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Abstract. We develop a quantitative version of Aubry duality and use it to obtain several sharp
estimates for the dynamics of Schrödinger cocycles associated to a non-perturbatively small ana-
lytic potential and Diophantine frequency. In particular, we establish the full version of Eliasson’s
reducibility theory in this regime (our approach actually leads to improvements even in the perturba-
tive regime: we are able to show, for all energies, “almost reducibility” in some band of analyticity).
We also prove 1/2-Hölder continuity of the integrated density of states. For the almost Mathieu op-
erator, our results hold through the entire regime of subcritical coupling and imply also the dry
version of the Ten Martini Problem for the relevant parameters.

Keywords. Quasiperiodic Schrödinger operators, Anderson localization, reducibility, absolutely
continuous spectrum

1. Introduction

This work is concerned with quasiperiodic Schrödinger operators H = Hλv,α,θ defined
on l2(Z) by

(Hu)n = un+1 + un−1 + λv(θ + nα)un (1.1)

where v : R/Z → R is the potential, λ ∈ R is the coupling constant, α ∈ R \ Q is
the frequency and θ ∈ R is the phase. The central (and in some sense most important)
example is given by the almost Mathieu operator, when v(x) = 2 cos 2πx.

Except where otherwise noted, below we assume the frequency α to be Diophantine
in the usual sense, and v analytic.

An important feature of quasiperiodic operators is that the family {Hλv,α,θ }λ∈R un-
dergoes a so called metal-insulator transition when |λ| is changed from small to large.
Loosely speaking, large λ correspond to the insulator phase, with positive Lyapunov ex-
ponents and related localization type effects, while small λ leads to a metallic phase, with
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zero Lyapunov exponents and good transport properties. Here we are interested in the
metallic regime, and therefore in small couplings.

One should distinguish between two possible regimes of small |λ| (similar consid-
erations can be applied to the analysis of large coupling). One is perturbative, meaning
that the smallness condition on |λ| depends not only on the potential v, but also on the
frequency α: the key resulting limitation is that the analysis at a given coupling, however
small, has to exclude a positive Lebesgue measure set of α. Such exclusions are inherent
to the KAM-type methods that have been traditionally used in this context. The other,
stronger regime is called non-perturbative, meaning that the smallness condition on |λ|
only depends on the potential, leading to results that hold for almost every α. Let us stress
that, in certain related contexts (multifrequency modifications of (1.1)), perturbative re-
sults do fail to extend to the non-perturbative regime (see Remark 1.1).

In [E], Eliasson obtained a very precise description of operators (1.1) in the case of
small analytic potentials in the perturbative regime. He proved fine estimates on all solu-
tions of the eigenvalue equation Hu = Eu for E in the spectrum, concluding that most,
but not all, are analytic Bloch waves, i.e. quasiperiodic and analytic in the hull. In his
context, the problem of existence of analytic Bloch waves can be restated (and is indeed
treated) as a dynamical systems problem, of reducibility of the associated cocycle (see
§1.2). His method is based on a sophisticated KAM scheme, which avoids the limita-
tions of earlier KAM methods (that go back to the work of Dinaburg–Sinai [DiS] and that
excluded parts of the spectrum from consideration).

More recently, a less precise analysis of small analytic potentials has been carried out
through the non-perturbative regime in [J] and [BJ1]. One feature of those results is that
most of the analysis is concerned with the dual model Ĥ = Ĥλv,α,θ defined on l2(Z) by

(Ĥ û)n =
∑

λv̂kûn−k + 2 cos(2πθ + nα) ûn, (1.2)

where v̂k are the Fourier coefficients of v(x) =
∑
v̂ke

2πikx . More precisely, localization
(pure point spectrum with exponentially decaying eigenfunctions) results for the family
{Ĥλv,α,θ }θ∈R are used to obtain information on the family {Hλv,α,θ }θ∈R. At the root of
this approach is the classical Aubry duality: a Fourier-type transform matches localized
eigenfunctions Ĥu = Eû to analytic Bloch waves for the equation Hu = Eu. The du-
ality, originally discovered in [AA], has been given several rigorous interpretations since
the early 80s. A dynamical version of Aubry duality is that localization for the dual model
leads to reducibility for almost every energy [P2]. A more subtle duality statement is that
pure point spectrum for the dual model implies purely absolutely continuous spectrum
for a.e. θ [GJLS]. However, all the duality links established so far have been entirely
algebraic, with no quantitative estimates involved. Thus they could not lead to an under-
standing of the whole spectrum, since they ignore the set of energies where localization
(and reducibility) fails. Inability to study this (zero measure yet topologically generic) set
of bad energies was a major stumbling block in answering various spectral questions, in-
cluding some longstanding conjectures. For example, the question whether potential gaps
can collapse, whether there is ever any singular spectrum, or what is the exact modulus of
continuity of the integrated density of states all require estimates holding for all energies.
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In this paper we address this issue by developing the first quantitative version of dual-
ity, which makes it possible to obtain fine dynamical estimates from local information on
the dual model. We then show that required local properties do hold non-perturbatively
for all energies in the spectrum, thus allowing us to obtain all of Eliasson’s results (and
more) in the non-perturbative setting. As discussed above, results “for almost every en-
ergy” can be obtained by considering only the localized solutions for the dual model. Our
achievement here is in developing the technique that can handle all energies, including
those for which localization does not hold, and there is no reducibility. For those ener-
gies, our approach still gives tight dynamical estimates that imply “almost reducibility”:
though coordinate changes cannot trivialize the dynamics (this would be reducibility),
they come arbitrarily close to it (Theorem 1.4). Here the notion of closeness is rather
strong, involving control in a fixed band of analyticity (such strong control is new even in
the perturbative regime).

Besides almost reducibility, the dynamical estimates yield almost immediately a num-
ber of corollaries, including sharp estimates such as 1/2-Hölder continuity of the inte-
grated density of states (Theorems 1.2 and 1.6), and the non-collapse of spectral gaps for
the almost Mathieu operator (Theorem 1.1). Certain other consequences are less immedi-
ate and will be reported separately.

Our almost reducibility result obviously implies that the non-perturbative setting can
be reduced (via coordinate change) to the perturbative regime,1 so the known results in
the perturbative theory become automatically non-perturbative. This is applied to deduce
absolute continuity of spectral measures for all phases (Theorems 1.3 and 1.5) using a
result of [E]. While this reduction also gives other corollaries, we stress that Theorems
1.1, 1.2, and 1.6 are obtained here without using this route.

Remark 1.1. In [E], Eliasson is actually able to deal with multifrequency potentials. It
was shown by Bourgain [B2] that Eliasson’s results, in the multifrequency case, do not
hold non-perturbatively.

Remark 1.2. A further common advantage of non-perturbative approaches, which we
will not pursue here, is to extend through much weaker Diophantine conditions than what
can be covered by KAM based methods, which usually stop working at the Brjuno condi-
tion. The possibility of going beyond Brjuno is very interesting for certain problems; see
for instance [AJ1].

1.1. The almost Mathieu operator

Before stating precisely the non-perturbative version of Eliasson’s result, we discuss the
almost Mathieu operator. Results are particularly neat for this case because the dual model
of the almost Mathieu operator is a rescaled almost Mathieu operator (with the same
frequency, but inverse coupling), thus the non-perturbative analysis extends through the

1 Theorem 1.4 is actually much more than is needed for mere reduction to the perturbative
regime, which in itself is a less delicate result (it is presented in the appendix as Theorem A.2).
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whole subcritical regime |λ| < 1 (and cannot be extended further, as the almost Mathieu
operator undergoes a phase transition at |λ| = 1 [AA]).

In [AJ1], it was proved that the spectrum of the almost Mathieu operator is a Cantor
set for any α ∈ R \ Q, λ 6= 0. This is the Ten Martini Problem of Kac–Simon. There is
a much more difficult problem, which remains open, known as the dry version of the Ten
Martini Problem: it asks to show that the spectrum is not only a Cantor set, but that all
gaps predicted by the Gap-Labelling Theorem [BLT, JM] are open (see Section 4.2 for a
precise formulation). In contrast with the Ten Martini Problem that only requires a certain
property to hold densely in the spectrum, this formulation requires handling all energies
with rational rotation numbers, thus does not leave any room for energy exclusion. The
dry Ten Martini Problem has enjoyed a significant attention since its first formulation in
the early 80s. An affirmative answer was obtained for Liouville α [CEY], as well as for
a set of (λ, α) of positive Lebesgue measure [P1]. Here we are able to deal with almost
every (λ, α).

Let DC(κ, τ ) be the set of α ∈ R such that |α − p/q| ≥ κq−τ , p, q ∈ Z, q 6= 0. The
set of Diophantine numbers is DC =

⋃
κ>0,τ>0 DC(κ, τ ).

Theorem 1.1. The dry version of the Ten Martini Problem holds for α ∈ DC, λ 6=
−1, 0, 1.

The work of Puig mentioned above yields the same result in the perturbative regime α ∈
DC, ln |λ| large (depending on α), and is based on the perturbative results of Eliasson.

We note that our proof does not depend on [AJ1], where the issue was in handling
the arithmetically critical non-Diophantine regime, while here we entirely focus on the
Diophantine case.

As discussed in [AJ1], in order to bridge the gap between generic and full measure,
one must analyze a particularly difficult region of parameters which is still badly under-
stood (and which this work does not touch). The case |λ| = 1 is also very open even
in the case when α is the golden mean (the problem is that one cannot use localization
methods).

We next move our focus to the regularity of the integrated density of states, a recurring
theme in the analysis of quasiperiodic operators.

Theorem 1.2. Let α ∈ DC, λ 6= −1, 0, 1. Then the integrated density of states is 1/2-
Hölder continuous.

This estimate is optimal in several ways. First, there are square-root singularities at the
boundaries of gaps (e.g., [P2]), so the modulus of continuity cannot be improved. Also,
it is known that for a certain non-empty set of α with good Diophantine properties (but
of zero Lebesgue measure) and λ = 1, the integrated density of states is not Hölder
([B3, Remark after Corollary 8.6]). Finally, for any λ 6= 0 and generic α, the integrated
density of states is not Hölder (this is because the Lyapunov exponent is discontinuous at
rational α, which easily implies that it is not Hölder for generic α).

Goldstein–Schlag [GS] had previously shown (1/2− ε)-Hölder continuity for any ε,
all λ 6= −1, 0, 1 and a full Lebesgue measure subset of Diophantine frequencies (they are



Almost localization and almost reducibility 97

also able to consider other analytic functions, in the regime of positive Lyapunov expo-
nent, at the cost of a worse Hölder constant). Previously Bourgain [B1] had obtained al-
most 1/2-Hölder continuity in the perturbative regime, for Diophantine α and ln |λ| large
(depending on α). More recently Sana Ben Hadj Amor obtained 1/2-Hölder continuity in
the perturbative regime of Eliasson [Am].

Another consequence of our results is the following. A well known conjecture, dat-
ing back to the work of Aubry–André [AA], and more recently included in the list of
problems of Simon (Problem 6 of [S2]), asks to show that for 0 < |λ| < 1 the spectral
measures of the almost Mathieu operator are absolutely continuous. This is also tied to
another, more general and far-reaching, conjecture, sometimes attributed to Simon, that
for almost periodic operators, singular spectrum must be phase independent. While a.e.
phase-independence of the spectrum and of its a.c., s.c. and pure point components is
an almost immediate corollary of ergodicity, almost periodic operators exhibit a certain
phase rigidity, in that the spectrum [AS] and absolutely continuous spectrum [LS] are
the same for all phases. Although this is not true for singular continuous and pure point
components taken individually (there may be a dependence on the arithmetic of the phase
[JS]), the conjecture is that combined together they will also demonstrate the phase sta-
bility. This question is only non-trivial (but highly so) in the regime of zero Lyapunov
exponents. We should note that by the time of the inclusion of the above question as
Problem 6 in [S2], it was already solved in the case of Diophantine frequencies for a.e.
phase [J], thus, in the Diophantine regime, the issue was precisely the phase rigidity. This
is what we address here.

Theorem 1.3. The spectral measures of the almost Mathieu operator are absolutely con-
tinuous for α ∈ DC, 0 < |λ| < 1, θ ∈ R.

In the perturbative regime, α ∈ DC, 0 < |λ| < λ0(α), the result for all θ ∈ R follows
from the work of Eliasson. As already mentioned, Theorem 1.3 is obtained here from
Eliasson’s result by “non-perturbative reduction to the perturbative regime”.

Remark 1.3. Though this is not relevant to this work (since the estimates involved in our
reduction to the perturbative regime are already bound to the usual Diophantine condi-
tion), we should point out that this approach does limit possible extensions beyond the
Brjuno condition (see Remark 1.2). Such issues are particularly relevant in view of recent
progress towards absolutely continuous spectrum “from the Liouville side” [AD], which
seems to break down strictly beyond the Brjuno condition,2 while absolutely continuous
spectrum is expected to hold, as described above, without any exceptions.3

2 Namely, the method of [AD] can only cover irrational numbers that are exponentially well
approximated by rationals.

3 After this work was completed, the first author has obtained a complete solution to Problem 6
of [S2], which does involve the development of a fully non-perturbative approach to absolutely
continuous spectrum.
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1.2. Almost reducibility

As previously discussed, Eliasson’s analysis is based on dynamical systems considera-
tions. A cocycle is defined by a pair (α,A) where α ∈ R and A : R/Z → SL(2,R) is
analytic. It is viewed as a linear skew-product (x,w) 7→ (x + α,A(x) · w), x ∈ R/Z,
w ∈ R2. We say that two analytic cocycles (α,A(i)), i = 1, 2, are analytically conjugate
if there exists an analytic map B : R/Z→ PSL(2,R) such that

A(2)(x) = B(x + α)A(1)(x)B(x)−1. (1.3)

The dynamical properties of cocycles are preserved by conjugacies. We say that a cocycle
is reducible if it is Cω-conjugate to a cocycle of the form (α,A∗) where A∗ is a constant
matrix. Eliasson’s reducibility theory describes the dynamics of (α,A) when α is Dio-
phantine and A is close to a constant. He shows that such cocycles are typically (in a
measure-theoretic sense) reducible, and gives good estimates for the non-reducible ones.
The precise closeness quantifier defines Eliasson’s perturbative regime. See the appendix
for a summary of the results of the theory that are relevant to this work.

Eliasson’s perturbative regime is not invariant under conjugacies. A more intrinsic no-
tion, almost reducibility, introduced by Avila–Krikorian [AK2]4 in the smooth category,
captures the properties of cocycles “that behave as cocycles in Eliasson’s perturbative
regime”. The results of this work justify introducing the corresponding definition in the
analytic category as well.

Definition 1.1. An analytic cocycle (α,A) is Cω-almost reducible if the closure of its
analytic conjugacy class contains a constant.

If (α,A) is Cω-almost reducible and α is Diophantine, then (α,A) is analytically conju-
gate to a cocycle in Eliasson’s perturbative regime.

The connection to Schrödinger operators is clear when

A(x) = Sλv,E(x) =

(
E − λv(x) −1

1 0

)
, (1.4)

since a solution of Hu = Eu satisfies

A(θ + nα)

(
un
un−1

)
=

(
un+1
un

)
.

In other words, the spectral properties of the family of Schrödinger operators {Hλv,α,θ }θ∈R
are closely related to the dynamics of the family of cocycles {(α, Sλv,E)}E∈R.

Theorem 1.4. For α ∈ DC, v : R/Z → R analytic, and 0 < |λ| < λ0(v), the cocycles
associated with {Hλv,α,θ }θ∈R are almost reducible. If v(x) = 2 cos 2πx then λ0 = 1.

Direct application of Eliasson’s reducibility theory immediately yields a generalized ver-
sion of Theorem 1.3:

4 See also the first (preprint) version of [AK1].
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Theorem 1.5. Let α, v, λ be as in Theorem 1.4. Then the singular spectrum is the same
for all phases θ ∈ R (and empty).

We note that in the non-perturbative regime, the a.e. absolutely continuous spectrum was
established in [BJ1]. What we address here is the stability of singular spectrum.

1.3. Further non-perturbative analysis

Theorem 1.6. Let α, v, λ be as in Theorem 1.4. Then the integrated density of states is
1/2-Hölder.

The history of this question is discussed after Theorem 1.2, and as for the almost Mathieu
case, this result is optimal in several ways. While we give a direct simple proof, this
theorem can also be derived via Theorem 1.4 from a recent perturbative result of Sana
Ben Hadj Amor [Am].

Our analysis also allows studying a more delicate question: Hölder continuity of the
individual spectral measures (of which the integrated density of states is an average).
We can show that for all θ and all localized initial vectors their spectral measures are
uniformly 1/2-Hölder. This result is once again optimal, and new even in the perturbative
regime. This corollary is a little more involved and also needs the introduction of some
additional theory. It will be reported separately [AJ2].

The dry version of the Ten Martini Problem is specific to the almost Mathieu operator,
and does not hold for general analytic potentials [DJ]. What can be concluded is that for
the great majority of v (that is, excluding a set of infinite codimension), and except for
countably many 0 < |λ| < λ0(v), all gaps are open.

1.4. Almost localization and quantitative Aubry duality

Our key problem is thus to show almost reducibility of certain cocycles. As mentioned
before, there is a classical Aubry duality link between localization and reducibility (The-
orem 2.5), whose application is however limited since localization (pure point spectum
with exponentially decaying eigenfunctions) in general does not hold for every θ [JS].
This of course fits with the fact that reducibility in general does not hold for all cocycles.
(Localization for almost every θ , proved in [J] and [BJ1], turns out to be enough for many
results, but not for the fine ones we are interested in here.)

It is thus natural to devise a weakened notion of localization that could be expected to
hold for every phase, and to develop ways to link it to almost reducibility. Here we show
that this approach indeed works. Namely, we establish a quantitative version of Aubry
duality that links local exponential decay of solutions to the dual eigenvalue problem to
fine dynamical estimates, thus showing that almost reducibility of cocycles associated
with {Hλv,α,θ }θ∈R can be deduced from a property of the dual model {Ĥλv,α,θ }, which
we call “almost localization” (see Definition 3.1). Informally, almost localization gives
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a precise description of the decay of generalized eigenfunctions away from a sparse se-
quence of resonances, somewhat similar to what is considered in [JL], but more precise
than what is obtained in [J] and [BJ1]. Refining those results, we indeed show in Theorem
3.2 that almost localization holds for the dual model in the regime relevant for Theorem
1.4. Then we proceed to show that for α ∈ DC, almost localization for the dual model im-
plies almost reducibility. This link is quantitative and is significantly more subtle than that
between reducibility and localization. The key dynamical estimates needed to establish
this link, Theorems 3.4 and 3.5, coupled with Theorem 3.2 immediately imply Theorem
1.4 (and all its corollaries). They also directly imply Theorems 1.1, 1.2, 1.6. Those direct
implications are not difficult but involve conceptually new arguments, presented in §4.
Particularly, the direct proof of Theorem 1.1 is based on linking resonant rotation num-
bers to resonant phases (see Theorem 4.2, or Theorem 4.1 for more detail). We note that
the proof of Theorem 3.2 (§5) builds on well developed localization methods, and bor-
rows a number of ingredients from [BJ1] and some shortcuts from [AJ1]. Theorems 3.4
and 3.5 and their proofs, presented in Sections 6, 7, and 8, are the main novel technical
and conceptual contributions of this paper, and are not based on previous work.

Remark 1.4. Previous progress in extending Eliasson’s results by coupling non-pertur-
bative and perturbative methods was obtained by Avila–Krikorian. In [AK1], almost every
energy results were obtained following a rather different technique (reduction to the per-
turbative regime was achieved by renormalization). More precise (unpublished) results
were later obtained (using the connection between localization and reducibility in both
directions), including a non-perturbative proof of reducibility under a topological condi-
tion (which covered “most” of the spectrum but excluded the gap boundaries).

Let us conclude with a few comments on the analysis of general operators (1.1), with-
out restriction on the coupling constant.5 There has been much recent progress on the
description of the part of the spectrum 6+ corresponding to energies with a positive Lya-
punov exponent (see [B3] for a lengthy account, and [GS] for more recent results). The
concept of almost reducibility allows us to determine another region of the spectrum 6ar
which can be thoroughly analyzed (either directly by the methods developed here, or by
reduction to the perturbative regime).

There are a number of parallels between our work and previous developments regard-
ing the positive Lyapunov exponent regime. For instance, the stability of positivity of the
Lyapunov exponents (in other words, the property that the set of energies corresponding
to zero Lyapunov exponent is closed) [BJ2] is paralleled by the fact that it is also pos-
sible to deduce stability of almost reducibility from Theorem 1.4, utilizing an argument
of [AK2]. It is precisely the stability of almost reducibility that makes the concept so
interesting from the dynamical systems point of view.

It is interesting to note that almost reducibility may be after all determined by a “mir-
ror” condition to positivity of the Lyapunov exponent. Indeed, for energies in the spec-
trum, almost reducibility clearly implies strong vanishing of the Lyapunov exponent, in

5 Earlier, less complete (due to reliance on perturbative techniques) considerations (in the case
of smooth potentials) first appeared in the preprint version of [AK1].
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the sense that the cocycle may grow at most subexponentially in some band. We conjec-
ture that the converse also holds, that is, almost reducibility should follow from strong
vanishing of the Lyapunov exponent.

2. Preliminaries

For a bounded analytic function f defined on a strip {|=z| < ε} we let ‖f ‖ε =
sup|=z|<ε |f (z)|. If f is a bounded continuous function on R, we define ‖f ‖0 =
supx∈R |f (x)|.

2.1. Cocycles

Let α ∈ R \ Q and A ∈ C0(R/Z,SL(2,C)). We call (α,A) a (complex) cocycle. The
Lyapunov exponent is given by the formula

L(α,A) = lim
n→∞

1
n

∫
ln ‖An(x)‖ dx, (2.1)

where An, n ∈ Z, is defined by (α,A)n = (nα,An), so that for n ≥ 0,

An(x) = A(x + (n− 1)α) · · ·A(x). (2.2)

It turns out (since irrational rotations are uniquely ergodic) that

L(α,A) = lim
n→∞

sup
x∈R/Z

1
n

ln ‖An(x)‖. (2.3)

Remark 2.1. By subadditivity, for any compact set K ⊂ (R \Q)×C0(R/Z,SL(2,R)),
for every δ > 0 there exists CK,δ > 0 such that for every k ≥ 0,

sup
(α,A)∈K

sup
x∈R/Z

ln ‖Ak(x)‖ ≤ CK,δ + k( sup
(α,A)∈K

L(α,A)+ δ). (2.4)

We say that (α,A) is uniformly hyperbolic if there exists a continuous splitting C2
=

Es(x)⊕Eu(x), x ∈ R/Z, such that for someC, c > 0, and for every n ≥ 0, ‖An(x)·w‖ ≤
Ce−cn‖w‖ for w ∈ Es(x) and ‖A−n(x) · w‖ ≤ Ce−cn‖w‖ for w ∈ Eu(x). In this case,
of course L(α,A) > 0. We say that (α,A) is bounded if supn≥0 supx∈R/Z ‖An(x)‖ <∞.

Given two cocycles (α,A(1)) and (α,A(2)), a (complex) conjugacy between them is a
continuous B : R/Z→ SL(2,C) such that (1.3) holds. The Lyapunov exponent is clearly
invariant under conjugacies.

We assume now that (α,A) is a real cocycle, that is, A ∈ C0(R/Z,SL(2,R)). The
notion of real conjugacy (between real cocycles) is the same as before, except that we look
for B ∈ C0(R/Z,PSL(2,R)). Real conjugacies still preserve the Lyapunov exponent.
An example where it is useful to allow B : R/Z → PSL(2,R) instead of requiring
B : R/Z→ SL(2,R) is given by the following well known result (see [MP] for the case
of continuous time).
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Theorem 2.1. Let (α,A) be a uniformly hyperbolic cocycle, with α Diophantine and
A analytic. Then there exists an analytic B : R/Z → PSL(2,R) such that the matrix
B(x + α)A(x)B(x)−1 is constant.

One cannot always take B : R/Z→ SL(2,R) in Theorem 2.1.6

We say that (α,A) is (analytically) reducible if it is (real) conjugate to a constant
cocycle, and the conjugacy is analytic.

The fundamental group of SL(2,R) is isomorphic to Z. Let

Rθ =

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
. (2.5)

Any A : R/Z → SL(2,R) is homotopic to x 7→ Rnx for some n ∈ Z called the degree
of A and denoted degA = n.

Assume now that A : R/Z→ SL(2,R) is homotopic to the identity. Then there exist
ψ : R/Z× R/Z→ R and u : R/Z× R/Z→ R+ such that

A(x) ·

(
cos 2πy
sin 2πy

)
= u(x, y)

(
cos 2π(y + ψ(x, y))
sin 2π(y + ψ(x, y))

)
. (2.6)

The function ψ is called a lift of A. Let µ be any probability on R/Z × R/Z which is
invariant under the continuous map T : (x, y) 7→ (x + α, y + ψ(x, y)), projecting over
Lebesgue measure on the first coordinate (for instance, take for µ any accumulation point
of n−1∑n−1

k=0 T
k
∗ ν where ν is Lebesgue measure on R/Z× R/Z). Then the number

ρ(α,A) =

∫
ψ dµ mod Z (2.7)

does not depend on the choices of ψ and µ, and is called the fibered rotation number of
(α,A) (see [JM] and [H]).

It is immediate from the definition that

|ρ(α, B)− θ | < C‖B − Rθ‖0. (2.8)

The fibered rotation number is invariant under real conjugacies which are homo-
topic to the identity. In general, if the cocycles (α,A(1)) and (α,A(2)) are real conjugate,
B(x + α)A(2)(x)B(x)−1

= A(1)(x), and B : R/Z→ PSL(2,R) has degree k (that is, it
is homotopic to x 7→ Rkx/2) then

ρ(α,A(1)) = ρ(α,A(2))+ kα/2. (2.9)

For uniformly hyperbolic cocycles there is the following well known result (for α
Diophantine and A analytic, it is a consequence of Theorem 2.1); see §5.17 of [H].

Theorem 2.2. Let (α,A) be a uniformly hyperbolic cocycle with α ∈ R \ Q. Then
2ρ(α,A) ∈ αZ+ Z.

6 Indeed, the continuous splitting of R2 associated to a real uniformly hyperbolic cocycle may
be topologically non-trivial (see §4.3 of [H] for an example).
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2.2. Schrödinger operators

We now consider Schrödinger operators {Hv,α,θ }θ∈R (we incorporate the coupling con-
stant into v). The spectrum 6 = 6v,α does not depend on θ , and it is the set of E such
that (α, Sv,E) is not uniformly hyperbolic, with Sv,E given by (1.4).

The Lyapunov exponent is defined by L(E) = L(α, Sv,E).
Fixing a phase θ and f ∈ l2(Z), we let µ = µ

f
v,α,θ be the spectral measure of

H = Hv,α,θ corresponding to f . It is defined so that

〈(H − E)−1f, f 〉 =

∫
R

1
E′ − E

dµ(E′) (2.10)

for E in the resolvent set C \6.
The integrated density of states is the function N : R→ [0, 1] defined by

N(E) =

∫
R/Z

µ
f
v,α,θ (−∞, E] dθ, (2.11)

where f ∈ l2(Z) is such that ‖f ‖l2(Z) = 1 (the definition is independent of the choice
of f ). It is a continuous non-decreasing surjective (for bounded potentials) function. The
Thouless formula relates the Lyapunov exponent to the integrated density of states:

L(E) =

∫
R

ln |E′ − E| dN(E′). (2.12)

There is also a relation to the fibered rotation number:

N(E) = 1− 2ρ(α, Sv,E) (2.13)

where ρ(α, Sv,E) ∈ [0, 1/2].

2.3. The dual model

It turns out that the spectrum 6̂ of Ĥ = Ĥv,α,θ coincides with the spectrum 6 of H =
Hv,α,θ , a manifestation of Aubry duality (e.g., [GJLS]). The spectral measures µ̂ = µ̂fv,α,θ
can be defined using the analogous formula to (2.10). The integrated density of states
N̂(E) =

∫
µ̂θ (−∞, E] dθ then coincides with N(E). Berezanskiı̆’s theorem [Be, S1]

gives in this context:

Theorem 2.3. For any v, α, θ, f , and µ̂fv,α,θ -almost every E, there exists a non-zero so-
lution of Ĥ û = Eû with |ûk| ≤ 1+ |k|.

Since 6 = 6̂ is the union of the supports of the spectral measures, this implies:

Theorem 2.4. For any v, α, θ , there exists a dense set of E ∈ 6 = 6v,α such that there
exists a non-zero solution of Ĥ û = Eû with |ûk| ≤ 1+ |k|.
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2.4. Localization and reducibility: dynamical formulation of Aubry duality

We describe the connection between localization and reducibility mentioned in the intro-
duction. The theorem below is essentially a careful dynamical formulation of the classical
Aubry duality. It appears in a similar form in [P2].

Theorem 2.5. Let α ∈ R\Q and let v : R/Z→ R be analytic. Let θ, E ∈ R be such that
there exists a non-zero exponentially decaying solution of Ĥ û = Eû, and let A = Sv,E .

(1) If 2θ /∈ αZ + Z, then there exists B : R/Z → SL(2,R) analytic such that
B(x+α)A(x)B(x)−1

=R±θ (so (α,A) is reducible). In particular, ‖An(x)‖=O(1),
x ∈ R/Z.

(2) If 2θ − kα ∈ Z for some k ∈ Z, then there exists B : R/Z → PSL(2,R) and
κ : R/Z→ R analytic such that

B(x + α)A(x)B(x)−1
=

(
±1 κ(x)

0 ±1

)
.

In particular, ‖An(x)‖ = O(n), x ∈ R/Z. If moreover α ∈ DC, then κ can be chosen
to be a constant (and (α,A) is reducible).

In either case ρ(α, Sv,E) = ±θ +mα/2 for some m ∈ Z.

Proof. Let u(x) =
∑
ûke

2πikx and U(x) =
(
e2πiθu(x)
u(x−α)

)
. Then we have A(x) · U(x) =

e2πiθU(x + α). Let B̃(x) be the matrix with columns U(x) and U(x). By minimality of
x 7→ x + α, det B̃ is a constant.

(Case A) If det B̃ 6= 0, we have B̃(x + α)−1A(x)B̃(x) =
(
e2πiθ 0

0 e−2πiθ

)
. It is easy to

see that det B̃ = ±ci for some c > 0; we then take B−1
= (2c)−1/2B̃

( 1 ±i
1 ∓i

)
.

(Case B) If det B̃ = 0 then U(x) = ψ(x)W(x) with W(x) a real vector defined up
to sign and |ψ(x)| = 1. By minimality of x 7→ x + α, W(x) 6= 0 for every x ∈ R/Z.
The matrix B(x)−1

∈ PSL(2,R) with columns W and ‖W(x)‖−2R1/4W(x) is thus well
defined. Then

B(x + α)A(x)B(x)−1
=

(
d(x) κ(x)

0 d(x)−1

)
, where d(x) =

ψ(x + α)

ψ(x)
e2πiθ .

Since |d(x)| = 1 and d(x) is real, d(x) = ±1. If α ∈ DC, we can also further conjugate
A to a constant parabolic (or identity) matrix by solving (using, say, Fourier series) the
cohomological equation ±φ(x + α)∓ φ(x) = κ(x)−

∫ 1
0 κ(x) dx with

∫ 1
0 φ(x) dx = 0

in R/Z. Letting B ′(x) =
( 1 −φ(x)

0 1

)
B(x), we get

B ′(x + α)A(x)B ′(x)−1
=

(
±1

∫ 1
0 κ(x) dx

0 ±1

)
.

Assume 2θ /∈αZ+Z. Then we cannot be in case B: indeed, e2πiθ
=±ψ(x)/ψ(x + α)

implies (using Fourier series) that ψ(x) = e−πikx (notice that ψ is well defined only in
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R/2Z) and e2πiθ
= ±eπikα , that is, 2θ = kαmod Z. Thus we are in case A, and the first

statement follows immediately.
Assume now that 2θ − kα ∈ Z. If we are in case B, then the second statement

follows immediately. Otherwise we are in case A, and we have B(x + α)A(x)B(x)−1
=

R±θ for some B : R/Z → SL(2,R). We then set B ′(x) = R∓kx/2B(x), and we get
B ′(x + α)A(x)B ′(x)−1

= ± id. So the second statement still follows in this case (with
κ(x) = 0).

The statement about the value of ρ follows immediately from (2.9). ut

If 2θ ∈ αZ+ Z, we will say that θ is rational (with respect to α).

Remark 2.2. It is clear from the above proof that if the Fourier transform of û is analytic
in a strip |=z| < ε then the matrix B given in item (1) is analytic in the same strip. As
for item (2), it is still possible to define a conjugating matrix with a definite complex
extension, but one must be more careful in its definition.

2.5. Rational approximations

Let qn be the denominators of the approximants of α. We recall the basic properties:

‖qnα‖R/Z = inf
1≤k≤qn+1−1

‖kα‖R/Z, (2.14)

1 ≥ qn+1‖qnα‖R/Z ≥ 1/2. (2.15)

One aspect of the “good distribution” of orbits {x + jα}qn−1
j=0 which will find repeated

use in this work is the following estimate.

Lemma 2.6 (Lemma 9.7 of [AJ1]). Let α ∈ R \ Q, x ∈ R and let 0 ≤ l0 ≤ qn − 1 be
such that |sinπ(x + l0α)| is minimal. Then for some absolute constant C > 0,

−C ln qn ≤
qn−1∑
l=0
l 6=l0

ln |sinπ(x + lα)| + (qn − 1) ln 2 ≤ C ln qn. (2.16)

3. General setup and statements of the main (localization and dynamical) estimates

3.1. Almost localization for every θ

Let α ∈ R, θ ∈ R, ε0 > 0. We say that k is an ε0-resonance if ‖2θ − kα‖R/Z ≤ e−|k|ε0

and ‖2θ − kα‖R/Z = min|j |≤|k| ‖2θ − jα‖R/Z.

Remark 3.1. In particular, there always exists at least one resonance, 0. If α ∈ DC(κ, τ ),
then ‖2θ − kα‖R/Z ≤ e−|k|ε0 implies ‖2θ − kα‖R/Z = min|j |≤|k| ‖2θ − jα‖R/Z for
k > C(κ, τ ).
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We order the ε0-resonances as 0 = n0 < |n1| ≤ |n2| ≤ · · · . We say that θ is ε0-
resonant if the set of resonances is infinite. If θ is non-resonant, with the set of resonances
{n0, . . . , nj }, we formally set nj+1 = ∞. The Diophantine condition immediately implies
exponential repulsion of resonances:

Lemma 3.1. If α ∈ DC(κ, τ ), then |nj+1| ≥ c‖2θ − njα‖−cR/Z ≥ cecε0|nj |, where c =
c(κ, τ, ε0) > 0.

Remark 3.2. In case ‖2θ−`0α‖R/Z = 0 (so that θ is rational with respect to α) we have
an especially strong resonance at `0. In particular, θ is non-resonant, as there will be no
resonances n with |n| > |`0|.

A simple Borel–Cantelli argument shows that the set of non-resonant θ has full
Lebesgue measure.

Definition 3.1. We say that the family {Ĥv,α,θ }θ∈R exhibits almost localization if there
exist C0, C1, ε0, ε1 > 0 such that for every solution û of Ĥv,α,θ û = Eû satisfying û0 = 1
and |ûk| ≤ 1+|k|, and for every C0(1+|nj |) < k < C−1

0 |nj+1|, we have |ûk| ≤ C1e
−ε1k

(where the nj are the ε0-resonances of θ ).

Remark 3.3. It is clear from Theorem 2.3 that almost localization implies localization
for non-resonant θ (slowly growing generalized eigenfunctions can always be shifted and
normalized to match the definition).

Theorem 3.2. If v : R/Z→ R is analytic and7
|λ| < λ0(v) then {Ĥλv,α,θ }θ∈R is almost

localized for every α ∈ DC. For v(x) = 2 cos 2πx, we have λ0 = 1.

This theorem will be proved in §5.

3.2. Bounded eigenfunctions for every energy

The next result allows one to pass from “every θ” statements to “every E” statements.

Theorem 3.3. IfE ∈ 6 then there exists θ ∈ R and a bounded solution of Ĥv,α,θ û = Eû
with û0 = 1 and |ûn| ≤ 1.

Proof. It is enough to show this for a dense set of E in the spectrum. By Theorem 2.4, we
may assume that there is a generalized eigenfunction û′ with subexponential growth for
some phase. Fix N > 0, ε > 0. Let ki be a sequence such that |û′ki | = max|j |≤(i+1)N |û

′

j |.
It follows that there exist some (and indeed infinitely many) i with |û′ki+1

| ≤ (1+ ε)|û′ki |.
By shifting the phase and rescaling, we obtain, for every ε > 0, N > 0, some phase θN,ε

7 The proof actually gives a quantitative bound on the dependence of λ0 on the analytic extension
of v. More precisely, what is needed is that sup|=x|<ε |λ0v(x)| ≤ c0ε

k0 for some 0 < ε < 1, where
c0 and k0 are absolute constants (see (5.15), (5.19), (5.20)).
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such that there exists an eigenfunction with ûN,ε0 = 1 and |ûN,εn | ≤ 1 + ε for |n| ≤ N .
Passing to the limit as N →∞ and ε → 0 we get the desired eigenfunction.8 ut

Remark 3.4. The result can be generalized to some classes of continuous ergodic opera-
tors. For dynamical systems, corresponding results appear in the work of Mañé. Namely,
if a cocycle is not uniformly hyperbolic then there exists a vector that is never expanded,
either in the future or in the past.

3.3. Main dynamical estimates: quantitative Aubry duality

We fix α, v, λ as in Theorem 3.2. For everyE ∈ 6λv,α , let θ = θ(E) be given by Theorem
3.3.9 Let {nj } be the set of resonances of θ(E). Let A = Sλv,E . In what follows, C is a
large constant and c is a small constant, which are allowed to depend on v, λ, α, but not
on E or θ .

Theorem 3.4. Fix some n = |nj | + 1 < ∞ and let N = |nj+1|. Then there exists
8 : R/Z→ SL(2,C) analytic with ‖8‖cn−C ≤ Cn

C such that

8(x + α)A(x)8(x)−1
=

(
e2πiθ 0

0 e−2πiθ

)
+

(
q1(x) q(x)

q3(x) q4(x)

)
(3.1)

with
‖q1‖cn−C , ‖q3‖cn−C , ‖q4‖cn−C ≤ Ce

−cN (3.2)

and
‖q‖cn−C ≤ Ce

−cn(ln(1+n))−C . (3.3)

Theorem 3.5. Fix some n = |nj | + 1 <∞, let N = |nj+1|, L−1
= ‖2θ − njα‖R/Z, and

assume that 0 < L−1 < c.10 Then there exists W : R/Z→ SL(2,R) analytic such that
|degW | ≤ Cn, ‖W‖c ≤ CLC and ‖W(x + α)A(x)W(x)−1

− R∓θ‖c ≤ Ce
−cN .

Remark 3.5. ForN = ∞, Theorem 3.5 gives a quantitative version of the first statement
of Theorem 2.5.

We will prove Theorem 3.4 in §7 and Theorem 3.5 in §8. All spectral results are
consequences of those theorems combined with Theorem 3.2.

8 An alternative proof is the following. Let p/q be close to α, and let θ ′ ∈ R. The spectrum of
Ĥ ′ = Ĥv,p/q,θ ′ is close to the spectrum of Ĥ in the Hausdorff topology. Let E′ be close to E and
in the spectrum of Ĥ ′. Then there is a non-zero periodic solution to Ĥ ′û′ = E′û′. Changing θ ′ to
θ ′ + kp/q, we may assume that û′0 = 1 and |û′n| ≤ 1. Taking the limit p/q → α, E′ → E, a limit
θ of θ ′, and a pointwise limit û of û′, we get the statement.

9 Notice that θ(E) is not necessarily uniquely defined. There could be uncountably many res-
onant θ , but at most finitely many non-resonant θ , corresponding to the same E. This does not
concern our arguments, we just fix some θ .
10 It is likely that the result holds assuming only L−1 > 0.
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3.4. Outline of the rest of the paper

Almost reducibility (Theorem 1.4) and the direct proof of Theorem 1.1 are immediate
consequences of Theorem 3.5. Estimates related to modulus of continuity, including The-
orem 1.6, are obtained from Theorem 3.4. All are more or less immediate. We will discuss
those consequences in §4.

The technical core of the paper is formed by the proofs of Theorems 3.2, 3.4 and 3.5.
The dynamical estimates build on preliminary estimates and ideas developed in §6, but
are otherwise independent. Localization (§5) and quantitative duality (§§6, 7, and 8) are
independent. Section 5 uses the machinery developed in [BJ1] and some shortcuts from
[AJ1]. The techniques and ideas developed in §§6, 7, and 8 are new and do not use any
ideas/methods from the existing literature.

4. Easy spectral consequences of the main dynamical estimates

4.1. Almost reducibility

We will show the following precise version of Theorem 1.4.

Theorem 4.1. Assume α ∈ DC and 0 < |λ| < λ0(v). There exists c > 0 (depending on
λ, v, α) with the following property. Let A = Sλv,E .

(1) If ρ(α,A) is c-resonant then there exists a sequence B(n) : R/Z → SL(2,R) such
that B(n)(x + α)A(x)B(n)(x)−1 converges to a constant rotation uniformly in the set
{|=x| < c}.

(2) If ρ(α,A) is not c-resonant and 2ρ(α,A) /∈ αZ + Z then there exists B : R/Z →
SL(2,R), analytically extending to {|=z| < c}, such that B(x + α)A(x)B(x)−1 is a
constant rotation.

(3) If 2ρ(α,A) ∈ αZ + Z then there exists B : R/Z → PSL(2,R) analytic such that
B(x + α)A(x)B(x)−1 is a constant.

Proof. If E /∈ 6, by Theorem 2.2, 2ρ(α,A) ∈ αZ + Z, and by Theorem 2.1, (α,A) is
reducible.

Let E ∈ 6. If θ is not ε0-resonant, by Theorem 3.2 there is an exponentially decaying
eigenfunction. Theorem 2.5 thus applies, and the result holds in all cases (using Remark
2.2).

Assume that θ is ε0-resonant (and thus 2θ /∈ αZ + Z). Applying Theorem 3.5,
we get for every j a matrix function B(j) : R/Z → SL(2,R) such that 8(x) =
B(j)(x + α)A(x)B(j)(x)−1 satisfies ‖8(x) − R∓θ‖c ≤ Ce−cN and |degB(j)| ≤
C(|nj | + 1) (where N = |nj+1|). To conclude, let us show that ρ is c-resonant.

By (2.9), |ρ(α,A)± θ + (degB(j))α| ≤ Ce−cN . Using (2.8) and Lemma 3.1 we get,
for large j ,

‖2ρ(α,A)±(nj±2 degB(j))α‖R/Z ≥ ‖∓2θ±njα‖R/Z−Ce−cN ≥ cN−C−Ce−cN > 0,
(4.1)
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‖2ρ(α,A)± (nj ± 2 degB(j))α‖R/Z ≤ ‖ ∓ 2θ ± njα‖R/Z + Ce−cN

≤ e−ε0|nj | + Ce−cN ≤ e−c|nj |e−c(|nj±2 degB(j)|). (4.2)

For j large, (4.2) and the Diophantine condition imply that ρ(α,A) has a c-resonance at
∓(nj±2 degB(j)). If the set of c-resonances for ρ(α,A)were not infinite, then we would
have ‖2ρ(α,A)± (nj ± 2 degB(j))α‖R/Z = 0 for large j . But this contradicts (4.1). ut

Remark 4.1. This result is new even in the perturbative regime. Though Eliasson’s
scheme provides a sequence of approximate conjugacies to normal forms, for badly be-
haved ρ there is only control in a shrinking sequence of bands, as is typical for KAM
analysis. In fact, it does not imply our strong definition of almost reducibility of cocycles
except when it actually implies reducibility.

Remark 4.2. The analytic conjugacy given in the third statement for E ∈ 6 can be
shown to extend also to a definite strip. For E /∈ 6, we do not get any estimates on the
analytic extension.

We also state separately the following statement, already obtained as a part of the
proof of Theorem 4.1. By Theorem 2.5, if θ(E) (as specified in Theorem 3.3, see also
footnote 9 in Section 3.3) is not ε0-resonant, then ρ(E) = ±θ + kα/2 for some k. There
are reasons to believe that this does not hold for all E or θ.11 Instead, for resonant θ we
have the following statement.

Theorem 4.2. Fix E ∈ 6 and some θ(E). Under the conditions of Theorem 4.1 and with
the same c, if θ is ε0-resonant, then ρ is c-resonant.

4.2. Open gaps for the almost Mathieu operator (direct proof)

By Theorem 2.2, in the closure of a component of R \6 we must have N(E) = 1−2ρ ∈
αZ+Z. The dry Ten Martini Problem is the conjecture that the converse holds in the case
of the almost Mathieu operator. Since the integrated density of states is the same for H
and Ĥ , it does not matter whether we prove the statement for λ or for λ−1. Theorem 1.1
is thus a consequence of the following.

Theorem 4.3. Let v(x) = 2 cos 2πx, and let 0 < |λ| < 1 and α Diophantine. If E ∈ 6
is such that N(E) ∈ αZ+ Z then E belongs to the boundary of a component of R \6.

Proof. By [P1], it is enough to show that (α, Sλv,E) is reducible. By Theorem 4.1, if this
were not the case then ρ(α, Sλv,E) would be c-resonant. By the Diophantine condition
and Remark 3.2, 2ρ /∈ αZ+ Z. Since N = 1− 2ρ, this is a contradiction. ut

11 Otherwise the set of E’s corresponding to a given θ would be countable even when Ĥθ has
singular continuous spectrum. If we relaxed slightly the definition of θ(E) to require |û0| > 1− ε
instead of |û0| = 1 we could have argued that this is a contradiction since it can be shown in certain
cases that all generalized eigenfunctions are bounded, and therefore for all energiesE in the support
of singular-continuous measure for a given θ one can find θ(E) of the form θ+kα for some k. Such
relaxed definition of θ(E) could also be used in our proofs, with only small changes.
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4.3. Precise bounds on growth, complex perturbations

Conventions below are as in Section 3.3.

Theorem 4.4. Let n = |nj | + 1 < ∞ and let N = |nj+1|. There exists W = W(ε) :
R/Z→ SL(2,C) analytic such that, lettingZ(x) = Z(ε)(x) = W(ε)(x+α)A(x)W

−1
(ε) (x),

we have

‖W‖cn−C ≤ Cε
−1/4 and ‖Z‖cn−C ≤ 1+ Ce−cn(ln(n+1))−C ε1/2

for Ce−cN ≤ ε ≤ cn−C . (4.3)

Proof. Let 8 be given by Theorem 3.4. Let D =
(
d 0
0 d−1

)
where d = ‖8‖cn−C ε

1/4. Let

W(x) = D8(x). If ε ≤ cn−C we have ‖W‖cn−C ≤ Cε
−1/4. Since

D

(
a1 a2
a3 a4

)
D−1
=

(
a1 d2a2

d−2a3 a4

)
(4.4)

we get

Z(x) = W(x + α)A(x)W(x)−1
=

(
e2πiθ 0

0 e−2πiθ

)
+

(
z1(x) z2(x)

z3(x) z4(x)

)
(4.5)

with ‖z1‖cn−C , ‖z3‖cn−C , ‖z4‖cn−C ≤Cε
−1/2e−cN and ‖z2‖cn−C ≤Cε

1/2e−cn(ln(n+1))−C .
If ε ≥ Ce−cN then ‖Z‖cn−C ≤ 1+ Ce−cn(ln(n+1))−C ε1/2. ut

The following gives a direct proof of a perturbative estimate of [E] (see Theorem A.1 in
the Appendix).

Corollary 4.5. For every s ≥ 0 we have ‖As‖0 ≤ C(1+s). Moreover, if θ is non-rational
then ‖As‖0 = o(1+ s).

Proof. By Lemma 3.1, for every s ≥ C, ε = 1/s2 is in the range specified in (4.3) for
some choice of n = |nj | + 1. Then

ln ‖As‖0 ≤ 2 ln ‖W‖0+s ln ‖Z‖0 ≤ C−
1
2

ln ε+sCe−cn(ln(n+1))−C ε1/2
≤ C+ ln(1+s).

(4.6)
This gives ‖As‖0 ≤ C(1+ s).

If θ is non-rational and non-resonant then by Theorems 3.2 and 2.5, ‖As‖ = O(1). If
θ is resonant then we have n→∞ as s →∞, and we get the estimate

sup
0≤j≤cecn(ln n)−C s

ln ‖Aj‖ ≤ C + ln(1+ s), (4.7)

which implies the second statement. ut

Corollary 4.6. If B : R/Z→ SL(2,C) is continuous then L(α,B) ≤ C‖B − A‖1/20 .
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Proof. It is enough to consider the case when ε = ‖B−A‖0 is sufficiently small. Then ε is
in the range specified by (4.3) for some n = |nj |+1. Let B̃(x) = W(x+α)B(x)W(x)−1.
Then ‖B̃‖0 ≤ ‖Z‖0 + ‖W‖20‖B − A‖0 ≤ 1 + Cε1/2. Hence L(α,B) = L(α, B̃) ≤

ln ‖B̃‖0 ≤ Cε1/2. ut

As before, the estimate is improved when θ is not rational.

The integrated density of states: direct proof of Theorem 1.6. Theorem 1.6 follows easily
from Corollary 4.6. Indeed, L(E) =

∫
ln |E−E′| dN(E′) by the Thouless formula. Thus

L(E + iε) ≥ L(E + iε)− L(E) =
1
2

∫
ln
(

1+
ε2

(E − E′)2

)
dN(E′)

≥ c(N(E + ε)−N(E − ε))

for every ε > 0. By Corollary 4.6, L(E + iε) ≤ Cε1/2 for E ∈ 6. Thus N(E + ε) −
N(E − ε) ≥ Cc−1ε1/2 for every 0 < ε < 1, E ∈ 6. Since N is locally constant in the
complement of 6, this means precisely that N is 1/2-Hölder. ut

5. Almost localization: proof of Theorem 3.2

Although it will not be needed for the rest of the paper, we will consider a weaker Dio-
phantine condition on α. For ν, ξ > 0, let EDC(ν, ξ) be the set of α such that

|qα − p| ≥ νe−ξq , p ∈ Z, q ∈ Z \ {0}. (5.1)

Clearly for all κ, τ, ξ > 0 there exists ν > 0 such that DC(κ, τ ) ⊂ EDC(ν, ξ). If α ∈
EDC(ν, ξ) then, by (2.15), ln qn+1 ≤ ξqn − ln ν.

We will prove the following precise version of Theorem 3.2.

Theorem 5.1. There exists λ0(v) > 0 such that if 0 < λ < λ0 and C0 > 1, then there
exist ξ = ξ(λ, v, C0) > 0, ε0 = ε0(v, λ) > 0, ε1 = ε1(v, λ, C0) > 0 such that if α ∈
EDC(ν, ξ), then the family Ĥλv,α,θ is almost localized with parameters C0, ε0, ε1, C1,
where C1 = C1(v, λ, C0, ν) > 0. For v(x) = ±2 cos 2πx, λ0 = 1.

Proof of Theorem 5.1. To simplify the notation, fix some v : R/Z → R analytic, and
set Ȟ = Ȟα,θ = (1/λ)Ĥλv,α,θ . Throughout this section, C denotes an absolute large
constant, while Cσ , for instance, denotes a large constant that only depends on σ . We
warn that this is not the same convention used in the rest of this paper.

Fix an interval I ⊂ Z. Let 0 be the coupling operator between I and Z \ I :

0(i, j) =

{
v̂i−j , χI (i)+ χI (j) = 1,
0, otherwise.

Then we can write û = −(Ȟ − E − 0)−10û, from which for any x ∈ I we obtain

û(x) = −
∑

y∈I, k /∈I

GI (x, y)v̂y−kû(k), (5.2)
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where GI is the Green’s function of Ȟ restricted to the interval I , GI = GI (E) =

(RI (Ȟ − E)R
∗

I )
−1 (where RI : l2(Z) → l2(I ) and R∗I : l2(I ) → l2(Z) denote the

restriction and the inclusion operators). Set

ak =
∑

j : |j |≥|k|, jk≥0

|j v̂j |.

Fix E,m ∈ R. A point y ∈ Z will be called (m, k)-regular if there exists an interval
I = [x1 + 1, x2 − 1] with x2 = x1 + k + 1 such that x1 < y < x2 and∑

x∈I, i=1,2

|GI (y, x)ax−xi | < e−mk.

Otherwise, y will be called (m, k)-singular.
The strategy is to show that the existence of a generalized eigenfunction as in Def-

inition 3.1 implies that k is (m, `(k))-regular for an appropriate m > 0 and for `(k)
comparable with k, with k in the desired “between the resonances” region.

Define I ⊂ Z by I = [0, N − 1], N ∈ N. We will omit the α,E dependence of
various quantities in what follows, and all constants will be uniform for all E in the
spectrum. We will also often assume v 6≡ 0, as otherwise our statements become trivial.
Let PN (θ) = detRI (Ȟα,θ −E)R∗I . Then PN (θ) is an even function of θ + N−1

2 α and can
be written as a polynomial of degree N in cos 2π(θ + N−1

2 α):

PN (θ) =

N∑
j=0

cj cosj 2π
(
θ +

N − 1
2

α

)
def
= QN

(
cos 2π

(
θ +

N − 1
2

α

))
.

Lemma 5.2.
∫ 1

0 N
−1 ln |PN (θ)| dθ ≥ − ln λ.

Proof. This is proved by a standard Herman’s subharmonicity argument [H]. ut

Let Ak,r = {θ ∈ R : |Qk(cos 2πθ)| ≤ e(k+1)r
}. The next lemma shows that every

singular point “produces” a long piece of the trajectory of the rotation consisting of points
belonging to an appropriate Ak,r . It is fairly immediate in the almost Mathieu case, and
we will adapt the argument of [BJ1] for the general case.

Lemma 5.3. There exists λ0 = λ0(v) > 0 such that for 0 < λ < λ0, 1/40 ≤ δ < 1/2,12

ε = ε(λ, v) > 0, c = c(λ, v) > 0, K ⊂ R \ Q compact, α ∈ K , if y ∈ Z is (c,N)-
singular, N > N(λ, v,K) and x ∈ Z is such that y − (1 − δ)N ≤ x ≤ y − δN, then
θ + (x + N−1

2 )α belongs to AN,− ln λ−ε . For v(x) = ±2 cos 2πx, λ0 = 1.

Assume, without loss of generality, that C0|njk | < k < (1/C0)|njk+1|, and k is large
(depending only on C0). We will define scales n ≥ 0 and s ≥ 1 associated with k so that

2sqn ≤ ζk < min{2(s + 1)qn, 2qn+1}, (5.3)

where ζ = 1/32 if 2|njk | < k < |njk+1|/2 and ζ = (C0 − 1)/(16C0) otherwise. Note
that s, n depend on ε0.

12 As will be clear from the proof, the result still holds for any 0 < δ < 1/2, but the constants,
including λ0, become dependent on δ.



Almost localization and almost reducibility 113

Lemma 5.4. Assume there exists û as in Definition 3.1. For λ, c as in Lemma 5.3, there
exist ξ = ξ(v, λ, C0) > 0, ε0 = ε0(v, λ) > 0 such that if α ∈ EDC(ν, ξ), k >

k(v, λ, c, C0, ν, ξ) and s, n are as above then k is (c, 6sqn − 1)-regular.

Since sqn > C−1
C0
k the theorem now follows immediately from the definition of regularity

and (5.2). It therefore suffices to prove Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. Without loss, set x = 0. Set x1 = −1, x2 = N. Assume θ +
N−1

2 α /∈ AN,− ln λ−ε , that is, PN (θ) > λNe−εN . We need to show that for y ∈ [x1, x2]
with dist(y, ∂[x1, x2]) ≥ δN we have

(∗) =
∑

z∈I, i=1,2

|GI (y, z)| |az−xi | < e−cN . (5.4)

By Cramer’s rule GI (y, z) = µy,z/PN (θ) where µy,z is the corresponding minor. The
following lemma reduces the study of Green’s function to the study of determinants of
restrictions of Ȟ − E.

Lemma 5.5 (Lemma 10 of [BJ1]).

µy,z =
∑
γ

αγ detRI\γ (Ȟ − E)R∗I\γ
|γ |∏
i=1

|v̂γi+1−γi | (5.5)

where the sum is taken over all ordered subsets γ = (γ1, . . . , γn) of I with γ1 = y and
γn = z, |γ | = n− 1, and αγ ∈ {−1, 1}.

The following is a simplified, yet more general, version of Lemma 11 of [BJ1]. It gives
an upper bound on µy,z.

Lemma 5.6. For any 3 ⊂ I, for sufficiently large N > N(v, λ,K),

|detRI\3(Ȟ − E)R∗I\3| ≤ λ
−NeC‖v‖

1/2
0 λ1/2N

(
‖v‖0 + C

−1λ−1 #32

N2

)−#3

. (5.6)

Remark 5.1. Unlike the corresponding upper bound in [BJ1], this lemma does not re-
quire α ∈ DC.

Proof. By Hadamard’s bound, we have

|detRI\3(Ȟ − E)R∗I\3| ≤
∏

j∈I\3

((2λ−1 cos 2π(θ + jα)− E)2 + ‖v‖2
L2)

1/2. (5.7)

Thus

ln |detRI\3(Ȟ − E)R∗I\3| ≤
∑
j∈I\3

1
2

ln((2λ−1 cos 2π(θ + jα)− E)2 + ‖v‖20)

=

∑
j∈I\3

u(x + jα). (5.8)
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Set At = {x : |2 cos 2πx − λE| < t} for 0 ≤ t ≤ 2 + |λE|, and let t0 be such that
the Lebesgue measure of At0 is equal to #3/N. Then by unique ergodicity of irrational
rotations and continuity of u, we have∑

j∈I\3

u(x + jα) ≤
∑
j∈I

u(x + jα)−
∑
j∈I

x+jα∈At0

u(x + jα)+No(1)

≤ N

(∫
u(x)(1− χAt0 ) dx + o(1)

)
. (5.9)

Notice that a direct computation gives∫
u(x) dx = ln λ−1

+
∣∣ln ∣∣z+√z2 − 1

∣∣∣∣, (5.10)

where z = (E+ i‖v‖0)/(2λ−1) (see [BJ1] for details). From this and |E| ≤ 2λ−1
+‖v‖0

in the spectrum, we get the estimate
∫
u(x) dx ≤ ln λ−1

+Cλ1/2
‖v‖

1/2
0 . To complete the

proof, it suffices to show that, letting s = #3/N ,∫
u(x)χAt0

(x) dx ≥ s ln(‖v‖0 + C−1λ−1s2)− C‖v‖
1/2
0 λ1/2. (5.11)

Let us splitAt into four segments Ij of length sj ≤ 1 such that x 7→ (2 cos 2πx−λE)2

is monotonic in Ij . Then, since 1− cos 2πx ≥ 16x2 for x ≤ 1/4,∫
Ij

u(x) dx ≥

∫ sj

0

1
2

ln(‖v‖20 + 4λ−2(1− cos 2πx)2) dx

≥

∫ sj

0

1
2

ln(‖v‖20 + 256λ−2x4) dx

≥
1
2
sj ln(‖v‖20 + 256λ−2s4

j )− 2sj . (5.12)

Since x 7→ x ln(‖v‖20 + 256λ−2x4) is concave on R+, we get, summing over j ,∫
At0

u(x) dx ≥
1
2
s ln(‖v‖20 + λ

−2s4)− 2s. (5.13)

Considering separately the cases λ−1s2 > c‖v‖0 and λ−1s2 < c‖v‖0 we conclude that
this implies (5.11). ut

Our assumption |PN (θ)| > λ−Ne−εN implies, with the notation of (5.4) and using (5.5),

(∗) ≤ (λeε)N
N−1∑
n=1

∑
i=1,2
γ : |γ |=n

|detRI\γ (Ȟ − E)R∗I\γ | |axi−γ|γ |+1 |

n∏
i=1

|v̂γi+1−γi |

≤ e(ε+C‖v‖
1/2
0 λ1/2)N

N−1∑
n=1

∑
i=1,2
γ : |γ |=n

CσC
n+1
v,σ

(
‖v‖0 + C

−1λ−1 (n+ 1)2

N2

)−(n+1)

e−σb(γ,i),

(5.14)
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where 0 < σ < σ(v) ≤ 1 is such that

|v̂k| ≤ Cv,σ e
−|k|σ , (5.15)

and b(γ, i) = |γ|γ |+1−xi |+
∑|γ |
i=1 |γi+1−γi |. LetGb,n = {γ : |γ | = n and b(γ, i) = b}.

Then

(∗) ≤ e(ε+C‖v‖
1/2
0 λ1/2)N

N−1∑
n=1

∑
b

CσC
n+1
v,σ

(
‖v‖0 + C

−1λ−1 (n+ 1)2

N2

)−(n+1)

e−σb#Gb,n

≤ e(ε+C‖v‖
1/2
0 λ1/2)N

N−1∑
n=1

Cσ (2Cv,σ )n+1
(
C−1λ−1 (n+ 1)2

N2

)−(n+1) ∑
b,Gb,n 6=∅

e−σb
(
b

n

)
.

(5.16)

If Gb,n 6= ∅ then δN ≤ max{dist(y, ∂I ), n + 1} ≤ b ≤ (n + 1)N ≤ N2. By Stirling’s
formula, setting b = rN , n + 1 = sb, we have

(
b
n

)
≤ CrNeφ(s)rN where φ(s) =

−s ln s − (1− s) ln(1− s). Thus we can estimate

(∗) ≤ e(ε+C‖v‖
1/2
0 λ1/2)NCCσN

5 sup
δ≤r≤n+1

0<s≤1

(
C−1λ−1

2Cv,σ
r2s2

)−rsN
e−σrNeφ(s)rN . (5.17)

The desired exponential decay of (∗) follows if

(∗∗) = sup
0<s≤1

ε+C‖v‖
1/2
0 λ1/2

+

(
ln 2C+ lnCv,σ + ln λ− 2 ln δs−

σ

s
+
φ(s)

s

)
δs < 0.

(5.18)
This condition is satisfied (for appropriate ε) if

c0 = δ
−2λCv,σσ

−3 (5.19)

is small. Indeed, since ‖v‖0 ≤ CCv,σ /σ and φ(s)/s ≤ 1− ln s, we have

(∗∗) ≤ ε +

(
Cδc

1/2
0 −

δ

2

)
σ +

(
lnC + ln c0 + 3 ln

σ

s
−
σ

2s

)
δs. (5.20)

In case v(x) = 2 cos 2πx the result in the form we need, for any 0 < λ < 1, is
stated in Lemma 9.2 in [AJ1] (uniformity on E was not claimed but is automatic from
the argument). The simplification in this case is mainly due to the fact that, as can be
seen by a direct computation (but also follows immediately from Lemma 5.5), |µy,z| =
|Py−1(θ)PN−z(θ + zα)| and we have a uniform upper bound of the form ln |Pk(θ)| <
Cε,K + k(ln λ−1

+ ε). It is obtained by identifying Pk(θ) with the upper-left coefficient
of the k-th iterate of the almost Mathieu cocycle (α, Sλ−1v,E), and applying the formula
L(α, Sλ−1v,E) = − ln λ for 0 < λ < 1 and all E in the spectrum [BJ2], and using (2.4).

ut

Proof of Lemma 5.4. We first recall some concepts introduced in [AJ1, Sec. 9].
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Definition 5.1. We will say that the set {θ1, . . . , θk+1} is ε-uniform if

max
z∈[−1,1]

max
j=1,...,k+1

k+1∏
`=1
6̀=j

|z− cos 2πθ`)|
|cos 2πθj − cos 2πθ`)|

< ekε . (5.21)

ε-uniformity (the smaller ε the better) involves uniformity along with certain cumulative
repulsion of ±θi(mod 1)’s.

Lemma 5.7. Let ε̂ > 0. If θ1, . . . , θk+1 ∈ Ak,− ln λ−ε and k > k(ε, ε̂) is sufficiently large,
then {θ1, . . . , θk+1} is not (ε − ε̂)-uniform.

Proof. Write the polynomial Qk(z) in the Lagrange interpolation form using cos 2πθ1,

. . . , cos 2πθk+1:

|Qk(z)| =

∣∣∣∣k+1∑
j=1

Qk(cos 2πθj )

∏
6̀=j (z− cos 2πθ`)∏

` 6=j (cos 2πθj − cos 2πθ`)

∣∣∣∣. (5.22)

Let θ0 be such that |Pk(θ0)| ≥ λ−k . The lemma now follows immediately from (5.22)
with z = cos 2π(θ0 +

k−1
2 α). ut

We now define I1, I2 ⊂ Z as follows:

(1) I1 = [−2sqn+ 1, 0] and I2 = [k− 2sqn+ 1, k+ 2sqn] if k < |njk+1|/3 and njk ≥ 0.
(2) I1 = [1, 2sqn] and I2 = [k − 2sqn + 1, k + 2sqn] if k < |njk+1|/3 and njk < 0.
(3) I1 = [−2sqn + 1, 2sqn] and I2 = [k − 2sqn + 1, k] if |njk+1|/3 ≤ k < |njk+1|/2.
(4) I1 = [−2sqn + 1, 2sqn] and I2 = [k + 1, k + 2sqn] if k ≥ |njk+1|/2.

In either case, the total number of elements in I1 ∪ I2 is 6sqn. Set θj = θ + jα for
j ∈ I1 ∪ I2.

Lemma 5.8. If ξ < C−1ε0 and k > k(C0, ν, ξ) then the set {θj }j∈I1∪I2 is Cε0 + CC0ξ -
uniform.

Proof. We will first estimate the numerator in (5.21). We have, in each case,

∑
j∈I1∪I2
j 6=i

ln |cos 2πa − cos 2πθj | =
∑

j∈I1∪I2
j 6=i

ln
∣∣∣∣sin 2π

a + θj

2

∣∣∣∣+ ∑
j∈I1∪I2
j 6=i

ln
∣∣∣∣sin 2π

a − θj

2

∣∣∣∣
+ (6sqn − 1) ln 2

= 6+ +6− + (6sqn − 1) ln 2. (5.23)

Both 6+ and 6− consist of 6s terms of the form of (2.16) plus 6s terms of the form

ln min
j=1,...,qn−1

|sin 2π(x + jα/2)|, (5.24)
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minus ln
∣∣sin a±θi

2

∣∣. Therefore, by (2.16)∑
j∈I1∪I2
j 6=i

ln |cos 2πa − cos 2πθj | ≤ −6sqn ln 2+ Cs ln qn. (5.25)

To estimate the denominator of (5.21) we represent it again in the form (5.23) with
a = θi . Then

6− =
∑

j∈I1∪I2
j 6=i

ln |sinπ(i − j)α|. (5.26)

6− consists of 6s terms of the form of (2.16) plus 6s−1 minimum terms (since when we
split 6− into 6s sums over intervals of length qn each, one of the sums will be exactly of
the form of one of (2.16)). For each i, j ∈ I1∪ I2, we have |i− j | ≤ k+4sqn < CC0sqn.
In particular, ln |sinπ(i− j)α| ≥ −CC0sqnξ for large qn (depending on ν, ξ ). Notice that

max{ln |sin x|, ln |sin(x + πjα)|} > −2ξqn, x ∈ R, 0 < |j | < qn+1, (5.27)

provided qn is sufficiently large (depending on ν and ξ ). Using that sqn < qn+1 we get

6− ≥ −6sqn ln 2− CC0sqnξ. (5.28)

Similarly, 6+ consists of 6s terms of the form of (2.16) plus 6s minimum terms, each of
the form

ln |sin 2π(θ + (i + j)α/2)| (5.29)

for some |j | < CC0sqn < CC0qn+1, minus ln |sin 2π(θ + iα)| (which cancels a possible
minimal term with i = j ). Using (5.27), we see that at most 6 minimum terms are smaller
than −2ξqn. Let us estimate the smallest term with j 6= i.

Consider first cases (1) and (2) of the definition of I1, I2. Then, by the definition of Ii ,
i = 1, 2, and using (5.3) we have i+j 6= njk and |i+j | < |njk+1|. Therefore the smallest
term is bounded below by−Cε0sqn when k > 2|njk |, and by−CC0ξsqn when k ≤ 2|njk |.
In cases (3) and (4) we have i + j 6= njk+1, |i + j | < 2|njk+1|, and sqn ≥ C−1

C0
|njk+1|.

Therefore the smallest term is bounded below by −Cξ |njk+1| > −CC0ξsqn.
Putting all together, we see that

6+ ≥ −6sqn ln 2− Cs ln qn − (Cε0 + CC0ξ)sqn. (5.30)

Combining (5.25), (5.28), and (5.30), we obtain

max
j∈I1∪I2

∏
`∈I1∪I2
6̀=j

|z− cos 2πθ`|
|cos 2πθj − cos 2πθ`|

< e(Cε0+CC0 ξ)sqn+Cs ln qn

as desired. ut
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We can now finish the proof of Lemma 5.4. By Lemmas 5.7 and 5.8 at least one of
θj , j ∈ I1∪I2, is not inA6sqn−1,− ln λ−(CC0 ξ+Cε0)−ε̂ where ε̂ can be made arbitrarily small
for large n. From (5.2) we see that the existence of a generalized eigenfunction û (as in
Definition 3.1) implies that y = 0 is (m, k)-singular for any m > 0 and for k sufficiently
large depending on m. Thus by Lemma 5.3 with sufficiently small ε0, ξ (depending also
on C0), y = 0 and δ < 1/6,we know that for all j ∈ I1, θj ∈ A6sqn−1,− ln λ−(CC0 ξ+Cε0)−ε̂

for sufficiently large n. Let j0 ∈ I2 be such that θj0 /∈ A6sqn−1,− ln λ−(CC0 ξ+Cε0)−ε̂ . Since
|j0 − k| ≤ 2sqn we can apply again Lemma 5.3 with δ < 1/6 to conclude that k is
(c, 6sqn − 1)-regular. ut

6. Preliminary dynamical estimates

6.1. Lagrange interpolation argument

Given Fourier coefficients ŵ = (ŵk)k∈Z and an interval I ⊂ Z, we let wI =∑
k∈I ŵke

2πikx . The length of the interval I = [a, b] is |I | = b − a.
We will say that a trigonometric polynomial p : R/Z → C has essential degree at

most k if its Fourier coefficients outside an interval I of length k are vanishing.

Theorem 6.1. Let 1 ≤ r ≤ [qn+1/qn]. If p has essential degree at most k = rqn− 1 and
x0 ∈ R/Z then for some absolute constant C,

‖p‖0 ≤ Cq
Cr
n+1 sup

0≤j≤k
|p(x0 + jα)|. (6.1)

Proof. We may assume that p(x) = P(e2πix) where P is a polynomial of degree k. Then
by Lagrange interpolation,

p(x) =

k∑
j=0

p(x0 + jα)
∏

0≤l≤k
l 6=j

e2πix
− e2πi(x0+lα)

e2πi(x0+jα) − e2πi(x0+lα)
. (6.2)

Thus

ln ‖p‖0 ≤ ln rqn + ln sup
0≤j≤k

|p(x + jα)| + sup
0≤j≤k
x∈R

∑
0≤l≤k
l 6=j

ln
|1− e2πi(x+lα)

|

|1− e2πi(−jα+lα)|
. (6.3)

In order to prove (6.1) it is enough to show that for 1 ≤ s ≤ r , 0 ≤ j ≤ rqn − 1 and
x ∈ R we have ∑

(s−1)qn≤l≤sqn−1
l 6=j

ln |1− e2πi(x+lα)
| ≤ C ln qn, (6.4)

∑
(s−1)qn≤l≤sqn−1

l 6=j

ln |1− e2πi(−jα+lα)
| ≥ −C ln qn+1. (6.5)
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Consider first the case (s − 1)qn ≤ j ≤ sqn − 1. Then∑
(s−1)qn≤l≤sqn−1

l 6=j

ln |1− e2πi(x+lα)
| ≤

∑
(s−1)qn≤l≤sqn−1

l 6=l0

ln |1− e2πi(x+lα)
|, (6.6)

where |1−e2πi(x+l0α)| is minimal. Using that |1−e2πiy
| = 2|sinπy| and Lemma 2.6, we

get (6.4). The same argument gives (6.5) even more directly, with −C ln qn on the right
hand side, since the sum to be estimated is already of the form considered in Lemma 2.6.

Consider now the case s − 1 6= [j/qn]. Writing∑
(s−1)qn≤l≤sqn−1

l 6=j

ln |1− e2πi(x+lα)
|

=

∑
(s−1)qn≤l≤sqn−1

ln |1− e2πi(x+lα)
| + ln |1− e2πi(x+l0α)|, (6.7)

where (s−1)qn ≤ l0 ≤ sqn−1 is such that |1− e2πi(x+l0α)| is minimal, we see that (6.4)
follows from Lemma 2.6. To obtain (6.5) from Lemma 2.6, we must also show that

inf
(s−1)qn≤l≤sqn−1

ln |1− e2πi(l−j)α
| ≥ −C ln qn+1. (6.8)

But this follows from (2.14) and (2.15). This concludes the proof of (6.1). ut

The Diophantine condition α ∈ DC(κ, τ ) implies

qn+1 ≤ κ
−1qτ−1

n . (6.9)

In this case, (6.1) implies, with c = 1
τ−1 > 0 and C = C(κ, τ),

‖p‖0 ≤ Ce
C(1+k)1−c ln(1+k) sup

0≤j≤k
|p(x + jα)|, (6.10)

since 1+ k = rqn ≤ qn+1 ≤ κ
−1qτ−1

n .

6.2. Polynomial growth

From now on α ∈ DC(κ, τ ) and the family {Ĥλv,α,θ }θ∈R is almost localized with parame-
ters (ε0, C0, C1, ε1). Let E be in the spectrum and let A = Sλv,E . Let θ = θ(E) be given
by Theorem 3.3, and let {nj } be the set of resonances of θ(E).

All constants may depend on κ , τ , C0, ε0, ε1, C1, and on bounds on the analytic
extension of λv. We will use C to denote large constants and c to denote small constants.
Further dependence on other parameters will be explicitly indicated, for instance, we will
use Cδ for a large constant that depends on all parameters above and also on an arbitrary
parameter δ > 0.

The specific values of generic constants such as C, c, Cδ may change through the
argument, even when they appear in the same formula. In a few places we will use non-
generic constants, denoted C(1), C(2), . . . , to simplify later referencing.
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Theorem 6.2. We have L(α,A) = 0.

Proof. Fixing a non-resonant θ ′, Theorem 3.2 (see Remark 3.3) implies localization for
Ĥλv,α,θ ′ . By Theorem 2.5, L(α, Sλv,E′) = 0 for a dense set of E′ in the spectrum. By
continuity of the Lyapunov exponent [BJ2], this implies that L(α, Sλv,E) = 0 for all E in
the spectrum.13

ut

In our context (see Remark 2.1), this means that

sup
x∈R/Z

‖Ak(x)‖ ≤ Cδe
δk, δ > 0. (6.11)

Our goal in this section is to improve subexponential growth to polynomial growth.
This is of course still not optimal (see Corollary 4.5), but it is a good starting point.

Theorem 6.3. We have ‖As‖0 ≤ C(1+ s)C , s ≥ 0.

We note that the proof of this estimate involves some themes which will appear again
later.

Choose 4C0(|nj | + 1) < m < C−1
0 |nj+1| of the form m = rqk − 1 < qk+1, let

I = [−[m/2], m− [m/2]] and define u(x) = uI (x). Let U(x) =
(
e2πiθu(x)
u(x−α)

)
. Then

A(x) · U(x)− e2πiθU(x + α) = e4πiθ
(
h(x)

0

)
, (6.12)

where
ĥk = χI (k)2 cos 2π(θ + kα) ûk +

∑
χI (k − j)v̂j ûk−j , (6.13)

where χI is the characteristic function of I . Since Ĥ û = Eû, we also have

−ĥk = χZ\I (k)2 cos 2π(θ + kα) ûk +
∑

χZ\I (k − j)v̂j ûk−j . (6.14)

The estimates |ûk| < C1e
−ε1|k| for m/4 < |k| < m, |ûk| ≤ 1 for all k and |v̂k| ≤ Ce−c|k|

for all k then imply that |ĥk| ≤ Ce−cme−c|k|, that is,

‖h‖c ≤ Ce
−cm. (6.15)

Theorem 6.4. We have infx∈R/Z ‖U(x)‖ ≥ cδe−2δm, δ > 0, m ≥ C.

Proof. Otherwise, by (6.11), (6.12), (6.15), |u(x + iα)| ≤ e−δm for some x ∈ R and
0 ≤ i ≤ m. Then, by Theorem 6.1, ‖u‖0 ≤ CqCrk e−δm ≤ Cδe

−δm/2. This contradicts∫
u(x) = 1. ut

13 An alternative argument for zero Lyapunov exponent to be dense is the following. By duality
[GJLS], if Ĥ has pure point spectrum for almost every θ thenH has absolutely continuous spectrum
for almost every θ (see discussion in [BJ1] for the models considered here). By the Ishii–Pastur
Theorem (e.g., [CL]), the Lyapunov exponent is zero densely in the spectrum.
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Let B(x) be the matrix (
e2πiθu(x) − 1

‖U(x)‖2
u(x − α)

u(x − α) 1
‖U(x)‖2

e−2πiθu(x)

)
. (6.16)

By Theorem 6.4 and the trivial estimate ‖U‖0 ≤ Cm we have

‖B‖0 ≤ Cδe
2δm, δ > 0. (6.17)

Thus

B(x + α)−1A(x)B(x) =

(
e2πiθ 0

0 e−2πiθ

)
+

(
β1(x) b(x)

β3(x) β4(x)

)
(6.18)

with ∥∥∥∥(β1(x) b(x)

β3(x) β4(x)

)∥∥∥∥
0
≤ Cδe

4δm. (6.19)

Since the first column of B satisfies (6.12) and B ∈ SL(2,C), (6.15) and (6.19) for
appropriate δ give

‖β1‖0, ‖β3‖0, ‖β4‖0 ≤ Ce
−cm. (6.20)

Taking 8(x) to be the product of B(x)−1 and a constant diagonal matrix, 8(x) =
DB(x)−1, where D =

(
d 0
0 d−1

)
with d2

= max{‖β3‖
1/2
0 , e−m}, we get

8(x + α)A(x)8(x)−1
=

(
e2πiθ 0

0 e−2πiθ

)
+Q(x), (6.21)

where, by (6.20), (6.17), (6.19), and (4.4) with appropriate δ, ‖Q‖0 ≤ Ce−cm and ‖8‖0 ≤
Cem. This implies

‖As‖0 ≤ 2‖8‖20 ≤ Ce
Cm, 0 ≤ s ≤ c(1)ec

(1)m. (6.22)

Proof of Theorem 6.3. Let c(1) be as in (6.22). For fixed s, let m be minimal such that
s ≤ c(1)ec

(1)m, 4C0(1 + |nj |) < m < C−1
0 |nj+1|, and m = rqk − 1 < qk+1 for some

j, k, r . By Lemma 3.1, m ≤ C + C ln(1+ s). By (6.22), ‖As‖0 ≤ C(1+ s)C . ut

6.3. Improved estimate on almost invariant sections

In the previous argument, polynomial growth was obtained from an estimate on a suitably
chosen “approximate Bloch wave”. The first application of polynomial growth is that
it allows us to deal, through a bootstrap argument, with much finer approximate Bloch
waves.
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Lemma 6.5. Let n = |nj | + 1 < ∞ and let N = |nj+1|. Let u(x) = uI (x) for I =

[−C−1
0 N + 1, C−1

0 N − 1]. Define as before U(x) =
(
e2πiθu(x)
u(x−α)

)
. Then we have the

estimates

A(x) · U(x) = e2πiθU(x + α)+

(
h(x)

0

)
with ‖h‖c ≤ e

−cN , (6.23)

inf
|=z|<cn−C

‖U(x)‖ ≥ cn−C, N ≥ C, (6.24)

‖U‖0 ≤ Cn. (6.25)

Proof. Estimate (6.23) is obtained exactly as (6.15). For (6.24), let 4C0n < m < C−1
0 N

be of the form m = qk − 1, and let J = [−[m/2], m− [m/2]]. Define

UJ (x) =

(
e2πiθuJ (x)

uJ (x − α)

)
.

Theorem 3.2 implies

‖U − UJ ‖c ≤ Ce
−cm. (6.26)

Arguing as in Theorem 6.4 we get

inf
x∈R/Z

‖UJ (x)‖ ≥ cm−C, m ≥ C (6.27)

(the estimate is better since |J | = qk − 1, and because we can use Theorem 6.3 instead
of (6.11)). Obvious bounds on the derivative of UJ then give

∥∥ d
dz
UJ (z)

∥∥
cm−1 ≤ Cm

2,

which together with (6.26) and (6.27) implies

inf
|=z|<cm−C

‖U(z)‖ ≥ cm−C, m ≥ C(1). (6.28)

By Lemma 3.1 and the Diophantine condition, ifm > max{4C0n,C
(1)
} is minimal of

the form m = qk − 1 then m < CnC < C−1
0 N , N ≥ C. Together with (6.28), this gives

(6.24).
Estimate (6.25) is immediate by Theorem 3.2. ut

7. (Complex) almost triangularization: proof of Theorem 3.4

Let U(x) be as in Lemma 6.5. Let B(x) be defined by (6.16). By Lemma 6.5 we get the
bound

‖B‖cn−C ≤ Cn
C . (7.1)
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Here the complex extension of B is the holomorphic one (not the one given by (6.16)).
By the same computation as in (6.18) and using Lemma 6.5 we get the improved estimate

B(x + α)−1A(x)B(x) =

(
e2πiθ 0

0 e−2πiθ

)
+

(
β1(x) b(x)

β3(x) β4(x)

)
(7.2)

where ‖b‖cn−C ≤ Cn
C and ‖β1‖cn−C , ‖β3‖cn−C , ‖β4‖cn−C ≤ Ce

−cN . Thus the Fourier
coefficients of b satisfy the estimate

|b̂k| ≤ Cn
Ce−cn

−C
|k|. (7.3)

Notice that the estimates so far cover the case of the first resonance (n = 1), so we
will assume from now on that n > 1.

In the estimates to follow, we shift one scale back. So take n = 1+ |nj−1|, N = |nj |,
and the remaining notation is clear. Split b(x) = bl(x) + bh(x) where the first term has
the (low frequency) Fourier coefficients with |k| < N and bh is the rest. We solve exactly(

1 −φ(x + α)

0 1

)(
e2πiθ bl(x)

0 e−2πiθ

)(
1 φ(x)

0 1

)
=

(
e2πiθ 0

0 e−2πiθ

)
. (7.4)

This corresponds to solving

bl(x)− e−2πiθφ(x + α)+ e2πiθφ(x) = 0, (7.5)

or in terms of Fourier coefficients,

φ̂k = −b̂k
e−2πiθ

1− e−2πi(2θ−kα) (7.6)

for |k| < N and φ̂k = 0 for |k| ≥ N . By (7.3), and since α ∈ DC(κ, τ ) and |k| < N, we
have ‖φ(x)‖cn−C ≤ CN

C . We conclude that with

8(x) =

(
1 −φ(x)

0 1

)
B(x)−1

we have

8(x + α)A(x)8(x)−1
=

(
e2πiθ 0

0 e−2πiθ

)
+9(x) (7.7)

where

9(x) =

(
1 −φ(x + α)

0 1

)(
β

1
(x) bh(x)

β
3
(x) β

4
(x)

)(
1 φ(x)

0 1

)
(7.8)

and ‖8‖cn−C ≤ CN
C . Since, by (7.3), ‖bh‖cn−C ≤ Cn

Ce−cn
−CN
≤ Ce−cn

−CN , we also

have ‖9‖cn−C ≤ Ce
−cn−CN . It follows that

‖As‖cn−C ≤ CN
C, 0 ≤ s ≤ cecn

−CN . (7.9)
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Back to the original scale, we get, using Lemma 3.1,

‖As‖c(ln n)−C ≤ Cn
C, 0 ≤ s ≤ cecn(ln n)

−C

. (7.10)

Let 1 ≥ n be minimal so that |b̂k| ≤ 1e−1
−1
|k|, k ∈ Z. Let us consider a different

decomposition b = br + bl + bh so that now br has only the (resonant) nj -th Fourier
coefficient, bl has the (low frequency) Fourier coefficients with |k| ≤ 13 (except for nj )
and bh has the (high frequency) Fourier coefficients with |k| > 13. By (7.3), 1 ≤ CnC ,
and the definition of 1 gives

‖bh‖cn−C ≤ Ce
−n. (7.11)

We can solve(
1 −φ(x + α)

0 1

)(
e2πiθ bl(x)

0 e−2πiθ

)(
1 φ(x)

0 1

)
=

(
e2πiθ 0

0 e−2πiθ

)
. (7.12)

As in (7.6) it follows that ‖φ(x)‖cn−C ≤ CnC . We conclude that the matrix 8(x) =( 1 −φ(x)
0 1

)
B(x)−1 satisfies

8(x + α)A(x)8(x)−1
=

(
e2πiθ 0

0 e−2πiθ

)
+

(
0 br(x)+ bh(x)

0 0

)
+9(x) (7.13)

with
‖8‖cn−C ≤ Cn

C and ‖9‖cn−C ≤ Ce
−cN . (7.14)

We now estimate br(x) = b̂nj e
2πinj x . Let

W(x) =

(
e2πiθ br(x)

0 e−2πiθ

)
. (7.15)

We can compute exactly

Ws =

(
e2πisθ bs(x)

0 e−2πisθ

)
(7.16)

with

|bs(x)| =

∣∣∣b̂nj s−1∑
k=0

e−2πik(2θ−njα)
∣∣∣ = ∣∣∣∣b̂nj sinπs(2θ − njα)

sinπ(2θ − njα)

∣∣∣∣ if sinπ(2θ − njα) 6= 0

and |bs(x)| = s|b̂nj | otherwise. Therefore we have

‖Ws‖0 ≥ s|b̂nj |/10, 0 ≤ s ≤ ‖2θ − njα‖−1
R/Z/10. (7.17)

On the other hand, by (7.3),

‖Ws‖0 ≤ 1+ s|b̂nj | ≤ C(1+ s)n
C, s ≥ 0. (7.18)
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Using (7.13), we get A = 8(x + α)−1(W(x)+ Z(x))8(x), so that

‖As‖0 ≥ ‖8‖
−2
0

(
‖Ws‖0 −

s∑
k=1

(
s

k

)
‖Z‖k0 max

0≤j<s
‖Wj‖

1+k
0

)
. (7.19)

By (7.14) and (7.11) we have ‖Z‖0 ≤ Ce−n. Thus, (7.18) and (7.19) imply

‖As‖0 ≥ cn
−C(‖Ws‖0 − Ce

−cn), 0 ≤ s ≤ cecn. (7.20)

By (7.10) and (7.20), ‖Ws‖0 ≤ Cn
C , 0 ≤ s ≤ cecn(ln n)

−C
. Together with Lemma 3.1

and (7.17), we get the estimate

|b̂nj | ≤ Cn
Ce−cn(ln n)

−C

≤ Ce−cn(ln n)
−C

. (7.21)

The result follows from (7.13), (7.14), (7.11) and (7.21). ut

8. (Real) almost conjugacy to rotations: proof of Theorem 3.5

Let U(x) be as in Lemma 6.5. Let B(x) be the matrix with columns U(x) and U(x) on
R/Z. Let L−1

= ‖2θ − njα‖R/Z. As standing hypothesis below, we assume

0 < L−1 < c. (8.1)

Lemma 8.1. For any ε > 0, we have

inf
x∈R/Z

|detB(x)| ≥ cL−C . (8.2)

Proof. Recall that for any 2× 2 complex matrix M with columns V and W,

|detM| = ‖V ‖min
λ∈C
‖W − λV ‖. (8.3)

Notice that the minimizing λ satisfies ‖λV ‖ ≤ ‖W‖.
Minimize over λ ∈ C and x ∈ R/Z the quantity ‖e−πinj xU(x)− λeπinj xU(x)‖. This

gives some λ0 and x0. If the estimate does not hold then, using Lemma 6.5, Theorem 6.3,
(8.3), and Lemma 3.1, we would have

‖e−2πisθe−πinj x0U(x0 + sα)− e
2πisθeπinj x0λ0U(x0 + sα)‖ ≤ L

−1, 0 ≤ s ≤ L.
(8.4)

This implies that ‖e−πinj (x0+sα)U(x0 + sα) − λ0e
πinj (x0+sα)U(x0 + sα)‖ ≤ L−1

+

CsL−1
‖U‖0 ≤ L

−1/3 for 0 ≤ s ≤ L1/3 (recalling (6.25)).
As in the proof of Lemma 6.5, let m > (lnL)2 > 4C0n (here the second inequality

is a consequence of (8.1)) be minimal of the form m = qk − 1, let J = [−[m/2], m −
[m/2]] and let UJ (x) =

(
e2πiθuJ (x)

uJ (x−α)

)
. By Lemma 3.1 and the Diophantine condition,

m < C(lnL)C < C−1
0 N . Theorem 3.2 then gives ‖U − UJ ‖c ≤ L−1. Using Theorems
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6.1 and 6.3, we obtain ‖e−πinj xUJ (x)− eπinj xλ0U
J (x)‖0 ≤ C(lnL)C(L−1/3

+ 2L−1).
Thus

sup
x∈R/Z

‖e−πinj xU(x)− eπinj xλ0U(x)‖ ≤ L
−1/4. (8.5)

Substituting x1 = x0 + sα in (8.4) and taking s = [L/2], we get ‖ie−πinj x1U(x1) +

ieπinj x1λ0U(x1)‖ ≤ L
−1
+ CL−1

‖U‖0, so that, by (8.5) and (6.25), ‖U(x1)‖ ≤ L
−1/5.

However, (6.24) and Lemma 3.1 imply ‖U(x1)‖ ≥ c(lnL)−C , giving a contradiction. ut

Lemma 8.2. Let x0 ∈ R/Z. Then

sup
|=z|<c

|detB(z)− detB(x0)| ≤ Ce
−cN . (8.6)

Proof. By (6.23),

A(x)B(x) =

(
e2πiθ 0

0 e−2πiθ

)
B(x + α)+

(
h(x)

0

)
, ‖h‖c ≤ e

−cN ,

thus |detB(x0 + α) − detB(x0)| ≤ Ce
−cN . This gives |detB(x0 + kα) − detB(x0)| ≤

Ce−cN for 0 ≤ k ≤ 4N . The function x 7→ detB(x0 + kα)− detB(x) is a trigonometric
polynomial of essential degree bounded by 4N . By Theorem 6.1, |detB(x)−detB(x0)| ≤

Ce−cN , x ∈ R/Z. By Theorem 3.2, ‖U(z)‖c ≤ CeCn,14 so z 7→ detB(z)− detB(x0) is
bounded by CeCn over |=z| < c(2). By the Hadamard three-circle theorem,

ln sup
|=z|=δc(2)

|detB(z)− detB(x0)| ≤ (1− δ) ln sup
|=z|=0

+δ ln sup
|=z|=c(2)

≤ −cN, 0 ≤ δ < c.

(8.7)
Thus |detB(z)− detB(x0)| ≤ Ce

−cN for |=z| < c. ut

Theorem 8.3. We have

inf
|=z|<c

|= detB(z)| ≥ cL−C ≥ C/NC . (8.8)

Proof. Notice that < detB(x) = 0 for x ∈ R/Z. The result now follows from (8.2) and
(8.6) (taking into account Lemma 3.1). ut

Remark 8.1. Optimizing the method (and using other estimates obtained in this paper)
gives |detB(z)| ≥ cδL−1−δ for |=z| < c. This will be explored and used in [AJ2].

Take now S = <U , T = =U on R/Z. Then B =
(
S ±T

) ( 1 1
±i ∓i

)
. Let W1 be the

matrix with columns S and ±T , so as to have detW1 > 0. Since(
1 1
±i ∓i

)(
e2πiθ 0

0 e−2πiθ

)(
1 1
±i ∓i

)−1

= R∓θ ,

14 Actually, even a trivial bound like ‖U(z)‖c ≤ CeCN would do here.
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by (6.23) we have

‖A(x) ·W1(x)−W1(x + α) · R∓θ‖ ≤ Ce
−cN , |=x| < c (8.9)

(the complex extension considered here is the holomorphic one). We define W(x) =
|detB(x)/2|−1/2W1(x) on R/Z, so that detW = 1 (by Theorem 8.3, there is no problem
with branching when extending |detB(x)|−1/2 to |=x| < c). Then∥∥∥∥A(x) ·W(x)− |detB(x + α)|1/2

|detB(x)|1/2
W(x + α) · R∓θ

∥∥∥∥ ≤ Ce−cN , |=x| < c. (8.10)

A combination of (8.6) and Theorem 8.3 gives∣∣∣∣ |detB(x + α)|1/2

|detB(x)|1/2
− 1

∣∣∣∣ ≤ Ce−cN , |=x| < c. (8.11)

Also, using Theorems 3.2 and 8.3 we get ‖W‖c ≤ CNCecn. Thus

‖A(x) ·W(x)−W(x + α) · R∓θ‖ ≤ Ce
−cN , |=x| < c. (8.12)

To conclude, we need to show that |degW | ≤ Cn. Set Ũ (x) = eπinj xU(x), and
S̃ = <Ũ , T̃ = =Ũ , W̃1 = (S̃ ±T̃ ), W̃ (x) = |detB(x)/2|1/2W̃1(x) on R/2Z. Then
W̃ (x) = W(x)R∓nj x/2, so deg W̃ − 2 degW = ∓nj , where deg W̃ is the degree of
W̃ : R/2Z → SL(2,R) and degW is understood in the usual sense, as the degree of
W : R/Z→ SL(2,R).

The degree of W̃ : R/2Z→ SL(2,R) is the same as the degree of any of its columns,
considered as maps R/2Z → R2

\ {0}. Thus we need to show that the degree of M :
R/2Z→ R2

\ {0}, for either M = S̃ or M = T̃ , satisfies |degM| ≤ Cn.
Notice that∥∥∥∥∫R/2Z

e−πinj x(S̃(x)+ iT̃ (x)) dx

∥∥∥∥ = ∥∥∥∥∫R/2Z
U(x) dx

∥∥∥∥ ≥ 2, (8.13)

since û0 = 1. Select M(x) = S̃(x) or M(x) = T̃ (x) so that
∫
R/2Z ‖M(x)‖ ≥ 1. Then,

by (6.23), for |=x| < c we have ‖A(x) · Ũ (x) − eπi(2θ−njα)Ũ (x + α)‖0 ≤ Ce−cN . By
Lemma 3.1 and using (6.25) andL−1

≤ e−ε0|n|,we have | ‖A(x)·M(x)‖−‖M(x+α)‖ | ≤
CL−1n ≤ CL−c for x ∈ R/2Z. Using Theorem 6.3, we obtain, arguing as in the proof
of Lemma 6.5,

inf
|=x|<cn−C

‖M(x)‖ ≥ cn−C . (8.14)

This already gives the bound |degM| ≤ CnC by the obvious derivative estimate. To
obtain a linear bound, let M̃(x) be a vector obtained by cutting off the Fourier modes of
M(x) with |k/2| > 1, where 1 is chosen minimal so that ‖M̃(x) −M(x)‖ < ‖M(x)‖,
x ∈ R/2Z. Then by Theorem 3.2 and (8.14),1 < Cn. By Rouché’s Theorem, the degree
ofM is the same as the degree of M̃ . Consider now a coordinate of x 7→ M̃(2x) which is
not identically vanishing. It is a trigonometric polynomial of essential degree at most Cn,
and since it is not identically vanishing, it has at most Cn zeroes in R/Z. It follows that
|deg M̃| (and thus |degM|) is bounded by Cn, and we conclude that |degW | ≤ Cn. ut
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Appendix. The perturbative theory of Eliasson

The following result is due to Hakan Eliasson.

Theorem A.1. Let α ∈ DC(κ, τ ), and let A : R/Z → SL(2,R) be analytic. Assume
that ‖A − A∗‖ε < C−1

0 εr0 where A∗ ∈ SL(2,R), 0 < ε < 1, r0 = r0(τ ) and C0 =

C0(κ, τ, ‖A∗‖). Then

(1) If ρ(α,A) is either Diophantine or rational with respect to α then (α,A) is analyti-
cally reducible.

(2) If (α,A) is not hyperbolic then sup k−1
‖Ak‖0 ≤ C0.

(3) If ρ(α,A) is not rational then lim k−1
‖Ak‖0 = 0.

Actually, what is considered in [E] is the case of continuous time, and for cocycles of
Schrödinger type (he also treats the case of several frequencies). The considerations for
discrete time are similar and are carried out in the thesis of his student Sana Ben Hadj
Amor [Am]. In [E], Eliasson goes on to establish absolutely continuous spectrum for all
phases for the associated Schrödinger operators, while the proof of 1/2-Hölder continuity
of the integrated density of states is the main result of Amor’s thesis.

The KAM scheme of Eliasson has been extended to the C∞ case [AK2]. This gen-
eralization motivated the introduction of the concept of “almost reducibility” in the C∞

case.

A.1. Quick reduction to the perturbative regime

Reduction to the perturbative regime of Eliasson is a much less subtle result than showing
almost reducibility. It can be concluded from almost localization just after §6, since it is
clearly15 implied by the following result.

Theorem A.2. If θ is resonant, there exists arbitrarily small ε > 0, −1 ≤ κ ≤ 1, and
B : R/Z→ PSL(2,R) analytic such that ‖B‖ε ≤ Cε−C and

‖B(x + α)A(x)B(x)−1
− A∗‖ε ≤ Ce

−c/εc , where A∗ =

(
1 κ

0 1

)
.

Proof. The beginning of the proof coincides with a small part of the argument used in
the proof of Theorem 3.5 but we briefly repeat it here for the readers’ convenience. Let
n = |nj | + 1, N = |nj+1|, and I = [−C−1

0 N + 1, C−1
0 N − 1]. Let u = uI , and define

U(x) =
(
e2πiθu(x)
u(x−α)

)
as usual. Let Ũ (x) = eπinj xU(x) and S̃(x) = <Ũ (x), T̃ (x) =

=Ũ (x). Since (8.13) holds, we can choose M = S̃ or M = T̃ so that
∫
R/2Z ‖M(x)‖ ≥ 1.

Notice that by Lemma 6.5 and the definition of resonance,

A(x) ·M(x) = M(x + α)+O(e−cn), |=x| < c. (A.1)

15 Recall that if θ is non-resonant then by Theorems 2.5 and 3.2, (α,A) is conjugate to a constant
cocycle (which is obviously in Eliasson’s perturbative regime).
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Then, arguing as in Lemma 6.5, we have (8.14). Let W be the matrix with columns M
and ‖M‖−2R1/4M . Then by (A.1) and (8.14) we have

W(x + α)−1A(x)W(x) =

(
1 0
0 1

)
+

(
β1(x) β2(x)

β3(x) β4(x)

)
with ‖β1‖cn−C , ‖β3‖cn−C , ‖β4‖cn−C ≤ Ce

−cn and ‖β2‖cn−C ≤ Cn
C . Solve the cohomo-

logical equation φ(x + α)+ β2(x)− φ(x) =
∫ 2

0 β2(x) dx/2 = b, with
∫ 2

0 φ(x) dx = 0.
Then, by writing out the Fourier coefficients and since α ∈ DC we get ‖φ‖cn−C ≤
CnC . Let 8(x) =

( 1 φ(x)
0 1

)
W(x)−1. Then 8(x + α)A8(x)−1

=
(

1 b
0 1

)
+ H where

‖H‖cn−C ≤ Ce−cn. Let d2
= min{|b|−1, 1} and let D =

(
d 0
0 d−1

)
. Then B(x) =

D8(x + α)A(x)8(x)−1D−1 is such that∥∥∥∥B − (1 κ

0 1

)∥∥∥∥
cn−C
≤ Ce−cn, (A.2)

for some −1 ≤ κ ≤ 1. ut
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