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Abstract. We study the large time behaviour of weak nonnegative solutions of the p-Laplace equa-
tion posed in an exterior domain in space dimension N < p with boundary conditions u = 0. The
description is done in terms of matched asymptotics: the outer asymptotic profile is a dipole-like
self-similar solution with a singularity at x = 0 and anomalous similarity exponents. The inner
asymptotic behaviour is given by a separate-variable profile. We gather both estimates in a global
approximant and we also study the behaviour of the free boundary for compactly supported solu-
tions. We complete in this way the analysis made in a previous work for high space dimensions
N ≥ p, a range in which the large-time influence of the holes is less dramatic.

Keywords. p-Laplacian equation, exterior domain, asymptotic behaviour, domain with holes,
matched asymptotics, anomalous self-similarity

1. Introduction

We are concerned with understanding the effect of the presence of one or several holes in
the domain on the large-time behaviour of the solutions of nonlinear diffusion equations.
In this paper we study the question for the evolution p-Laplace equation and find interest-
ing non-standard asymptotics. To be specific, we consider an exterior domain� = RN \G
whereG is a bounded domain in RN with smooth boundary, and study the asymptotic be-
haviour of the solutions of the exterior Dirichlet problem with zero boundary conditions:ut = 1pu, (x, t) ∈ Q = �× (0,∞),

u(x, t) = 0, (x, t) ∈ ∂�× (0,∞),
u(x, 0) = u0(x), x ∈ �.

(1.1)

We also assume that u0 ∈ L
1(�), u0 is nonnegative, and p > 2. By standard properties of

the theory of the p-Laplacian equation the solution will be bounded for all t > 0, hence
we may also assume that u0 is bounded in the study of large-time behaviour. The study
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of the cases where N ≥ p was the object of a companion paper [14], where it was proved
that forN > p the large-time influence of the holes is moderate since the outflow through
∂� does not exhaust the whole initial mass

∫
u0(x) dx as t → ∞, and the asymptotic

profiles are still of the same type as in the Cauchy problem (Barenblatt profiles). For
N = p the mass goes to zero but the asymptotic rates and profiles can be considered as a
limit case of the previous situation with the inclusion of logarithmic factors.

We devote this paper to the case of low dimension, 1 ≤ N < p, where the effect of
the holes is more dramatic and the mathematical treatment more interesting: the asymp-
totic mass is zero and the renormalized asymptotic profiles correspond to what is known
as self-similarity of the second kind, or self-similarity with anomalous exponents (see
also [1]). Let us mention that such novel features do not appear in the study of large-time
behaviour of the solutions of the porous medium equation recently done in [4] and [11],
though a number of other properties are common. This gives relevance to the paper as a
dynamical study of large asymptotic perturbations of self-similar regimes. The proof of
uniqueness of the rescaled asymptotic profile needs an involved topological argument.

We may assume that 0 ∈ G. We will work in most of the paper under the assumption
that u0 has compact support. This is done partly for simplicity, partly because compactly
supported solutions have free boundaries whose behaviour is an interesting topic that we
investigate; at the end, we show that this is not an essential restriction for the theory with
more general initial data.

Preliminaries. We refer to DiBenedetto’s book [8] and our paper [14] for convenient
preliminaries on the p-Laplacian evolution equation and its weak formulation. Let us
recall here only the concepts of solution that we use. We put QT = �× (0, T ).

Definition 1.1. A function u ∈ C((0, T ] : W 1,p
0 (�)) ∩ L∞(QT ) is a weak solution of

problem (1.1) on [0, T ] if for any test function 8 ∈ C2,1(QT ) with compact support in
QT and 8 = 0 on ∂�× (0, T ], it satisfies the integral identity∫
�

u(x, t)8(x, t) dx =

∫ t

0

∫
�

(u(x, s)8s(x, s)− |∇u|
p−2
∇u(x, s) · ∇8(x, s)) dx ds

+

∫
�

u0(x)8(x, 0) dx (1.2)

for any t ∈ [0, T ]. We say that u is a weak solution of (1.1) on Q if it is a weak solution
in the sense above on [0, T ] for any T > 0.

Definition 1.2. A function u ∈ C((0, T ] : W 1,p
0 (�))∩L∞(QT ) is a local weak solution

of problem (1.1) on [0, T ] if for any test function 8 ∈ C2,1(QT ) with compact support in
QT , it satisfies the integral identity∫ T

0

∫
�

(u(x, t)8t (x, t)− |∇u|
p−2
∇u(x, t) · ∇8(x, t)) dx dt = 0. (1.3)
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We define a weak subsolution [supersolution] by replacing in Definition 1.1 the equality
sign by ≤ (resp. ≥) and considering only nonnegative test functions 8. In a similar way,
we define a local weak subsolution [supersolution] by replacing in Definition 1.2 the
equality sign by ≥ (resp. ≤). We will also use the notation r = |x|.

Concerning the case N > p, we have already proved in [14] that the asymptotic
profile is a Barenblatt profile, given by the expression

BC(x, t) = t
−α1FC(η), η = |x|t−β1 , (1.4)

where the profile has the form

FC(η) = (C − kη
p/(p−1))

(p−1)/(p−2)
+ , (1.5)

with the well-known constants

α1 =
N

N(p − 2)+ p
, β1 =

1
N(p − 2)+ p

, k =
p − 2
p

β
1/(p−1)
1 . (1.6)

The constant C = C(u0) > 0 is determined by the asymptotic study. The situation is
different in the limit case N = p. It is proved in the same paper that the influence of the
hole on the solutions of the p-Laplace operator is stronger, but it can still be expressed in
terms of the same asymptotic profiles after a more dramatic time scaling. More specifi-
cally, the asymptotic profile is given by a precise logarithmic correction of the Barenblatt
profile. This parallels the case N = 2 of the porous medium equation with any m > 0
which was studied in [11].

We end these preliminary results with a correspondence relation between the radially
symmetric solutions of the p-Laplacian equation and of the porous medium equations,
introduced in [13]:

Proposition 1.1. Suppose 0 < n < 2. Then the radially symmetric solutions u and ū
of the porous medium equation, resp. the p-Laplacian equation, are related through the
following transformation:

ūr̄(r̄, t) = Kr
(2n−2)/(m+1)u(r, t), K =

(
(mn− n+ 2)2

m(m+ 1)2

)1/(m−1)

, (1.7)

where the correspondence of the parameters is

p = m+ 1, N =
(n− 2)(m+ 1)
n−mn− 2

(1.8)

and the independent variables are related by r̄ = r(mn−n+2)/(m+1).

Here n is the dimension in the porous medium case and the variables with bar are for the
p-Laplacian case.

The dipole solution. In the study of the asymptotic behaviour to be performed in this
paper we will need another self-similar solution of the p-Laplacian evolution equation
that was introduced in the paper [13] with the name of dipole solution. Precisely, it is
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obtained implicitly, through the exact relation between the profiles of the self-similar
solutions of the porous medium and the p-Laplace equation. The name dipole comes
from its properties similar to those of the well-known dipole solution of the heat equation
and the porous medium equation: the mass M(t) =

∫
u(x, t) dx as t → 0 of the solution

becomes infinite but at any positive moment it is finite.
Here, we have to face another difficulty: the profile of the dipole solution is not ex-

plicit, as it happens for the Barenblatt solution, and we will work using only its properties
deduced from the analysis made in [13]. We will now state the properties we need. We
will denote a particular dipole solution by D. Using the notations in [13], we write

D(x, t) = t−α2F(xt−β2), (1.9)

where the self-similarity exponents satisfy the relation

(p − 2)α2 + pβ2 = 1, α2, β2 > 0, (1.10)

but we do not have explicit expressions for them, as in the porous medium case. Actually,
such exponents are called anomalous, since they are not obtained from some conservation
law but as the existence of a special orbit of an associated ODE system (cf. [1]). More
precisely, in our case, since we are looking for self-similar solutions of the general form
t−αf (η), η = |x|t−β , the ODE satisfied by the profile f is

η1−N (ηN−1
|f ′|p−2f ′)′ + αf + βηf ′ = 0, (1.11)

which can be transformed into an autonomous dynamical system (see Section 4 of [13]).
We will also denote by k2 = α2/β2 the associated “eigenvalue”. From [13], we deduce

that to this eigenvalue corresponds a whole orbit of solutions of dipole type, and, more-
over, all their profiles are obtained from a particular representative F through a simple
rescaling:

Fλ(η) = λ
pF(λ2−pη), ∀λ > 0, (1.12)

hence we will denote the members of this orbit by Fλ (the profile), and Dλ (the solution
corresponding to the profile Fλ). We remark that the scaling is monotone in λ, in the sense
that if λ1 < λ2, then both the support and the height of Dλ1 are less than those of Dλ2 .
When the index λ is missing, we will understand λ = 1. Using Proposition 1.1 and the
behaviour near x = 0 of the corresponding solutions of the porous medium equation
(see [3], [12] or [13] where the calculations are given), we also find that Fλ(0) = 0,
but its derivative is singular at η = 0. More precisely, near η = 0 we have F ′(η) ∼
η−(N−1)/(p−1), hence

F(η) ∼ η(p−N)/(p−1) as η ∼ 0, (1.13)

and we will denote by Cλ the limit

Cλ = lim
η→0

Fλ(η)

η(p−N)/(p−1) . (1.14)

Moreover, the dipole profile exists in the sense of weak solution in the whole space only
in dimension N < p; for N > p the profile develops a singularity at η = 0, and for
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Fig. 1. Bifurcation of exponents at N = p. Experiment for p = 3.

N = p it coincides with the Barenblatt solution. We illustrate this bifurcation in Figure 1
below, where the dashed line represents the dipole exponents.

Even in dimension N = 1 the dipole solution is not explicit. Actually, in that case,
a simple differentiation leads to a self-similar solution of the porous medium equation
with compactly supported profile and lap number 2. Bernis, Hulshof and Vázquez have
studied that solution in [3] and shown that the similarity exponents are anomalous in the
sense described above.

Outline of results. We begin by constructing in Section 2 the sub- and supersolutions
that we will use later to obtain optimal barriers. Then we prove that the outer limit is
given by a particular dipole profile by identifying the precise scaling factor λ in (1.12).
The convergence to the outer profile is uniform in all sets of the form {|x| ≥ δtβ} for any
δ > 0 sufficiently small. The main result is stated as Theorem 3.1, and the proof takes
up Sections 3, 4 and 5. We will use a different technique than the one used in previous
papers, like [4] or [14]. It is based on the construction of optimal barriers and delicate
comparisons. An important step in the analysis is the proof of lack of contact between
special solutions, which relies on a delicate use of the Harnack principle for degenerate
parabolic equations with variable coefficients in space and time, due to [6]. The end steps
rely on an accurate tail analysis. The whole process of proving uniqueness is much more
difficult than for similar problems like in [4] where a conservation law is available to
determine the asymptotic parameter. Here this law is replaced by a delicate topological
study. The outer analysis ends with the convergence of the supports and interfaces, which
follows as a consequence of the general uniqueness proof (Corollary 5.2).

The outer analysis is followed by the inner analysis in Section 6. The argument is sim-
ilar to [14], based on an elliptic a priori bound and the technique of matched asymptotics.
We show that the inner limit is given by a stationary state related to a particular solution
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of the following exterior Dirichlet problem:{
1pH = 0 in �,
H = 0 on ∂�. (1.15)

A global formulation and extensions to general L1 data are treated in Section 7. We end
the paper by proving new results for the porous medium equation as consequences of the
present analysis and of the correspondence relations introduced in [13].

As a precedent of this work, a similar study was performed in a series of papers for
another basic model of nonlinear diffusion, the porous medium equation, ut = 1um,
posed in an exterior domain in Rn. It has been observed that the influence of the holes is
very important in low dimensions. Thus, it was proved in [11] that in dimension n < 2
there is a big difference in the asymptotic behaviour with respect to the case n ≥ 2. In
the latter, the asymptotic behaviour is given by the Barenblatt solution, but in the former
the limit profile is the dipole solution. We point out that, since in the porous medium case
the only subcritical dimension is n = 1, the analysis in this case is similar to studying the
porous medium equation on a half-line. On the contrary, in the case of the p-Laplacian
evolution equation with p large, there can be many space dimensions in the range 1 ≤
N < p, making the analysis more interesting for applications.

2. Sub- and supersolutions. Size estimates

In this section we will construct appropriate sub- and supersolutions for our problem
starting from the dipole profile that we have described before. Since from now on we will
use only the dipole solutions, we will drop for simplicity the index 2 from the exponents
α and β.

Supersolutions. We want to find a dipole solution Dλ such that at t = t0 > 0 fixed,
Dλ(x, t0) ≥ u(x, t0). But using (1.12) and (1.13), we find that a general rescaled profile
satisfies

Fλ(η) ∼ λ
p−(p−2)(p−N)/(p−1)η(p−N)/(p−1)

→∞ as λ→∞, (2.1)

and the convergence is uniform on compact sets far from the origin. On the other hand,
the support of Fλ tends to the whole space as λ → ∞. Hence, if we fix t0 > 0, there
exists λ > 0 sufficiently large such that

Dλ(x, t0) ≥ u(x, t0), supp u(·, t0) ⊂ supp Dλ(·, t0). (2.2)

By well-known comparison arguments, from (2.2) we deduce that the inequality holds at
any later time, i.e. u(x, t) ≤ Dλ(x, t) for all x ∈ � and t ≥ t0.

Subsolutions. This case is much more difficult, since the dipole does not vanish on the
boundary of �. In order to construct a subsolution, we have to combine the dipole with
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another subsolution, using a technique similar to one in [14]. We define

Dλ,τ (x, t) = Dλ(x, t + τ)

Hτ (x, t) = A(t)(t + τ)
−α

((
|x|

R0

)(p−N)/(p−1)

− 1− a
(|x| − r1)+

(t + τ)l

)
+

,

where λ, τ , R0, r1, a, l are positive free parameters that have to be chosen. We choose
A(t) = 2K(t), where K(t) = maxx Fλ(x(t + τ)−β). It may be checked (by direct calcu-
lation) that Hτ is indeed a subsolution of the p-Laplacian equation in the whole Rn.

Denote by R1(t) the radius of the interface ofHτ , and R2(t) the radius of the interface
ofDλ,τ . We want R2(t) > R1(t) for t sufficiently large. We remark that R2(t) ∼ (t+τ)

β

and R1(t) is a solution of the equation

R1(t)
(p−N)/(p−1)(t + τ)l = aR

(p−N)/(p−1)
0 (R1(t)− r1), (2.3)

hence, after an easy calculation, R1(t) ∼ (t + τ)l(N−1)/(p−1). Since N < p, it suffices
to choose l < β in order to get R1(t) < R2(t) for t ≥ t0 sufficiently large. Hence, for
any t ≥ t0, there exists r∗(t) such that 1 < r∗(t) < R1(t) < R2(t), so that the two
subsolutions intersect at |x| = r∗(t), with the correct angle of intersection (see Figure 2).
Define

Vλ,τ (x, t) =

 0 if r < R0 or r > R2(t),

Hτ (x, t) if R0 ≤ |x| ≤ r
∗(t),

Dλ,τ (x, t) if r∗(t) ≤ r ≤ R2(t),

(2.4)

which is a well-defined subsolution of the problem (1.1) for t ≥ t0 sufficiently large. The
following lemma shows that this family of subsolutions has good properties.

Lemma 2.1. There exists a choice of the parameters τ , λ, R0, r1, a, l and a time t0
sufficiently large such that for t ≥ t0 we have

Vλ,τ (x, t) ≤ u(x, t), ∀x ∈ �. (2.5)

Proof. We first show that there exists a time t0 such that we have comparison at t = t0. Fix
t0 large such that Vλ,τ is a subsolution. Choose first l < β, for example l = 1

2β, and (by
increasing t0 if necessary) choose R0, r1 such that the annulusWR0,r1(0) is included in the
interior of supp u(·, t0). Then we choose λ, which measures the height of the subsolution
Vλ,τ , such that Vλ,τ lies below u at time t0. In order to choose the delay τ , we require that

suppVλ,τ (·, t0) = WR0,R2(t)(0) ⊂ Int(supp u(·, t0)).

Hence we want to have R2(t0) = ξ+(t0)− ε, where

ξ+(t0) = sup{r > 0 : B(0, r) ⊂ supp u(·, t0)}.

But this implies a unique time τ for t0 sufficiently large and ε > 0 small. Finally, in order
to choose a, we impose the condition R1(t0) < R2(t0), and this implies a limitation on
the value of a.
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We end the proof by showing that for any t ≥ t0, the inequality (2.5) holds. This
follows from standard comparison arguments (the strong maximum principle) applied
starting from t = t0 as initial time. The only thing we need to check is that the previous
construction can be done for t > t0, and a necessary and sufficient condition is that
R1(t) < R2(t) for any t > t0. But this holds true for sufficiently large t0, due to the
asymptotic rates of R1(t) and R2(t) and the fact that l < β. ut

We illustrate how the comparison is realized in Figure 2 below.

Fig. 2. Comparison of the solution u with dipole profiles.

3. Outer analysis I: Dipoles and the ω-limit set

In this section we introduce the concept of ω-limit set of a renormalized orbit of a solution
of problem (1.1) and relate it to a family of dipole solutions, which are our candidates for
the asymptotic profile. The proof of the convergence to a particular dipole is long and
delicate and will be continued in the next two sections. We fix the similarity exponents α
and β at the values introduced in (1.10) for the dipole solutions. This is the main result:

Theorem 3.1. Let 1 ≤ N < p and suppose also that u0 is compactly supported. Then
there exists a constant λ > 0, depending on N , p and the initial data u0, such that

lim
t→∞

t−α|u(x, t)−Dλ(x, t)| = 0, (3.1)

with uniform convergence in all sets of the form {x ∈ � : |x| ≥ δtβ}, δ > 0.

The theorem will be proved using the technique of optimal barriers, also used in previous
works like [10] for the porous medium equation or [17] for the Barenblatt equation of
elasto-plastic filtration. The general idea of this technique is to construct the best barrier
from above (or from below) for the asymptotic limit of the solution and then to show
that in fact this optimal barrier equals the asymptotic limit, by using maximum and com-
parison principles. In the present case, the proof will be more involved than in these
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previous cases due to the degeneracy of the equation. This adds to the mathematical in-
terest, specially in the analysis of contact points which can be seen as cases of application
of non-standard strong maximum principles in the sense of [18]. Two final observations:
(i) the same result (3.1) is true for general L1 data, but this extension will be proved in
Section 7; (ii) in the present case of compactly supported solutions, we can also prove
convergence of the free boundaries: see Corollary 5.2.

Let us proceed with the detailed proof. In the previous section, we have showed that
there exist λ1 and λ2 such that

Vλ2,τ (x, t) ≤ u(x, t) ≤ Dλ1(x, t + τ), λ2 < λ1. (3.2)

This allows us to define

λ1(t, τ ) = inf{λ1 : u(x, t) ≤ Dλ1(x, t + τ), ∀x ∈ �}.

The comparison argument for solutions implies that λ1 is decreasing as a function of t . We
may then define the asymptotic limit λ1(∞, τ ) = limt→∞ λ1(t, τ ) and λ1(∞, τ ) > 0. In
a similar way we may define

λ2(t, τ ) = sup{λ2 : Vλ2,τ (x, t) ≤ u(x, t), ∀x ∈ �},

hence the limit λ2(∞, τ ) = limt→∞ λ2(t, τ ) exists and it is easy to see that λ2(∞, τ ) ≤

λ1(∞, τ ) for any τ > 0. The fact that the limit λ1(∞, τ ) does not depend on the delay τ
is a simple consequence of the following inequality satisfied by the dipole solutions.

Lemma 3.2. For any ε > 0 small there exists c(ε) > 0 such that whenever λ > 0 and
|τ | < cε,

Dλ(x, t) ≤ Dλ(1+ε)(x, t (1+ τ)), ∀x ∈ RN , (3.3)

Proof. By scaling Dλ we may reduce the proof to the case t = 1 and λ = 1. Let us
examine the case τ > 0. Away from x = 0 this is geometrically easy. By increasing the
parameter λ = 1 to 1+ ε, the maximal height and the radius of the support increase. By
inserting the delay in time, it is easy to see, from the definition of Dλ, that the maximal
height decreases and the radius of the support increases.

It remains to show that the inequality holds near x = 0. This follows from the estimate
on the behaviour of the dipole at x = 0 given in (1.13) and from the scaling formula
(1.12). Indeed, in the first approximation near x = 0, we have

D1(x, t) ∼ Cλt
−α−β(p−N)/(p−1)

|x|(p−N)/(p−1),

and

D1+ε(x, t+τ) ∼ C1+ε(t+τ)
−α−β(p−N)/(p−1)(1+ε)p−(p−2)(p−N)/(p−1)

|x|(p−N)/(p−1).

It is now easy to check that, fixing t = 1, there exists τ1 = τ1(ε) such that the conclusion
holds for any 0 < τ < τ1, and the relation between τ1 and ε is linear for ε ≈ 0. A similar
argument near x = 0 will be used later to separate the contact at the origin.

The case τ < 0 is geometrically easier and we leave it to the reader. ut
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3.1. Scalings, ω-limit sets and optimal bounds

For our next step we recall that the asymptotic analysis will depend on rescalings and
limits. The rescaling that we will be using repeatedly is

(Tγ u)(x, t) = γ
αu(γ βx, γ t) (3.4)

with exponents as in (1.10); we will often write uγ (x, t) instead of (Tγ u)(x, t) for brevity.
This rescaling keeps each of the dipole solutions Dλ unchanged, and when applied to
a solution u, the whole family {Tγ u = uγ } consists of solutions of the p-Laplacian
equation. Moreover, the inequality in Section 2 becomes

Vλ2,τ/γ (x, t) ≤ (Tγ u)(x, t) ≤ Dλ1(x, t) (3.5)

for all t ≥ t0/γ . By the compactness estimates in [8], we can extract a subsequence
{Tγku} converging to a limit U∞ as γk → ∞; it is easy to see that this U∞ is a local
weak solution of the p-Laplacian equation in (RN \ {0}) × (0,∞), and the convergence
is uniform on compact subsets of RN \ {0}. The limit function U∞ can (and will) have
a singularity at x = 0, and there could in principle be different limits depending on the
chosen subsequence.

Following the dynamical systems terminology, we denote by ω(u) the ω-limit set of
the orbit u(t), i.e., the set of all asymptotic limits of sequences uγk as γk →∞. A generic
element of ω(u) will be denoted by U . Using (3.5) and the fact that through our rescaling,
the delay disappears in the limit, we find that

Dλ2(∞,τ )(x, t) ≤ U(x, t) ≤ Dλ1(∞,τ )(x, t)

for all U ∈ ω(u), τ > 0 and x ∈ RN \ {0}. Hence, we can reduce τ to 0 in the previous
inequality. It now follows from standard theory that ω(u) is a bounded, closed and con-
nected set in the space C(Q) of continuous functions for every Q = RN × [t1, t2] with
0 < t1 < t2 <∞.

With this in mind, we define the optimal dipole parameter from above as

λ∗ = inf{λ > 0 : U(x, t) ≤ Dλ(x, t) in Q = RN × (1/2,∞) for all U ∈ ω(u)}, (3.6)

where we look at U and Dλ as extended by zero at the origin. Obviously, λ2(∞, τ ) ≤

λ∗ ≤ λ1(∞). In a similar manner, if we fix U ∈ ω(u), we can associate to it an upper
optimal parameter λU defined as

λU = inf{λ > 0 : U(x, t) ≤ Dλ(x, t) in Q = RN × (1/2,∞)}. (3.7)

The pair (U,DλU ) will be called an optimal pair. It is obvious that λU ≤ λ∗ for any
U ∈ ω(u); moreover, it is also easy to remark that

λ∗ = sup{λU : U ∈ ω(u)}.

On the other hand, for any U there exists a unique optimal pair (U,Dλ), due to the fact
that the family {Dλ} is strictly increasing with respect to λ.

We will next prove a series of results in order to show that Dλ∗ is the unique element
of ω(u), which will also end the proof of Theorem 3.1. Let us remark first that, from the
definition of λ∗, we have U ≤ Dλ∗ for any U ∈ ω(u).



Anomalous large-time behaviour of p-Laplacian flow 259

4. Outer analysis II: Contact points and separation

In this section we analyze in detail the optimal pairs (U,DλU ) introduced in the previous
section. As an intermediate step in our asymptotic analysis, we want to prove that U =
DλU . Arguing by contradiction, if there is one U ∈ ω(u) that does not coincide withDλU ,
then at least U ≤ DλU , and there could be three types of isolated contact points between
U and DλU :

(a) contact at a point P = (x, t) which is not critical for DλU ;
(b) contact at the spatial maximum point (hot spot) of DλU ;
(c) contact on the free boundary of the two functions.

Fig. 3. Contact points of types (a), (b) and (c).

We will refer to these types of contact points as contact points of type (a), (b), (c) respec-
tively (see the sketch in Figure 3). In what follows we prove that all the three types of
contact points stated above either imply exact equality or are impossible (disappear) after
finite time.

Lemma 4.1. A contact of type (a) implies equality.

Proof. Since the contact point is not a critical point for DλU , this is an immediate conse-
quence of the strong maximum principle for the p-Laplacian equation at nondegenerate
points. We recall that weak solutions of the p-Laplacian evolution equation are C1,α

smooth with respect to the x variable (see [8]). ut

4.1. Analysis of a type (b) contact. The strong maximum principle

In order to handle a contact point of type (b), where the equation degenerates for the
solutions under consideration, we use the Harnack inequality proved by F. Chiarenza and
R. Serapioni in [5] and improved in [6], for linear degenerate parabolic equations of the
type

ut = div(a(x, t)∇u). (4.1)

We recall that the result holds if the matrix a(x, t) may be degenerate but it is controlled
in terms of a Muckenhoupt weight [7]. More precisely, it satisfies the following technical
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assumptions around some fixed point (x0, t0): there exists a non-negative function ω(x, t)
defined on RN × (0,∞) and some positive constant 0 such that

ω(x, t)|ξ |2 ≤

N∑
i,j=1

ai,j (x, t)ξiξj ≤ 0ω(x, t)|ξ |
2 (4.2)

for a.e. (x, t) ∈ Q and ξ ∈ RN , where Q = � × (0, T ), with � ⊂ RN open, and
the function ω(x, t) is an A2 weight in the time variable uniformly in x and an A1+2/N
weight in x uniformly in time, i.e., it satisfies the two conditions:(

1
|B|

∫
B

ω(x, t) dx

)(
1
|B|

∫
B

ω(x, t)−N/2 dx

)2/N

≤ c0, ∀t > 0, (4.3)

and (
1
|I |

∫
I

ω(x, t) dt

)(
1
|I |

∫
I

ω(x, t)−1dt

)
≤ c0, ∀x, (4.4)

for some c0 > 0, where B represents any ball centred at (x0, t0) with sufficiently small
radius and I ⊂ (0,∞) any small time interval. Thus, the Harnack inequality holds on
some special cylinders, depending on the degeneracy of the operator around the point.
A precise definition of these cylinders is given in [6, Definition 3.2], and the Harnack
inequality is proved as Theorem 3.4 of the same paper [6]. We apply this result to the
analysis of our contact point.

Lemma 4.2. A contact of type (b) is impossible at any time t > 0 unless there is equality
for all x and all later times.

Proof. (i) Linearization. Remember that we are assuming that U and DλU are not iden-
tically equal. Suppose that we have a contact of type (b), so that ∇U = ∇DλU = 0 at
(x0, t0). Set

w = U −DλU , (4.5)

which has an isolated zero at (x0, t0) and it is a solution of the linearized equation

wt = div(a(x, t)∇w), (4.6)

where

aij (x, t) =

∫ 1

0
|∇v(s)|p−4((p − 2)∂iv(s)∂jv(s)+ |∇v(s)|2IN ) ds

is the matrix giving the degeneracy of the equation (4.6) in a parabolic neighbourhood C
centred at (x0, t0), where we denote

v(s; x, t) = ∇DλU + s(∇U −∇DλU )

and IN is the usual identity matrix. In what follows, we write v(s) instead of v(s; x, t).
Since the matrix {(p − 2)∂iv(s)∂jv(s)}i,j is positive definite, it is sufficient to bound the
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second term from below, i.e. to have a bound from below for
∫ 1

0 |∇v(s)|
p−2 ds. On the

other hand, the bound from above comes from the obvious inequality

N∑
i,j=1

aij (x, t)ξiξj ≤ (p − 1)
∫ 1

0
|∇v(s)|p−2 ds |ξ |2, ∀ξ ∈ RN .

From these inequalities, we can take in (4.2)

ω(x, t) =

∫ 1

0
|∇v(s)|p−2 ds and 0 = p − 1

for all (x, t) ∈ C, extended in a nondegenerate way outside of the cylinder C.

(ii) Lower estimate. We want to show that this weight satisfies in any case the conditions
(4.3) and (4.4). First of all, we can bound it from below by terms depending only on
estimates of |∇DλU |, independent of the second term. At all points where ∇DλU 6= 0 we
have ∫ 1

0
|∇DλU + s(∇U −∇DλU )|

p−2 ds = |∇DλU |
p−2

∫ 1

0
|a + sb|p−2 ds,

where

a =
∇DλU

|∇DλU |
, b =

∇U −∇DλU

|∇DλU |
,

hence a is a unit vector. By performing a rotation if necessary, we may assume that a =
e1, the first vector of the canonical base of RN , hence we can work with scalar a = 1 and
b. But it is easy to see that if we define

f (b) =

∫ 1

0
|1+ sb|p−2 ds,

which admits a positive minimum as a function of b. We conclude that the matrix
{aij (x, t)}i,j is bounded from below by C|∇DλU (x, t)|

p−2 near (x0, t0). Hence the worse
possible degeneracy order at (x0, t0) is that given by the dipole solution |∇DλU (x, t)|

p−2.
We deduce that, in order to check the conditions (4.3) and (4.4) on ω(x, t), it is sufficient
if they hold for |∇DλU |

p−2.
On the other hand, using the fact that DλU is a radial solution of the p-Laplacian

equation and the correspondence relations between radial solutions of the p-Laplacian
equation and the porous medium equation developed in [13], together with the behaviour
of self-similar profiles of the porous medium equation near a point of change of sign given
in [12], we obtain

|∇DλU (x, t)| ∼ C|x − x0|
1/(p−1)

near (x0, t0), hence the maximal possible spatial degeneracy of (4.6) around (x0, t0) is
like |x − x0|

(p−2)/(p−1).
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(iii) Ap conditions. We are now ready to check the conditions. The only problem is the
behaviour of the last integrals near the line of degeneracy, x(t) = x0 (t/t0)

β . It is easy to
see that the maximal degeneracy with respect to the time variable near (x0, t0) is like

c|tβ − t
β

0 |
(p−2)/(p−1)

∼ ct
β

0 |(t/t0)
β
− 1|(p−2)/(p−1)

∼ cβt
β

0 (t − t0)
(p−2)/(p−1).

But a weight like �(x) = |x|(p−2)/(p−1) satisfies condition (4.3) and a time weight like
c|t−t0|

(p−2)/(p−1) satisfies (4.4). Thus, the Harnack inequality ([6, Theorem 3.4]) applies
and shows that infC w > 0, where C is a small special cylinder around (x0, t0), of type
{|x − x0| < r} × {t0 − k(x0, t0, r) < t < t0} (see [6] for details), in particular there is
no contact of type (b) between U and DλU at times before t0. Hence, we cannot have a
contact of type (b) at any time (except in the trivial case when U ≡ DλU , which we are
assuming not to hold). Consequently, there exists a time t0 > 0 such that we have no
contact of type (b) at (x0, t0).

(iv) Barrier argument. We end the proof by showing that there is no contact of type
(b) at times after t0. Since we have no such contact at (x0, t0), there exists an annulus
r0

1 < |x| < r0
2 , containing the maximum points of DλU at t0 (i.e. with |x| = |x0|), such

that in this annulus we have a uniformly strict inequality U(x, t0) < DλU (x, t0). Consider
t ∈ [t0, T ], with T < ∞ arbitrary, and denote by r(t) = r0 (t/t0)

β the absolute value
of the spatial maximum points of DλU (·, t). Let 0 < r1(t) < r(t) < r2(t) be such that
r1(t0) = r

0
1 , r2(t0) = r0

2 and ri(t) is continuous for t0 ≤ t ≤ T . Since there is no contact
of type (a) for |x| = r1(t) or |x| = r2(t), we have U(x, t) < DλU (x, t) uniformly.
Since the map ε 7→ DλU−ε is uniformly continuous, we find ε > 0 (depending on T )
sufficiently small such that

DλU−ε(x, t) > U(x, t)

for |x| = ri(t), i = 1, 2, t0 < t ≤ T , and for t = t0, r0
1 < |x| < r0

2 , i.e., in the
whole parabolic boundary of a domain in RN+1. Hence, this inequality extends to the
interior at any time t ∈ (t0, T ). In other words, U ≤ DλU−ε in the region t0 ≤ t ≤ T ,
r1(t) < |x| < r2(t), and consequently U lies strictly below DλU . In particular, since
T was arbitrarily large, this shows that a contact of type (b) is impossible after t0. Note
finally that we can take t0 as small as we please. ut

4.2. Separation alternative

We continue here the effort to prove that every U ∈ ω(u) is in fact a dipole solution.
The proof will depend on whether the strong maximum principle at points of type (b) is
uniform in the following sense.

Lemma 4.3. For any optimal pair (U,DλU ) with U ∈ ω(u), the following alternative
holds: either we have asymptotic separation

inf
t>1, |x|=|x0(t)|

tα(DλU (x, t + τ0)− U(x, t)) > 0, (4.7)

or DλU ∈ ω(U). Moreover, in the latter case DλU ∈ ω(u).
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Proof. Suppose that the infimum in the statement is 0. Then there exists a sequence {tn}
of times such that

lim
n→∞

tαn (DλU (x, tn + τ0)− U(x, tn)) = 0.

Using the rescaling (3.4) with γ = t−1
n , we find that there exists a sequence Un = Ut−1

n
of

rescaled versions of U that converges to a limit U∗ which touches DλU at time t = 1 and
|x| = |x0(1)| (the existence of the limit follows from classical compactness estimates,
see [8]). But from Lemma 4.2 this is not possible, unless U∗ ≡ DλU . This proves the
statement. The fact that DλU ∈ ω(u) follows easily by a standard diagonal argument. ut

Assume now that the strong separation (4.7) does not hold. In this case, we prove:

Lemma 4.4. If DλU ∈ ω(U), then U ≡ DλU . Consequently, any optimal pair reduces in
this case to the dipole solution contained in it.

Proof. Let {uγk } be a subsequence converging to U . We prove first that the family uγk =
Tγku becomes arbitrarily close to DλU for k large, at time t = 1:

Claim. For any ε > 0, there exists k = k(ε) sufficiently large such that uγk = Tγku >
DλU − ε in �(γk) := γ−βk �, at time t = 1, for all k ≥ k(ε).

Proof of the claim. Fix t = 1 and suppose that the claim is false, hence there ex-
ists ε0 > 0, a sequence (kn) going to infinity and xn ∈ � such that uγkn (xn, 1) <
DλU (xn, 1) − ε0. Using the standard compactness estimates and passing to the limit, we
find that there exists a compact set K ⊂ RN \ {0} such that U(x, 1) < DλU (x, 1) − ε0
for all x ∈ K . On the other hand, by hypothesis, there exists a subsequence of rescaled
versions of U converging toDλU . Then, by uniform continuity of the map Tγ , there exists
a first γ0 such that Uγ0(x, 1) + ε0 ≥ DλU (x, 1) in RN and the two functions will touch.
But their contact points are necessarily interior points for DλU , since they are near the
origin and near the free boundaryDλU − ε0 < 0, and this is impossible from Lemmas 4.1
and 4.2 and the fact that Uγ0 ∈ ω(u).

Last argument. We choose k sufficiently large such that DλU (x, 1) ≤ ε for all x ∈
∂�(γk) and k ≥ k(ε). From (1.13), we deduce thatDλU (x, t) ≤ ε for all x ∈ RN \�(γk)
and all t > 1. We then compare uγk and ũ = DλU −ε inQk = �(γk)×[1,∞), where k is
large as in the previous step. Both are solutions of the original p-Laplacian equation (1.1).
Moreover, the claim proved above gives us comparison at t = 1 for any k ≥ k(ε), and the
discussion above shows that ũ ≤ 0 = uγk on ∂�(γk) for all t . It follows from the maxi-
mum principle applied to the original equation that uγk (x, t) ≥ ũ(x, t) = DλU (x, t) − ε
in Qk for all k ≥ k(ε). Passing to the limit in k, we obtain U(x, t) ≥ DλU (x, t) − ε in
Q∗ = (RN \ {0}) × [1,∞) for all U ∈ ω(u). Since U ≤ DλU and ε is arbitrarily small,
we find that U ≡ DλU , as desired. ut

As an immediate consequence, we find that if the strong separation assumption (4.7)
does not hold, all the elements of ω(u) are necessarily dipole solutions with varying
parameters. In the next subsection we essentially treat the complementary case, where
the strong separation holds.
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4.3. The case of strong separation

We now study what happens if the separation assumption (4.7) holds.

Lemma 4.5. Let (U,DλU ) be an optimal pair such that the strong separation assumption
(4.7) holds. Then there exists Ũ ∈ ω(u) with λŨ < λU .

Proof. We start with the easier case where also the free boundaries of U and DλU are
separated. Then we show that the strong separation implies that we arrive at this situation
in any case. We thus divide the proof into three steps.

Step 1. Assume for instance that the free boundaries of U and DλU are separated at
t = t0 > 0. By rescaling we may assume that t0 = 1. Using the separation Lemma 4.2,
we can take ε > 0 sufficiently small such that U(x, 1) ≤ DλU−ε(x, 1) for |x| ≥ x0(t).
We look for a small time advancement τ1(ε) > 0 such that U(x, 1) ≤ DλU−ε/2(x, 1−τ1)

for all x near the origin. In order to find such a τ1, we recall the scaling (1.12) and the
behaviour of the dipole profiles near the origin given by (1.13). It is enough to have
DλU−ε/2(x, 1 − τ1) ≥ DλU (x, 1) for all x ∈ RN with |x| sufficiently small. Comparing
their principal terms, we need

CλU−ε(1− τ1)
−α−β(p−N)/(p−1)(λU − ε/2)p−(p−2)(p−N)/(p−1)

|x|(p−N)/(p−1)

≥ CλU (λU )
p−(p−2)(p−N)/(p−1)

|x|(p−N)/(p−1),

or equivalently,

(1− τ1)
α+β(p−N)/(p−1)

≤
CλU−ε/2

CλU

(
λU − ε/2
λU

)p−(p−2)(p−N)/(p−1)

,

which is the condition that τ1 should satisfy. By possibly decreasing ε, we find τ1(ε) > 0
sufficiently small such that the above condition is satisfied and the free boundaries of
U(x, 1) and DλU−ε/2(x, 1 − τ1) are still separated. Then we easily get U(x, 1) ≤
DλU−ε/2(x, 1− τ1) for all x ∈ RN . By standard comparison, we then find

U(x, t) ≤ DλU−ε/2(x, t − τ1) for x ∈ RN , t > 1.

By rescaling, we obtain

Uγ (x, t) ≤ DλU−ε/2(x, t − τ1/γ ) for x ∈ RN , t > 1,

for any γ > 0. Passing to the limit in γ , we find in this case that ω(U) admitsDλU−ε/2 as
upper bound. Since ω(U) ⊆ ω(u), there exists an element Ũ ∈ ω(u) (in fact any element
of ω(U) is good in this sense) such that λŨ < λU .

Step 2. We will now assume that we are in the situation of a free boundary contact and
that the strong separation assumption (4.7) holds. In that case we consider comparison of
U(x, t) andDλU−ε(x, t+τ0/2) for some ε > 0 in the regionQ+ = {(x, t) : t ≥ 1, |x| ≥
x0(t)}. We choose ε > 0 sufficiently small such that DλU−ε(x, 1 + τ0/2) ≥ U(x, 1),
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ensuring in this way the comparison at our initial time t = 1. The comparison on the
lateral boundary |x| = x0(t) follows from the strong separation (4.7). We conclude that

DλU−ε(x, t + τ0/2) ≥ U(x, t) in Q+,

hence their free boundaries are ordered,

r[U ](t) ≤ r[DλU−ε](t + τ) = c(λU − ε)
σ (t + τ)β

and for large times we get separation of the free boundaries of U and DλU , which leads
us to the previous step.

Step 3. We conclude that the free boundary contact disappears if the separation assump-
tion (4.7) holds, hence we can separate the free boundaries of U andDλU for large times.
After this, we arrive at the case in Step 1, hence the lemma is proved. ut

We remark that in this case we cannot conclude that U ≡ DλU directly, but the result of
Lemma 4.5 will be used in the next section together with new arguments to arrive at that
conclusion.

5. Outer analysis III: Tail analysis and uniqueness

In this section, we prove that ω(u) = {Dλ∗}, finalizing in this way the proof of Theo-
rem 3.1. From the previous analysis, we know that ω(u) contains only dipole solutions
or solutions bounded from above by such dipoles (as follows from the strong separation
alternative treated in the previous section). The main difficulty of proving that this set
reduces in fact to a unique solution (for example the maximal one) is that the functions
uγ could have a long thin tail, i.e. a region where |uγ | ≤ ε is very small, but that region
could be a priori very large. The existence of such a tail makes any comparison argument
difficult, since the supports of the rescaled functions may be much greater than the sup-
ports of their limits. Hence, the analysis we do is based on elimination or reduction of
such a tail.

5.1. Bounds for the tail

In a first step we show that the tail is not larger in the limit than the support of the maximal
dipole Dλ∗ . Denote by rγ (t, θ) = r[uγ ](t, θ) the maximum free boundary radius of uγ
for fixed parameter γ , time t and angle θ ∈ SN−1. Likewise, we let Rλ(t) = r[Dλ](t) =
c(λ, p, d) tβ be the maximum radius for Dλ, which does not depend on θ . We denote
C(t, θ) := lim supγ→∞ rγ (t, θ). With these notations, we prove:

Lemma 5.1. For any t > 0 and θ ∈ SN−1, we have C(t, θ) ≤ Rλ∗(t) = c∗tβ .

Proof. (i) A preliminary consequence of scaling. We first prove that for any t > 0 and
θ ∈ SN−1 fixed, we haveC(t, θ) = C(1, θ)tβ . We can write uγ (x, t) = t−αuγ t (xt−β , 1).



266 Razvan Gabriel Iagar, Juan Luis Vázquez

Since the same family appears in both members, passing to maximal radii we obtain

rγ (t, θ) = rγ t (1, θ) tβ ,

hence, by taking limits, we find C(t, θ) = tβC(1, θ). Below we write C(1, θ) = C for
brevity.

(ii) Argument by contradiction. Suppose that the statement is false and there exist t0 > 0
and θ0 ∈ SN−1 such that C(t0, θ0) > Rλ∗(t0). By the rescaling (i) we may assume that
t0 = 1/2. For simplicity, we take the direction θ0 of maximum C(1/2, θ0) that we con-
sider fixed from now on and write C(t) = C(t, θ0) and rγ (t) = rγ (t, θ0). The plan of the
argument is to show that at time t = 1, we have C(1) ≤ Rλ∗(1), which would contra-
dict the original assumption in view of the power-like formulas C(t, θ) = C(1, θ)tβ and
Rλ∗(t) = c∗t

β .
Arguing by contradiction, suppose that C(1) > Rλ∗(1). Passing to a subsequence,

it follows that, for any ε > 0, there exists k = k(ε) and a subsequence uγk such that
rγk (1) ≥ C(1)− ε > Rλ∗(1) for all k ≥ k(ε).

Some notations: From part (i), it is immediate that C(1/2) = C(1)/2β < C(1). By
decreasing ε > 0 if necessary, we may assume that C(1)− 3ε > C(1/2) and at the same
time C(1) − 3ε > Rλ∗(1). Set C0 := max{C(1/2), Rλ∗(1)} < C(1) − 3ε. We are now
ready for the main calculation.

(iii) Comparison with a travelling wave. Since the extra part of the supports of uγ takes
the form of a thin tail, coming back to the subsequence γk chosen above, we may assume
that for |x| ≥ Rλ∗(t) + ε, t ∈ [1/2, 1] and k ≥ k(ε) large, we have |uγk (x, t)| ≤ ε. In
order to control the length of this tail region, we consider the travelling wave

û(x, t) =

(
p − 2
p − 1

)(p−1)/(p−2)

(ε(t − 1/2)+ ε + C0 − x1)
(p−1)/(p−2)
+ (5.1)

and we compare it with uγk in the region {x1 ≥ C0, t ∈ [1/2, 1]} for k ≥ k(ε). Following
the lines of the proof of Theorem 18.8 in [20] and rotating the argument, we find that
rγk (1) ≤ C0 + 2ε < C(1) − ε, contradiction. Hence the supposition made in part (ii) is
false and C(1) ≤ Rλ∗(1). ut

As an immediate consequence, if {uγl } is a subsequence converging to Dλ∗ (if such a
subsequence exists), we obtain rγl (t, θ)→ Rλ∗(t), since the estimate from below follows
immediately from the locally uniform convergence. We need a convergence result for the
free boundary under more general circumstances.

Lemma 5.2. Let {uγk } be a subsequence converging to U ∈ ω(u) with (U,DλU ) an
optimal pair, λU < λ∗. Then, for all t > 0 and θ ∈ SN−1,

lim
k→∞

rγk (t, θ) = Rλ∗(t).
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Proof. (i) Suppose that convergence from below is false and there exist t0, γ0 > 0 and
some small ε > 0 and τ0 ≥ 0 such that

uγ0(x, t0) ≤ Dλ∗−ε(x, t0 − τ0), x ∈ �(γ0).

By parabolic comparison between the solutions uγ0 and Dλ∗−ε, we find that uγ0(x, t) ≤

Dλ∗−ε(x, t − τ0) for any t > t0, and by inverting the scaling, we have u(x, t) ≤
Dλ∗−ε(x, t − τ0γ0) for any t > t0γ0. It follows that

uγ (x, t) ≤ Dλ∗−ε(x, t − τ0γ0/γ )

for any γ > 0 and t > t0γ0/γ . This contradicts the definition of λ∗, since any limit
U ∈ ω(u) is bounded above by Dλ∗−ε.

(ii) From the uniform convergence to U , for any δ > 0, there exists k = k(δ) large such
that uγk < DλU + δ on supp(DλU ) ∩�(γk) for any k ≥ k(δ). Hence, if

lim inf
k→∞

rγk (t, θ) < Rλ∗(t),

then the situation in the previous paragraph can be realized for some k very large (corre-
sponding to δ small enough). Hence, the limit above should be at least Rλ∗(t). Using also
Lemma 5.1, we conclude that the limit is precisely Rλ∗(t), for any t > 0. ut

5.2. Uniqueness of the limit profile. Final argument

We can now show that Dλ∗ is the unique asymptotic limit. This will be a consequence of
the following

Lemma 5.3. Let (U,DλU ) be an optimal pair. Then necessarily λU = λ∗.

Proof. Suppose not and consider an optimal pair (U,DλU ) with λU < λ∗. Then there
exists a subsequence uγk converging to U . Now, we take up the technique of Lemma
5.1 and we want to compare the solutions uγk with a similar travelling wave as in (5.1).
In this case, we consider t = 1 as starting time, t = 2 as final time and define C0 :=
max{Rλ∗(1), RλU (2)}. Choose ε > 0 so small that C0 < Rλ∗(2)− 3ε. The thin tail exists
now at least for |x| ≥ RλU (t) + ε, k large, t ∈ [1, 2], and in this region we may assume
that |uγk (x, t)| ≤ ε. Then we define û as in (5.1), with our new C0 and ε, and we compare
uγk and û for k ≥ k(ε) sufficiently large. By a similar comparison as in the proof of
Lemma 5.1, we find that rγk (2, θ) ≤ C0 + 2ε < Rλ∗(2)− ε for any k ≥ k(ε) sufficiently
large and θ ∈ SN−1. In conclusion, if there exists a subsequence converging to a limit U
bounded above by a dipole with parameter λU < λ∗, we are able, after a time, to decrease
the tail (uniformly in θ ) with respect to the free boundary of Dλ∗ . But this contradicts the
result of Lemma 5.2. ut

Corollary 5.1. The strong separation alternative obtained in Section 4 is impossible.
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Proof. If we have strong separation between U and DλU = Dλ∗ , then from Lemma 4.5,
there exists an optimal pair (Ũ ,DλŨ ) with parameter λŨ ≤ λ∗ − ε/2, contrary to
Lemma 5.3. ut

It follows that necessarily ω(u) = {Dλ∗} and Theorem 3.1 is finally proved. We also
deduce, as an immediate consequence, that

lim
γ→∞

rγ (t, θ) = Rλ∗(t) (5.2)

for any t > 0, uniformly in θ ∈ SN−1. This implies the convergence of supports and
interfaces of the general solution u to those of Dλ∗ . Indeed, if we introduce the notations

r+(t) = max
x∈0(t)

|x|, r−(t) = min
x∈0(t)

|x|, (5.3)

where 0(t) is the free boundary of the solution u at time t , then from (5.2) and the usual
rescaling, we can state the following:

Corollary 5.2. In the conditions of Theorem 3.1 and with notations of the previous para-
graphs, we have

lim
t→∞

r±(t)

Rλ∗(t)
= 1. (5.4)

Remark. Since F(η) ∼ η(p−N)/(p−1), we see that the dipole solution is a local weak
solution of the p-Laplacian evolution equation in (RN \ {0})× (0,∞) with N < p, in the
sense specified in Definition 1.2, but it is not a weak solution in the sense of Definition 1.1.
Indeed, from the flux condition

lim
η→0

ηN−1
|F ′(η)|p−1

= 0,

we see that if F(η) ∼ ηγ as η → 0, then the self-similar solution whose profile is F(η)
is a weak solution for γ > (p − N)/(p − 1). This shows that the singularity at x = 0 of
the limit function cannot be removed for N < p (as it happens for N > p, see [14]).

6. Inner analysis

The ideas are similar to those in the first part of this study (see [14]). In order to apply the
technique of matched asymptotics, we start by multiplying the solution with the correct
scale in time. Since we want the matching to take place on the curve |x| = δt−β , and
the expected result is a stationary solution, we derive that the correct scale of time is
tα+(p−N)β/(p−1). We set

w̄(x, t) = t
α+

p−N
p−1 βu(x, t). (6.1)

Then w̄ satisfies the equation:

1pw̄ = t
−
(N+1)p−2N

p−1 β

(
tw̄t −

(
α +

p −N

p − 1
β

)
w̄

)
. (6.2)
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Suppose for the moment that the term on the right-hand side of (6.2) tends to 0 as t →∞.
Then the asymptotic limit of w̄ is expected to be a solution of the stationary Dirichlet
problem {

1pv = 0 in �,
v = 0 on ∂�. (6.3)

As is well-known, all the solutions of this elliptic problem tend to infinity with a rate
|x|(p−N)/(p−1) as |x| → ∞ and they have the general form CHp, where Hp is the unique
solution of the problem (6.3) having the additional property

lim
|x|→∞

Hp(x)

|x|(p−N)/(p−1) = 1.

In fact, if� is the exterior of a ball of radius R, this solution isHp(x) = |x|(p−N)/(p−1)
−

R(p−N)/(p−1). In the general case, it is easy to prove the behaviour of Hp stated above,
by comparing it with radial sub- and supersolutions.

We use the method of matched asymptotics (see [14]) in order to find the precise
constant C. From the outer analysis result, we have

lim
t→∞

tα|u(x, t)−Dλ0(x, t)| = 0, (6.4)

uniformly for all x ∈ � with |x| ≥ δtβ , where λ0 is the scaling parameter in (1.12)
corresponding to the limit of u. On the other hand, from our formal deduction we expect
that

lim
t→∞

∣∣∣tαu(x, t)− CHp(x)

tβ(p−N)/(p−1)

∣∣∣ = 0, (6.5)

uniformly for x ∈ � with |x| ≤ δtβ , δ > 0 small. By comparing the two limits on the
curve |x| = δtβ , we obtain

CHp(δt
β)

tβ(p−N)/(p−1) ∼ t
αDλ0(δt

β , t) = Fλ0(δ) as t →∞.

Since the last term of this equivalence is independent of time, by choosing δ sufficiently
small we have Fλ0(δ) ∼ Cλ0δ

(p−N)/(p−1) (recall the notation Cλ from (1.14)). By passing
to the limit formally as δ → 0 and taking into account the behaviour of Hp, we find that
necessarily C = Cλ0 .

In what follows, we will prove rigorously that the inner asymptotic behaviour of the
solution u of (1.1) is given by the separate variable function Cλ0Hp(x)/t

β(p−N)/(p−1).
We use the technique introduced in [14] and based on an optimal elliptic a priori bound
proved also in [14], which we recall in its more general form:

Proposition 6.1. Let � ⊂ RN be a bounded domain, f ∈ C(�) ∩ L∞(�), g ∈ C(∂�)
and u ∈ C1(�) ∩ C(�) be the solution of the Dirichlet problem{

1pu = f in �,
u = g on ∂�. (6.6)
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Then there exists a constant C > 0, independent of the diameter of �, such that

|u| ≤ Cdp/(p−1)(sup
�

|f |)1/(p−1)
+ sup

∂�

|g| in �, (6.7)

where d = diam(�).

We change the scale of time by setting τ = log t and we define

w(x, t) =
w̄(x, t)

tβ(p−N)/(p−1) = t
αu(x, t) = eατu(x, eτ ). (6.8)

Consider the time averages

WT (x, τ ) =
1
T

∫ τ+T

τ

w(x, s) ds.

We first show that the time averages converge, that is:

Proposition 6.2. For any ε > 0 and T > 0, there exists a constant δ = δ(ε, T ) > 0 and
a large time τin = τin(ε, δ, T ) such that for any τ ≥ τin we have∣∣∣∣WT (x, τ )−

Cλ0Hp(x)

tβ(p−N)/(p−1)

∣∣∣∣ ≤ ε (6.9)

for all x with |x| ≤ δeβτ .

Proof. The proof follows closely those of Propositions 2.3 and 3.4 in [14]. From the outer
analysis result, we deduce that for any ε, δ > 0, there exists a time τ0 = τ0(ε, δ) > 0
sufficiently large such that

Fλ0(δ)− ε ≤ w(x, t) ≤ Fλ0 + ε (6.10)

for all τ ≥ τ0 and |x| = δtβ . Denote, as in [14], R(τ) = δeτβ and �τ = � ∩ B(0, R(τ))
and set g = w|∂B(0,R(τ)). Then w satisfies the equation

1pw(x, τ) = e
−τpβ(wτ − αw). (6.11)

We also remark that for τ ≥ τ0 sufficiently large, the solution w(x, τ) is positive inside
�τ , hence it is in C1,α(�τ ) and all the calculations above are justified in the weak sense,
together with the application of Proposition 6.1. We consider the function

8(x, τ) =
1
T

∫ τ+T

τ

w(x, s) ds −
Cλ0Hp(x)

eτβ(p−N)/(p−1) (6.12)

and we want to apply Proposition 6.1 to the function 8 in �τ (regarding τ as a frozen
coefficient for the moment). Then 8 is a weak solution of the elliptic problem1p8 =

1
T

∫ τ+T

τ

e−spβ(ws − αw) ds = f (x, τ ) in �τ ,

8 = 0 on ∂� ∩ ∂�τ , 8 = h on ∂B(0, R(τ)) ∩ ∂�,
(6.13)
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where

h(x, τ ) =
1
T

∫ τ+T

τ

g(x, s) ds −
Cλ0Hp(x)

eτβ(p−N)/(p−1) . (6.14)

By integrating with respect to τ in (6.10), we derive easily that

|h(x, τ )| ≤

∣∣∣∣Fλ0(δ)−
Cλ0Hp(x)

eτβ(p−N)/(p−1)

∣∣∣∣+ ε
for all x ∈ � with |x| = R(τ). But∣∣∣∣Fλ0(δ)−

Cλ0Hp(x)

eτβ(p−N)/(p−1)

∣∣∣∣ ≤ |Fλ0(δ)− Cλ0δ
(p−N)/(p−1)

|

+

∣∣∣∣Cλ0δ
(p−N)/(p−1)

−
Cλ0Hp(x)

eτβ(p−N)/(p−1)

∣∣∣∣
and obviously there exists δ > 0 sufficiently small and τ0 = τ0(ε, δ) > 0 sufficiently
large such that both terms on the right-hand side of the above inequality are less than ε
for τ ≥ τ0. We derive that |h(x, τ )| ≤ 3ε for all τ ≥ τ0 and x ∈ ∂B(0, R(τ)) ∩ ∂�. In
order to estimate |1p(8)|, we perform an integration by parts, as in [14], and obtain

f (x, τ ) =
1
T
e−τpβ(e−Tpβw(x, T + τ)− w(x, τ))

+
1
T
(p − k2)β

∫ τ+T

τ

e−spβw ds, (6.15)

where k2 = α/β is the eigenvalue of the p-Laplace evolution equation corresponding
to the dipole solutions (cf. [13]). Since w is uniformly bounded in ∂�τ by a constant
independent of τ , it is easy to see that w has the same property in the whole �τ . Hence
|f (x, τ )| ≤ Ce−τpβ for all τ ≥ τ0 sufficiently large. Using Proposition 6.1, we have

|8(x, τ)| ≤ Cδp/(p−1)
+ 3ε (6.16)

for all x ∈ �τ and τ ≥ τ0 > 0, with a constant C independent of τ . By choosing δ
sufficiently small, we obtain the estimate (6.9). ut

Passing from the convergence of the time averages to the convergence of w is a standard
thing (see [4]), hence we will only sketch it for the reader’s convenience. We have:

Theorem 6.1. For any ε > 0, there exists δ = δ(ε) > 0 and a sufficiently large time
tin = tin(ε, δ) such that ∣∣∣∣tαu(x, t)− Cλ0Hp(x)

tβ(p−N)/(p−1)

∣∣∣∣ ≤ ε (6.17)

for all t ≥ tin and x ∈ � with |x| ≤ δtβ .
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Proof. We argue by contradiction and suppose that there exists a sequence {xn, τn} such
that

τn→∞,
|xn|

δeτnβ
→ 0, w(xn, τn) ≥

Cλ0Hp(xn)

eτnβ(p−N)/(p−1) + ε

as n→∞. We use the Bénilan–Crandall estimate for solutions of the p-Laplacian equa-
tion (see [2] or [9]), and obtain wτ ≥ −Cw for some constant C > 0. By integrating on
(τn, τn + h), we obtain

w(xn, τn + h) ≥

(
Cλ0Hp(xn)

eτnβ(p−N)/(p−1) + ε

)
e−Ch.

By integrating again over h and performing straightforward calculations, we obtain in the
end

WT (xn, τn) ≥
Cλ0Hp(xn)

eτnβ(p−N)/(p−1) +
ε

2

for T sufficiently small, contradicting Proposition 6.2. ut

7. Global formulation

In this section we gather the results of Theorems 6.1 and 3.1 into a global approximation
result. In order to state it, we have to modify Hp in the outer region, by defining

9(x, t) =

{
Hp(x) if |x| ≤ δtβ ,
Hp(δt

βx/|x|) if |x| ≥ δtβ .
(7.1)

In this way, in the outer region, the inner approximant is made as small as we want. We
are ready to state the global asymptotic behaviour theorem.

Theorem 7.1. Let u be the unique solution of the problem (1.1) in dimension N < p and

V (x, t) = Dλ0(x, t)+ t
−α Cλ09(x, t)

tβ(p−N)/(p−1) , (7.2)

where λ0 and Cλ0 are as in Section 6. Then

lim
t→∞

tα|u(x, t)− V (x, t)| = 0, (7.3)

uniformly for x ∈ �. Moreover, we have

lim
t→∞

t (k2−N)β‖u(x, t)− V (x, t)‖L1(�) = 0, (7.4)

where, as usual, k2 = α/β. Both (7.3) and (7.4) can be extended to the whole class of
solutions with initial data u0 ∈ L

1(�).
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Proof. (i) We work first with compactly supported initial data. Fix ε > 0. We have

tα|u(x, t)− V (x, t)| ≤

∣∣∣∣tαu(x, t)− Cλ09(x, t)

tβ(p−N)/(p−1)

∣∣∣∣+ tαDλ0(x, t).

But tαDλ0(x, t) = Fλ0(xt
−β) and, using the properties of the dipole profile, there exists

δ = δ(ε) > 0 sufficiently small such that tαDλ0(x, t) ≤ ε for |x| ≤ δtβ and δ ≤ δ(ε).
From Theorem 6.1, there exists a time t (ε) > 0 sufficiently large such that the first term
on the right-hand side above is less than ε for t ≥ t (ε) and |x| ≤ δtβ . We obtain (7.3) in
the inner region.

On the other hand, we have

tα|u(x, t)− V (x, t)| ≤ tα|u(x, t)−Dλ0(x, t)| +
Cλ09(x, t)

tβ(p−N)/(p−1) .

For t sufficiently large and |x| ≥ δtβ , the second term on the right-hand side above is less
than 2Cλ0δ

(p−N)/(p−1); indeed, this follows from the behaviour of the stationary solution
Hp near infinity. Hence, there exists δ(ε) > 0 such that this term becomes less than ε for
δ ≤ δ(ε). Using Theorem 3.1 for the first term on the right-hand side, we obtain (7.3) in
the outer region |x| ≥ δtβ .

We also remark that there existsC > 0 such that u(x, t) = V (x, t) = 0 for |x| ≥ Ctβ .
Then, for t ≥ t (ε), we have∫

�

t (k2−N)β |u(x, t)− V (x, t)| dx =

∫
|x|≤Ctβ

t (k2−N)β |u(x, t)− V (x, t)| dx

≤ Ct (k2−N)β t−αεtNβ = Cε,

giving the convergence in the L1 norm. We remark that (7.4) extends easily, by standard
density arguments (see [19]), to the class of solutions with initial data u0 ∈ L

1(�).

(ii) We now prove (7.3) for solutions with initial data u0 ∈ L1(�). The idea, which
appeared already in [20] and [14], is to approximate u0 from below by a compactly sup-
ported initial data ũ0, such that the corresponding solutions satisfy

lim
t→∞

t (k2−N)β‖u(t)− ũ(t)‖L1(�) = 0.

The existence of such an approximation follows from (7.4) and its extension to initial
data in L1(�), already proved. We pass to the renormalized variables and to the scaled
versions ũγ and uγ . Fix r > 0 larger than the radius of the support of Fλ0(η). In the
ball of radius r and time 1/2 < t < 1 we have uniform convergence of ũγ to V (x, t) as
γ → ∞; hence, by the compactness of the orbit uγ , we obtain the same result for the
rescaled version of u. By setting γ = t , we obtain (7.3), uniformly in x ∈ �, |x| ≤ rtβ .
It remains to study the tail of u for |x| ≥ r(t) := rtβ . We do this directly; denote by
�(t) := {x ∈ � : |x| ≥ rtβ} and fix ε > 0. Then there exists a sufficiently large time
t (ε) > 0 such that t (k2−N)β‖u(t)‖L1(�(t)) ≤ ε for any t > t (ε). In order to transform this
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into a uniform convergence, we apply the L1-L∞ smoothing effect (see [21, Chapter 11,
Theorem 11.3]) to obtain

‖u(t)‖L∞(�(t)) ≤ C‖u(t)‖
σ
L1(�(t))

t−α1 ,

where σ = pα1/N and α1 is the exponent of the Barenblatt solution (see (1.6)). Taking
into account the weighted L1-convergence, we deduce that

tα‖u(t)‖L∞(�(t)) ≤ Ct
α−α1‖u(t)‖σ

L1(�(t))
≤ Ctα−α1−σα+Nβσ εσ (7.5)

for any t ≥ t (ε). Using the general relation (1.10) between the exponents, we obtain

α − α1 − σα +Nβσ = α

(
1−

p

N(p − 2)+ p

)
−

N

N(p − 2)+ p
+

pNβ

N(p − 2)+ p

=
N

N(p − 2)+ p
((p − 2)α + pβ − 1) = 0,

hence
tα‖u(t)‖L∞(�(t)) ≤ Cε

σ .

Together with the previous considerations about the region |x| ≤ rtβ , this ends the proof
of (7.3) for solutions with u0 ∈ L

1(�). ut

Remark. The relation (7.4) illustrates the convergence in mass of u to the dipole solu-
tion. Indeed, if we define M(t) to be the mass of the dipole solution at time t , we find

M(t) =

∫
�

t−αFλ0(xt
−β) dx = t−(k2−N)β

∫
t−β�

Fλ0(η) dη. (7.6)

Hence the rate of time t (k2−N)β appearing in (7.4) is the exact decay power of the mass.
Moreover, this improved convergence of the mass allows the application of the smoothing
effect described in detail above.

Overlapping region. It is a region in � where both the inner and outer behaviours hold
at the same time. This happens whenever the two asymptotic profiles tαDλ0(x, t) and
Cλ0Hp(x)/t

β(p−N)/(p−1) are very close. We work in the inner region |x| ≤ δtβ . Then

tαDλ0(x, t) = Fλ0(|x|t
−β) ∼ Cλ0δ

(p−N)/(p−1)

for δ sufficiently small, fixed, and t ≥ t (δ) sufficiently large. On the other hand,

Cλ0Hp(x)

tβ(p−N)/(p−1) =
Cλ0Hp(x)

|x|(p−N)/(p−1) (|x|t
−β)(p−N)/(p−1).

Fix ε > 0; then there exists C = C(ε) > 0 such that, using the properties of Hp stated at
the beginning of Section 4, we have

Cλ0Hp(x)

tβ(p−N)/(p−1) ≤ (1+ ε)δ
(p−N)/(p−1)

for all x ∈ � with C(ε) ≤ |x| ≤ δtβ . By choosing δ small, we obtain an overlapping
region for 1/δ ≤ |x| ≤ δtβ , for δ > 0 sufficiently small and t > 0 sufficiently large. We
illustrate the overlapping region in Figure 4 between the two dashed lines.
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1/δ δ t
β
 

Fig. 4. Overlapping region.

8. Application to the porous medium case

(i) In this part we compare our results to the similar ones for the porous medium equa-
tion, where the critical dimension is n = 2 (note that it is equivalent to take p = 2).
Hence the unique subcritical dimension which makes sense physically is n = 1 (we
make the convention that the dimension for the porous medium equation will be denoted
by n), although in the radially symmetric setting any positive dimension is allowed. The
outer analysis for dimensions n ∈ (1, 2) was performed by Gilding and Goncerzewicz in
[11], using a very different technique, based on comparison principles associated to some
weighted integrals of the solutions (that we do not have in our problem). The asymptotic
behaviour is given by a dipole solution of the porous medium equation, having the general
form

ZC(x, t) = t
−αU(xt−β),

U(η) = ±|η|(2−n)/m
(
C −

m− 1
2(n(m− 1)+ 2)

|η|n+(2−n)/m
)1/(m−1)

+

,
(8.1)

where α = 1/m and β = 1/2m do not depend on the dimension 1 ≤ n < 2. The
form of the profile depends on n, but it is explicit in all cases. So there is no anomalous
phenomenon.

(ii) Our techniques allow for a study of the inner behaviour, not covered in [11]. Since the
adaptation presents no essential difficulties, we only state the final result. First, consider
the solutions of the corresponding stationary problem{

(Hm)xx = 0 in �,
H = 0 on ∂�,
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which are HC(x) = C(x − 1)1/m for any constant C > 0, and fix H(x) = H1(x).
The following result settles the inner behaviour of the solutions of the porous medium
equation in dimension 1.

Theorem. Let u be a solution of the one-dimensional porous medium equation

ut = (u
m−1ux)x

in Q = (1,∞) × (0,∞), with initial data u0 ∈ L
1((1,∞)) and non-negative. Then for

any ε > 0, there exists δ = δ(ε) > 0 sufficiently small and a large time tin > 0 such that∣∣∣∣tum(x, t)− Cm0 (x − 1)
t1/2

∣∣∣∣ ≤ ε
for all t ≥ tin and x ∈ (1, δtβ).

Here, C0 is the constant given by the matching with the outer behaviour given by the
dipole solution (see [11]).

(iii) A different result concerning the porous medium equation can be obtained from
our study using the correspondence relations between the p-Laplacian equation and the
porous medium equation in [13]. Recall also that [3] studies a family of self-similar so-
lutions of the porous medium equation, denoted by U3,λ, which have lap number 2, and
it is proved that they are anomalous. Here λ comes from a scaling similar to (1.12), with
the precise formula

U3,λ(x, t) = λ
2U3(λ

1−mx, t).

We deal here with the exterior Neumann problem on a half line. More precisely:

Proposition. Consider, in dimension n = 1, the solution v of the exterior Neumann
problem  vt = (|v|

m−1v)xx in �× (0,∞),
v(x, 0) = v0(x), ∀x ∈ �,

vx(0, t) = 0, ∀t > 0,

where � = (0,∞) and v0 is a continuous function with only one change of sign on the
positive x axis and with zero total mass, i.e.

∫
R v0(x) dx = 0. Then there exists λ > 0

such that
tα3(v(x, t)− U3,λ(x, t))→ 0 as t →∞

with convergence in L1(R).

The proof is an immediate consequence of the results of the present paper and the fact
that the solutions of the porous medium equation in dimension n = 1 may be obtained
from those of the p-Laplacian equation in dimension N = 1 by differentiation (see [3] or
[13] for more general correspondence relations).
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