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Abstract. We prove a converse to the “Garden-of-Eden” theorem by Ceccherini-Silberstein, Machı̀
and Scarabotti, and to a theorem by Meyerovitch, yielding two new characterizations of amenable
groups. The following are equivalent:
• the group G is amenable;
• all cellular automata living on G that admit mutually erasable patterns also admit gardens of

Eden;
• all cellular automata living on G that do not preserve Bernoulli measure admit gardens of Eden.
This solves in particular Conjecture 6.2 (1) in [2].

1. Introduction

Von Neumann defined1 cellular automata as creatures built out of infinitely many finite-
state devices arranged on the nodes of Z2 or Z3, each device being capable of interaction
with its immediate neighbours. We consider here the natural generalization to creatures
living on a graph with simply transitive automorphism group, and show that some fun-
damental properties of the automaton are characterized by amenability of the underlying
graph—a concept also due to von Neumann [15].

Definition 1.1. Let G be a group. A finite cellular automaton on G is a G-equivariant
continuous map 2 : QG

→ QG, where Q, the state set, is a finite set.

Note that usuallyG is infinite; much of the theory holds trivially ifG is finite. The map2
computes the 1-step evolution of the automaton, and its continuity implies that the evolu-
tion of a site depends only on a finite neighbourhood.

For purposes of computation, it is convenient to express a cellular automaton by the
following finite amount of data: a finite subset S of G, called the memory set, and the
restriction θ : QS

→ Q{1} of 2. The original cellular automaton is then recovered by
setting

2(φ)(x) = θ(s 7→ φ(xs))

for all φ : G→ Q, which are called configurations.
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1 It seems that von Neumann never published his work on cellular automata—see [1] for history
of the subject.
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Note that S may be supposed to generate G, although this is by no means a necessity.
In general, if 〈S〉 = H ≤ G, then the evolution of the automaton is that of G/H parallel,
independent cellular automata on H .

A cellular automaton should be thought of as a highly regular animal, composed of
many cells labelled by G, each in a state ∈ Q. Each cell “sees” its neighbours as defined
by S, and “evolves” according to its neighbours’ states.

Two properties of cellular automata received special attention. A pattern is the restric-
tion of a configuration to a finite subset Y ⊆ G. On the one hand, there can exist patterns
that never appear in the image of2. These are called Gardens of Eden (GOE), the biblical
metaphor expressing the notion of paradise lost forever.

On the other hand, 2 can be non-injective in a strong sense: there can exist patterns
φ′1 6= φ

′

2 ∈ Q
Y such that, however one extends φ′1 to a configuration φ1, if one extends

φ′2 similarly (i.e. in such a way that φ1 and φ2 have the same restriction to G \ Y ) then
2(φ1) = 2(φ2). These patterns φ′1, φ

′

2 are called Mutually Erasable Patterns (MEP).
Equivalently2 there are two configurations φ1, φ2 which differ on a non-empty finite set,
with 2(φ1) = 2(φ2). The absence of MEP is sometimes called pre-injectivity [7, §8.G].

Cellular automata were initially considered on G = Zn. Celebrated theorems by
Moore and Myhill [13, 14] prove that, in this context, a cellular automaton admits GOE
if and only if it admits MEP; necessity is due to Myhill, and sufficiency to Moore. This
result was generalized by Machı̀ and Mignosi [10] to groups of subexponential growth,
and by Ceccherini-Silberstein, Machı̀ and Scarabotti [2] to amenable groups.

There is a natural measure, the Bernoulli measure, on the configuration space QG: it
assigns measure 1/#Q to each of the clopen sets Ux,q = {φ ∈ QG : φ(x) = q}. Note
that the action of G by translation preserves this measure. Hedlund proved (see [8, Theo-
rem 5.4] or [4, Corollary 2.3]), for G = Z, that a cellular automaton preserves Bernoulli
measure if and only if it has no GOE. This result was generalized by Meyerovitch [11,
Proposition 5.1] to amenable groups.

We prove that these last two results are essentially optimal, and yield new characteri-
zations of amenable groups:

Theorem 1.2. Let G be a group. Then the following are equivalent:

(1) the group G is amenable;
(2) all cellular automata on G that admit MEP also admit GOE;
(3) all cellular automata on G that do not preserve Bernoulli measure admit GOE.

Schupp had already asked in [16, Question 1] in which precise class of groups the Moore–
Myhill theorem holds. Ceccherini-Silberstein et al. write in [2]:3

Conjecture 1.3 ([2, Conjecture 6.2]). Let G be a non-amenable finitely generated
group. Then for any finite and symmetric generating set S of G there exist cellular au-
tomata 21,22 with that S such that

2 In the non-trivial direction, let φ1, φ2 differ on a non-empty finite set F ; set Y = F(S ∪ S−1)
and let φ′1, φ

′
2 be the restrictions of φ1, φ2 to Y respectively.

3 I changed their wording slightly to match this paper’s.
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(1) in 21 there are MEP but no GOE;
(2) in 22 there are GOE but no MEP.

As a first step, we will prove Theorem 1.2, in which we allow ourselves to choose an
appropriate subset S ofG. Next, we extend a little the construction to answer the first part
of Conjecture 1.3:

Theorem 1.4. Let G = 〈S〉 be a finitely generated, non-amenable group. Then there
exists a cellular automaton 2 : QG

→ QG with memory set S that has MEP but no
GOE. Furthermore, this automaton does not preserve Bernoulli measure.

We conclude that the property of “satisfying Moore’s theorem”, or “satisfying Hedlund’s
theorem”, is independent of the memory set (provided that it generates a non-amenable
subgroup), a fact which was not obvious a priori.

Note that Conjecture 1.3 was already known to hold for groups with a non-abelian
free subgroup (see [2, Theorem 6.1]).

2. Proof of Theorem 1.2

The implication (1)⇒(2) has been proven by Ceccherini-Silberstein et al.; see also [7,
§8] for a slicker proof. The implication (3)⇒(2) holds for all groups, because Bernoulli
measure has full support. The implication (2)⇒(3) is [11, Proposition 5.1]. We need only
prove (2)⇒(1).

Let us therefore be given a non-amenable group G. Let us also, as a first step, be
given a large enough finite subset S of G. Then there exists a “bounded propagation
2 : 1 compressing vector field” on G: a map f : G → G such that f (x)−1x ∈ S and
#f−1(x) = 2 for all x ∈ G.

We construct the following automaton θ . Its state set is

Q = S × {0, 1} × S.

Order S in an arbitrary manner, and choose an arbitrary q0 ∈ Q. Define θ : QS
→ Q as

follows:

θ(φ) =

(p, α, q) if there exist unique s < t in S with

{
φ(s) = (s, α, p),

φ(t) = (t, β, q),

q0 if no such s, t exist, or if too many exist.

(2.1)

2.1. 2 is surjective

That is, θ does not admit GOE. Let indeed φ be any configuration. We construct a config-
uration ψ with 2(ψ) = φ.

Consider in turn all x ∈ G; write φ(x) = (p, α, q), and f−1(x) = {xs, xt} for some
s, t ∈ S with s < t . Set then

ψ(xs) = (s, α, p), ψ(xt) = (t, 0, q). (2.2)
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Note that ψ(z) = (f (z)−1z, ∗, ∗) for all z ∈ G. Since #f−1(z) = 2 for all z ∈ G, it
is clear that, for every x ∈ G, there are exactly two s ∈ S such that ψ(xs) = (s, ∗, ∗);
call them s, t , ordered so that ψ(xs) = (s, α, p) and ψ(xt) = (t, 0, q). Then2(ψ)(x) =
(p, α, q), so 2(ψ) = φ.

2.2. 2 is not pre-injective

That is, θ admits MEP. Let indeed φ : G → Q be any configuration; then construct ψ
following (2.2), and define ψ ′ as follows. Choose any y ∈ G, write φ(y) = (p, α, q), and
write f−1(y) = {ys, yt} for some s, t ∈ S with s < t . Define ψ ′ : G→ Q by

ψ ′(x) =

{
ψ(x) if x 6= yt,
(t, 1, q) if x = yt.

Then ψ and ψ ′ differ only at yt ; and 2(ψ) = 2(ψ ′) because the value of β is unused
in (2.1). We conclude that θ has MEP.

2.3. 2 does not preserve Bernoulli measure

Consider the open set
A = {φ ∈ QG : φ(1) = q0}.

Let µ denote Bernoulli measure; then µ(A) = 1/#Q. Write QG
= X tX′, where

X = {φ : there are exactly two s ∈ S such that φ(s) = (s, ∗, ∗)}

and X′ = QG
\X. Clearly µ(X), µ(X′) > 0. Consider B = 2−1(A). Then X′ ⊆ B, and

µ(B ∩X)/µ(X) = 1/#Q because the restriction of the local rule to X is invariant under
any permutation of Q. We get

µ(B) = µ(B ∩X)+ µ(B ∩X′) = µ(X)/#Q+ µ(X′) > 1/#Q = µ(A).

3. Proof of Theorem 1.4

We begin by a slightly extended formulation of amenability for finitely generated groups:

Lemma 3.1. Let G be a finitely generated group. The following are equivalent:

(1) the group G is not amenable;
(2) for every generating set S of G, there exist m > n ∈ N and an “m : n compressing

correspondence on G with propagation S”, i.e. a function f : G×G→ N such that

∀y ∈ G :
∑
x∈G

f (x, y) = m, (3.1)
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∀x ∈ G :
∑
y∈G

f (x, y) = n, (3.2)

∀x, y ∈ G : f (x, y) 6= 0⇒ x ∈ yS. (3.3)

Note that this definition generalizes the notion of “2 : 1 compressing vector field” intro-
duced above. Indeed, f could be thought of as a multivalued function, which at x takes
f (x, y) times the value y; we write f (x) = {y : f (x, y) > 0} and f−1(y) = {x :
f (x, y) > 0}.

Proof. For the forward direction, assuming thatG is non-amenable, there exists a rational
m/n > 1 such that every finite F ⊆ G satisfies

#(FS) ≥ (m/n)#F.

Construct the following bipartite oriented graph: its vertex set is G × {1, . . . , m} t G ×
{−1, . . . ,−n}. There is an edge from (g, i) to (gs,−j) for all s ∈ S and all i ∈
{1, . . . , m}, j ∈ {1, . . . , n}. By hypothesis, every finite F ⊆ G× {1, . . . , m} has at least
#F neighbours. Since m > n and multiplication by a generator is a bijection, every finite
F ⊆ G× {−1, . . . ,−n} also has at least #F neighbours.

We now invoke the Hall–Rado theorem [12]: if a bipartite graph is such that every
subset of any of the parts has as many neighbours as its cardinality, then there exists a
“perfect matching”—a subset I of the edge set of the graph such that every vertex is
contained in precisely one edge in I . Set then

f (x, y) = #{(i, j) ∈ {1, . . . , m} × {1, . . . , n} :
I contains the edge between (x,−j) and (y, i)}.

For the backward direction: assume that G is amenable, and let f be a bounded-
propagation m : n compressing correspondence. Let S be a finite set such that y−1x ∈ S

whenever f (x, y) 6= 0, and let F ⊂ G be a finite set such that #(FS) < (m/n)#F , a
Følner set. Then y ∈ F and f (x, y) 6= 0 imply x ∈ FS, so

m#F =
∑
y∈F

∑
x∈G

f (x, y) ≤
∑
x∈FS

∑
y∈G

f (x, y) = n#(FS),

a contradiction. ut

Let now G = 〈S〉 be a non-amenable group, and apply Lemma 3.1 to G = 〈S〉, yielding
m > n ∈ N and a contracting m : n correspondence f . Consider the following cellular
automaton θ with state set

Q = (S × {0, 1} × Sn)n.

Choose q0 ∈ Q, and give a total ordering to S × {1, . . . , n}.
Consider φ ∈ QS . To define θ(φ), seek whether there exists a unique sequence

(s1, k1) < · · · < (sm, km) in (S × {1, . . . , n})m such that

φ(sj )kj = (sj , αj , tj,1, . . . , tj,n) ∈ S × {0, 1} × Sn for j = 1, . . . , m.
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If there are no, or too many, such s1, k1, . . . , sm, km, set θ(φ) = q0; otherwise, set

θ(φ) = ((t1,1, α1, t2,1, . . . , tn+1,1), . . . , (t1,n, αn, t2,n, . . . , tn+1,n)) ∈ Q. (3.4)

The same arguments as before apply. Given φ : G → Q, we construct ψ : G → Q

such that 2(ψ) = φ, as follows. We think of the coordinates ψ(x)k of ψ(x) as n “slots”,
initially all “free”, and will use them : n correspondence f to establish a correspondence
between the slots of φ and those of ψ .

By definition, #f−1(x) = m for all x ∈ G, while #f (x) = n. Consider in turn all
x ∈ G; write f−1(x) = {xs1, . . . , xsm}, and let k1, . . . , km ∈ {1, . . . , n} be “free” slots in
ψ(xs1), . . . , ψ(xsm) respectively. By the definition of f , there always exist sufficiently
many free slots.

Mark now these slots as “occupied”. Reindex s1, k1, . . . , sm, km in such a way that
(s1, k1, . . . , sm, km) is minimal among its m! permutations. Set then

ψ(xsj )kj = (sj , αj , tj,1, . . . , tj,n) for j = 1, . . . , m,

where αn+1, . . . , αm are taken to be arbitrary values (say 0 for definiteness) and

φ(x) = ((t1,1, α1, t2,1, . . . , tn+1,1), . . . , (t1,n, αn, t2,n, . . . , tn+1,n)).

Finally, define ψ arbitrarily on slots that are still “free”.
It is clear that 2(ψ) = φ, so θ does not have GOE. On the other hand, θ has MEP as

before, because the values of αj in (3.4) are not used for j ∈ {n+ 1, . . . , m}.
Similarly, setting A = {φ ∈ QG : φ(1) = q0}, we have µ(2−1(A)) > µ(A) as

before.

4. Remarks

4.1. G-sets

A cellular automaton could more generally be defined on a right G-set X. There is a
natural notion of amenability for G-sets, but it is not clear exactly to what extent Theo-
rem 1.2 can be generalized to that setting—certainly not verbatim, since theG-setGt{·}
is amenable for all G, but may support automata with MEP but without GOE. It is also
unclear how to construct automata on graphs with a transitive, but not simply transitive,
automorphism group (see e.g. [5]).

4.2. Myhill’s theorem

It seems harder to produce counterexamples to Myhill’s theorem (“GOE imply MEP”) for
arbitrary non-amenable groups, although there exists an example onC = Z/2∗Z/2∗Z/2,
due to Muller.4 Let us make our task even harder, and restrict ourselves to linear automata
over finite rings (so we assume Q is a module over a finite ring and the map 2 : QG

→

QG is linear). The following approach seems promising.

4 In his University of Illinois 1976 class notes, see [10, p. 55].
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Conjecture 4.1 (Folklore? I learnt it from V. Guba). Let G be a group. The following
are equivalent:

(1) The group G is amenable.
(2) Let K be a field. Then KG admits right common multiples, i.e. for any α, β ∈ KG

there exist γ, δ ∈ KG with αγ = βδ and (γ, δ) 6= (0, 0).

This last condition, if KG is a domain, is equivalent to Ore’s condition, implying the exis-
tence of a classical ring of fractions—see [9] and [6]. The following direction is classical:

Proof of Conjecture 4.1 (1)⇒(2). Assume that G is amenable, and let α, β ∈ KG be
given. Let S ⊆ G be a finite set containing the supports of α and β. By Følner’s criterion,
there exists F ⊆ G finite such that #(SF ) < 2#F . Consider γ, δ ∈ KF as variables; then
the equation system αγ = βδ is linear, has 2#F unknowns, and at most #(SF ) equations,
so has a non-trivial solution. ut

Conjecture 4.2 (A possible converse to Myhill’s Theorem). Let K be a field. The fol-
lowing are equivalent:

(1) The group G is amenable.
(2) Any K-linear cellular automaton which admits gardens of Eden also admits mutually

erasable patterns.

Proof, assuming Conjecture 4.1. Ceccherini-Silberstein and Coornaert proved the
(1)⇒(2) direction in [3, Theorem 1.2].

Assume now the “hard” direction of Conjecture 4.1. Given G non-amenable, we may
then find a finite field K, and α, β ∈ KG that do not have a common right multiple.

Set Q = K2 with basis (e1, e2), let S contain the inverses of the supports of α and β,
and define the cellular automaton θ : QS

→ Q by

θ(φ) =
∑
x∈G

(
α(x−1)〈φ(x)|e1〉 − β(x

−1)〈φ(x)|e2〉, 0
)
.

Then θ has GOE, indeed any configuration not in (K×{0})G is a GOE. On the other hand,
assume for contradiction that θ had MEP; then by linearity we might as well assume
2(φ) = 0 for some non-zero finitely-supported φ : G → Q. Write φ = (γ, δ) in
coordinates; then 2(φ) = 0 would give αγ = βδ, showing that α, β actually did have a
common right multiple. ut

Muller’s example is in fact a special case of this construction, with

G = 〈x, y, z | x2, y2, z2
〉,

K = F2, and α = x, β = y + z.
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