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Abstract. For each pair (e, σ ) of integers satisfying 2e + 3σ ≥ 0, σ ≤ −2, and e + σ ≡ 0
(mod 4), with four exceptions, we construct a minimal, simply connected symplectic 4-manifold
with Euler characteristic e and signature σ . We also produce simply connected, minimal symplectic
4-manifolds with signature zero (resp. signature −1) with Euler characteristic 4k (resp. 4k + 1) for
all k ≥ 46 (resp. k ≥ 49).

Keywords. Symplectic topology, Luttinger surgery, fundamental group, 4-manifold

1. Introduction

In [6], a closed, simply connected, minimal symplectic 4-manifold with Euler charac-
teristic 6 and signature −2 is constructed. This manifold contains a symplectic genus 2
surface with trivial normal bundle and simply connected complement and also contains
two Lagrangian tori with special properties. In this article we use this manifold and apply
standard constructions to fill out the part of the symplectic geography plane correspond-
ing to signature less than −1. Recall that Taubes proved ([35, 36, 37], also Li–Liu [21])
that minimal simply connected symplectic 4-manifolds satisfy 2e + 3σ ≥ 0, where e de-
notes the Euler characteristic and σ the signature. Moreover, every symplectic 4-manifold
satisfies e + σ ≡ 0 (mod 4).

Our main result is the following.
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Theorem A. Let σ and e denote integers satisfying 2e+3σ ≥ 0 and e+σ ≡ 0 (mod 4).
If, in addition,

σ ≤ −2,

then there exists a simply connected minimal symplectic 4-manifold with signature σ
and Euler characteristic e and odd intersection form, except possibly for (σ, e) equal to
(−3, 7), (−3, 11), (−5, 13), or (−7, 15).

In terms of c2
1 and χh, we construct symplectic manifolds realizing all pairs of integers

satisfying 0 ≤ c2
1 ≤ 8χh − 2 except (c2

1, χh) = (5, 1), (13, 2), (11, 2), and (9, 2).
Using Freedman’s theorem [13] and Taubes’s results [36, 37] this theorem can be

restated by saying that there exists a minimal symplectic manifold homeomorphic but
not diffeomorphic to mCP2 # nCP2 whenever m + 2 ≤ n ≤ 5m + 4 and m is odd,
except possibly for (m, n) = (1, 4), (3, 6), (3, 8), or (3, 10). The existence of minimal
symplectic 4-manifolds homeomorphic to mCP2 # nCP2 for these four pairs remains an
open problem (as far as we know).

The geography problem refers to the problem of determining which pairs (σ, e) of
integers arise as the signature and Euler characteristic of a 4-manifold in a certain class.
The terminology was borrowed by topologists from algebraic geometers studying alge-
braic surfaces (see e.g. [7]). The motivation in 4-dimensional topology for studying the
geography problem comes from Freedman’s theorem [13] which shows that a simply
connected smooth 4-manifold M (with odd intersection form) is determined up to home-
omorphism by the pair (σ (M), e(M)). The smooth geography problem has a long history:
see [9]. The monograph [17] and the recent survey [12] contain a comprehensive list of
references.

The study of the geography problem for symplectic 4-manifolds has been an area of
active study in recent years. In his seminal paper [15], Gompf constructed simply con-
nected symplectic 4-manifolds filling in a large part of the geography plane, most of which
can be proven to be minimal by more recent techniques. J. Park explored the topic in a
series of articles [26, 27], adressing minimality and uniqueness questions using Seiberg–
Witten invariants. The articles [11, 19, 28, 33] have focused attention on the problem of
constructing small simply connected symplectic manifolds. Recently, the approach intro-
duced in [2] has spurred the discovery of new constructions of small simply connected
symplectic manifolds; see [3, 4, 5, 6, 8, 30].

The methods in this article are based on inductive constructions to produce simply
connected manifolds starting with a few basic non-simply connected models. Although
there are some formal similarities between some of the fundamental group calculations
carried out in this article and those in the articles [2, 3, 4, 5, 6, 8], there is an important
difference, as we now explain.

In those articles, the mechanism used to kill fundamental groups comes down to es-
tablishing precise enough control over certain group presentations to conclude that all
generators die. This is a subtle process which depends critically on properly identifying
words in fundamental groups, since e.g. in a group, a pair of elements x, y might commute
but their conjugates gxg−1, hyh−1 need not.
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By contrast, the mechanism of the present paper is much softer. We use standard
symplectic constructions pioneered by Gompf [15] and Luttinger [22] to kill a generator
outright; subsequent generators are then killed by a simple argument. In particular, al-
though we are explicit and careful in our fundamental group calculations in Theorem 1,
Lemma 16, and elsewhere, the reader will quickly understand that our results follow as
easily if one only knows the statements up to conjugacy.

To illustrate this point, in the statement of Lemma 16, the expressions for µ6, m6, `6
are long, but it is straightforward to see that, up to conjugacy, µ6 = [a1, x2], m6 = y2,
`6 = b−1

1 . This less precise information is quite sufficient to prove the results of this
article.

The construction is also suitable for filling out a large region of the geography plane
starting with any given symplectic 4-manifold with given characteristic numbers and con-
taining a square zero symplectic torus. For example, Theorem 23 roughly says that given
a symplectic 4-manifoldX, one can construct a new symplectic manifold Y with the same
fundamental group as X and satisfying c2

1(Y ) = c
2
1(X)+ c and χh(Y ) = χh(X)+ χ , for

any (c, χ) in the cone 0 ≤ c ≤ 8χ − 2.
Since it is known how to produce manifolds with positive signature ([32]) we apply

this result to a positive signature symplectic 4-manifold and prove the following.

Theorem B. For each integer k ≥ 45, there exists a simply connected minimal symplectic
4-manifold X2k+1,2k+1 with Euler characteristic e = 4k + 4 and signature σ = 0. For
each integer k ≥ 49, there exists a simply connected minimal symplectic 4-manifold
X2k−1,2k with Euler characteristic e = 4k + 1 and signature σ = −1.

All the manifolds we produce have odd intersection forms. Hence there remain four min-
imal simply connected symplectic odd 4-manifolds of signature less than or equal to −2
and 97 minimal simply connected symplectic odd 4-manifolds of non-positive signature
yet to be constructed.

We finish this introduction with a brief description of the proofs. We start with three
models, the minimal symplectic 4-manifolds B,C,D. These manifolds have Euler char-
acteristic 6, 8, and 10 and signatures −2,−4, and −6 respectively. Each contains a dis-
joint pair of homologically independent Lagrangian tori T1 and T2 with nullhomotopic
meridians and whose complement has fundamental group Z⊕Z. Moreover,±1 Luttinger
surgery (see Section 2) along certain curves on one or both of these tori yields a minimal
symplectic 4-manifold.

We then produce a family Bg, g ∈ Z, of minimal symplectic 4-manifolds with Euler
characteristic 6 + 4g and signature −2 by taking a symplectic sum of B with a mini-
mal manifold constructed from Luttinger surgeries on a product of surfaces. This fam-
ily Bg again contains a pair of Lagrangian tori T1, T2 with the same properties as those in
B,C,D.

Taking the symplectic sum of many copies of B,Bg, C,D (and, if needed, the el-
liptic surfaces E(k)) along their tori and performing a +1 Luttinger surgery on each of
the unused Lagrangian tori yields our even signature examples. Showing that the funda-
mental group vanishes is simple since the fundamental groups of B,Bg, C,D and the
homomorphisms induced by the inclusions of the tori are known. Usher’s theorem [38]
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easily implies that the result is minimal. The manifolds B,Bg, C,D contain −1 surfaces
disjoint from the Ti which survive to −1 surfaces in the symplectic sum and hence the
result has an odd intersection form.

Producing odd signature manifolds follows the same general approach, but requires
several small model manifolds with appropriate Lagrangian tori to use as seeds for the
symplectic sums. The construction is not quite as clean as in the even signature case.

We construct a minimal symplectic 4-manifold P5,8 with fundamental group Z, Euler
characteristic 15, and signature−3. This and a few other known small manifolds with odd
signature each contain a Lagrangian or symplectic torus appropriate for taking symplectic
sums with many copies of B,Bg, C, and D. As in the even case, this produces minimal
simply connected 4-manifolds of odd signature less than or equal to −5.

The signature −3 examples are constructed by a separate argument, and a few small
examples not covered by our general construction are culled from the literature (i.e.
(σ, e) = (−7, 11), (−13, 21), (−11, 19), (−5, 9)) or constructed explicitly ((σ, e) =
(−5, 17), (−7, 19), (−9, 21)).

2. Luttinger surgery

Given any Lagrangian torus T in a symplectic 4-manifold M , the Darboux–Weinstein
theorem [23] implies that there is a parameterization of a tubular neighborhood T 2

×D2

→ nbd(T ) ⊂ M such that the image of T 2
× {d} is Lagrangian for all d ∈ D2. Choosing

any point d 6= 0 in D2 gives a push-off Fd : T → T 2
× {d} ⊂ M − T called the

Lagrangian push-off or Lagrangian framing. Given any embedded curve γ ⊂ T , its
image Fd(γ ) is called the Lagrangian push-off of γ .

Any curve isotopic to {t}× ∂D2
⊂ ∂(nbd(T )) will be called a meridian of T and typ-

ically denoted by µT . In this article we will typically fix a pair of embedded curves on T
intersecting transversally in one point and denote the two Lagrangian push-offs by mT
and `T . The triple µT , mT , `T generate H1(∂(nbd(T ))). Since the 3-torus has abelian
fundamental group we may choose a base point t on ∂(nbd(T )) and unambiguously refer
to µT , mT , `T ∈ π1(∂(nbd(T )), t).

The push-offs and meridian are used to specify coordinates for a Luttinger surgery.
This is the process of removing a tubular neighborhood of T in M and regluing it so
that the embedded curve representing µTm

p
T `

q
T bounds a disk for some pair of integers

p, q. The resulting 4-manifold admits a symplectic structure whose symplectic form is
unchanged away from a neighborhood of T ([1, 22]).

When the base point x of M is chosen off the boundary of the tubular neighborhood
of T , the based loops µT , mT , and `T are to be joined to x by the same path in M − T .
These curves then define elements of π1(M − T , x). With p, q as above, the 4-manifold
resulting from Luttinger surgery on M has fundamental group

π1(M − T , x)/N(µTm
p
T `

q
T ),

where N(µTm
p
T `

q
T ) denotes the normal subgroup generated by µTm

p
T `

q
T .

We will only need the cases (p, q) = (±1, 0) or (0,±1) in this article, i.e. ±1 Lut-
tinger surgery along mT or `T .
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3. The fundamental group of the complement of tori in the product of surfaces

Let F be a genus f surface, with f ≥ 2. Choose a base point h on F and pairs xi, yi ,
i = 1, . . . , f , of circles forming a symplectic basis, with xi, yi intersecting at hi ∈ F .
Choose paths αi from h to hi , so that the loops

x̃i = αixiα
−1
i and ỹi = αiyiα

−1
i

generate π1(F, h). Let Yi be a circle parallel to yi which misses αi .
LetG be a genus g surface. Choose a base point k onG, and g pairs a1, b1, . . . , ag, bg

of circles forming a symplectic basis, with ai, bi intersecting at ki . Choose paths βi from
k to ki , so that the loops

ãi = βiaiβ
−1
i and b̃i = βibiβ

−1
i

generate π1(G, k). Choose parallel copies Ai of ai and Bi of bi which miss the paths βi .
In Figure 1 we illustrate the notation when f = 2 and g = 3.

y1

x1

x2

y2

h

Y1

A1

Y2

a1 a2

b1

b2

a3

b3

α1

α2

β1

β2

β3B1

k

Fig. 1. The surface F ×G.

The product F×G contains the union of the two symplectic surfaces F×{k}∪{h}×G
meeting at (h, k). There is an identification π1(F × G, (h, k)) = π1(F, h) × π1(G, k)

which associates the loop x̃i×{k} to (x̃i, 1), ỹi×{k} to (ỹi, 1), {h}×ãi to (1, ãi) and {h}×
b̃i to (1, b̃i). In other words, the homomorphisms induced by the inclusions F × {k} ⊂
F ×G and {h} ×G ⊂ F ×G present π1(F ×G, (h, k)) as the product of π1(F, h) and
π1(G, k).

When there is no chance of confusion we denote the 2f + 2g loops x̃i ×{k}, ỹi ×{k},
{h} × ãi , {h} × b̃i simply by x̃i, ỹi, ãi, b̃i . These are loops in F ×G based at (h, k).

The product F ×G contains 2g Lagrangian tori

Y1 × Aj , Y2 × Bj , j = 1, . . . , g.

These 2g tori are pairwise disjoint and miss (F × {k}) ∪ ({h} ×G).
Let N denote a tubular neighborhood of the union of these 2g tori:

N = nbd
((⋃

j

Y1 × Aj

)
∪

(⋃
j

Y2 × Bj

))
⊂ F ×G.

The loops x̃i, ỹi, ãi, b̃i are loops in F ×G−N based at (h, k).
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Typically, removing a surface from a 4-manifold increases the number of generators
of the fundamental group, but since these tori respect the product structure one can prove
the following theorem.

Theorem 1. The 2f +2g loops x̃1, ỹ1, . . . , x̃f , ỹf , ã1, b̃1, . . . , ãg, b̃g generate π1(F×G

− N, (h, k)). There are paths dj : [0, 1] → F × G − N from (h, k) to the boundary of
the tubular neighborhood of Y1 × Aj and ej : [0, 1] → F × G − N from (h, k) to the
boundary of the tubular neighborhood of Y2 × Bj so that with respect to these paths, the
meridian and two Lagrangian push-offs of Y1 × Aj are homotopic in F × G − N rel
endpoint to

µY1×Aj = [x̃1, b̃j ], mY1×Aj = ỹ1, `Y1×Aj = ãj ,

and the meridian and two Lagrangian push-offs of Y2×Bj are homotopic in F ×G−N
rel endpoint to

µY2×Bj = [x̃2, ãj ], mY2×Bj = ỹ2, `Y2×Bj = b̃j .

Proof. Before we start the proof, we give an indication of how it will proceed. Note that⋃
j (Y1 × Aj ) = Y1 ×

⋃
j Aj lies on Y1 × G and that Y2 ×

⋃
j Bj lies on Y2 × G. Thus

F ×G−N can be constructed by cutting F ×G along the hypersurface (Y1 ∪ Y2)×G,
and then regluing the two copies of Y1 × G only along the complement of a neighbor-
hood of the Aj , and regluing the two copies of Y2 × G only along the complement of a
neighborhood of the Bj . However, in order to use the Seifert–Van Kampen theorem, the
subsets and their intersection in a decomposition are required to be connected, and so we
need to modify the decomposition slightly.

Let P1 be the annulus in F bounded by y1 and Y1. Similarly let P2 denote the annulus
in F bounded by y2 and Y2. Let α denote the arc (α1 ∪ α2) × {k}. Let γ1 denote the
arc (x1 ∩ P1) × {k}; it spans the two circles y1 and Y1. Similarly let γ2 denote the arc
(x2 ∩ P2)× {k}. See Figure 2. Set

S1 = (P1 ×G) ∪ α ∪ (P2 ×G), S2 = (γ1 ∪ γ2) ∪ ((F − int(P1 ∪ P2))×G).

Then in F × G, S1 ∩ S2 is the union of four copies of S1
× G together with three arcs

which connect the four components. In particular, S1, S2 and S1 ∩ S2 are connected and
contain the base point (h, k).

α

P1

γ2

P2

γ1

Fig. 2
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Let GA = G− nbd(
⋃
j Aj ) denote the complement of an open tubular neighborhood

of the Aj in G. Since the Aj do not disconnect G, GA is path connected. Similarly let
GB = G−nbd(

⋃
j Bj ) denote the complement of an open tubular neighborhood of theBj

in G.
To construct F ×G−N we form the identification space

F ×G−N = S1 t S2/∼

by identifying (f, s) ∈ S1 with its corresponding point (f ′, s′) in S2 except if f ∈ Y1 and
s ∈ nbd(Aj ) or f ∈ Y2 and s ∈ nbd(Bj ). In other words, along Y1 ×G we identify only
the two copies of Y1×GA and along Y2×G we identify only the two copies of Y2×GB .

Hence we have exhibited F × G − N as the union of S1 and S2 with connected
intersection

S1 ∩ S2 = (Y1 ×GA) ∪ γ1 ∪ (y1 ×G) ∪ α ∪ (y2 ×G) ∪ γ2 ∪ (Y2 ×GB).

It is easy to see that π1(S1 ∩ S2, (h, k)) → π1(S1, (h, k)) is surjective. Indeed, one
can use the product parameter in the annuli P1 and P2 to define a deformation retraction
(fixing α and hence also (h, k)) of S1 to the subset (y1 ×G) ∪ α ∪ (y2 ×G) of S1 ∩ S2.

The Seifert–Van Kampen theorem applies and implies that there is a surjection

π1(S2, (h, k))→ π1(F ×G−N, (h, k))

induced by inclusion.
We will show that the image of π1(S2, (h, k))→ π1(F ×G−N, (h, k)) is generated

by the loops x̃1, ỹ1, x̃2, ỹ2, . . . , x̃f , ỹf , ã1, b̃1, . . . , ãg, b̃g . Notice that all these loops are
contained in S2.

We find generators for π1(S2, (h, k)). This is again a straightforward application of
the Seifert–Van Kampen theorem, as we will now show.

Since the arcs γi are just segments that lie on x̃i (and the rest of the loops x̃i lie in S2),
we can decompose S2 as

S2 = (x̃1 ∪ x̃2) ∪ ((F − int(P1 ∪ P2))×G).

The intersection of the two pieces in this decomposition is the (contractible) set x̃1∪ x̃2−

(γ1 ∪ γ2).
Hence π1(S2, (h, k)) is generated by x̃1, x̃2 and any set of generators of

π1((F − int(P1 ∪ P2))×G, (h, k)) = π1(F − int(P1 ∪ P2), h)× π1(G, k).

The loops ãi, b̃i generate π1(G, k). The space F − int(P1 ∪ P2) is a 4-punctured genus
f − 2 surface. Its fundamental group is generated by ỹ1, ỹ2, x̃3, ỹ3, . . . , x̃f , ỹf and one
other loop τ based at h which is obtained by traveling from the base point to a point on
the boundary component Y1, following Y1, then returning to the base point.

We have shown that the loops x̃1, ỹ1, x̃2, ỹ2, x̃3, ỹ3, . . . , x̃f , ỹf , ã1, b̃1, . . . , ãg, b̃g ,
and τ × {k} generate π1(S2, (h, k)). Hence, considered as loops in F × G − N , they
generate π1(F × G − N, (h, k)). We need only show that the generator τ × {k} is not
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needed. But this is obvious since x̃1, ỹ1, . . . , x̃f , ỹf and τ × {k} all lie on the surface
F × {k} ⊂ F ×G−N , and x̃1, ỹ1, . . . , x̃f , ỹf generate π1(F × {k}, (h, k)).

We next turn to the problem of expressing the meridians and Lagrangian push-offs of
the generators of the Lagrangian tori Y1×Aj , Y2×Bj in terms of the loops x̃1, ỹ1, . . . , x̃f ,

ỹf , ã1, b̃1, . . . , ãg, b̃g . We do this for Y1 × A1. Symmetric arguments provide the analo-
gous calculations for the rest.

In Figure 1, denote by h1 the intersection of x1 and y1 (i.e. the endpoint of α1), and by
k1 the intersection of a1 and b1. Then the point (h1, k1) lies on the boundary of a tubular
neighborhood of Y1 × A1.

Since we take the product symplectic form on F ×G, referring to Figure 1 one sees
that the loops y1 × {k1} and {h1} × a1 are Lagrangian push-offs of two generators of
π1(Y1 × A1) to the boundary of the tubular neighborhood of Y1 × A1.

There is a map of a square into F ×G−N given by α1 × β1:

α1 × β1 : [0, 1]× [0, 1]→ F ×G−N.

The point (0, 0) is mapped to the base point (h, k) of F ×G − N , and (1, 1) is mapped
to (h1, k1). Thus the diagonal path d(t) = (α1(t), β1(t)) connects the base point to the
boundary of the tubular neighborhood of Y1 × A1.

Conjugating by d expresses the Lagrangian push-offs as based curves in F ×G−N .
So

mY1×A1 = d ∗ (y1 × {k1}) ∗ d
−1 and `Y1×A1 = d ∗ ({h1} × a1) ∗ d

−1.

But mY1×A1 is homotopic rel basepoint in F × G − N to ỹ1. An explicit homotopy is
given by the formula

(s, t) 7→


(α1(3t), β1((1− s)3t)) if 0 ≤ t ≤ 1/3,
(y1(3t − 1), β1(1− s)) if 1/3 ≤ t ≤ 2/3,
(α1(3− 3t), β1((1− s)(3− 3t))) if 2/3 ≤ t ≤ 1.

A similar homotopy, but exchanging the roles of α1 and β1, establishes that `Y1×A1 is
homotopic rel basepoint in F ×G−N to ã1. (These homotopies clearly miss all the other
Y1 × Aj and Y2 × Bj .)

It remains to calculate the meridian of Y1 × A1. For this, consider the map x1 × b1 :
[0, 1]× [0, 1]→ F ×G. This has image a torus intersecting Y1×A1 transversally in one
point (near the point (x1(.9), b1(.9)), as one sees from Figure 1). Since

(h1, k1) = (x1 × b1)(0, 0) = (x1 × b1)(0, 1) = (x1 × b1)(1, 0) = (x1 × b1)(1, 1),

by conjugating the path that follows the boundary of this square by the path d from the
base point (h, k) to (h1, k1), we see that the meridian µY1×A1 is given by the composite

µY1×A1 = d ∗ (x1 × {k1}) ∗ ({h1} × b1) ∗ (x1 × {k1})
−1
∗ ({h1} × b1)

−1
∗ d−1.
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Now d ∗ (x1 × {k1}) ∗ d
−1 is homotopic rel basepoint to x̃1 in F × G − N by the

same argument given above. The key observation is that β1 misses Aj and Bj for all j .
Similarly d ∗ ({h1} × b1) ∗ d

−1 is homotopic rel basepoint to b̃1 in F ×G−N . Thus

µY1×A1 ∼ x̃1 ∗ b̃1 ∗ x̃
−1
1 ∗ b̃

−1
1 = [x̃1, b̃1].

Similar calculations establish all other assertions. ut

4. Telescoping triples and symplectic sums

Our construction of symplectic 4-manifolds which fill large regions in the geography
plane is based on using telescoping symplectic sums along symplectic tori as well as
Luttinger surgeries. The basic models in our constructions have a convenient property
preserved under appropriate symplectic sum, and so we formalize the property in the
following definition.

Definition 2. An ordered triple (X, T1, T2) where X is a symplectic 4-manifold and
T1, T2 are disjointly embedded Lagrangian tori is called a telescoping triple if

(1) The tori T1, T2 span a 2-dimensional subspace of H2(X;R).
(2) π1(X) ∼= Z2 and the inclusion induces an isomorphism π1(X− (T1 ∪ T2))→ π1(X)

(in particular the meridians of the Ti are trivial in π1(X − (T1 ∪ T2))).
(3) The image of the homomorphism induced by inclusion π1(T1) → π1(X) is a sum-

mand Z ⊂ π1(X).
(4) The homomorphism induced by inclusion π1(T2)→ π1(X) is an isomorphism.

If X is minimal we call (X, T1, T2) a minimal telescoping triple.

Note that the order of (T1, T2) matters in this definition. Notice also that since the merid-
ians µT1 , µT2 ∈ π1(X − (T1 ∪ T2)) are trivial and the relevant fundamental groups are
abelian, the push-off of an oriented loop γ ⊂ Ti into X − (T1 ∪ T2) with respect to any
framing of the normal bundle of Ti (e.g. the Lagrangian framing) represents a well defined
element of π1(X − (T1 ∪ T2)), independent of the choice of framing (and basing).

The definition of a telescoping triple includes the hypothesis that the Lagrangian tori
T1 and T2 are linearly independent in H2(X;R). This implies ([15]) that the symplectic
form on X can be slightly perturbed so that one of the Ti remains Lagrangian while the
other becomes symplectic. It can also be perturbed so that both become symplectic. More-
over, if F is a symplectic surface in X disjoint from T1 and T2, the perturbed symplectic
form can be chosen so that F remains symplectic.

Recall that the symplectic sum ([15]) of two symplectic 4-manifolds X and X′ along
genus g symplectic surfaces F ⊂ X and F ′ ⊂ X of opposite self-intersection is a sym-
plectic 4-manifold described topologically as the union

X #F,F ′ X′ = (X − nbd(F )) ∪ (X′ − nbd(F ′))

where the boundaries of the tubular neighborhoods are identified by a fiber-preserving
diffeomorphism of the corresponding circle bundles. When the surfaces are clear from
context we write X #s X′.
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Proposition 3. Let (X, T1, T2) and (X′, T ′1, T
′

2) be two telescoping triples. Then for an
appropriate gluing map the triple

(X #T2,T
′

1
X′, T1, T

′

2)

is again a telescoping triple. The Euler characteristic and signature of X #T2,T
′

1
X′ are

given by e(X)+ e(X′) and σ(X)+ σ(X′).

Proof. Let ij : π1(Tj ) → π1(X) be the homomorphisms induced by inclusion for j =
1, 2. Choose x1, y1 ∈ π1(T1) so that x1 spans the kernel of i1 and i1(y1) spans the image
of i1. Denote i1(y1) by t and choose s ∈ π1(X) so that s, t forms a basis of π1(X). Then
choose generators x2, y2 for π1(T2) so that i2(x2) = s and i2(y2) = t . Thus the inclusions
induce

x1 7→ 1, y1 7→ t, x2 7→ s, y2 7→ t.

Similarly, construct generators x′1, y
′

1 for π1(T
′

1), x
′

2, y
′

2 for π1(T
′

2) and s′, t ′ for π1(X
′).

The inclusion induces an isomorphism π1(X−(T1∪T2))→ π1(X) and the boundary
of the tubular neighborhood of T1 (resp. T2) is a 3-torus whose fundamental group is
spanned by x1, y1, µT1 (resp. x2, y2, µT2 ) (for definiteness use the Lagrangian framing to
push the xi, yi into the boundary of the tubular neighborhood). Similar assertions hold for
(X′, T ′1, T

′

2). The symplectic sum of X and X′ along the surfaces T2 ⊂ X and T ′1 ⊂ X
′

can be formed so that the ordered triple (x2, y2, µ2) is sent to (x′1, y
′

1, µ
′

1) by the gluing
diffeomorphism (perhaps after a change of orientation on some of the loops to ensure that
the gluing diffeomorphism is orientation preserving).

The Seifert–Van Kampen theorem and the fact that all meridians are trivial imply that

π1(X #T2,T
′

1
X′) = 〈s, t, s′, t ′ | [s, t], [s′, t ′], s, t (t ′)−1

〉 = Zs′ ⊕ Zt ′.

The inclusion T1 ⊂ X#T2,T
′

1
X′ induces x1 7→ 1, y1 7→ t ′. The inclusion T ′2 ⊂ X#T2,T

′

1
X′

induces x′2 7→ s′, y′2 7→ t ′. Hence (X #T2,T
′

1
X′, T1, T

′

2) is indeed a telescoping triple.
The assertions about the Euler characteristic and signature are clear. ut

Since the meridians of the Lagrangian tori are trivial in a telescoping triple, one im-
mediately deduces the following.

Proposition 4. Let (X, T1, T2) be a telescoping triple. Let `T1 be a Lagrangian push-off
of a curve on T1 and mT2 the Lagrangian push-off of a curve on T2 so that `T1 and mT2

generate π1(X). Then the symplectic 4-manifold obtained by performing +1 Luttinger
surgery on T1 along `T1 and +1 surgery on T2 along mT2 is simply connected. ut

We will make frequent use of the following two results. The first is a criterion given by
Usher [38] to determine when a symplectic sum is minimal. The second is a useful result
of T.-J. Li which we will use to verify that the hypotheses in Usher’s theorem hold in
certain contexts.

Theorem 5 (Usher). Let Z = X1 #F1,F2 X2 denote the symplectic sum of X1 and X2
along symplectic surfaces Fi of positive genus g. Then:
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(i) If either X1−F1 or X2−F2 contains an embedded symplectic sphere of square−1,
then Z is not minimal.

(ii) If one of the summands Xi (for definiteness, say X1) admits the structure of an S2-
bundle over a surface of genus g such that F1 is a section of this fiber bundle, then
Z is minimal if and only if X2 is minimal.

(iii) In all other cases, Z is minimal.

Corollary 3 of T.-J. Li’s article [20] provides a useful method to eliminate the first two
cases of Usher’s theorem in some contexts.

Theorem 6 (Li). Let M be a symplectic 4-manifold which is neither rational nor ruled.
Then every smoothly embedded −1 sphere is homologous to a symplectic −1 curve up to
sign. IfM is the blowup of a minimal symplectic 4-manifold with E1, . . . , En represented
by exceptional curves, then the Ei are the only classes represented by a smoothly embed-
ded −1 sphere, hence any orientation preserving diffeomorphism maps Ei to some ±Ej .

5. The model even signature manifolds

We will set up an inductive argument by constructing telescoping symplectic sums start-
ing with several basic telescoping triples. Proposition 4 then applies to produce simply
connected 4-manifolds.

To begin with, in [6, Theorem 20], a minimal telescoping triple (B, T1, T2) is con-
structed (B is denoted B1 in that article) so that B contains a genus 2 surface F with
trivial normal bundle, and a geometrically dual symplectic −1 torus H1. The tori T1, T2
miss F ∪ H1. Moreover, (B − F, T1, T2) is also a telescoping triple. These facts follow
immediately from the following theorem, which summarizes the assertions established
in [6].

Theorem 7. There exists a minimal symplectic 4-manifold B containing a pair of ho-
mologically essential Lagrangian tori T1 and T2 and a square zero symplectic genus 2
surface F so that T1, T2, and F are pairwise disjoint, e(B) = 6 and σ(B) = −2, and:

(1) π1(B − (F ∪ T1 ∪ T2)) = Z2, generated by t1 and t2.
(2) The inclusion B−(F ∪T1∪T2) ⊂ B induces an isomorphism on fundamental groups.

In particular, the meridians µF , µT1 , µT2 all vanish in π1(B − (F ∪ T1 ∪ T2)).
(3) The Lagrangian push-offs mT1 , `T1 of π1(T1) are sent to 1 and t2 respectively in the

fundamental group of B − (F ∪ T1 ∪ T2).
(4) The Lagrangian push-offs mT2 , `T2 of π1(T2) are sent to t1 and t2 respectively in the

fundamental group of B − (F ∪ T1 ∪ T2).
(5) The push-off F ⊂ B − (F ∪ T1 ∪ T2) takes the first three generators of a standard

symplectic generating set {a1, b1, a2, b2} for π1(F ) to 1 and the last element to t2.
(6) There exists a symplectic torus H1 ⊂ B which intersects F transversally once, which

has square −1, and the homomorphism π1(H1) → π1(B) takes the first generator
to 1 and the second to t1. Moreover,H1 is disjoint from T1 and T2 (see [6, Proposition
12, Theorem 20]). ut
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The following is a restatement of [6, Theorem 13]. We state it formally since we will
have frequent need of it.

Corollary 8. The symplectic 4-manifold X1,3 obtained from B by +1 Luttinger surgery
on T1 along `T1 and +1 Luttinger surgery on T2 along mT2 is a minimal symplectic
4-manifold homeomorphic to CP2 # 3CP2. It contains a genus 2 symplectic surface of
square zero with simply connected complement and a symplectic torus H1 of square −1
intersecting F transversally and positively in one point. ut

Corollary 9. For each g ≥ 0 there exists a minimal telescoping triple (Bg, T1, T2) satis-
fying e(Bg) = 6+ 4g and σ(Bg) = −2 and containing a square −1 genus g+ 1 surface
disjoint from T1 ∪ T2.

Proof. To avoid confusing notation, during this proof we denote the symplectic genus 2
surface in B of Theorem 7 by FB .

Take the product F×G of a genus 2 surface F and a genus g surfaceG, as in Section 3.
Let Zg denote the 4-manifold obtained from F ×G by performing−1 Luttinger surgeries
on the 2g disjoint Lagrangian tori Y1×Ai and Y2×Bi along the curves `Y1×Ai = ãi and
`Y2×Bi = b̃i . Then by Theorem 1 the fundamental group of Zg is generated by loops
x̃1, ỹ1, x̃2, ỹ2, ã1, b̃1, . . . , ãg, b̃g and the relations

[x̃1, b̃i] = ãi, [x̃2, ãi] = b̃i

hold in π1(Zg). Moreover, the standard symplectic generators for π1(F ) are sent to
x̃1, ỹ1, x̃2, ỹ2 in π1(Zg).

Since the meridian µFB of FB ⊂ B is trivial, the symplectic sum of B with Zg along
their genus 2 symplectic surfaces FB ⊂ B and F = F × {k} ⊂ F ×G,

Bg = B #FB ,F Zg,

has fundamental group a quotient of (Zt1⊕Zt2)∗π1(Zg). We choose this symplectic sum
so that the generators a1, b1, a2, b2 for π1(FB) are identified (in order) with the generators
x̃1, ỹ1, x̃2, ỹ2.

The fifth assertion of Theorem 7 shows that x̃1, ỹ1, and x̃2 are trivial in π1(Bg).
The relations coming from the Luttinger surgeries then show that ãi = 1 = b̃i . Since
b2 = ỹ2 is identified with t2, π1(Bg) is generated by t1 and t2. A calculation using the
Mayer–Vietoris sequence shows that H1(Bg) = Z2, and so π1(Bg) = Zt1 ⊕ Zt2. Hence
(Bg, T1, T2) is a telescoping triple, as desired.

The Euler characteristic of Bg is calculated as

e(Bg) = e(B)+ e(F ×G)+ 4 = 6+ 4g − 4+ 4 = 6+ 4g,

and the signature is computed by Novikov additivity: σ(Bg) = σ(B) = −2.
The torus H1 in B geometrically dual to FB can be lined up with one of the parallel

copies {z}×G in F ×G (i.e. take a relative symplectic sum, [15]) to produce a square−1
genus g + 1 surface in Bg .

Minimality follows from [6, Lemma 2], which shows that Zg is minimal (its universal
cover is contractible, so π2(Zg) = 0), and from Usher’s theorem (Theorem 5). ut
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We can also produce telescoping triples with odd signature starting with B. Recall that a
symplectic 4-manifold X containing a symplectic surface F is called relatively minimal
if every −1 sphere in X intersects F .

Lemma 10. The blowup A = B # CP2 contains a genus 3 symplectic surface F3 with
trivial normal bundle and two Lagrangian tori T1 and T2 so that the surfaces F3, T1, T2
are pairwise disjoint, (A, F3) is relatively minimal, and:

(1) π1(A− (F3 ∪ T1 ∪ T2)) = Z2, generated by t1 and t2.
(2) The inclusionA−(F3∪T1∪T2) ⊂ A induces an isomorphism on fundamental groups.

In particular, the meridians µF3 , µT1 , µT2 all vanish in π1(A− (F3 ∪ T1 ∪ T2)).
(3) The Lagrangian push-offs mT1 , `T1 of π1(T1) are sent to 1 and t2 respectively in the

fundamental group of A− (F3 ∪ T1 ∪ T2).
(4) The Lagrangian push-offs mT2 , `T2 of π1(T2) are sent to t1 and t2 respectively in the

fundamental group of A− (F3 ∪ T1 ∪ T2).
(5) There is a standard symplectic generating set {a1, b1, a2, b2, a3, b3} for π1(F3) so

that the push-off F3 ⊂ A − (F3 ∪ T1 ∪ T1) takes b2 to t2, b3 to t1, and all other
generators to 1.

In particular, (A, T1, T2) is a telescoping triple.

Proof. The 4-manifoldB of Theorem 7 contains a symplectic genus 2 surface F of square
zero and a geometrically dual symplectic torus H1 of square −1. Symplectically resolve
the union F ∪ H1 to get F ′3, a genus 3 symplectic surface in B which misses T1 and T2.
The surface F ′3 has square (F +H2)

2
= 1. Blow up B at one point on F ′3 to construct A

and denote the proper transform of F ′3 by F3.
Since F3 has a geometrically dual 2-sphere (the exceptional sphere), the meridian

of F3 in A − F3 ⊂ F3 is nullhomotopic. The rest of the fundamental group assertions
follow from Theorem 7.

Although A is not minimal, T.-J. Li’s theorem (Theorem 6) implies that every −1
sphere in A intersects F3, since B is minimal, and neither rational nor ruled. ut

Note that Luttinger surgery on T1 and T2 in A produces a symplectic 4-manifold homeo-
morphic to CP2 #4CP2, but this manifold is not minimal; it is just the blowupX1,3 #CP2.
We do not know how to produce a minimal symplectic 4-manifold with this homeomor-
phism type.

We next produce a 4-manifold C with e = 8 and σ = −4 by stopping the construction
of a minimal symplectic 4-manifold homeomorphic to CP2 # 5CP2 in the proof of [6,
Theorem 10] before the last two Luttinger surgeries to obtain the following.

Theorem 11. There exists a minimal telescoping triple (C, T1, T2) with e(C) = 8 and
σ(C) = −4. Moreover, C contains a square −1 torus disjoint from T1 ∪ T2.

Proof. We follow the notation and proof of [6, Theorem 10]. By not performing the Lut-
tinger surgeries on the tori T3 and T4, one obtains a minimal symplectic 4-manifoldC such
that π1(C−(T3∪T4)) is generated by the two commuting elements y and a2. The Mayer–
Vietoris sequence shows that H1(C − (T3 ∪ T4);Z) = Z2, and so π1(C − (T1 ∪ T2)) =
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Zy ⊕ Za2. The meridians and Lagrangian push-offs of T3 and T4 are given by µT3 = 1,
mT3 = 1, `T3 = a2 and µT4 = 1, mT4 = y, `T4 = a2. Thus (C, T3, T4) is a telescoping
triple. We relabel T3 as T1 and T4 as T2.

The−1 torus comes about from the construction. Briefly, C is obtained by performing
Luttinger surgeries on the symplectic sum (T 2

× F2) #s ((T 2
× S2) # 4CP2) along the

genus 2 surface {x} × F2 in T 2
× F2 and the genus 2 surface F ′2 ⊂ (T

2
× S2) # 4CP2

obtained by resolving the singularities of (T 2
× {p1}) ∪ ({q} × S

2) ∪ (T 2
× {p2}) and

blowing up four times at points on this genus 2 surface. One can choose a square zero
torus of the form T 2

× {y} ⊂ T 2
× F2 which matches up (i.e. take a relative symplectic

sum) with one of the four exceptional curves to provide a −1 symplectic torus disjoint
from the Lagrangian tori where the Luttinger surgeries are performed. ut

The symplectic 4-manifold X1,5 obtained from C by +1 Luttinger surgeries on T1
and T2 as in Proposition 4 is minimal and homeomorphic to CP2 # 5CP2.

Our next small model is a minimal telescoping triple built in the process of construct-
ing a minimal symplectic 4-manifold homeomorphic to CP2 # 7CP2 in [6, Theorem 8].
One stops the construction before performing the two Luttinger surgeries, and these un-
used tori provide the desired T1 and T2.

Theorem 12. There exists a minimal telescoping triple (D, T1, T2) with e(D) = 10 and
σ(D) = −6. Moreover, D contains a square −1 torus disjoint from T1 ∪ T2. ut

Proof. The proof is similar to that of Theorem 11. We follow the notation and proof
of [6, Theorem 8]. The 4-manifold S contains two Lagrangian tori T1, T2 such that
π1(S−(T1∪T2)) is generated by the two commuting elements s1, t1. The Mayer–Vietoris
sequence computes H1(S − (T1 ∪ T2)) = Z2 so that π1(S − (T1 ∪ T2)) = Zs1 ⊕ Zt1.

The meridians and Lagrangian push-offs of T1 and T2 are given byµT1 = 1,mT1 = s1,
`T1 = s

−1
1 and µT2 = 1, mT2 = t1, `T2 = s1. Thus (S, T1, T2) is a telescoping triple. It

is shown to be minimal in the proof of [6, Theorem 8]. The existence of a square −1
torus follows exactly as in the proof of Theorem 11, since the manifold S is obtained by
Luttinger surgeries on the symplectic sum of (T 2

× T 2) # 2CP2 and (T 2
× S2) # 4CP2

along a genus 2 surface. Relabel S as D. ut

The symplectic 4-manifoldX1,7 obtained fromD by+1 Luttinger surgeries on T1 and T2
as in Proposition 4 is minimal and homeomorphic to CP2 # 7CP2 ([6]). More generally,
the following proposition is true.

Proposition 13. LetX be one of the manifoldsB,Bg, C,D and T1, T2 the corresponding
Lagrangian tori as described in Theorems 7, 11, 12, with Lagrangian push-offs mTi and
`Ti (and trivial meridians). Then the symplectic 4-manifolds obtained from ±1 Luttinger
surgery on one or both of T1, T2 along mTi or `Ti are all minimal. ut

We omit the proof, which is based on Usher’s theorem and a repeated use of [6,
Lemma 2]. The reader may look at the proofs of Theorems 8, 10, and 13 of [6].

Since our emphasis in this article is on 4-manifolds with odd intersection forms, we
recall the following result [14, Theorem VII.3.2 for minimality].
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Theorem 14. The symplectic manifold E′(k) = E(k)2,3 obtained from the elliptic sur-
face E(k) by performing two log transforms of order 2 and 3 is simply connected and
minimal. It has Euler characteristic e(E′(k)) = 12k, signature σ(E′(k)) = −8k, and an
odd intersection form. ut

6. Minimal symplectic 4-manifolds with σ = −3 and e ≥ 15

The most complicated examples we construct are simply connected minimal symplectic
4-manifolds with signature −3. Putting these in the context of telescoping triples is more
trouble than constructing them directly. Moreover, with the exception of the σ = −3
manifolds, our inductive scheme for filling out the entire geography for σ ≤ −2 only
requires at most one copy of the manifold A of Lemma 10. Hence in this section we
prove the following theorem.

Theorem 15. For each integer k ≥ 2, there exists a simply connected minimal symplectic
4-manifold X1+2k,4+2k with e(X1+2k,4+2k) = 7+ 4k and σ(X1+2k,4+2k) = −3.

The construction of 4-manifolds with signature −3 for e = 7 + 8g is easier than for
e = 11 + 8g. Roughly speaking, to produce a 4-manifold with e = 7 + 8g, we take
the symplectic sum along a genus 3 surface of the 4-manifold A of Lemma 10 with
F ×G, where F is a genus 3 surface and G is a genus g surface, and perform Luttinger
surgeries on the Lagrangian tori inG. To produce a 4-manifold with e = 11+8g requires
producing a substitute A′ for A which has signature −3 and e = 11, and which satisfies
the conclusions of Lemma 10. To do this, we take the symplectic sum of A with the
product F ×G of two genus 2 surfaces along a symplectic torus.

Lemma 16. There exists a minimal symplectic 4-manifold Z with e(Z) = 4 and
σ(Z) = 0 which contains eight homologically essential Lagrangian tori S1, . . . , S8 (in
fact each Si has a geometrically dual torus Sdi so that all other intersections are zero)
so that π1(Z −

⋃
i Si) is generated by x1, y1, x2, y2 and a1, b1, a2, b2, and so that the

meridians and Lagrangian push-offs are given by

• S1 : µ1 = [b−1
1 , y−1

1 ], m1 = x1, `1 = a1,
• S2 : µ2 = [x−1

1 , b1], m2 = y1, `2 = b1a1b
−1
1 ,

• S3 : µ3 = [b−1
2 , y−1

1 ], m3 = x1, `3 = a2,
• S4 : µ4 = [x−1

1 , b2], m4 = y1, `4 = b2a2b
−1
2 ,

• S5 : µ5 = [b1a
−1
1 b−1

1 , y−1
2 ], m5 = x2, `5 = b

−1
1 ,

• S6 : µ6 = [x−1
2 , b1a1b

−1
1 ], m6 = y2, `6 = b1a1b

−1
1 a−1

1 b−1
1 ,

• S7 : µ7 = [b2a
−1
2 b−1

2 , y−1
2 ], m7 = x2, `7 = b

−1
2 ,

• S8 : µ8 = [x−1
2 , b2a2b

−1
2 ], m8 = y2, `8 = b2a2b

−1
2 a−1

2 b−1
2 .

Proof. Proposition 7 of [6] (see also the construction of the manifold P in [5]) computes
the fundamental group of the complement of four Lagrangian tori S1, S2, S3, S4 in the
product F1×G of a punctured torus F1 with a genus 2 surfaceG. This group is generated
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by loops x1, y1, a1, b1, a2, b2 (called x̃, ỹ, ã1, b̃1, ã2, b̃2 there) where a1, b1, a2, b2 are a
standard generating set for π1(G), and x1, y1 are a standard generating set for π1(F1)

based at a point h on the boundary. In particular, the copy {h} × G in the boundary of
F1 ×G is carries the loops a1, b1, a2, b2.

We take two copies of this manifold, calling the second F2×G, its tori S5, S6, S7, S8,
and its generators x2, y2, a

′

1, b
′

1, a
′

2, b
′

2. Glue the two copies together using a diffeomor-
phism of their boundary of the form Id × φ : ∂F2 ×G→ ∂F1 ×G, where φ : G→ G

is the basepoint preserving diffeomorphism inducing the map

(a′1, b
′

1, a
′

2, b
′

2) 7→ (b−1
1 , b1a1b

−1
1 , b−1

2 , b2a2b
−1
2 )

(a composite of six Dehn twists: see [6, Lemma 9]).
The resulting manifold Z can also be described as the symplectic sum of two copies

of a product of a genus 1 and a genus 2 surface. Thus the result is symplectic and the
8 tori are Lagrangian. The tori S1, S2, S3, S4 in F1 × G have geometrically dual tori
Sd1 , S

d
2 , S

d
3 , S

d
4 which form a direct sum (geometrically) of four hyperbolic pairs, and

similarly for S5, S6, S7, S8. Clearly e(Z) = 4 and σ(Z) = 0. Applying the Seifert–
Van Kampen theorem to the formulae of Proposition 7 of [6] yields the fundamental
group assertions. Since the diffeomorphism Id × φ : ∂F2 × G → ∂F1 × G extends to
F2×G→ F1×G, the manifoldZ is just the product of two genus 2 surfaces. In particular
Z is minimal. ut

Let Y be the symplectic 4-manifold obtained from the manifold Z of Lemma 16 by
performing the following seven Luttinger surgeries on S1, . . . , S7:

(1) S1 : +1 surgery along m1.
(2) S2 : +1 surgery along `2.
(3) S3 : +1 surgery along `3.
(4) S4 : +1 surgery along m4.
(5) S5 : +1 surgery along `5.
(6) S6 : +1 surgery along m6.
(7) S7 : +1 surgery along m7.

Since the torus S8 has not been surgered, it remains as a Lagrangian torus in Y . Since
S8 is homologically essential, the symplectic form can be perturbed so that S8 becomes
symplectic. The symplectic 4-manifold Y is minimal, since it is a symplectic sum of
manifolds with contractible universal cover (see [6, Lemma 2]).

Let (B, T1, T2) be the telescoping triple of Theorem 7, with B containing the genus 2
symplectic surface F and geometrically dual −1 torus H1. Perform +1 Luttinger surgery
on T2 along mT2 to kill t1, yielding a minimal (Proposition 13) symplectic 4-manifold B̂.
Note that B̂ still contains the three surfaces T1, F,H1 and π1(B̂ − (T1 ∪F ∪H1)) = Zt2.
The torus T1 is disjoint from the geometrically dual symplectic surfaces F and H1, and
its Lagrangian push-offs are mT1 = 1 and `T1 = t2 by Theorem 7.

Lemma 17. The symplectic sum X3,5 = B̂ #T1,S8 Y is simply connected, minimal, and
contains a symplectic genus 2 surface of square 0 and a geometrically dual symplectic
torus of square −1. Moreover, e(X3,5) = 10 and σ(X3,5) = −2, so that X3,5 is homeo-
morphic but not diffeomorphic to 3CP2 # 5CP2.
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Proof. We refer to the notation in the statement of Theorem 7. The fundamental group
of X3,5 − F is generated by t2, x1, y1, x2, y2, a1, b1, a2, b2 by the Seifert–Van Kampen
theorem (recall that t1 is killed by Luttinger surgery on T2).

Since the meridian of T1 in π1(B−(F∪T1∪T2)) is trivial,µ8 is trivial in π1(X3,5−F).
Choose the gluing map S8 → T1 so that `8 is killed and m8 is sent to t2 (i.e. m8 7→

`T1 , `8 7→ m−1
T1

).

Since `8 is a conjugate of b−1
2 and m8 = y2, it follows that b2 = 1 and y2 = t2. This

implies that µ3 and µ4 are trivial, and hence the third and fourth Luttinger surgeries listed
above show that a2 = 1 and y1 = 1. Thus µ1 and µ7 are killed. The first and seventh
Luttinger surgeries now show that x1 = 1 and x2 = 1. Continuing, we see that µ2 and
µ6 are killed so that the corresponding surgeries give a1 = 1 and y2 = 1. This implies
µ5 = 1 and so b1 = 1. Hence π1(X3,5) = 1.

The minimality of X3,5 follows from Usher’s theorem. The genus 2 surface F and
torus H1 in B survive to give the required surfaces in X3,5. ut

Proof of Theorem 15. We define two minimal simply connected symplectic 4-manifolds:
let X− = X3,5 and let X+ = X1,3 (thus X+ is obtained from the manifold B̂ defined
above by performing +1 Luttinger surgery on T1 along `T1 ; see Corollary 8). Then X−
and X+ each contain a symplectic genus 3 surface F3 of square 1 obtained by resolving
the union H1 ∪F . Moreover, e(X−) = 10, σ(X−) = −2, e(X+) = 6, and σ(X+) = −2.

Blow up X± once at a point on F3 and take the proper transform. Call the result X̃±
and denote by F̃3 the proper transform of F3. Thus F̃3 is a genus 3, square zero symplectic
surface with simply connected complement, which meets every −1 sphere in X̃± since
X± is minimal.

We now mimic the proof of Corollary 9. Take the product F3 × G of a genus 3 sur-
face with a genus g surface. Perform Luttinger surgeries on the 2g disjoint Lagrangian
tori Y1 × Aj and Y2 × Bj along the curves `Y1×Aj = aj and `Y2×Bj = bj to obtain a
manifold Zg .

Then by Theorem 1 the fundamental group of Zg is generated by the 6 + 2g loops
x̃1, ỹ1, x̃2, ỹ2, x̃3, ỹ3, ã1, b̃1, . . . , ãg, b̃g , and the relations

[x̃1, b̃j ] = ãj , [x̃2, ãj ] = b̃j , j = 1, . . . , g,

hold in π1(Zg). Moreover, the standard symplectic generators for π1(F ) are sent to x̃1,

ỹ1, x̃2, ỹ2, x̃3, ỹ3 in π1(Zg).
Since π1(X̃± − F̃3) = 1, the fundamental group of the symplectic sum

Q±,g = X̃± #
F̃3,F

Zg

is trivial. Indeed, the x̃i, ỹi are killed by taking the symplectic sum, and the relations
coming from the Luttinger surgeries show the ãj and b̃j are killed also.

Now Q±,g is minimal provided g ≥ 1 by Usher’s theorem since X̃± is relatively
minimal by Li’s theorem (Theorem 6).
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One computes:

e(Q−,g) = e(X̃−)+ e(Zg)+ 8 = 11+ 8g − 8+ 8 = 11+ 8g,

σ (Q−,g) = σ(X̃−)+ σ(Zg) = −3,

and

e(Q+,g) = e(X̃+)+ e(Zg)+ 8 = 7+ 8g − 8+ 8 = 7+ 8g,

σ (Q+,g) = σ(X̃+)+ σ(Zg) = −3.

Thus we set X1+2k,4+2k = Q+,k/2 if k is even and X1+2k,4+2k = Q−,(k−1)/2 if k is odd.
This completes the proof of Theorem 15. ut

Remark 1. In the construction of the manifoldX5,8, the first step (see the paragraph pre-
ceding Lemma 17) involves Luttinger surgery on the torus T2 to kill t1. If one constructs
the manifold P5,8 following the same construction as for X5,8 without performing this
surgery, then P5,8 is a minimal symplectic 4-manifold with π1(P5,8) = Zt1 containing an
essential Lagrangian (or if desired symplectic) torus T = T2 such that the inclusion map
π1(T ) → π1(P5,8) is a surjection and the inclusion map π1(P5,8 − T ) → π1(P5,8) an
isomorphism. Moreover, e(P5,8) = 15 and σ(P5,8) = −3.

More generally, for any k ≥ 2 the same construction yields a minimal symplectic 4-
manfold P1+2k,4+2k containing a Lagrangian or symplectic torus T with these properties
and such that e(P1+2k,4+2k) = 7+ 4k, σ(P1+2k,4+2k) = −3.

7. Small examples with odd signature

In this section, we remind the reader of some known examples of small manifolds with
odd signature, and construct a few new ones.

Kotschick showed in [19] that the Barlow surface is smoothly irreducible and hence it
is a minimal symplectic 4-manifold homeomorphic to CP2 #8CP2. This manifold realizes
the pair e = 11, σ = −7.

In [15], Gompf constructs small minimal symplectic 4-manifolds which contain ap-
propriate tori. For example, the manifold Gompf calls S1,1 is minimal, has e = 23 and
σ = −15, and contains a symplectic torus of square zero with simply connected comple-
ment ([15, Lemma 5.5]). The minimality of S1,1 was proved by Stipsicz [31].

Gompf also constructs other minimal symplectic 4-manifolds: the manifold R2,1 has
e = 21 and σ = −13 and R2,2 has e = 19 and σ = −11. The minimality of R2,1 was
proved by J. Park [27], and R2,2 was proved to be minimal by Szabó [34].

In [33], Stipsicz and Szabó construct a minimal symplectic 4-manifold homeomorphic
to CP2 # 6CP2, realizing e = 9, σ = −5.

In [25], the fifth author constructs a minimal simply connected symplectic 4-manifold
homeomorphic to 3CP2#12CP2, hence with e = 17 and σ = −9, containing a symplectic
torus T2,4 with simply connected complement. This manifold is called X12 in that article;
we will use the notation X3,12 here to avoid confusion.

We produce a few more small examples.
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Proposition 18. There exists a minimal simply connected symplectic 4-manifold X5,10
homeomorphic to 5CP2 # 10CP2, hence with e = 17 and σ = −5.

Proof. The manifold X1,3 of Corollary 8 contains a symplectic genus 2 surface F of
square zero, and a geometrically dual symplectic torusH1 with square−1. Symplectically
resolve F ∪H1 to produce a square 1 symplectic genus 3 surface F3 ⊂ X1,3.

Blow up X1,3 at a point on F3 to obtain X̃1,3 and take F̃3 to be the proper transform
of F3. Then F̃3 is a square zero symplectic surface that meets every −1 sphere in X̃1,3 by
Li’s theorem (Theorem 6). Moreover, since X1,3 is simply connected and F̃3 meets the
exceptional sphere, X̃1,3 − F̃3 is simply connected.

Take Y = T × F2, the product of a torus with a genus 2 surface. Then Y contains
the geometrically dual symplectic surfaces T × {p} and {q} ×F2. Symplectically resolve
their union to obtain a genus 3, square 2 symplectic surface F ′3 ⊂ Y . Note that the homo-
morphism induced by inclusion π1(F

′

3)→ π1(Y ) is surjective. Blow up Y twice at points
on F ′3 to obtain Ỹ and the proper transform F̃ ′3, a square zero genus 3 symplectic surface.
Then the symplectic sum

X5,10 = X̃1,3 #
F̃3,F̃

′

3
Ỹ

is simply connected. It is minimal by Usher’s theorem.
Its characteristic numbers are

e(X5,10) = e(X̃1,3)+ e(Ỹ )+ 8 = 7+ 2+ 8 = 17,

σ (X5,10) = σ(X̃1,3)+ σ(Ỹ ) = −3− 2 = −5.

The proposition follows. ut

Proposition 19. There exists a minimal simply connected symplectic 4-manifold X5,12
homeomorphic to 5CP2 # 12CP2, hence with e = 19 and σ = −7.

Proof. The proof is very similar to the proof of Proposition 18. Construct X̃1,3 and F̃3 as
in that proof.

Take Z = T × T , the product of two tori. Pick three distinct points p1, p2, q in T .
Then Z contains the three symplectic surfaces T ×{p1}, T ×{p2} and {q}×T . Symplec-
tically resolve their union to obtain a genus 3, square 4 symplectic surface F ′3 ⊂ Z. Note
that the homomorphism induced by inclusion π1(F

′

3)→ π1(Z) is surjective. Blow up Z
four times at points on F ′3 to obtain Z̃ and the proper transform F̃ ′3, a square zero genus 3
symplectic surface.

Then the symplectic sum

X5,12 = X̃1,3 #
F̃3,F̃

′

3
Z̃

is simply connected. It is minimal by Usher’s theorem.
Its characteristic numbers are

e(X5,12) = e(X̃1,3)+ e(Z̃)+ 8 = 7+ 4+ 8 = 19,

σ (X5,12) = σ(X̃1,3)+ σ(Z̃) = −3− 4 = −7.

The proposition follows. ut
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Proposition 20. There exists a minimal simply connected symplectic 4-manifold X5,14
homeomorphic to 5CP2 # 14CP2, hence with e = 21 and σ = −9.

Proof. The proof is very similar to the proof of Proposition 19. Construct X̃1,3 and F̃3 as
in that proof.

Take Z = T × S2, the product of a torus and a sphere. Pick three distinct points
p1, p2, p3 in S2 and q ∈ T . Then Z contains the four symplectic surfaces T × {p1},
T × {p2}, T × {p3} and {q} × S2. Symplectically resolve their union to obtain a genus 3,
square 6 symplectic surface F ′3 ⊂ Z. Note that the homomorphism induced by inclusion
π1(F

′

3) → π1(Z) is surjective. Blow up Z six times at points on F ′3 to obtain Z̃ and the
proper transform F̃ ′3, a square zero genus 3 symplectic surface.

Then the symplectic sum

X5,14 = X̃1,3 #
F̃3,F̃

′

3
Z̃

is simply connected. It is minimal by Usher’s theorem.
Its characteristic classes are

e(X5,14) = e(X̃1,3)+ e(Z̃)+ 8 = 7+ 6+ 8 = 21,

σ (X5,14) = σ(X̃1,3)+ σ(Z̃) = −3− 6 = −9.

The proposition follows. ut

8. The main theorem

In this section we prove Theorem A stated in the introduction. We begin with an arith-
metic lemma. The purpose of this lemma is to calculate the number of each of the model
manifolds B,Bg, C,D,E(k) needed to construct a 4-manifold with specified signature
and Euler characterstic. The proof includes an algorithm for finding these numbers.

Lemma 21. Given any pair of non-negative integers (m, n) such that

0 ≤ m ≤ 4n− 1

there exist non-negative integers b, c, d , g, and k such that

m = d + 2c + 3b + 4g and n = b + c + d + g + k

and such that b ≥ 1 if g > 0.

Proof. If m = 0, set k = n and b = c = d = g = 0.
Assume then that m > 0. Choose a non-negative integer ` so that (m+ 1)/4 ≤ n− `

≤ m. Let

s = max{z ∈ Z | 3z ≤ 4n− 4`−m− 1} and 1 = 4n− 4`−m− 1− 3s.

Then 1 = 0, 1 or 2, and s ≥ 0. Moreover,

n− `− s − 1 = 1
3 (m− (n− `))−

2
3 +

1
3 ≥

1
3 −

2
3 .
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If1 = 0, then set b = 1, c = 0, d = s, g = n− `− s− 1, and k = `. Since1 = 0,
and since g is an integer, g ≥ 0.

If 1 = 1 and s ≥ 1, then set b = 1, c = 0, d = s − 1, g = n − ` − s − 1, and
k = `+ 1. Note that g ≥ −1/3 so that g ≥ 0.

If 1 = 1 and s = 0, then either n − ` − 2 ≥ 0 in which case we set b = 2, c =
0, d = 0, k = `, and g = n − ` − 2, or else n − ` − 2 = −1 in which case we take
b = 0, c = 1, d = 0, k = `, and g = 0.

If1 = 2 and s ≥ 2, set b = 1, c = 0, d = s− 2, g = n− `− s− 1, and k = `+ 2.
If 1 = 2, s = 1, and n − ` ≥ 3 then set b = 2, c = 0, d = 0, g = n − ` − 3,

and k = ` + 1. If 1 = 2, s = 1, and n − ` < 3, then necessarily n − ` = 2, and so
(m, n) = (2, `+ 2) and we set b = 0, c = 1, d = 0, k = `+ 1, and g = 0.

This leaves the cases when 1 = 2 and s = 0. If n − ` ≥ 2, set b = 1, c = 1, d =
0, g = n− `− 2, and k = `. Finally, if n− ` = 1, then (m, n) = (1, 1+ `), so we take
b = 0, c = 0, d = 1, g = 0 and k = `. ut

We can now prove our main result. We state it in terms of c2
1 = 2e + 3σ and χh =

1
4 (e + σ) because it is simpler to work with these numbers than with pairs (e, σ ) where
e + σ ≡ 0 (mod 4). Note that in this notation, a 4-manifold with c2

1 = 8χh + k has
signature k, so the line c2

1 = 8χh − 2 corresponds to manifolds with signature −2.

Theorem 22. For any pair (c, χ) of non-negative integers satisfying

0 ≤ c ≤ 8χ − 2

with the possible exceptions of (c, χ) = (5, 1), (9, 2), (11, 2), or (13, 2), there exists a
minimal simply connected symplectic 4-manifold Y = X2χ−1,10χ−c−1 with odd intersec-
tion form and

c = c2
1(Y ) and χ = χh(Y ).

Hence Y is homeomorphic but not diffeomorphic to (2χ − 1)CP2 # (10χ − c − 1)CP2.

Proof. We make extensive use of the manifolds A,B,Bg, C,D,E′(k) of (respectively)
Lemma 10, Theorem 7, Corollary 9, Theorem 11, Theorem 12, and Theorem 14. We will
also use the sporadic examples of Section 7.

We first realize all pairs with c even. Let (m, n) = ( 1
2c, χ). Lemma 21 produces

integers b, c, d, g, and k such that m = d + 2c+ 3b+ 4g and n = b+ c+ d + g+ k and
with b ≥ 1 if g > 0.

Construct the symplectic sum along tori of

(1) b copies of B if g = 0, or one copy of Bg and b − 1 copies of B if g ≥ 1,
(2) c copies of C,
(3) d copies of D.

More precisely, each of the manifolds B,C,D contains two essential Lagrangian tori.
Construct the symplectic sum Z of these manifolds by chaining them together, using
Proposition 3 to ensure that at each stage one has a telescoping triple.
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Specifically, if g = 0 take

Z = B #s · · · #s B︸ ︷︷ ︸
b

#s C #s · · · #s C︸ ︷︷ ︸
c

#s D #s · · · #s D︸ ︷︷ ︸
d

and if g ≥ 1 take

Z = Bg #s B #s · · · #s B︸ ︷︷ ︸
b−1

#s C #s · · · #s C︸ ︷︷ ︸
c

#s D #s · · · #s D︸ ︷︷ ︸
d

where #s denotes the symplectic sum along the appropriate tori (perturbing the symplectic
forms so that they become symplectic) according to the recipe of Proposition 3, so that the
two unused Lagrangian tori (which we relabel T1 and T2) make (Z, T1, T2) a telescoping
triple.

If k = 0, then perform+1 Luttinger surgery on T1 and T2 to obtain a simply connected
(according to Proposition 4) symplectic 4-manifold Y .

If k ≥ 1 and one of b, c, d is positive, perform +1 Luttinger surgery on T2 in Z and
take the symplectic sum of the result with the elliptic surface E(k) along T1 and a generic
fiber T of E(k) to obtain the manifold Y . Since E(k) − T is simply connected, so is Y ,
by the same reasoning as in the proof of Theorem 15. Since B, C, and D contain −1 tori
disjoint from the Lagrangian tori T1, T2, the manifold Y has odd intersection form.

If k ≥ 1 and b, c, d are zero, take Y = E′(k) (see Theorem 14), which has an odd
intersection form.

Thus Y is a simply connected symplectic manifold realizing the pair (c, χ). Since
each of the manifolds B,Bg, C, andD contains a surface of odd square which misses the
tori used in forming the symplectic sums, and since E′(k) has an odd intersection form,
it follows that Y has an odd intersection form.

Since the 4-manifold Y has indefinite, odd intersection form, Freedman’s theorem
[13] implies that Y is homeomorphic to an appropriate connected sum of CP2s and CP2s.

Now we turn to the case when c is odd. Suppose first that 1 ≤ c ≤ 8χ − 17. Let
(c′, χ ′) = (c − 1, χ − 2). Thus 0 ≤ c′ ≤ 8χ ′ − 2, and c′ is even. Construct the manifold
Z corresponding to the pair (c′, χ ′) and either perform+1 Luttinger surgery on T1 or take
the symplectic sum with E(k) if k ≥ 1. But rather than performing +1 Luttinger surgery
on T2 as we did above, perturb the symplectic form to make T2 symplectic, and then
take the symplectic sum with Gompf’s manifold S1,1 (see Section 7) along the symplectic
torus in S1,1 with simply connected complement. Since S1,1 has c2

1 = 1 and χh = 2 the
resulting symplectic manifold Y has (c2

1, χh) = (c, χ).
Next suppose that c is odd and 7 ≤ c ≤ 8χ − 11. Set (c′, χ ′) = (c− 7, χ − 2). Thus

0 ≤ c′ ≤ 8χ ′ − 2 and c′ is even. Construct the manifold Z corresponding to the pair
(c′, χ ′). We repeat the argument of the previous paragraph, replacing Gompf’s manifold
S1,1 with the manifoldX3,12 of Section 7. Take the symplectic sum of Z withX3,12 along
T2 and T2,4. Since c2

1(X3,12) = 7 and χh(X3,12) = 2, the resulting manifold Y realizes
the pair (c, χ).

To realize all pairs (c, χ) with c odd and 21 ≤ c ≤ 8χ − 5, repeat the argument once
more, this time using the manifold P5,8 described in Remark 1 at the end of the proof of
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Theorem 15, which has c2
1 = 21 and χh = 3. A bit of care must be taken to ensure that the

result is simply connected since π1(P5,8) = Z. This is accomplished by making sure that
the generator of π1(T ) sent to the generator of π1(P5,8− T ) is identified with an element
in the kernel of π1(T2)→ π1(Z − T2) when forming the symplectic sum Y = Z #s P5,8.

The manifold Y = X1+2k,4+2k of Theorem 15 provides an example realizing the pair
(c, χ) = (5+ 8k, 1+ k) for any k ≥ 2, i.e. 21 ≤ c = 8χ − 3.

Since c2
1 ≡ σ (mod 2), and simply connected 4-manifolds with odd signature have

an odd intersection form, it follows that the manifolds constructed for c odd also have an
odd intersection form.

It remains to show that Y is minimal. Since E′(k) is minimal, we assume that c2
1 > 0.

By Proposition 13, the 4-manifold obtained by performing one or two ±1 Luttinger surg-
eries on T1 or T2 along `Ti or mTi in B,C, or D is minimal. The E(k) are minimal for
k ≥ 2. Although E(1) is not minimal, every −1 sphere intersects the generic torus fiber.
Thus Y is the symplectic sum of minimal (or, if k = 1, relatively minimal) symplectic
4-manifolds and therefore is minimal by Usher’s theorem.

It is easy to check that the only pairs (c, χ) with 0 ≤ c ≤ 8χ − 2 which are omitted
by these cases are

(1, 1), (3, 1), (5, 1),

(1, 2), (3, 2), (5, 2), (7, 2), (9, 2), (11, 2), (13, 2),

(15, 3), (17, 3), (19, 3).

The examples listed in Section 7 realize most of these pairs. The only ones left unre-
alized are (5, 1), (9, 2), (11, 2), and (13, 2). ut

The four unrealized pairs do correspond to (non-minimal) symplectic 4-manifolds; e.g.
blowups of X1,3 or X3,5. It is conjectured that one of the irreducible smooth 4-manifolds
homeomorphic to 3CP2 # 10CP2 constructed in [25] and one of the irreducible smooth 4-
manifolds homeomorphic to 3CP2 # 8CP2 constructed in [29] are symplectic (and hence
minimal): their Seiberg–Witten invariants have the right form to be the invariants of a
minimal symplectic manifold.

There exist small simply connected minimal symplectic 4-manifolds with non-nega-
tive signatures (e.g. CP2, S2

× S2). To date, no small examples are known that contain a
suitable Lagrangian torus for which we can extend the construction of Theorem 22. Some
moderately large examples are known and we will briefly explore the consequences for
the geography problem in the next section.

Remark 2. Each of the manifolds constructed in Theorem 22, with the possible excep-
tion of those corresponding c2

1 = 0 and some of the small manifolds with c odd, contains a
nullhomologous torus suitable for altering the differentiable structure as explained in [8],
using [24] to compute the change in Seiberg–Witten invariants. Those with c2

1 = 0 are
E′(k), for which the methods of [9, 10, 16] show how to alter the differentiable structure.
Hence the manifolds of Theorem 22 admit infinitely many smooth structures.
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The proofs of Lemma 21 and Theorem 22 provide an algorithm for constructing sim-
ply connected minimal 4-manifolds with desired characteristic numbers, using the model
manifolds A, B, Bg , C, D, and E(k).

For example, to construct a minimal symplectic manifold homeomorphic but not dif-
feomorphic to 3CP2 #17CP2, one sees that such a manifold would have (c2

1, χh) = (2, 2).
This corresponds to (m, n) = (1, 2) in Lemma 21. In the notation of the proof of Lemma
21, we see that in this case ` = 1, s = 0 and1 = 2, so that b = 0, c = 0, d = 1, g = 0,
and k = 1. Thus the desired manifold is obtained by taking the symplectic sum

D #s E′(1)

and performing +1 Luttinger surgery on the remaining Lagrangian torus in D.
As another example, we construct a minimal symplectic manifold homeomorphic but

not diffeomorphic to 21CP2 # 31CP2, i.e. χh = 11 and c2
1 = 78. Thus (m, n) = (39, 11).

The proof of Lemma 21 provides ` = 0, s = 1, and 1 = 1, and so b = 1, c = 0, d =
0, g = 9, and k = 1. Thus the desired manifold is obtained by taking the symplectic sum

B9 #s E(1)

and performing +1 Luttinger surgery on the remaining Lagrangian torus.
The integers produced by the algorithm in the proof of Lemma 21 are not unique. For

example, the choice b = 2, c = 0, d = 1, g = 8, and k = 0 yields a manifold

B8 #s B #s D.

Performing two +1 Luttinger surgeries on this manifold produces a (possibly different)
minimal symplectic manifold homeomorphic to but not diffeomorphic to 21CP2 #31CP2.

9. Signature greater than −2

Finding small minimal symplectic 4-manifolds with signature greater than −2 poses a
special challenge. Stipsicz [32] shows how to produce simply connected minimal sym-
plectic 4-manifolds with positive signature. The following theorem provides a method for
producing many examples, given one. It is also useful in studying the geography problem
for non-simply connected 4-manifolds.

To avoid an overly technical statement and proof, we separate the cases of c odd
and even, but a more complete statement would have similar hypotheses on (c, χ) as in
Theorem 22.

Theorem 23. LetX be a symplectic 4-manifold and suppose thatX contains a symplectic
torus T such that the homomorphism π1(T ) → π1(X) induced by inclusion is trivial.
Then, for any pair (c, χ) of non-negative integers satisfying

0 ≤ c ≤ 8χ − 2 if c is even,

1 ≤ c ≤ 8χ − 17 if c is odd,
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there exists a symplectic 4-manifold Y with π1(Y ) = π1(X),

c2
1(Y ) = c

2
1(X)+ c and χh(Y ) = χh(X)+ χ.

Moreover, if X is minimal (or more generally if (X, T ) is relatively minimal) then the
manifold Y is minimal and has an odd, indefinite intersection form.

Proof. The argument is similar to the proof of Theorem 22, save for the last step. Consider
first the case c even. Let (Z, T1, T2) be the telescoping triple corresponding to (c, χ) as
in the first part of the proof of Theorem 22. If k = 0, then do +1 Luttinger surgery on T1
to get a minimal (by Proposition 13 and Usher’s theorem) manifold Z1 with π1(Z1) ∼= Z
containing a symplectic torus T2 (after perturbing the symplectic structure) so that the
induced map π1(T2)→ π1(Z1) is a split surjection. If k ≥ 1, then take a fiber sum of Z
with E(k) to again get a manifold Z1 with π1(Z1) ∼= Z containing a symplectic torus T2
so that the induced map π1(T2)→ π1(Z1) is a surjection.

Next consider the case of c odd. Following the proof of Theorem 22, let (c′, χ ′) =
(c − 1, χ − 2) and construct the telescoping triple (Z, T1, T2) corresponding to the pair
(c′, χ ′). If k = 0, form the symplectic sum of Z along T1 with S1,1 and perturb the sym-
plectic form so that T2 is symplectic. If k ≥ 1, form the symplectic sum ofZ along T1 with
E(k) along an elliptic fiber, then form a further symplectic sum along a different elliptic
fiber of E(k) with S1,1. Then perturb the symplectic form so that T2 becomes symplectic.
In either case, this results in a minimal symplectic manifold Z1 with π1(Z1) ∼= Z con-
taining a symplectic torus T2 so that the induced map π1(T2) → π1(Z1) is a surjection
and (c2

1, χh) = (c, χ).
Since the meridian of T2 is nullhomotopic in Z1, the symplectic sum, Y , of Z1 and

X has fundamental group isomorphic to that of X, since the homomorphism π1(T ) →

π1(X) is trivial. Minimality follows as in the proof of Theorem 22 using Usher’s theorem.
Since c2

1 and χh are both additive with respect to symplectic sums along tori, the result
follows. ut

Before we can prove Theorem B stated in the introduction, we will require one more
useful fact about B and X1,3 not mentioned in Theorem 7 or Corollary 8, namely, the
existence of a genus 2 square zero symplectic surface G geometrically dual to F . We
indicate how to find G: X1,3 is obtained by Luttinger surgeries on eight Lagrangian tori
in the symplectic sum of the twice blown up 4-torus (T 2

× T 2) # 2CP2 and the product
T × F2 of a torus and a genus 2 surface.

This symplectic sum is taken along the genus 2 surface in (T 2
×T 2) # 2CP2 obtained

by resolving (T 2
× {p})∪ ({q} × T 2) and blowing up twice (for definiteness at points on

T 2
× {p}). In T × F2 one takes the surface {x} × F2.
The square −1 torus H1 of Theorem 7 and Corollary 8 was obtained by taking the

torus of the form T × {z} which matches up with one of the exceptional spheres in the
symplectic sum. To find the surface G, take another nearby torus of the form T × {z′} in
T ×F2 and match it up with a torus of the form {q ′}×T 2. This is the required surfaceG.
(The surface F is a parallel copy of {x} × F2.)



158 Anar Akhmedov et al.

Proof of Theorem B. Start with the telescoping triple (B, T1, T2) of Theorem 7. It con-
tains a genus 2 square zero symplectic surface F and a geometrically dual square zero
symplectic genus 2 surface G. The union F ∪G is disjoint from T1 ∪ T2.

Perform +1 Luttinger surgery on T1 along `T1 to kill t2. Call the result R. Perturb the
symplectic form on R slightly so that T2 becomes symplectic. Note that π1(R − T2) =

π1(R) = Zt1, π1(T2)→ π1(R) is surjective, and R is minimal (Proposition 13).
In [6, Theorem 18], a minimal symplectic 4-manifold X̃3,5 homeomorphic to 3CP2 #

5CP2 and containing a pair of symplectic tori T3, T4 with simply connected complement
is constructed. The symplectic sum Q = R #T2,T3 X̃3,5 is minimal by Usher’s theorem.
Moreover, Q is simply connected, since T2 ⊂ R induces a surjection on fundamental
groups. The surfaces F and G persist as square zero, symplectic, geometrically dual sur-
faces. Since e(Q) = 16 and σ(Q) = −4, Q is neither rational nor ruled. Notice that the
symplectic torus T4 in Q has simply connected complement.

In Q, take eight parallel copies of the genus 2 surface F and one copy of G and
symplectically resolve to obtain a genus 18 surface 6 ⊂ Q of square 16. Blow up Q 16
times, yielding a genus 18 square zero surface 6̃ ⊂ Q̃ = Q # 16CP2. By Li’s theorem,
every −1 sphere in Q̃ intersects 6̃. Moreover, π1(Q̃− 6̃) = 1.

In [32, Lemma 2.1], a Lefschetz fibration H → K over a surface K of genus 2 is
constructed which has e = 75 and σ = 25. This fibration admits a symplectic section
of square −1 and has fiber genus 16. The 4-manifold H is an algebraic surface, and by
the Bogomolov–Miyaoka–Yau inequality [7] is holomorphically minimal. By [18], it is
also symplectically minimal. Moreover, H is neither rational nor ruled since it lies on the
BMY line.

Let 6′ ⊂ H denote the symplectic surface obtained by symplectically resolving the
union of a fiber and a section. Then 6′ has square 1, and the exact sequence of funda-
mental groups for a Lefschetz fibration shows that π1(6

′)→ π1(H) is surjective. Blow
up H once along 6′ and take the proper transform to obtain a square zero, genus 18
surface 6̃′ ⊂ H̃ = H # CP2 so that π1(H̃ − 6̃

′) → π1(H̃ ) is an isomorphism and
π1(6̃

′) → π1(H̃ ) is surjective. By Li’s theorem (Theorem 6), every −1 sphere in H̃
intersects 6̃′, since H is neither rational nor ruled.

Hence the symplectic sum S = Q̃ #6̃,6̃′ H̃ is minimal. It is simply connected since
π1(Q̃ − 6̃) = 1 and π1(6̃

′) → π1(H̃ ) is surjective. Moreover, the symplectic torus
T4 ⊂ S has simply connected complement.

Since S is the symplectic sum along genus 18 surfaces,

e(S) = e(Q̃)+ e(H̃ )+ 4(18− 1) = 176,

σ (S) = σ(Q̃)+ σ(H̃ ) = 24− 20 = 4.

Thus c2
1(S) = 364 and χh(S) = 45. It contains the symplectic torus T4 with simply

connected complement. Hence Theorem 23 establishes the existence of minimal, simply
connected symplectic 4-manifolds

X89+2χ,85+10χ−c
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with c2
1 = 364+ c and χh = 45+ χ for any (c, χ) satisfying 0 ≤ c ≤ 8χ − 2 when c is

even.
Taking c = 8χ − 4 for any χ ≥ 1 yields X89+2χ,89+2χ , a minimal simply connected

symplectic 4-manifold with signature zero. The intersection form is odd since, as one
can check from Lemma 21, either χ = 1 in which case the model manifold C (with its
−1 torus) is used in the construction of X91,91, or else χ > 1, in which case the model
manifold B (with its −1 torus) is used in the construction of X89+2χ,89+2χ .

To get minimal symplectic 4-manifolds with signature −1, consider the symplectic
sum

Y = B #T1,T P1+2k,4+2k

of the manifold B of Theorem 7 with the manifold P1+2k,4+2k of Remark 1 (at the end
of Section 6) along T1 in B and T in P1+2k,4+2k . Since π1(T ) → π1(P1+2k,4+2k) = Z
is surjective, π1(P1+2k,4+2k − T )→ π1(P1+2k,4+2k) is an isomorphism, and π1(T1)→

π1(B) has image a cyclic summand, the gluing map for the symplectic sum can be cho-
sen so that B − nbd(T1) ⊂ Y induces an isomorphism on fundamental groups. Hence
π1(T2)→ π1(Y ) is an isomorphism.

The symplectic sum
X93+2k,94+2k = Y #T2,T4 S

is a simply connected minimal symplectic 4-manifold with e = 189 + 4k and σ = −1,
for any k ≥ 2. ut

Since any symplectic signature zero 4-manifold has e a multiple of 4, there remain 45
signature zero minimal symplectic 4-manifolds with odd intersection form to be con-
structed. Also missing are 48 signature −1 minimal symplectic 4-manifolds. Hence to
complete the geography problem for minimal simply connected symplectic 4-manifolds
of non-positive signature and odd intersection form, there remain 97 manifolds to dis-
cover.
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