper is about) this coincides with what recently has been advocated under the name
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e-mail: leustean@mathematik.tu-darmstadt.de

Mathematics Subject Classification (2010): 03F10, 47H10, 47H09



72 U. Kohlenbach, L. Leuştean

‘metastability’ or ‘finite convergence’ in an essay posted by T. Tao ([28], see also [29]).
Thus the paper can also be seen as an instance of ‘hard analysis’ as proposed by Tao.

Since the fundamental paper [6], the class of asymptotically nonexpansive mappings
has been much studied in fixed point theory. Let (X, d) be a metric space. A function
T : X → X is called asymptotically nonexpansive if for some sequence (kn) in [0,∞)
with limn→∞ kn = 0 one has

d(T nx, T ny) ≤ (1+ kn)d(x, y), ∀n ∈ N, ∀x, y ∈ X.

Asymptotically nonexpansive mappings have been studied mostly in the context of uni-
formly convex normed spaces (in fact, for general normed spaces it is even open whether
asymptotically nonexpansive selfmappings of bounded, closed, convex subsets have ap-
proximate fixed points, see [5]). One typical result is the following theorem which is
proved in [16, Corollary 8] (as a corollary of a quantitative result) but essentially is con-
tained already in [23, 24, 25, 21]:

Theorem 1.1. Let (X, ‖·‖) be a uniformly convex normed space, C ⊆ X a convex subset
and T : C → C an asymptotically nonexpansive mapping with sequence (kn) in [0,∞)
satisfying

∑
∞

i=0 ki <∞. Let (λn) be a sequence in [a, b] for 0 < a < b < 1 and define
the Krasnosel’skiı̆–Mann iteration of T starting from x ∈ X by

x0 := x, xn+1 := (1− λn)xn + λnT n(xn).

If T has a fixed point, then ‖xn − T (xn)‖ → 0 as n→∞.

While there does not seem to exist a computable rate of convergence in this case (in
[16] it is shown that the proof even holds for asymptotically weakly-quasi nonexpansive
functions for which one can show that no uniform effective rate exists), general logical
metatheorems from [13, 4] guarantee (see also Section 5 below) an effective uniform
bound on the so-called no-counterexample interpretation (see Kreisel [17]) of the conver-
gence, or—to use Tao’s [28, 29] terminology—on the metastability of (‖xn − T (xn)‖),
i.e. on

∀ε > 0 ∀g : N→ N ∃N ∈ N ∀m ∈ [N,N + g(N)] (‖xm − T (xm)‖ < ε), (∗)

which (ineffectively) is equivalent to the regular formulation of convergence towards 0.
Here [n, n+m] := {n, n+ 1, . . . , n+m}.

The proof analyzed in [16] uses a lemma from [20]:

Lemma 1.2 ([20]). Let (an), (bn), (cn) be sequences in R+ such that
∑
bn and

∑
cn

are bounded and
∀n ∈ N (an+1 ≤ (1+ bn)an + cn).

Then (an) is convergent.

The results in [16] were obtained by transforming a proof of ‖xn − T (xn)‖ → 0 based
on Lemma 1.2 into a proof of (∗) together with an explicit effective bound for (∗) us-
ing a corresponding effective bound for the ‘metastability’ version of Lemma 1.2 (see
also Proposition 6.4 below) which constitutes a generalization of Tao’s finite convergence
principle from [28].
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In this paper we take the proofs from [16] as our point of departure and generalize
the results to uniformly convex hyperbolic spaces (see the next section). This, in particu-
lar, covers the important class of CAT(0)-spaces (in the sense of Gromov) and, a fortiori,
R-trees in the sense of Tits. For CAT(0)-spaces we get a quadratic bound on the approxi-
mate fixed point property of (xn) (see Corollary 3.11).

2. Hyperbolic spaces—definitions and properties

One can find in the literature different notions of ‘hyperbolic space’ [10, 7, 8, 22]. We
work in the setting of hyperbolic spaces as introduced by the first author [13], which
are slightly more restrictive than the spaces of hyperbolic type in the sense of Goebel–
Kirk [7], but more general than the hyperbolic spaces in the sense of Reich–Shafrir [22].

A hyperbolic space (X, d,W) is a metric space (X, d) together with a convexity map-
ping W : X ×X × [0, 1]→ X satisfying

(W1) d(z,W(x, y, λ)) ≤ (1− λ)d(z, x)+ λd(z, y),
(W2) d(W(x, y, λ),W(x, y, λ̃)) = |λ− λ̃| · d(x, y),
(W3) W(x, y, λ) = W(y, x, 1− λ),
(W4) d(W(x, z, λ),W(y,w, λ)) ≤ (1− λ)d(x, y)+ λd(z,w).

The convexity mapping W was first considered by Takahashi in [27], where a triple
(X, d,W) satisfying (W1) is called a convex metric space.

The class of hyperbolic spaces includes normed spaces and convex subsets thereof,
the Hilbert ball [8] as well as CAT(0)-spaces in the sense of Gromov (see [2] for a detailed
treatment).

If x, y ∈ X and λ ∈ [0, 1] then we use the notation (1 − λ)x ⊕ λy for W(x, y, λ). It
is easy to see that for any x, y ∈ X and any λ ∈ [0, 1],

d(x, (1− λ)x ⊕ λy) = λd(x, y) and d(y, (1− λ)x ⊕ λy) = (1− λ)d(x, y). (1)

We shall denote by [x, y] the set {(1−λ)x⊕λy : λ ∈ [0, 1]}. A nonempty subset C ⊆ X
is convex if [x, y] ∈ C for all x, y ∈ C.

For any x ∈ X, r > 0, the open (respectively closed) ball with center x and radius r
is denoted by U(x, r) (respectively U(x, r)). It is easy to see that open balls and closed
balls are convex. Moreover, using (W4), we see that the closure of a convex subset of a
hyperbolic space is again convex.

One of the most important classes of Banach spaces are the uniformly convex ones,
introduced by Clarkson in the 30’s [3]. Following [8, p. 105], we can define uniform
convexity for hyperbolic spaces too.

A hyperbolic space (X, d,W) is uniformly convex [18] if for any r > 0 and any
ε ∈ (0, 2] there exists θ ∈ (0, 1] such that for all a, x, y ∈ X,

d(x, a) ≤ r

d(y, a) ≤ r

d(x, y) ≥ εr

 ⇒ d

(
1
2
x ⊕

1
2
y, a

)
≤ (1− θ)r. (2)
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A mapping η : (0,∞) × (0, 2] → (0, 1] providing such a θ := η(r, ε) for given r > 0
and ε ∈ (0, 2] is called a modulus of uniform convexity.

In the following, (X, d,W) is a uniformly convex hyperbolic space and η is a modulus
of uniform convexity.

Lemma 2.1. Let r > 0, ε ∈ (0, 2] and a, x, y ∈ X be such that d(x, a) ≤ r , d(y, a) ≤ r ,
d(x, y) ≥ εr . Then for any λ ∈ [0, 1],

1. d((1− λ)x ⊕ λy, a) ≤ (1− 2λ(1− λ)η(r, ε))r;
2. for any ψ ∈ (0, 2] such that ψ ≤ ε,

d((1− λ)x ⊕ λy, a) ≤ (1− 2λ(1− λ)η(r, ψ))r ;

3. for any s ≥ r ,

d((1− λ)x ⊕ λy, a) ≤ (1− 2λ(1− λ)η(s, εr/s))s .

Proof. 1. See [18, Lemma 7].
2. Note that d(x, y) ≥ εr ≥ ψr and apply item 1.
3. Since d(x, a), d(y, a) ≤ r ≤ s, d(x, y) ≥ εr = (εr/s)s and 0 < εr/s ≤ ε ≤ 2,

the conclusion follows again by an application of item 1. ut

We say that η is monotone if it decreases with r (for a fixed ε). It turns out that CAT(0)-
spaces are uniformly convex hyperbolic spaces having a monotone modulus of uniform
convexity, quadratic in ε: η(r, ε) = ε2/8. We refer to [18] for details.

The following proposition is one of the main ingredients in the proof of Theorem 3.3.
Its proof is similar to the one of the corresponding result for uniformly convex Banach
spaces (see, for example, [8, Theorem 2.1]).

Proposition 2.2. Let (X, d,W) be a complete uniformly convex hyperbolic space with a
monotone modulus of uniform convexity η. The intersection of any decreasing sequence
of nonempty bounded closed convex subsets of X is nonempty.

Proof. Let (Cn)n≥1 be a decreasing sequence of nonempty bounded closed convex sub-
sets of X and let x ∈ X be arbitrary. If x ∈ Cn for all n ∈ N, then

⋂
n≥1 Cn 6= ∅. Assume

that there exists N ∈ N such that x ∈/CN , so that d(x, CN ) > 0, since CN is closed. If
rn := d(x, Cn), then (rn) is an increasing sequence of nonnegative reals, bounded from
above by d(x, a) + diam(C1), where a ∈ C1. It follows that r := lim rn = sup rn ≥
rN > 0.

Define Dn := Cn ∩ U(x, r + 1/n). Then it is easy to see that (Dn) is a decreasing
sequence of nonempty closed subsets of X. Let dn := diam(Dn) and 0 ≤ d := lim dn =

inf dn.
Assume that d > 0. Let K ∈ N be such that 1/K ≤ d/2. For any n ≥ K , there exist

xn, yn ∈ Dn such that d(xn, yn) ≥ dn − 1/n ≥ d − 1/n ≥ d/2.
Since d(xn, x), d(yn, x) ≤ r + 1/n and

d(xn, yn) ≥
d

2
≥

(
r +

1
n

)
·

d

2(r + 1)
,

d

2(r + 1)
≤ 1,
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we see that for all n ≥ K ,

rn ≤ d

(
1
2
xn ⊕

1
2
yn, x

)
≤

(
1− η

(
r +

1
n
,

d

2(r + 1)

))
·

(
r +

1
n

)
,

(since X is uniformly convex)

≤

(
1− η

(
r + 1,

d

2(r + 1)

))
·

(
r +

1
n

)
,

(since r + 1/n ≤ r + 1 and η is monotone).

Thus, letting n→∞ yields

r ≤

(
1− η

(
r + 1,

d

2(r + 1)

))
· r < r,

a contradiction. It follows that we must have d = 0. This and the completeness of X
imply that

⋂
n≥1Dn 6= ∅, hence

⋂
n≥1 Cn 6= ∅. ut

3. Main results

The notion of nonexpansive mapping can be introduced in the very general setting of
metric spaces. If (X, d) is a metric space, and C ⊆ X a nonempty subset, then a mapping
T : C → C is called nonexpansive if for all x, y ∈ C,

d(T x, T y) ≤ d(x, y).

Asymptotically nonexpansive mappings were introduced by Goebel and Kirk [6] as a
generalization of the nonexpansive ones. A function T : C → C is said to be asymptoti-
cally nonexpansive with sequence (kn)n≥0 in [0,∞) if limn→∞ kn = 0 and

d(T nx, T ny) ≤ (1+ kn)d(x, y), ∀n ∈ N, ∀x, y ∈ C.

Fix(T ) denotes the set of fixed points of T and for any ε > 0, Fixε(T ) denotes the set of
ε-fixed points, that is, points x ∈ C such that d(x, T x) < ε.

We say that C has the fixed point property (FPP) for asymptotically nonexpansive
mappings if Fix(T ) 6= ∅ for any asymptotically nonexpansive mapping T : C → C.
Moreover, C has the approximate fixed point property (AFPP) for asymptotically non-
expansive mappings if Fixε(T ) 6= ∅ for any asymptotically nonexpansive mapping T :
C → C and any ε > 0.

Goebel and Kirk proved the following generalization of the famous Browder–Goehde
–Kirk fixed point theorem for nonexpansive mappings.

Theorem 3.1 ([6, Theorem 1]). Nonempty closed convex and bounded subsets of uni-
formly convex Banach spaces have the FPP for asymptotically nonexpansive mappings.

In 2004, Kirk obtained a similar result for CAT(0)-spaces.
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Theorem 3.2 ([11, Theorem 28]). Nonempty closed convex and bounded subsets of
complete CAT(0)-spaces have the FPP for asymptotically nonexpansive mappings.

Kirk proved Theorem 3.2 using nonstandard methods, inspired by Khamsi’s proof that
bounded hyperconvex metric spaces have the AFPP for asymptotically nonexpansive
mappings [9].

The first main result of this paper is a generalization of Theorem 3.1 to uniformly
convex hyperbolic spaces with monotone modulus of uniform convexity.

Theorem 3.3. Let (X, d,W) be a complete uniformly convex hyperbolic space having a
monotone modulus of uniform convexity. Then any nonempty closed convex and bounded
subset of X has the FPP for asymptotically nonexpansive mappings.

Our proof follows closely Goebel and Kirk’s proof of Theorem 3.1 and we present the de-
tails in Section 4. As a consequence, we also obtain an elementary proof of Theorem 3.2.

In fact, as already pointed out for uniformly convex normed spaces in [16], the proof
of the FPP can be transformed into an elementary proof of the AFPP, which does not need
the completeness of X or the closedness of C.

Proposition 3.4. Let (X, d,W) be a uniformly convex hyperbolic space having a mono-
tone modulus of uniform convexity. Then any nonempty convex and bounded subset of X
has the AFPP for asymptotically nonexpansive mappings.

Proof. The proof of [16, Lemma 21] generalizes easily to our setting. ut

The main part of the paper will be devoted to getting a quantitative version of an asymp-
totic regularity theorem for the Krasnosel’skiı̆–Mann iterations of asymptotically nonex-
pansive mappings.

Let (X, d,W) be a hyperbolic space, C ⊆ X a nonempty convex subset of X and
T : C → C an asymptotically nonexpansive mapping.

For asymptotically nonexpansive mappings, the Krasnosel’skiı̆–Mann iteration start-
ing from x ∈ C is defined by

x0 := x, xn+1 := (1− λn)xn ⊕ λnT nxn, (3)

where (λn) is a sequence in [0, 1].
Following [1], we say that T is λn-asymptotically regular if for all x ∈ C,

lim
n→∞

d(xn, T xn) = 0.

The second main result of the paper is the following theorem, generalizing to uni-
formly convex hyperbolic spaces a similar result obtained for uniformly convex normed
spaces by the first author and Lambov [16].
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Theorem 3.5. Let (X, d,W) be a uniformly convex hyperbolic space with a monotone
modulus of uniform convexity η, C be a nonempty convex subset of X and T : C → C

be asymptotically nonexpansive with sequence (kn). Assume that K ≥ 0 is such that∑
∞

n=0 kn ≤ K and that L ∈ N with L ≥ 2 is such that 1/L ≤ λn ≤ 1 − 1/L for all
n ∈ N. Let x ∈ C and b > 0 be such that for any δ > 0 there is p ∈ C with

d(x, p) ≤ b ∧ d(Tp, p) ≤ δ. (4)

Then for all ε ∈ (0, 1] and for all g : N→ N,

∃N ≤ 8(K,L, b, η, ε, g) ∀m ∈ [N,N + g(N)](d(xm, T xm) < ε), (5)

where

8(K,L, b, η, ε, g) := hM(0), h(n) := g(n+ 1)+ n+ 2,

M := d3(5KD +D + 11/2)/θe, D := eK(b + 2),

θ :=
ε

L2f (K)
· η

(
(1+K)D + 1,

ε

f (K)((1+K)D + 1)

)
,

f (K) := 2(1+ (1+K)2(2+K)).

Moreover, N = hi(0)+ 1 for some i < M .

We shall give the proof of the above theorem in the last section of our paper. As we shall
explain in detail in Section 5, the extractability of the bound8 is guaranteed by a general
logical metatheorem. Moreover, this theorem allows us to conclude that lim d(xn, T xn)

= 0, assuming the existence of approximate fixed points in some neighborhood of the
starting point x ∈ C (see the discussion on the Herbrand normal form in Section 5).

Remark 3.6. By an inspection of its proof, it is easy to see that the above theorem re-
mains true if we weaken the hypotheses on (kn) and (λn). In fact, it is enough to require
that

∑8
n=0 kn ≤ K and 1/L ≤ λn ≤ 1−1/L for all n ≤ 8. Note that once the hypotheses

are weakened one must quantify them over ε and g since 8 depends on these.

Remark 3.7. Assume, moreover, that η(r, ε) can be written as η(r, ε) = ε · η̃(r, ε)

where η̃ increases with ε (for a fixed r). Then we can replace η with η̃ in the bound
8(K,L, b, η, ε, g).

Proof. Define

θ :=
ε

L2f (K)
· η̃

(
(1+K)D + 1,

ε

f (K)((1+K)D + 1)

)
and follow the proof of the theorem using Lemma 6.2 and (21) instead of Lemma 6.2
and (20). ut

We now give some further corollaries.
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Theorem 3.8. Assume (X, d,W), η, C, T : C → C, (kn), K , (λn), L are as in the
hypotheses of Theorem 3.5. Let x ∈ C and b > 0 be such that for any δ > 0 there is
p ∈ C with

d(x, p) ≤ b ∧ d(Tp, p) ≤ δ. (6)

Then lim d(xn, T xn) = 0 and, moreover,

∀ε ∈ (0, 1] ∃N ≤ 8(K,L, b, η, ε) (d(xN , T xN ) < ε), (7)

where 8(K,L, b, η, ε) := 2M and M , D, θ , f (K) are as in Theorem 3.5.

Proof. Take g(n) ≡ 0 in Theorem 3.5. ut

Corollary 3.9 (see also Theorem 5.2). Assume (X, d,W), η, C, T : C → C, (kn),
K , (λn), L are as in the hypotheses of Theorem 3.5. If Fix(T ) 6= ∅, then T is λn-
asymptotically regular.

Proof. Let p̃ be a fixed point of T . For any x ∈ C, (4) is satisfied with b := d(x, p̃) and
p := p̃. ut

Corollary 3.10. Let (X, d,W), η, C, T : C → C, (kn), K , (λn), L be as in the hypothe-
ses of Theorem 3.5. Assume moreover that C is bounded with finite diameter dC . Then T
is λn-asymptotically regular, and the following holds for all x ∈ C:

∀ε ∈ (0, 1] ∃N ≤ 8(K,L, dC, η, ε) (d(xN , T xN ) < ε), (8)

where 8(K,L, dC, η, ε) is defined as in Theorem 3.8 with dC replacing b.

Proof. If C is bounded, then C has the AFPP for asymptotically nonexpansive mappings
by Proposition 3.4, so the condition (4) holds for all x ∈ C with dC instead of b. Hence,
we can conclude that lim d(xn, T xn) = 0 for all x ∈ C. ut

Thus, for boundedC, we get asymptotic regularity and an explicit approximate fixed point
bound 8(K,L, dC, η, ε), which depends only on the error ε, on the modulus of uniform
convexity η, on the diameter dC of C, on (λn) via L and on (kn) via K , but not on the
nonexpansive mapping T , the starting point x ∈ C of the iteration or other data related
to C and X. As we have pointed out in Section 2, CAT(0)-spaces are uniformly convex
hyperbolic spaces with a ‘nice’ monotone modulus of uniform convexity η(r, ε) := ε2/8.
Hence, as an immediate consequence of Corollary 3.10 and Remark 3.7 we get the fol-
lowing result.

Corollary 3.11. LetX be a CAT(0)-space, C be a nonempty convex bounded subset ofX
with diameter dC and T : C → C be asymptotically nonexpansive with sequence (kn).
Assume that K ≥ 0 is such that

∑
∞

n=0 kn ≤ K and that L ∈ N with L ≥ 2 is such that
1/L ≤ λn ≤ 1 − 1/L for all n ∈ N. Then T is λn-asymptotically regular, and for all
x ∈ C,

∀ε ∈ (0, 1] ∃N ≤ 8(K,L, dC, ε) (d(xN , T xN ) < ε), (9)
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where

8(K,L, dC, ε) := 2M,

M :=
⌈

1
ε2 · 24L2

(
5KD +D +

11
2

)
(f (K))3((1+K)D + 1)2

⌉
,

D := eK (dC + 2) , f (K) := 2(1+ (1+K)2(2+K)).

Hence, in the case of convex bounded subsets of CAT(0)-spaces, we get a quadratic
(in 1/ε) approximate fixed point bound. We recall that for nonexpansive mappings, a
quadratic rate of asymptotic regularity for the Krasnosel’skiı̆–Mann iterations was ob-
tained by the second author [18].

4. Proof of Theorem 3.3

In this section, we give the proof of Theorem 3.3. As we have already pointed out, we
generalize to our setting Goebel and Kirk’s proof for uniformly convex Banach spaces.

Proof of Theorem 3.3. For any y ∈ C, set

Ay := {a ∈ R+ | there exist x ∈ C and k ∈ N such that d(T iy, x) ≤ a for all i ≥ k}.

If dC is the diameter of C, then dC ∈ Ay , hence Ay is nonempty. Let αy := infAy . For
any θ > 0 there exists aθ ∈ Ay such that aθ < αy + θ , so

∃x ∈ C ∃k ∈ N ∀i ≥ k (d(T iy, x) ≤ aθ < αy + θ). (10)

Obviously, αy ≥ 0. We distinguish two cases:

Case 1: αy = 0. Let ε > 0. Applying (10) with θ := ε/2, we get the existence of x ∈ C
and k ∈ N such that for all m, n ≥ k,

d(T my, T ny) ≤ d(T my, x)+ d(T ny, x) < ε/2+ ε/2 = ε, (11)

so the sequence (T ny)n≥1 is Cauchy, hence convergent to some z ∈ C. It is easy to see
that z is a fixed point of T .

Case 2: αy > 0. For any n ≥ 1, define

Cn :=
⋃
k≥1

⋂
i≥k

U(T iy, αy + 1/n), Dn := Cn ∩ C. (12)

By (10) with θ :=1/n, there exist x∈C and k ≥ 1 such that x∈
⋂
i≥k U(T

iy, αy + 1/n),
hence Dn is nonempty. Moreover, (Dn)n≥1 is a decreasing sequence of nonempty
bounded closed convex subsets of X, hence we can apply Proposition 2.2 to deduce that

D :=
⋂
n≥1

Dn 6= ∅.
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Claim. For any x ∈ D and θ > 0 there exists K ∈ N such that for all i ≥ K ,

d(T iy, x) ≤ αy + θ. (13)

Proof of claim. Let x ∈ D, θ > 0 and N ∈ N be such that 2/N ≤ θ . Since x ∈ D,
we have x ∈ CN , so there exists a sequence (xNn )n≥1 in CN such that lim xNn = x.
Let P ≥ 1 be such that d(x, xNn ) ≤ 1/N for all n ≥ P and K ≥ 1 such that xNP ∈⋂
i≥K U

(
T iy, αy + 1/N

)
. It follows that for all i ≥ K ,

d(T iy, x) ≤ d(T iy, xNP )+ d(x
N
P , x) ≤ αy + 1/N + 1/N = αy + 2/N ≤ αy + θ.

Thus, the claim is proved.
We shall prove that any point of D is a fixed point of T . Let x ∈ D and assume that

T x 6= x. Then (T nx) does not converge to x, so there exists ε > 0 such that

∀k ∈ N ∃n ≥ k (d(T nx, x) ≥ ε/2). (14)

We can of course assume that ε ∈ (0, 4]. Then ε/(2(αy + 1)) ∈ (0, 2] and there exists
θy ∈ (0, 1] such that

1− η
(
αy + 1,

ε

2(αy + 1)

)
≤
αy − θy

αy + θy
. (15)

Since lim(1+ kn)(αy + θy/2) = αy + θy/2 < αy + θy , there exists N0 ∈ N such that

∀n ≥ N0 ((1+ kn)(αy + θy/2) < αy + θy). (16)

By (13) with θ := θy/2, there exists K ∈ N such that

∀i ≥ K (d(T iy, x) ≤ αy + θy/2). (17)

Applying (14) with k := N0, we get N ≥ N0 such that

d(T Nx, x) ≥ ε/2. (18)

Let now m ∈ N be such that m ≥ N +K . Then

d(T Nx, T my) = d(T Nx, T N (T m−Ny)) ≤ (1+ kN )d(x, T m−Ny)
< (1+ kN )(αy + θy/2) (by (17))
< αy + θy (by (16)).

Hence,

d(T Nx, T my) < αy + θy,

d(x, T my) ≤ αy + θy/2 < αy + θy (by (17)),

d(x, T Nx) ≥ ε/2 (by (18))

= (αy + θy)
ε

2(αy + θy)
≥ (αy + θy)

ε

2(αy + 1)
.
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Applying now the fact that X is uniformly convex, we get

d

(
1
2
x ⊕

1
2
T Nx, T my

)
≤

(
1− η

(
αy + θy,

ε

2(αy + 1)

))
(αy + θy).

Since αy + θy ≤ αy + 1 and η is monotone,

1− η
(
αy + θy,

ε

2(αy + 1)

)
≤ 1− η

(
αy + 1,

ε

2(αy + 1)

)
≤
αy − θy

αy + θy

by (15). Hence,

d

(
1
2
x ⊕

1
2
T Nx, T my

)
≤
αy − θy

αy + θy
· (αy + θy) = αy − θy .

Thus, there exist k := N + K and z := 1
2x ⊕

1
2T

Nx ∈ C such that for all m ≥ k,
d(z, T my) ≤ αy − θy . This means that αy − θy ∈ Ay . Since αy − θy < αy = infAy , we
have got a contradiction.

It follows that x is a fixed point of T . ut

5. A general logical metatheorem

One of the main results of this paper, Theorem 3.5, is a quantitative version of an asymp-
totic regularity theorem for asymptotically nonexpansive mappings of hyperbolic spaces.
In this section we indicate how such a version can be obtained from a prima-facie in-
effectively proven convergence result by means of a general logical metatheorem. Such
metatheorems were developed first in [13] and [4] and guarantee for general classes of
theorems and proofs the extractability of uniform effective bounds from given proofs
(see [15] for a comprehensive treatment). The metatheorems apply to general classes of
spaces such as metric, hyperbolic, normed, uniformly convex and inner product spaces (as
well as their completions) and functions such as nonexpansive, Lipschitz, weakly quasi-
nonexpansive or uniformly continuous functions, among others. We state here only one
particular corollary of such a metatheorem which covers the situation treated in this paper.

The formal system Aω[X, d,W ]−b results from the extension of a system Aω for
analysis (going back to Spector [26]) obtained by axiomatizing an abstract hyperbolic
space (X, d,W). This is achieved by adding constants dX and WX representing d,W
to the system together with axioms expressing that dX is a pseudo-metric and WX sat-
isfies the axioms (W1)–(W4) (the subscript ‘−b’ refers to the fact that we do not as-
sume (X, d,W) to be bounded). Equality for objects in X is defined as x =X y :≡
dX(x, y) =R 0 so that we actually consider the metric space induced by the pseudo-
metric dX. The language ofAω[X, d,W ]−b is based on the language of functionals of all
types over N, X together with appropriate induction and recursion axioms as well as the
axiom schema of dependent choice for all types (which, in particular, implies countable
choice and—as a consequence—full comprehension over natural numbers). So in partic-
ular full so-called 2nd order arithmetic is a subsystem of Aω. Precise definitions for all
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this can be found in [13, 4]. To have quantifiers for functionals over N, X means that we
can quantify not only over N (starting from 0) and X but also over functions f : N→ N,
g : X → X, h : N → X (i.e. sequences in X) and even over function(al)s taking such
objects as arguments and so on. The types N,N → N (and also k-ary number-theoretic
functions), X,X → X,N → X are called small types. If we treat general Polish (i.e.
complete separable) metric spaces P as continuous images of the Baire space NN, the
type N → N also covers quantification over P (for Polish spaces P given in so-called
standard representation).Aω[X, d,W, η]−b results fromAω[X, d,W ]−b by adding a new
constant η : N×N→ N together with axioms expressing that η represents a modulus of
uniform convexity of (X, d,W) (see [19]). A∀ (resp. B∃) is called a ∀-formula (resp. an
∃-formula) if it has the form ∀a Aqf(a) (resp. ∃a Bqf(a)) where a is a tuple of variables of
small types and Aqf (resp. Bqf) is a quantifier-free formula.

Let A∀(x, y, z, T , u) and B∃(x, y, z, T , v) be ∀- resp. ∃-formulas which only contain
the shown variables as free variables. In the following we abbreviate A∀(x, y, z, T , u)
and B∃(x, y, z, T , v) by A∀ and B∃. For T : X → X, x ∈ X and b ∈ N, the formula
Fixε(T , x, b) 6= ∅ expresses that T has an ε-fixed point p in the b-ball around x, i.e.
d(x, p) ≤ b and d(p, T (p)) < ε.

Theorem 5.1. Let (λn) be some standard enumeration of Q∗+.
1. ([4, Corollary 4.26]) Let P (resp. K) be an Aω-definable Polish space (resp. a com-

pact metric space). Assume one can prove in Aω[X, d,W ]−b a sentence

∀x ∈ P ∀y ∈ K ∀n ∈ N ∀z ∈ X ∀T : X→ X

(T λn-Lipschitz ∧ Fix(T ) 6= ∅ ∧ ∀u ∈ N A∀→ ∃v ∈ N B∃).

Then from the proof one can extract a computable1 functional 8 : NN
× N× N→ N

such that for all representatives rx ∈ NN of x ∈ P and all n, b ∈ N,

∀y ∈ K ∀z ∈ X ∀T : X→ X (T λn-Lipschitz ∧ ∀ε > 0 Fixε(T , x, b) 6= ∅
∧ dX(z, T (z)) ≤R b ∧ ∀u ≤ 8(rx, n, b) A∀→ ∃v ≤ 8(rx, n, b) B∃)

in all (nonempty) hyperbolic spaces (X, d,W).
2. ([19]) If the premise of this rule is proved in Aω[X, d,W, η]−b, then the conclusion

holds in all (nonempty) uniformly convex hyperbolic spaces (X, d,W) provided that
η is interpreted to be a modulus of uniform convexity of (X, d,W). The bound 8 then
additionally depends on η.

For the special cases where P is N with the discrete metric resp. NN with the product
metric (Baire space), we can treat the elements of P directly without any representation,
i.e. rx ≡ x. Instead of a single universal premise B∀ we may have a finite conjunction of
such premises. Instead of one space P and one spaceK we may have tuples of (potentially
different) such spaces.

The main features of Theorem 5.1 are the following:

1 Here we refer to the usual oracle version (‘type-2’) of computability when dealing with argu-
ments in NN.
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• The extractability of a computable bound on both the premise and the conclusion (of
course in practice these bounds will be different, but by taking their maximum one can
always obtain a common bound which makes things easier to state). In any concrete
case, the bound extracted will not only be computable but of (usually low) subrecursive
complexity depending on the principles used in the proof at hand. In our case we will
obtain a rather simple bound in the end.
• The bound is highly uniform as it does not depend on y ∈ K , and on x, T and
(X, d,W) only via an upper bound b on d(z, T (z)) and the distance of (approximate)
fixed points of T from z (plus η in the case of Aω[X, d,W, η]−b).
• The assumption that T has a fixed point is replaced by the existence of approximate

fixed points (in some ball around z). The latter is usually more elementary to verify
than the former and does not require the completeness of X or closedness of C (see
Section 3).

The following theorem (essentially based on [23, 24, 25]) is proved in [16, Corollary 8] for
the case of uniformly convex Banach spaces but its proof can be generalized to uniformly
convex hyperbolic spaces.

Theorem 5.2. Let (X, d,W) be a (nonempty) uniformly convex hyperbolic space hav-
ing a monotone modulus of uniform convexity η, C ⊆ X be a nonempty convex subset
and T : C → C be asymptotically nonexpansive with sequence (kn) ∈ [0,∞)N where∑
∞

i=0 ki < ∞. Let (λn) be a sequence in [a, b] for 0 < a < b < 1. If T has a fixed
point, then T is λn-asymptotically regular.

Since any convex subset of a hyperbolic space is again a hyperbolic space, it suffices to
consider only functions T : X→ X. Then Theorem 5.2 can be formalized as follows:

∀K,L, k ∈ N ∀(λn) ∈ [0, 1]N ∀(kn) ∈ [0,K]N ∀x ∈ X ∀T : X→ X
Mon(η) ∧ ∀n ∈ N ∀y, z ∈ X (dX(T ny, T nz) ≤R (1+ kn)dX(y, z))

∧∀n ∈ N
( n∑
i=0

ki ≤ K
)
∧ L ≥ 2 ∧ ∀n ∈ N (1/L ≤R λn ≤R 1− 1/L)

∧ Fix(T ) 6= ∅

→ ∃n ∈ N ∀m ∈ N (dX(xn+m, T xn+m
)
≤R 2−k)

 .

Here, Mon(η) is the ∀-formula from [19] expressing that η is monotone in the first argu-
ment (viewed as a rational number). Then

Mon(η) ∧ ∀n ∈ N ∀y, z ∈ X (dX(T ny, T nz) ≤R (1+ kn)dX(y, z))

∧ ∀n ∈ N
( n∑
i=0

ki ≤ K
)
∧ L ≥ 2 ∧ ∀n ∈ N (1/L ≤R λn ≤R 1− 1/L)

is a finite conjunction of ∀-formulas and [0, 1]N, [0,K]N are compact metric (and hence
Polish) spaces (N is also covered by quantification over P as mentioned above).



84 U. Kohlenbach, L. Leuştean

Remark 5.3. Strictly speaking, [0,K]N is not a single compact metric space but a se-
quence of such spaces asK varies over N. However, this simple extension is also covered
by (the proof of) Theorem 5.1.

The asymptotic nonexpansivity of T ,

∀n ∈ N ∀y, z ∈ X (dX(T ny, T nz) ≤R (1+ kn)dX(y, z)),

implies that T is (1 + k1)-Lipschitz continuous. Since k1 ≤ K, in fact T is (1 + K)-
Lipschitz. So we do not need to add a Lipschitz constant as an extra input in order to be
able to apply the logical metatheorem.

Unfortunately, the conclusion

∃n ∈ N ∀m ∈ N (dX(xn+m, T xn+m)) ≤R 2−k
)

is not an ∃-formula, but only its weakened form

∃n ∈ N
(
dX(xn, T xn) <R 2−k) (∗)

is one.
Suppose now that the proof of Theorem 5.2 can be formalized in Aω[X, d,W, η]−b

(as is the case). Then the logical metatheorem stated above guarantees the extractability
of a computable bound 8(K,L, b, η, k) such that the following holds in all (nonempty)
uniformly convex hyperbolic spaces (X, d,W, η) with monotone modulus η: for all K ,
L, k, b ∈ N, (λn) ∈ [0, 1]N, (kn) ∈ [0,K]N, x ∈ X, T : X → X if T is asymptotically
nonexpansive with sequence (kn), λn ∈ [1/L, 1− 1/L] for all n ∈ N,

∑
∞

k=0 kn ≤ K and

∀ε > 0 (Fixε(T , x, b) 6= ∅
)
∧ d(x, T x) ≤ b

then
∃n ≤ 8(K,L, b, η, k) (d(xn, T xn) < 2−k).

The original convergence statement

(1) ∀k ∈ N ∃n ∈ N ∀m ∈ N (d(xn+m, T xn+m) < 2−k)

can be rewritten as

(2) ∀k ∈ N ∃n ∈ N ∀m ∈ N ∀i ∈ [n, n+m] (d(xi, T xi) < 2−k).

(2) clearly implies the so-called Herbrand normal form (2)H of (2),

(2)H ∀k ∈ N ∀g : N→ N ∃n ∈ N ∀i ∈ [n, n+ g(n)] (d(xi, T xi) < 2−k).

Ineffectively, also the converse is true, i.e. (2)H implies (2) (and so also (1)): Assume
that (2H ) is true. If (2) were false, then for some k ∈ N,

∀n ∈ N ∃mn ∈ N ∃i ∈ [n, n+mn] (d(xi, T xi) ≥ 2−k).
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Define g(n) := mn. Then (2H ) applied to g leads to a contradiction. Due to the ineffec-
tivity of this argument, a bound on ‘∃n ∈ N’ in (2H ) cannot be converted effectively into
a bound on ‘∃n ∈ N’ in (2). Now

∀i ∈ [n, n+ g(n)] (d(xi, T xi) < 2−k)

is equivalent to an ∃-formula (using that< between real numbers is an existential formula
and the universal quantifier over i is bounded). Moreover, quantification over NN is cov-
ered (as mentioned above) even without any extra representation of the Baire space NN

as a Polish metric space.
Hence one can apply the logical metatheorem also to the conclusion (2H ) rather than

just the special case
∃n ∈ N (d(xn, T xn) < 2−k),

which corresponds to g(n) ≡ 0. As a result we can extract a computable bound 8 on
‘∃n ∈ N’ in (2H ) which in addition to K,L, b, η, k also depends on g, i.e.

(3) ∃n ≤ 8(K,L, b, η, k, g) ∀i ∈ [n, n+ g(n)] (d(xi, T xi) < 2−k).

for all g : N→ N.
The rest of this paper is concerned with the construction of such a bound 8(K,L, b,

η, k, g), that is, with the proof of Theorem 3.5. We will carry out this construction directly
by generalizing the reasoning from [16] rather than first proving Theorem 5.2 and then
extracting the bound from the proof. Note, however, that [16] was developed using the
extraction algorithm underlying the proof of (earlier versions of) Theorem 5.1 (in its
version for uniformly convex normed spaces). As (3) implies (2)H and so (ineffectively)
(1) we will obtain Theorem 5.2 as a corollary.

Remark 5.4. At the time the paper [16] was written, the only logical metatheorems avail-
able ([13]) required the boundedness of the convex subset in question. Only in [4] could
the fact that the results in [16] did not require any global boundedness assumption be ac-
counted for by general logical theorems. In [19] this treatment was adapted to uniformly
convex hyperbolic spaces, i.e. the context of the present paper.

6. Some technical lemmas

In the following, (X, d,W) is a hyperbolic space, C ⊆ X a nonempty convex subset of
X, T : C → C an asymptotically nonexpansive mapping with sequence (kn), (λn) is a
sequence in [0, 1] and (xn) is the Krasnosel’skiı̆–Mann iteration starting with x ∈ C.

Lemma 6.1. Let n ∈ N, p ∈ C, α > 0, γ ≥ max{d(Tp, p), d(T np, p)} and K ≥ km
for all m ∈ N. Then

1. d(T nxn+1, xn+1) ≤ (1+ kn)d(T nxn, xn) and

d(xn+1, T xn+1) ≤ d(T
n+1xn+1, xn+1)+ (1+K)2d(T nxn, xn). (19)
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2. Assume that for both i = n and i = n+ 1 we have

d(xi, p) < α or d(T ixi, xi) < α.

Then
d(xn+1, T xn+1) < (1+ (1+K)2(2+K))α + (1+K2)γ.

Proof. 1. We have

d(T nxn+1, xn+1) = d(T
nxn+1, (1− λn)xn ⊕ λnT nxn)

≤ (1− λn)d(T nxn+1, xn)+ λnd(T
nxn+1, T

nxn) (by (W1))
≤ (1− λn)d(T nxn+1, T

nxn)+ (1− λn)d(T nxn, xn)
+ λnd(T

nxn+1, T
nxn)

= d(T nxn+1, T
nxn)+ (1− λn)d(T nxn, xn)

≤ (1+ kn)d(xn+1, xn)+ (1− λn)d(T nxn, xn)
= (1+ kn)λnd(T nxn, xn)+ (1− λn)d(T nxn, xn) (by (1))
≤ (1+ kn)d(T nxn, xn),

d(xn+1, T xn+1) ≤ d(xn+1, T
n+1xn+1)+ d(T

n+1xn+1, T xn+1)

≤ d(xn+1, T
n+1xn+1)+ (1+ k1)d(T

nxn+1, xn+1)

≤ d(xn+1, T
n+1xn+1)+ (1+ k1)(1+ kn)d(T nxn, xn)

≤ d(xn+1, T
n+1xn+1)+ (1+K)2d(T nxn, xn).

2. We have the following cases:

• d(xn+1, p) < α. Then

d(xn+1, T xn+1) ≤ d(xn+1, p)+ d(p, Tp)+ d(T xn+1, Tp)

≤ d(xn+1, p)+ (1+ k1)d(xn+1, p)+ d(p, Tp)

= (2+ k1)d(xn+1, p)+ d(Tp, p) < (2+K)α + γ.

• d(xn+1, p) ≥ α. Then we must have d(T n+1xn+1, xn+1) < α. We distinguish two
situations:

(a) d(T nxn, xn) < α. Then, by (19),

d(xn+1, T xn+1) ≤ d(T
n+1xn+1, xn+1)+ (1+K)2d(T nxn, xn) < (1+ (1+K)2)α.

(b) d(xn, p) < α. Then

d(T nxn, xn) ≤ d(T
nxn, T

np)+ d(T np, p)+ d(xn, p)

≤ (2+ kn)d(xn, p)+ d(T np, p) < (2+K)α + γ.

Hence, again by (19),

d(xn+1, T xn+1) ≤ d(T
n+1xn+1, xn+1)+ (1+K)2d(T nxn, xn)

< α + (1+K)2((2+K)α + γ )

≤ (1+ (1+K)2(2+K))α + (1+K2)γ. ut
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Lemma 6.2. Let (X, d,W) be a uniformly convex hyperbolic space with a monotone
modulus of uniform convexity η. Let x, p ∈ C and K ≥ km for all m ∈ N. Assume that
n ∈ N, α, β, β∗, β̃, γ, ν > 0 are such that

d(T np, p) < ν ≤ 1, α ≤ d(xn, p) ≤ β, β̃, β
∗ and α ≤ d(xn, T

nxn).

Then

d(xn+1, p) < d(xn, p)+knβ
∗
+ν−2αλn(1−λn)η

(
(1+K)β̃+1,

α

(1+K)β + 1

)
. (20)

If, moreover, η can be written as η(r, ε) = ε · η̃(r, ε) where η̃ increases with ε (for a
fixed r), then

d(xn+1, p) < d(xn, p)+knβ
∗
+ν−2αλn(1−λn)η̃

(
(1+K)β̃+1,

α

(1+K)β + 1

)
. (21)

Proof. Let

r := (1+ kn)d(xn, p)+ d(T np, p), ε :=
α

(1+K)β + 1
and ψ :=

α

r
.

By hypothesis, r < (1+K)β + 1, hence 0 < ε < ψ ≤ 1.
We note that

d(T nxn, p) ≤ d(T
nxn, T

np)+ d(T np, p) ≤ r,

d(xn, p) ≤ r,

d(xn, T
nxn) ≥ α = rψ ≥ rε.

We get

d(xn+1, p) = d((1− λn)xn ⊕ λnT nxn, p)
≤
(
1− 2λn(1− λn)η(r, ε)

)
· r (by Lemma 2.1.1)

≤ (1− 2λn(1− λn)η((1+K)β̃ + 1, ε)) · r
(since r < (1+K)β̃ + 1 and η is monotone)

= r − 2rλn(1− λn)η((1+K)β̃ + 1, ε)
≤ r − 2αλn(1− λn)η((1+K)β̃ + 1, ε) (since r ≥ α)
< d(xn, p)+ knβ

∗
+ ν − 2αλn(1− λn)η((1+K)β̃ + 1, ε).

Assume now that η(r, ε) = ε · η̃(r, ε) and η̃ increases with ε. Applying again Lemma
2.1.1 and the monotonicity of η, but with ψ instead of ε, we obtain

d(xn+1, p) ≤ (1− 2λn(1− λn)η((1+K)β̃ + 1, ψ)) · r

= (1− 2λn(1− λn)ψη̃((1+K)β̃ + 1, ψ)) · r

= r − 2αλn(1− λn)η̃((1+K)β̃ + 1, ψ)

≤ r − 2αλn(1− λn)η̃((1+K)β̃ + 1, ε) (since ε < ψ)

< d(xn, p)+ knβ
∗
+ ν − 2αλn(1− λn)η̃((1+K)β̃ + 1, ε). ut

We shall also use the following quantitative lemmas on sequences of real numbers.
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Lemma 6.3. Let (an)n≥0 be a real sequence. Then

∀ε > 0 ∀g : N→ N (agM (0) ≥ 0→ ∃i < M (agi (0) − agi+1(0) ≤ ε)), (22)

where M := da0/εe. As a consequence,

∀ε > 0 ∀g : N→ N (∀n ≤ 2(a0, ε, g) (an ≥ 0)→ ∃N ≤ 2 (aN − ag(N) ≤ ε)), (23)

where 2(a0, ε, g) := max{gi(0) : i ≤ M}. Moreover, N = gi(0) for some i < M .

Proof. Let ε > 0 and g : N → N be such that agM (0) ≥ 0. Assume by contradiction
that agi (0) − agi+1(0) > ε for all i ∈ 0,M − 1. By adding these inequalities, we get
a0 − agM (0) > Mε = da0/εe · ε ≥ (a0/ε) · ε = a0, hence a0 − agM (0) > a0, which is a
contradiction, since agM (0) ≥ 0. ut

The following lemma is a special case of [16, Lemma 17].2

Proposition 6.4. Let A1, A2 ≥ 1, B1, B2, C1, C2 ≥ 0 and define, for any θ > 0 and any
g : N→ N,

9(A1, A2, B1, B2, C1, C2, g, θ) := hM(0), (24)

where
h(n) := g(n)+ n, Di := (Ai + Ci) exp(Bi),
M := d3(4B1D1 + 4C1 +D1 + 4B2D2 + 4C2 +D2)/θe.

Let (an), (bn), (cn), (αn), (βn), (γn) be real sequences such that for all n ≤ 9,

an, bn, cn, αn, βn, γn ≥ 0, an+1 ≤ (1+ bn)an + cn, αn+1 ≤ (1+ βn)αn + γn,

and moreover

a0 ≤ A1, α0 ≤ A2,

9∑
n=0

bn ≤ B1,

9∑
n=0

βn ≤ B2,

9∑
n=0

cn ≤ C1,

9∑
n=0

γn ≤ C2.

Then the following holds:

1. an ≤ D1, αn ≤ D2 for all n ≤ 9 + 1;
2. for all θ ∈ (0, 1] and all g : N→ N,

∃N ≤ 9 ∀i, j ∈ [N,N + g(N)] (|aj − ai | ≤ θ ∧ |αj − αi | ≤ θ).

Moreover, N = hi(0) for some i < M .

2 Corrections to [16]: In Lemma 15 and later, b·c should be d·e. P. 164, line 4: ‘j ≤ m + g(m)’
should be ‘j ≤ m+g(m)+1’, and consequently, in Theorem 22 and Corollary 28, ‘h = λn.(g(n+
1)+ n+ 1’ should be ‘h = λn.(g(n+ 1)+ n+ 2’, and in Corollary 25, ‘n ≤ 81’ must be replaced
by ‘n ≤ 281’.
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7. Proof of Theorem 3.5

Let ε ∈ (0, 1] and g : N → N be arbitrary and K , L, x ∈ C, b, h : N → N, M , D, θ ,
f (K), 8 be as given in the hypotheses of Theorem 3.5. Let us remark that

ε

f (K)((1+K)D + 1)
<

1
2
< 1,

and moreover θ ≤ ε/(L2f (K)) < 1.
Since x ∈ C and b > 0 satisfy (4), there exists p ∈ C such that

d(x, p) ≤ b and d(p, Tp) ≤
1

28(8+K)
. (25)

Since

d(T np, p) ≤ d(T np, T n−1p)+ d(T n−1p, p) ≤ (1+ kn−1)d(p, Tp)+ d(T
n−1p, p),

it follows that for all 1 ≤ n ≤ 8,

d(T np, p) ≤

n−1∑
i=0

(1+ ki)d(p, Tp) = d(p, Tp)
(
n+

n−1∑
i=0

ki

)
≤ (n+K) ·

1
28(8+K)

≤
1

28
≤

1
2n
.

Let us consider the sequences

an := d(xn, p), α0 := KD + 2, αn := KD + 2−
n−1∑
i=0

(
kiD +

1
2i

)
for n ≥ 1.

Then for all n ≤ 8, we have 0 ≤ αn+1 ≤ αn and

0 ≤ an+1 = d((1− λn)xn ⊕ λnT nxn, p) ≤ (1− λn)d(xn, p)+ λnd(T nxn, p)
≤ (1− λn)d(xn, p)+ λnd(T nxn, T np)+ λnd(T np, p)
≤ (1− λn)d(xn, p)+ λn(1+ kn)d(xn, p)+ λnd(T np, p)
≤ (1+ kn)d(xn, p)+ d(T np, p) ≤ (1+ kn)an + 1/2n.

It is easy to verify that we can apply Proposition 6.4 with an, αn given as above, bn := kn,
cn := 1/2n, βn := γn := 0, A1 := b, B1 := K , C1 := 2, A2 := KD+ 2, B2 := C2 := 0,
g̃(n) := g(n+ 1)+ 2 and θ,8 as above.

It follows by Proposition 6.4 that

an ≤ (A1 + C1) exp(B1) = D for all n ≤ 8 (26)

and that there exists N0 ≤ 8 with N0 = h
s(0) for some s < M such that

∀i, j ∈ [N0, N0 + g(N0 + 1)+ 2] (|aj − ai | ≤ θ ∧ |αj − αi | ≤ θ). (27)
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In fact, since the sequence (hn(0)) is strictly increasing, we have N0 = h
s(0) < hM(0)

= 8, so N0 + 1 ≤ 8.
Let N := N0 + 1. In the following, we shall prove that N satisfies (5), that is,

∀m ∈ [N,N + g(N)] (d(xm, T xm) < ε).

Let m ∈ [N,N + g(N)]. Then m− 1, m,m+ 1 ∈ [N0, N0 + g(N0 + 1)+ 2], so we can
apply (27) with i ∈ {m− 1, m} and j = i + 1 to get

|d(xi+1, p)− d(xi, p)| = |ai+1 − ai | ≤ θ and kiD+ 1/2i = |αi+1 − αi | ≤ θ. (28)

Moreover,

m− 1 < m ≤ N0 + 1+ g(N0 + 1) < h(N0) = h
s+1(0) ≤ hM(0) ≤ 8.

Let i ∈ {m−1, m} and assume that d(xi, p) ≥ ε/f (K) and d(T ixi, xi) ≥ ε/f (K). Then

d(T ip, p) ≤
1

28
<

1
2i
≤ 1,

ε

f (K)
≤ d(T ixi, xi),

ε

f (K)
≤ d(xi, p) ≤ D

(by (26)), so we can apply Lemma 6.2, (20) with α := ε/f (K), ν := 1/2i, β := β∗ :=
β̃ := D, the definition of θ and the fact that λi(1− λi) ≥ 1/L2 to get

d(xi+1, p) < d(xi, p)+ kiD + 1/2i − 2θ.

It follows that

2θ < d(xi, p)− d(xi+1, p)+ kiD + 1/2i = ai − ai+1 + kiD + 1/2i ≤ 2θ,

by (28), which is a contradiction.
Hence, for both i = m and i = m− 1,

d(xi, p) < ε/f (K) or d(T ixi, xi) < ε/f (K).

Finally, applying Lemma 6.1.2 with n := m− 1, α := ε/f (K), γ := 1/28 it follows
that

d(xm, T xm) < (1+ (1+K)2(2+K))
ε

f (K)
+ (1+K2)

1
28

=
ε

2
+ (1+K)2

1
28

(by the definition of f (K))

<
ε

2
+ (1+K2)

1
2m

(since m < 8),

≤
ε

2
+ (1+K)2θ (since 1/2m ≤ θ, by (28))

< ε

since (1+K)2θ ≤ (1+K)2ε/L2f (K) < ε/2. ut
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