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Antonio Cañada · Salvador Villegas

Lyapunov inequalities for Neumann
boundary conditions at higher eigenvalues

Received December 21, 2007

Abstract. This paper is devoted to the study of Lyapunov-type inequalities for Neumann boundary
conditions at higher eigenvalues. Our main result is derived from a detailed analysis of the number
and distribution of zeros of nontrivial solutions and their first derivatives, together with the use
of suitable minimization problems. This method of proof yields new information on Lyapunov
constants. For instance, we prove that as in the classical result by Lyapunov, the best constant
is not attained. Additionally, we exploit the relation between Neumann boundary conditions and
disfocality to provide new nonresonance conditions at higher eigenvalues.
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1. Introduction

The classical L1 Lyapunov inequality for the Neumann boundary problem

u′′(x)+ a(x)u(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0 (1.1)

states that if

a ∈ L1(0, L) \ {0},
∫ L

0
a(x) dx ≥ 0, (1.2)

is such that (1.1) has nontrivial solutions, then
∫ L

0 a+(x) dx > 4/L, where a+(x) =
max{a(x), 0} ([5], [13]). In [1] and [14] the authors generalize this result by providing, for
each p with 1 ≤ p ≤ ∞, optimal necessary conditions for the boundary value problem
(1.1) to have nontrivial solutions, given in terms of the Lp norm of the function a+. In
particular, if p = ∞, it is proved that (1.1) has only the trivial solution if the function a
satisfies

a ∈ L∞(0, L) \ {0},
∫ L

0
a ≥ 0, a+ ≺ π2/L2, (1.3)

where for c, d ∈ L1(0, L), we write c ≺ d if c(x) ≤ d(x) for a.e. x ∈ [0, L] and
c(x) < d(x) on a set of positive measure. This is a very well known result which is usually
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called the nonuniform nonresonance condition with respect to the first two eigenvalues
λ0 = 0 and λ1 = π

2/L2 of the eigenvalue problem

u′′(x)+ λu(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0 (1.4)

(see [8], [9] and [11]). From this point of view, it may be stated that the nonuniform
nonresonance condition (1.3) is in fact the L∞ Lyapunov inequality at the first two eigen-
values λ0 and λ1.

On the other hand, the set of eigenvalues of (1.4) is given by λn = n2π2/L2, n ∈
N ∪ {0}, and by using a general result due to Dolph [4], it can be proved that if for some
n ≥ 1 the function a satisfies

λn ≺ a ≺ λn+1 (1.5)

then (1.1) has only the trivial solution (see [10, Lemma 2.1] for some generalizations of
(1.5) to more general boundary value problems). It is clear that condition (1.5) cannot be
obtained from the Lp Lyapunov inequalities given in [1] and [14].

The previous observations motivate this article where, for any given natural number
n ≥ 1 and function a satisfying λn ≺ a,we obtain the L1 Lyapunov inequality (the
case of Lp with 1 < p < ∞ has some special features and will be considered in a
forthcoming paper). In particular, we prove that, as in the classical Lyapunov inequality,
the best constant is not attained for any value of n. To the best of our knowledge this result
is new if n ≥ 1. In the L∞ case, the Lyapunov inequality is exactly (1.5) and in this sense,
it is natural to say that this paper deals with Lyapunov inequalities at higher eigenvalues.

One of the main results of our paper is given by Lemma 2.2 below where we discuss in
detail the number and distribution of zeros of u and u′, where u is any nontrivial solution
of the linear boundary value problem (1.1).

In the second section we study the L1 Lyapunov inequality when λn ≺ a. The case
where a satisfies A ≤ a(x) ≤ B a.e. in (0, L), where λk < A < λk+1 ≤ B for some
k ∈ N ∪ {0}, has been considered in [6]. In that paper the authors use optimal control
theory methods, specially Pontryagin’s maximum principle.

In the last section we use the natural relation between Neumann boundary conditions
and disfocality, given by Lemma 2.2, to obtain new results on the existence and unique-
ness of solutions for linear resonant problems with Neumann boundary conditions. We
use L1 and L∞ Lyapunov constants. For example, by using Lemma 2.2 and the L∞ Lya-
punov inequality, we can prove (Theorem 3.1) that if a ∈ L∞(0, L), λn ≺ a and there
exists 0 = y0 < y1 < · · · < y2n+1 < y2n+2 = L such that

max
0≤i≤2n+1

{(yi+1 − yi)
2
‖a‖L∞(yi ,yi+1)} ≤ π

2/4 (1.6)

and, in addition, a is not the constant π2/4(yi+1 − yi)
2 at least in one of the intervals

[yi, yi+1], 0 ≤ i ≤ 2n+ 1, then (1.1) has only the trivial solution (this kind of functions
a are usually named 2(n+ 1)-step potentials).

The above hypothesis is optimal in the sense that if a is the constant π2/4(yi+1−yi)
2

in each of the intervals (yi, yi+1), 0 ≤ i ≤ 2n + 1, then (1.1) has nontrivial solutions
(see Remark 7 in Section 3). If yi = iL/2(n+ 1), 0 ≤ i ≤ 2n+ 2, we have the so called
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nonuniform nonresonance conditions at higher eigenvalues ([4], [10]) but if for instance
yj+1−yj < L/2(n+ 1) for some j, 0 ≤ j ≤ 2n+1, then a can satisfy ‖a‖L∞(yj ,yj+1) =

π2/4(yj+1 − yj )
2 (which is a quantity greater than λn+1 = (n+ 1)2π2/L2) as long as a

satisfies (1.6) for each i 6= j.
Additionally, as has been done in [1], [2], [3] and [6], the linear study can be combined

with the Schauder fixed point theorem to provide new conditions for the existence and
uniqueness of solutions for resonant nonlinear problems (Theorem 3.3). Also, we may
deal with other boundary value problems. Finally, one can expect that some results hold
true in the case of the Neumann boundary value problem for partial differential equations

1u(x)+ a(x)u(x) = 0, x ∈ �,
∂u(x)

∂n
= 0, x ∈ ∂�, (1.7)

where � is a bounded and regular domain in RN , but here the role played by the dimen-
sion N may be important (see [2]).

2. Lyapunov inequality at higher eigenvalues

If n ∈ N is fixed, we introduce the set

3n = {a ∈ L
1(0, L) : λn ≺ a and (1.1) has nontrivial solutions } (2.1)

Here u ∈ H 1(0, L), the usual Sobolev space. If we define

β1,n ≡ inf
a∈3n
‖a − λn‖L1(0,L), (2.2)

the main result of this section is the following.

Theorem 2.1.
β1,n =

2πn(n+ 1)
L

cot
πn

2(n+ 1)
.

Moreover, β1,n is not attained.

Proof. It is based on some lemmas. In the first one we perform a careful analysis of the
number and distribution of zeros of nontrivial solutions u of (1.1). Since a ∈ 3n, it is
clear that between two consecutive zeros of u there must exist a zero of u′, and between
two consecutive zeros of u′ there must exist a zero of u. More precisely, we have the
following lemma.

Lemma 2.2. Let a ∈ 3n be given and u any nontrivial solution of (1.1). If the zeros of
u′ in [0, L] are denoted by 0 = x0 < x2 < · · · < x2m = L and the zeros of u in (0, L)
are denoted by x1 < x3 < · · · < x2m−1, then:

(1) xi+1−xi ≤ L/2n for all 0 ≤ i ≤ 2m−1.Moreover, at least one of these inequalities
is strict.

(2) m ≥ n+ 1. Moreover, any value m ≥ n+ 1 is possible.
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(3) Let i, 0 ≤ i ≤ 2m− 1, be given. Then the functions a and u satisfy

‖a − λn‖L1(xi ,xi+1)
≥

∫ xi+1
xi

u′2 − λn
∫ xi+1
xi

u2

u2(xi+1)
if i is odd, (2.3)

‖a − λn‖L1(xi ,xi+1)
≥

∫ xi+1
xi

u′2 − λn
∫ xi+1
xi

u2

u2(xi)
if i is even. (2.4)

Proof. Let i, 0 ≤ i ≤ 2m− 1, be given. Then u satisfies either the problem

u′′(x)+ a(x)u(x) = 0, x ∈ (xi, xi+1), u(xi) = 0, u′(xi+1) = 0, (2.5)

or the problem

u′′(x)+ a(x)u(x) = 0, x ∈ (xi, xi+1), u′(xi) = 0, u(xi+1) = 0. (2.6)

Let us assume the first case. The reasoning in the second case is similar. Note that u
may be chosen such that u(x) > 0 for all x ∈ (xi, xi+1). Let us denote by µi1 and ϕi1,
respectively, the principal eigenvalue and eigenfunction of the eigenvalue problem

v′′(x)+ µv(x) = 0, x ∈ (xi, xi+1), v(xi) = 0, v′(xi+1) = 0. (2.7)

It is known that

µi1 =
π2

4(xi+1 − xi)2
, ϕi1(x) = sin

π(x − xi)

2(xi+1 − xi)
. (2.8)

Choosing ϕi1 as test function in the weak formulation of (2.5) and u as test function in the
weak formulation of (2.7) for µ = µi1 and v = ϕi1, we obtain∫ xi+1

xi

(a(x)− µi1)uϕ
i
1(x) dx = 0. (2.9)

Then, if xi+1 − xi > L/2n, we have

µi1 =
π2L2

4(xi+1 − xi)2L2 <
n2π2

L2 = λn ≤ a(x) a.e. in (xi, xi+1),

which is a contradiction with (2.9). Consequently, xi+1 − xi ≤ L/2n for all 0 ≤ i ≤

2m−1.Also, since λn ≺ a in (0, L), we must have λn ≺ a in some subinterval (xj , xj+1).
If xj+1−xj = L/2n, it follows that µj1 ≺ a in (xj , xj+1), and this again contradicts (2.9).
This completes the proof of the first part of the lemma. For the second part, let us observe
that

L =

2m−1∑
i=0

(xi+1 − xi) < 2m
L

2n
.

Consequently, m > n. Also, note that for any given natural number q ≥ n + 1, the
function a(x) ≡ λq belongs to 3n and for u(x) = cos(qπx/L), we have m = q.
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Lastly, if i with 0 ≤ i ≤ 2m− 1 is given and u satisfies (2.5), then∫ xi+1

xi

u′2(x) =

∫ xi+1

xi

a(x)u2(x) =

∫ xi+1

xi

(a(x)− λn)u
2(x)+

∫ xi+1

xi

λnu
2(x).

Therefore,∫ xi+1

xi

u′2(x)− λn

∫ xi+1

xi

u2(x) ≤ ‖a − λn‖L1(xi ,xi+1)
‖u2
‖L∞(xi ,xi+1)

Since u′ has no zeros in (xi, xi+1) and u(xi) = 0, we have ‖u2
‖L∞(xi ,xi+1) = u

2(xi+1).

This proves the third part of the lemma when u satisfies (2.5). The reasoning is similar if
u satisfies (2.6). ut

Lemma 2.3. Assume that a < b and 0 < M ≤ π2/4(b − a)2 are given real numbers.
Let H = {u ∈ H 1(a, b) : u(a) = 0, u(b) 6= 0}. If J : H → R is defined by

J (u) =

∫ b
a
u′2 −M

∫ b
a
u2

u2(b)
(2.10)

and m ≡ infu∈H J (u), then m is attained. Moreover,

m = M1/2 cot(M1/2(b − a)), (2.11)

and if u ∈ H, then J (u) = m⇔ u(x) = k sin(M1/2(x − a))/sin(M1/2(b− a)) for some
nonzero constant k.

Proof. Remember that δ1 = π
2/4(b − a)2 is the principal eigenvalue of the eigenvalue

problem v′′(x) + δv(x) = 0, v(a) = 0, v′(b) = 0, with associated eigenfunction
w(x) = sin π(x−a)

2(b−a) . Therefore, if M = π2/4(b − a)2, then m = 0 and it is attained
at the function w.

If M < δ1 = π
2/4(b − a)2, there exists some positive constant c such that∫ b

a

u′2 −M

∫ b

a

u2
≥ c

∫ b

a

u′2, ∀u ∈ H. (2.12)

If {un} ⊂ H is a minimizing sequence for J , since the sequence {knun}, kn 6= 0, is also
a minimizing sequence, we can assume without loss of generality that un(b) = 1. From
(2.12) we deduce that

∫ b
a
u′2n is bounded. So, we can suppose that, up to a subsequence,

un ⇀ u0 in H 1(a, b) and un → u0 in C[a, b] (with the uniform norm). The strong
convergence in C[a, b] gives us u0(b) = 1. The weak convergence inH implies J (u0) ≤

lim inf J (un) = m. Thus u0 is a minimizer.
Since J (u0) = min{J (v) : v ∈ H 1(a, b), v(a) = 0, v(b) = 1}, the Lagrange

multiplier theorem implies that there are real numbers α1, α2 such that

2
∫ b

a

u′0v
′
− 2M

∫ b

a

u0v − α1v(b)− α2v(a) = 0, ∀v ∈ H 1(a, b).
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In particular,∫ b

a

u′0v
′
−M

∫ b

a

u0v = 0, ∀v ∈ H 1(a, b) : v(a) = v(b) = 0.

We conclude that u0 satisfies the problem

u′′0(x)+Mu0(x) = 0, x ∈ (a, b), u0(a) = 0, u0(b) = 1. (2.13)

Note that since M < π2/(b − a)2, (2.13) has a unique solution, which is given by

u0(x) =
sin(M1/2(x − a))

sin(M1/2(b − a))
. (2.14)

Finally, an elementary calculation gives J (u0) = M
1/2 cot(M1/2(b−a)). This proves the

lemma. ut

Now, we combine Lemmas 2.2 and 2.3 to obtain the following result.

Lemma 2.4. Let a ∈ 3n be given and u any nontrivial solution of (1.1). If the zeros of
u′ are denoted by 0 = x0 < x2 < · · · < x2m = L and the zeros of u are denoted by
x1 < x3 < · · · < x2m−1, then

‖a − λn‖L1(0,L) ≥
nπ

L

2m−1∑
i=0

cot
(
nπ

L
(xi+1 − xi)

)
. (2.15)

The previous reasoning motivates the study of a special minimization problem given in
the following lemma.

Lemma 2.5. Given any r ∈ N and S ∈ R+ satisfying rπ > 2S, let

Z =
{
z = (z0, z1, . . . , zr−1) ∈ (0, π/2]r :

r−1∑
i=0

zi = S
}
.

If F : Z→ R is defined by

F(z) =

r−1∑
i=0

cot zi,

then infz∈Z F(z) is attained and its value is r cot(S/r). Moreover, z ∈ Z is a minimizer
if and only if zi = S/r for all 0 ≤ i ≤ r − 1.

Proof. Let us observe that for all z ∈ Z, cot zi ≥ 0 for 0 ≤ i ≤ r − 1. Moreover, if
zi → 0+ for some 0 ≤ i ≤ r − 1, then cot zi → +∞. Also, since rπ > 2S, if z ∈ Z is
such that zi = π/2 for some 0 ≤ i ≤ r − 1, then there must exist some 0 ≤ j ≤ r − 1
such that zj < π/2. Let us choose the point z∗ ∈ Z defined (for δ > 0 sufficiently small)
by z∗k = zk, if k 6= i and k 6= j, z∗i = π/2− δ, z

∗

j = zj + δ. An elementary calculation
shows

F(z∗)− F(z) =
cot zj (1− cot zj cot δ)

cot δ(cot zj + cot δ)
,
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which is a negative number for δ sufficiently small. Consequently, there exists a suffi-
ciently small positive constant ε1 such that

inf
z∈Z

F(z) = min
z∈[ε1,π/2]r

F(z) = min
z∈(ε1,π/2)r

F(z).

Then, if z ∈ Z is any minimizer of F, the Lagrange multiplier theorem implies that there
is λ ∈ R such that

−1

sin2 zi
+ λ = 0, 0 ≤ i ≤ r − 1,

r−1∑
i=0

zi = S.

We conclude that zi = S/r , 0 ≤ i ≤ r − 1, and the lemma is proved. ut

From the previous two lemmas, we obtain the following one.

Lemma 2.6.
β1,n ≥

nπ

L
2(n+ 1) cot

nπ

2(n+ 1)
. (2.16)

Proof. Let a ∈ 3n be given and u any nontrivial solution of (1.1). If the zeros of u′

are denoted by 0 = x0 < x2 < · · · < x2m = L and the zeros of u are denoted by
x1 < x3 < · · · < x2m−1, then from Lemmas 2.4 and 2.5 (with r = 2m, S = nπ and
zi =

nπ
L
(xi+1 − xi)) we obtain

‖a − λn‖L1(0,L) ≥
nπ

L

2m−1∑
i=0

cot
(
nπ

L
(xi+1 − xi)

)
≥
nπ

L
2m cot

nπ

2m
. (2.17)

Finally, taking into account that

the function 2m cot
nπ

2m
is strictly increasing with respect to m (P )

and that m ≥ n+ 1, we deduce (2.16). ut

In the next lemma, we define a minimizing sequence for β1,n.

Lemma 2.7. Let ε > 0 be sufficiently small. Define uε : [0, L]→ R by

uε(x) =



− sin
(
nπ

L

(
x −

L

2(n+ 1)

))
+
nπ

L

(x − ε)3

3ε2 cos
(

nπ

2(n+ 1)

)
if 0 ≤ x ≤ ε,

− sin
(
nπ

L

(
x −

L

2(n+ 1)

))
if ε ≤ x ≤

L

2(n+ 1)
,

−uε

(
2L

2(n+ 1)
− x

)
if

L

2(n+ 1)
≤ x ≤

2L
2(n+ 1)

,

uε

(
4L

2(n+ 1)
− x

)
if

2L
2(n+ 1)

≤ x ≤
4L

2(n+ 1)
,

−uε

(
6L

2(n+ 1)
− x

)
if

4L
2(n+ 1)

≤ x ≤
6L

2(n+ 1)
,

. . .

(2.18)
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Then uε ∈ C2[0, L], the function aε(x) ≡ −u′′ε (x)/uε(x) for all x ∈ [0, L], x 6= (2k−1)L
2(n+1) ,

1 ≤ k ≤ n+ 1, belongs to 3n and

lim inf
ε→0+

‖aε − λn‖L1(0,L) =
nπ

L
2(n+ 1) cot

nπ

2(n+ 1)
. (2.19)

Proof. We claim that for each 0 ≤ i ≤ 2n+ 1, the function aε satisfies

λn ≺ aε in
(

iL

2(n+ 1)
,
(i + 1)L
2(n+ 1)

)
, (2.20)

and
lim inf
ε→0+

‖aε − λn‖L1( iL
2(n+1) ,

(i+1)L
2(n+1) )

=
nπ

L
cot

nπ

2(n+ 1)
. (2.21)

It is trivial that (2.19) follows from (2.20) and (2.21). Moreover, taking into account the
definition of uε, it is clear that it is sufficient to prove the claim in the case i = 0. Now, if
x ∈ (0, L/2(n+ 1)) we can distinguish two cases:

(1) x ∈ (ε, L/2(n+ 1)). Then aε(x) = −u′′ε (x)/uε(x) ≡ λn.
(2) x ∈ (0, ε). Then

aε(x)− λn =
−2 x−ε

ε2
nπ
L

cos nπ
2(n+1) −

(x−ε)3

3ε2
n3π3

L3 cos nπ
2(n+1)

− sin
(
nπ
L

(
x − L

2(n+1)

))
+

(x−ε)3

3ε2
nπ
L

cos nπ
2(n+1)

> 0.

Therefore aε ∈ 3n. Moreover, if ε→ 0+, then

−
(x−ε)3

3ε2
n3π3

L3 cos nπ
2(n+1)

− sin
(
nπ
L

(
x − L

2(n+1)

))
+

(x−ε)3

3ε2
nπ
L

cos nπ
2(n+1)

→ 0,

uniformly in x ∈ (0, ε).
Finally, since

lim
ε→0+

∫ ε

0

[
−2 x−ε

ε2
nπ
L

cos nπ
2(n+1)

− sin
(
nπ
L

(
x− L

2(n+1)

))
+
(x−ε)3

3ε2
nπ
L

cos nπ
2(n+1)

−
−2 x−ε

ε2
nπ
L

cos nπ
2(n+1)

− sin
(
nπ
L

(
x− L

2(n+1)

))] = 0,

and

− sin
(
nπ

L

(
x −

L

2(n+ 1)

))
→ sin

nπ

2(n+ 1)

uniformly in x ∈ (0, ε) when ε→ 0+, we deduce

lim inf
ε→0+

‖aε − λn‖L1(0, L
2(n+1) )

= lim inf
ε→0+

nπ

L
cot

nπ

2(n+ 1)
2
ε2

∫ ε

0
(ε − x) dx

=
nπ

L
cot

nπ

2(n+ 1)
,

which is (2.21) for the case i = 0. ut
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Lemma 2.8. β1,n is not attained.

Proof. Let a ∈ 3n be such that ‖a − λn‖L1(0,L) = β1,n. Let u be any nontrivial solution
of (1.1) associated to the function a. As previously, we denote the zeros of u′ by 0 = x0 <

x2 < · · · < x2m = L and the zeros of u by x1 < x3 < · · · < x2m−1. By using Lemmas
2.4, 2.5 and 2.7, we have

β1,n = ‖a − λn‖L1(0,L) =

2m−1∑
i=0

‖a − λn‖L1(xi ,xi+1)

≥

2m−1∑
i=0

Ji(u) ≥
nπ

L

2m−1∑
i=0

cot
nπ(xi+1 − xi)

L

≥
nπ

L
2m cot

nπ

2m
≥
nπ

L
2(n+ 1) cot

nπ

2(n+ 1)
= β1,n (2.22)

where Ji(u) is given either by

Ji(u) =

∫ xi+1
xi

u′2 − λn
∫ xi+1
xi

u2

u2(xi+1)
if u(xi) = 0,

or by

Ji(u) =

∫ xi+1
xi

u′2 − λn
∫ xi+1
xi

u2

u2(xi)
if u(xi+1) = 0.

Consequently, all inequalities in (2.22) transform into equalities. In particular, from Lem-
ma 2.5 and the property (P) shown in Lemma 2.6 we obtain

m = n+ 1, xi+1 − xi =
L

2(n+ 1)
, 0 ≤ i ≤ 2n+ 1.

Also, it follows that

Ji(u) =
nπ

L
cot

nπ

L

L

2(n+ 1)
, 0 ≤ i ≤ 2n+ 1.

From Lemma 2.3 we deduce that, up to some nonzero constants, in each interval
[xi, xi+1],

u(x) =


sin nπ

L
(x − xi)

sin nπ
L
(xi+1 − xi)

if i is odd,

sin nπ
L
(x − xi+1)

sin nπ
L
(xi − xi+1)

if i is even.

In particular, in [0, L/2(n+ 1)], u must be the function

u(x) =
sin nπ

L
(x − L

2(n+1) )

sin nπ
L
(− L

2(n+1) )
,

which does not satisfy the condition u′(0) = 0. The conclusion is that β1,n is not attained.
ut
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Finally, as a trivial consequence of Lemmas 2.6, 2.7 and 2.8 we have the conclusion
of Theorem 2.1. ut

Remark 1. Let us observe that if we consider β1,n as a function of n ∈ (0,+∞), then
limn→0+ β1,n = 4/L, the constant of the classical L1 Lyapunov inequality at the first
eigenvalue ([5]).

Remark 2. The case where L = 1 and the function a satisfies the condition A ≤ a(x) ≤
B, a.e. in (0, L) where λk < A < λk+1 ≤ B for some k ∈ N ∪ {0}, has been considered
in [6], where the authors use optimal control theory methods. They define 3A,B to be
the set of a ∈ L1(0, L) such that A ≤ a(x) ≤ B a.e. in (0, L) and (1.1) has nontrivial
solutions. Then, by using Pontryagin’s maximum principle, they prove that the number

βA,B ≡ inf
a∈3A,B

‖a‖L1(0,L)

is attained. In addition, they calculate limB→+∞ βA,B .

Remark 3. In our opinion, the inequality
∫ 1

0 b(t) dt ≤ 2
√
A cot(

√
A/2) in [6, Theo-

rem 3] must be substituted by
∫ 1

0 b(t) dt ≤ A + 2(k + 1)
√
A cot

√
A

2(k+1) . This may be
easily derived from our method by modifying the definition of the set 3n (given in (2.1))
in a trivial way.

Remark 4. If A→ λk
+, it does not seem possible to deduce from [6] that the constant

β1,k (defined in (2.2)) is not attained. In fact, to the best of our knowledge, this result
is new. Moreover, our method, which combines a detailed analysis of the number and
distribution of zeros of nontrivial solutions of (1.1) and their first derivatives with the use
of suitable minimization problems, will be very useful to combine Lyapunov inequalities
and disfocality. This will be seen in the next section.

Remark 5. We can use our methods to make an analogous study for other boundary
conditions. In particular, with the help of Lemmas 2.2 and 2.3 we can consider the mixed
linear problem

u′′(x)+ a(x)u(x) = 0, x ∈ (0, L), u′(0) = u(L) = 0 (2.23)

where

a ∈ 0n = {a ∈ L
1(0, L) : µn ≺ a and (2.23) has nontrivial solutions}.

Here µn is the n-th eigenvalue of the eigenvalue problem

u′′(x)+ µu(x) = 0, x ∈ (0, L), u′(0) = u(L) = 0. (2.24)

The case where L = 1 and the function a satisfies the condition A ≤ a(x) ≤ B, a.e. in
(0, L) where µk < A < µk+1 ≤ B has been considered in [7]. As in [6], the authors use
optimal control theory methods. See also [12] for Dirichlet boundary conditions.



Lyapunov inequalities at higher eigenvalues 173

3. Lyapunov inequalities and disfocality

The L∞ Lyapunov inequality is trivial from Dolph’s result ([4]). In fact, by using Dolph’s
result, the constant

β∞,n ≡ inf
a∈3n

‖a‖L∞(0,L) (3.1)

must be greater than or equal to λn+1. Since the constant function λn+1 is an element
of 3n, we deduce

β∞,n = λn+1. (3.2)

Moreover, β∞,n is attained at a unique element a∞ ∈ 3n given by the constant function
a∞ ≡ λn+1. On the other hand, under the restriction

a ∈ L1(0, L), λn ≺ a, (3.3)

the relation between Neumann boundary conditions and disfocality arises in a natural
way. In fact, if u ∈ H 1(0, L) is any nontrivial solution of (1.1) and the zeros of u are
denoted by x1 < x3 < · · · < x2m−1, and the zeros of u′ are denoted by 0 = x0 < x2 <

· · · < x2m = L, then for each i, 0 ≤ i ≤ 2m− 1, the function u satisfies

u′′(x)+ a(x)u(x) = 0, x ∈ (xi, xi+1), u(xi) = 0, u′(xi+1) = 0, if i is odd, (3.4)

and

u′′(x)+ a(x)u(x) = 0, x ∈ (xi, xi+1), u′(xi) = 0, u(xi+1) = 0, if i is even. (3.5)

Consequently, each of the problems (3.4) and (3.5) with 0 ≤ i ≤ 2m− 1 has a nontrivial
solution. This simple observation can be used to deduce the following conclusion: if a is
any function satisfying (3.3) such that for anym ≥ n+ 1 and any distribution of numbers
0 = x0 < x1 < x2 < · · · < x2m−1 < x2m = L, either some problem of the type (3.4)
or some problem of the type (3.5) has only the trivial solution, then problem (1.1) has
only the trivial solution. Lastly, it has been established in [3] (Theorem 2.1 for the case
p = ∞) that if b ∈ L∞(c, d) satisfies

‖b‖L∞(c,d) ≤
π2

4(d − c)2
and b 6=

π2

4(d − c)2
in (c, d), (3.6)

then the unique solution of the boundary value problems

u′′(x)+ b(x)u(x) = 0, x ∈ (c, d), u′(c) = u(d) = 0, (3.7)

and
u′′(x)+ b(x)u(x) = 0, x ∈ (c, d), u(c) = u′(d) = 0 (3.8)

is the trivial one.
We may use the previous reasonings to obtain the following result:
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Theorem 3.1. If a ∈ L∞(0, L), λn ≺ a and there exists 0 = y0 < y1 < · · · < y2n+1 <

y2n+2 = L such that

max
0≤i≤2n+1

{(yi+1 − yi)
2
‖a‖L∞(yi ,yi+1)} ≤ π

2/4, (3.9)

and in addition a is not the constant π2/4(yi+1 − yi)
2 in at least one of the intervals

[yi, yi+1], 0 ≤ i ≤ 2n + 1, then the boundary value problem (1.1) has only the trivial
solution.

Proof. If m ≥ n + 1 and 0 = x0 < x1 < x2 < · · · < x2m−1 < x2m = L is any
distribution of numbers, then either

[xj , xj+1] ⊂ [yi, yi+1], strictly, (3.10)

for some 0 ≤ i ≤ 2n+ 1, 0 ≤ j ≤ 2m− 1, or

m = n+ 1 and xi = yi, ∀0 ≤ i ≤ 2n+ 2. (3.11)

If (3.10) is satisfied, then

‖a‖L∞(xj ,xj+1) < ‖a‖L∞(yi ,yi+1) ≤
π2

4(yi+1 − yi)2
<

π2

4(xj+1 − xj )2
(3.12)

and consequently we deduce from (3.4)–(3.6) that (1.1) has only the trivial solution.
If (3.11) is satisfied, we deduce from the hypotheses of the theorem that a is not the

constant π2/4(xi+1 − xi)
2 in at least one of the intervals [xi, xi+1], 0 ≤ i ≤ 2n + 1.

Therefore, again (3.4)–(3.6) imply that (1.1) has only the trivial solution. In any case, we
have the desired conclusion. ut

Remark 6. If in the previous theorem we choose yi = iL/2(n+ 1), 0 ≤ i ≤ 2n + 2,
then we have the so called nonuniform nonresonance conditions at higher eigenvalues
([4], [10]) but if for instance, yj+1 − yj < L/2(n+ 1) for some j, 0 ≤ j ≤ 2n+ 1, the
function a can satisfy ‖a‖L∞(yj ,yj+1) = π2/4(yj+1 − yj )

2 (which is a quantity greater
than λn+1 = (n+ 1)2π2/L2) as long as a satisfies (3.9) for each i 6= j.

Remark 7. The hypothesis of the previous theorem is optimal in the sense that if a is
the constant π2/4(yi+1 − yi)

2 in each of the intervals (yi, yi+1), 0 ≤ i ≤ 2n + 1, then
(1.1) has nontrivial solutions. In fact, if this is the case, it is easily checked that there exist
appropriate constants ki, 0 ≤ i ≤ 2n+ 1, such that the function

u(x) =


ki cos

π(x − yi)

2(yi+1 − yi)
, x ∈ [yi, yi+1], i even,

ki cos
π(yi+1 − x)

2(yi+1 − yi)
, x ∈ [yi, yi+1], i odd,

is a nontrivial solution of (1.1).
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Now we comment on some relations between the Lyapunov constant β1,n given in
Theorem 2.1 and disfocality. It is clear from the definition of β1,n that if a function a
satisfies

a ∈ L1(0, L), λn ≺ a, ‖a − λn‖1 < β1,n, (3.13)

then the unique solution of (1.1) is the trivial one. In the next theorem we prove that, with
the use of disfocality, we can obtain a more general condition.

Theorem 3.2.

(1) If a ∈ L1(0, L), λn ≺ a, and there exist 0 = y0 < y1 < · · · < y2n+1 < y2n+2 = L

such that

yi+1 − yi <
L

2n
; ‖a − λn‖L1(yi ,yi+1)

<
nπ

L
cot

nπ(yi+1 − yi)

L
, ∀0 ≤ i ≤ 2n+ 1,

(3.14)
then the unique solution of (1.1) is the trivial one.

(2) (3.13) implies (3.14).
(3) If 0 = y0 < y1 < · · · < y2n+1 < y2n+2 = L is any distribution of numbers such

that yk+1 − yk < L/2n for all 0 ≤ k ≤ 2n+ 1 and yi+1 − yi 6= yj+1 − yj for some
0 ≤ i, j ≤ 2n+ 1, then there exists a ∈ L1(0, L) with λn ≺ a, satisfying (3.14) but
not (3.13).

Proof. If a satisfies (3.14), then the unique solution of (1.1) is the trivial one. In fact,
if this is not true, let u be a nontrivial solution of (1.1) and denote the zeros of u by
x1 < x3 < · · · < x2m−1 and the zeros of u′ by 0 = x0 < x2 < · · · < x2m = L. Since
m ≥ n+ 1,

[xj , xj+1] ⊂ [yi, yi+1] (3.15)

for some 0 ≤ i ≤ 2n+ 1, 0 ≤ j ≤ 2m− 1. Consequently,

‖a − λn‖L1(xj ,xj+1)

cot nπ(xj+1−xj )

L

≤
‖a − λn‖L1(yi ,yi+1)

cot nπ(yi+1−yi )
L

<
nπ

L
.

From this we deduce

‖a − λn‖L1(xj ,xj+1)
<
nπ

L
cot

nπ(xj+1 − xj )

L
,

which is a contradiction with Lemmas 2.2 and 2.3.
Next we prove that (3.13) implies (3.14). We can certainly assume that inf a > λn, for

if not, we replace a by a+ δ (for small δ > 0) and the new function a+ δ satisfies (3.13).
Note that if condition (3.14) is satisfied for a + δ then it is also satisfied for a.

Now choose ε > 0 sufficiently small. Since the function

‖a − λn‖L1(0,y)

cot nπ(y−0)
L
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is strictly increasing with respect to y ∈ (0, L/2n) and

lim
y→0+

‖a − λn‖L1(0,y)

cot nπ(y−0)
L

= 0, lim
y→ L

2n
−

‖a − λn‖L1(0,y)

cot nπ(y−0)
L

= +∞,

there is a unique y1, 0 = y0 < y1 < L/2n, such that

‖a − λn‖L1(0,y1)

cot nπ(y1−0)
L

=
nπ

L
− ε. (3.16)

With the help of a similar reasoning, it is possible to prove the existence of points 0 =
y0 < y1 < · · · < y2n+1 such that

‖a − λn‖L1(yi ,yi+1)

cot nπ(yi+1−yi )
L

=
nπ

L
− ε, yi+1 − yi <

L

2n
, 0 ≤ i ≤ 2n. (3.17)

(If necessary, we can define a(x) = λn for all x > L).
Since yi+1 − yi < L/2n for all 0 ≤ i ≤ 2n− 1, we have y2n < L.
If y2n+1 ≥ L, then we replace y2n+1 with y2n+1 = L− µ (for small µ > 0). Finally,

choosing y2n+2 = L, we obtain (3.14).
If y2n+1 < L, take y2n+2 = L. We claim that

y2n+2 − y2n+1 <
L

2n
and

‖a − λn‖L1(y2n+1,y2n+2)

cot nπ(y2n+2−y2n+1)
L

<
nπ

L
− ε. (3.18)

In fact, if y2n+2 − y2n+1 ≥ L/2n, then y2n+1 ≤ L(2n− 1)/2n. Then, from (3.17),
Lemma 2.5 (with r = 2n + 1, S = nπ

L
(y2n+1) and zi = nπ

L
(yi+1 − yi)) and using the

monotonicity of cot in (0, π/2) we obtain

nπ

L
2(n+ 1) cot

nπ

2(n+ 1)
= β1,n >

2n∑
i=0

‖a − λn‖L1(yi ,yi+1)

=

(
nπ

L
− ε

) 2n∑
i=0

cot
nπ

L
(yi+1 − yi) ≥

(
nπ

L
− ε

)
(2n+ 1) cot

nπ

L(2n+ 1)
y2n+1

≥

(
nπ

L
− ε

)
(2n+ 1) cot

π(2n− 1)
2(2n+ 1)

.

If ε→ 0+, we conclude

β1,n ≥
nπ

L
(2n+ 1) cot

π(2n− 1)
2(2n+ 1)

. (3.19)

Now, since the function x 7→ 2π cot x
π−2x is strictly decreasing in (0, π/2) and π(2n−1)

2(2n+1) <
nπ

2(n+1) , we obtain

β1,n ≥
nπ

L
(2n+ 1) cot

π(2n− 1)
2(2n+ 1)

>
nπ

L
2(n+ 1) cot

nπ

2(n+ 1)
= β1,n,

which is a contradiction.
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It remains to prove the second part of the claim (3.18). In fact, if it is not true, then
from (3.17) and Lemma 2.5 (with r = 2n+ 2, S = nπ and zi = nπ

L
(yi+1 − yi)) we have

‖a − λn‖L1(0,L) =

2n+1∑
i=0

‖a − λn‖L1(yi ,yi+1)

≥

(
nπ

L
− ε

) 2n+1∑
i=0

cot
nπ(yi+1 − yi)

L
≥

(
nπ

L
− ε

)
β1,n

nπ/L

for ε > 0 sufficiently small. This is a contradiction with (3.13).
Finally, to prove (3), take 0 = y0 < y1 < · · · < y2n+1 < y2n+2 = L such that

yk+1 − yk < L/2n for all 0 ≤ k ≤ 2n + 1 and yi+1 − yi 6= yj+1 − yj for some
0 ≤ i, j ≤ 2n+ 1. Then from Lemma 2.5 we obtain

2n+1∑
i=0

nπ

L
cot

nπ(yi+1 − yi)

L
>

2πn(n+ 1)
L

cot
nπ

2(n+ 1)
= β1,n.

Now, choose a ∈ L1(0, L) with λn ≺ a satisfying

‖a − λn‖L1(yi ,yi+1)
=
nπ

L
cot

nπ(yi+1 − yi)

L
− ε, ∀0 ≤ i ≤ 2n+ 1.

It is trivial that if ε is sufficiently small, then a satisfies (3.14) whereas

‖a − λn‖L1(0,L) =

2n+1∑
i=0

‖a − λn‖L1(yi ,yi+1)
> β1,n. ut

Final remark on nonlinear problems

We finish this paper by showing how to use previous reasonings to obtain new theorems
on the existence and uniqueness of solutions of nonlinear b.v.p.

u′′(x)+ f (x, u(x)) = 0, x ∈ (0, L), u′(0) = u′(L) = 0. (3.20)

For example, we have the following theorem related to Theorem 2.1 in [10]. This last
theorem allows one to consider more general boundary value problems, but for ordinary
problems with Neumann boundary conditions our hypotheses allow a more general be-
havior of the derivative fu(x, u). We omit the details of the proof (see [1] and [2] for
similar results for the first two eigenvalues).

Theorem 3.3. Consider (3.20) with the following requirements:

(1) f and fu are Carathéodory functions on [0, L]× R and f (·, 0) ∈ L1(0, L).
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(2) There exist α, β ∈ L∞(0, L) satisfying

λn ≤ α(x) ≤ fu(x, u) ≤ β(x)

on [0, L] × R. Furthermore, α differs from λn on a set of positive measure and β
satisfies either hypothesis (3.9) of Theorem 3.1 or hypothesis (3.14) of Theorem 3.2.

Then problem (3.20) has a unique solution.
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