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Abstract. We consider a descriptive set-theoretic analog of Kakutani equivalence for Borel auto-
morphisms of Polish spaces. Answering a question of Nadkarni, we show that up to this notion,
there are exactly two aperiodic Borel automorphisms of uncountable Polish spaces. Using this,
we classify all Borel R-flows up to C∞-time-change isomorphism. We then extend the notion of
descriptive Kakutani equivalence to all (not necessarily injective) Borel functions, and provide a
variety of results leading towards a complete classification. The main technical tools are a series of
Glimm–Effros and Dougherty–Jackson–Kechris-style embedding theorems.
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1. Introduction

1.1. Aperiodic automorphisms and R-flows

Suppose that X is a Polish space and f : X → X is Borel. The forward (f -)orbit
of x is given by [x]→f = {f

n(x) : n ∈ N}, and the (f -)orbit of x is given by [x]f =
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⋃
n∈N f

−n([x]→f ). We say that f is periodic if all of its forward orbits are finite, and we
say that f is aperiodic if all of its forward orbits are infinite.

A set A ⊆ X is (f -)complete if it contains (perhaps infinitely many) points of every
orbit. A set A ⊆ X is (f -)recurrent if for all x ∈ A, there exists n ∈ Z+ such that
f n(x) ∈ A. When f is aperiodic, this means exactly that A intersects the forward orbit of
every point of A in an infinite set. The induced transformation associated with a recurrent
set A ⊆ X is the map fA : A→ A given by fA(x) = f n(x), where n ∈ Z+ is least such
that f n(x) ∈ A. It is not difficult to see that if A ⊆ X is a recurrent Borel set, then fA is
Borel.

A set A ⊆ X is a(n) (f -)transversal if it contains exactly one point of every orbit. We
say that f is smooth if it has a Borel transversal. We regard smooth functions as being
descriptive set-theoretically trivial.

We say that Borel functions f : X → X and g : Y → Y are Borel isomorphic, or
f ∼=B g, if there is a Borel isomorphism π : X→ Y such that π◦f = g◦π . All aperiodic,
smooth Borel automorphisms of uncountable Polish spaces are Borel isomorphic. On the
other hand, Clemens [2] has shown that the Borel isomorphism equivalence relation on
non-smooth Borel automorphisms is very complex. Here we consider a natural weakening
of Borel isomorphism.

We say that Borel functions f and g are (descriptively) Kakutani equivalent, or f ≈K
g, if there are complete, recurrent Borel setsA ⊆ X and B ⊆ Y such that fA ∼=B gB . This
notion is primarily of interest for aperiodic Borel functions, as the fact that all periodic
Borel functions are smooth easily implies that the Kakutani equivalence class of a peri-
odic Borel function depends only upon the cardinality of the corresponding set of orbits.
Nadkarni [15] introduced the notion of Kakutani equivalence for Borel automorphisms.
Actually, he required that bothA and B are birecurrent (i.e., recurrent with respect to both
the function and its inverse), but, since only smooth functions have complete Borel sets
which are not birecurrent on any orbit, it is easy to see that his notion is equivalent to ours.
While an elementary argument going back to von Neumann (see §7.18 of [15]) shows that
Kakutani equivalence of Borel automorphisms is indeed an equivalence relation, we do
not know if this generalizes even to two-to-one Borel functions.

Descriptive Kakutani equivalence originates in an ergodic-theoretic notion due to
Kakutani [10], which he conjectured to be trivial. While this conjecture turned out to be
incorrect, the following theorem confirms its descriptive set-theoretic analog, and gives
also an affirmative answer to Nadkarni’s question [15] as to whether all aperiodic, non-
smooth, rank one Borel automorphisms are Kakutani equivalent:

Theorem A. All aperiodic, non-smooth Borel automorphisms of Polish spaces are Kaku-
tani equivalent.

There is also a “continuous” version of Theorem A, but before describing this, it will be
useful to view first Kakutani equivalence in a somewhat different light. Associated with
every orbit [x]f is the quasi-order ≤f on [x]f given by

x ≤f y ⇔ ∃n ∈ N (f n(x) = y).
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It is straightforward to check that f : X→ X is Kakutani equivalent to g : Y → Y if and
only if there are complete, recurrent Borel sets A ⊆ X and B ⊆ Y such that ≤f |A and
≤g|B are Borel isomorphic, in the sense that there is a Borel isomorphism π : A → B

such that x1 ≤f x2 ⇔ π(x1) ≤g π(x2), for all x1, x2 ∈ A.
Suppose now that R acts in a Borel fashion on X, in which case we say also that X is

a Borel R-flow. The (X-)orbit of x is given by [x]R = {r + x : r ∈ R}. Associated with
every orbit [x]R is the quasi-order ≤X on [x]R given by

x1 ≤X x2 ⇔ ∃r ≥ 0 (r + x1 = x2).

We say that a set A ⊆ X is a(n) (X-)transversal if it contains exactly one point of every
orbit, and we say that X is smooth if it has a Borel transversal. The standard example of a
non-smooth Borel R-flow is irrational rotation on the torus. While the Borel isomorphism
class of a free, smooth Borel R-flow depends only upon the cardinality of the correspond-
ing set of orbits, the Borel isomorphism equivalence relation on free, non-smooth Borel
R-flows is again quite complex.

A question dating back to Poincaré is that of determining whether two given compact,
continuous R-flows are topologically time-change isomorphic, in the sense that there is a
homeomorphism of the underlying spacesX and Y which sends≤X to≤Y . The analogous
question can be posed in the purely descriptive set-theoretic setting, where we say that two
free Borel R-flows X and Y are (descriptively) time-change isomorphic if there is a Borel
isomorphism π : X → Y such that x1 ≤X x2 ⇔ π(x1) ≤Y π(x2), for all x1, x2 ∈ X.
By combining Theorem A with Wagh’s theorem [21], we obtain:

Theorem B. All free, non-smooth Borel R-flows on Polish spaces are time-change iso-
morphic.

In fact, it is not difficult to see that the time-change isomorphism can be chosen in such
a way that for each x ∈ X, the map fx : R → R defined implicitly by π(r + x) =
fx(r) + π(x) is C∞. There is also a straightforward extension of the above definition
of time-change isomorphism to all (not necessarily free) Borel R-flows, and the above
theorem then gives rise to a classification of all Borel R-flows.

The notion of C∞-time-change isomorphism makes sense also for free actions of Rd .
Surprisingly, in the measure-theoretic setting, the case d ≥ 2 gives rise to a simpler equiv-
alence relation than the case d = 1. In fact, work of Feldman [5, 6] and Rudolph [17]
implies that there is only one equivalence class when d ≥ 2, while work of Ornstein–
Rudolph–Weiss [16] ensures that there is a continuum of possibilities when d = 1. Al-
though the equivalence relation trivializes in the descriptive set-theoretic setting when
d = 1, the higher dimensional analog remains open:

Problem C. Classify free Borel Rd -actions on Polish spaces up to (C∞-)time-change
isomorphism.

In §2, we prove Theorems A and B (in fact, we prove a recent topological strengthening
of Theorem A due to Boykin–Jackson [1]). Although these are perhaps the most quotable
results of the paper, we actually obtained them some time ago, and have since embarked
upon the project of classifying all Borel functions up to Kakutani equivalence. In the
remainder of the paper, we discuss various results in this direction.
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1.2. Aperiodic functions

We say that f : X → X is Kakutani embeddable into g : Y → Y , or f vK g, if there
is a recurrent Borel set B ⊆ Y such that f ∼=B gB . We say that f and g are Kakutani
bi-embeddable, or f ∼=K g, if f vK g and g vK f .

We say that a set A ⊆ X is (f -)stable if f (A) ⊆ A. We say that f : X → X is
Kakutani reducible to g : Y → Y , or f ≤K g, if there is a complete, stable Borel set
A ⊆ X such that fA vK g. We say that f and g are Kakutani bi-reducible, or f 'K g,
if f ≤K g and g ≤K f .

It is clear that if f ∼=K g, then f 'K g, and a simple Schröder–Bernstein argument
shows that if f 'K g, then f ≈K g (see Lemma 2.13). While the converses hold for
Borel automorphisms, they are not true in general.

Given a property P of Borel functions, we say that f is essentially P if there is a
complete, recurrent Borel set B such that fB has property P . In §2, we also show:

Theorem D. All aperiodic, essentially injective, non-smooth Borel functions on Polish
spaces are Kakutani bi-reducible. Moreover, the class of such functions is closed under
Kakutani equivalence.

The odometer is the isometry of 2N given by

σ(x) =

{
0n1y if x = 1n0y,
0∞ if x = 1∞.

A straightforward Baire category argument shows that the odometer is non-smooth (see
Proposition 3.4). In fact, Shelah–Weiss [18] have shown that a Borel automorphism is
non-smooth if and only if the odometer is Kakutani embeddable into it.

We say that a set A ⊆ X is an (f -)antichain if x1 ≤f x2 ⇒ x1 = x2, for all
x1, x2 ∈ A. We say that f is antichainable if X is the union of countably many Borel
antichains. Note that a Borel injection is antichainable if and only if it is smooth. In §3,
we establish the following generalization of the Shelah–Weiss theorem:

Theorem E. Suppose that f is a Borel function on a Polish space. Then exactly one of
the following holds:

(1) The function f is antichainable.
(2) There is a continuous Kakutani embedding of σ into f .

Given f : X → X and g : Y → Y , let f ⊕ g denote the function on the disjoint union
of X and Y which agrees with f on X and with g on Y . Given properties P and Q of
Borel functions, we say that a function can be decomposed into P and Q parts if it is
Borel isomorphic to a function of the form f ⊕ g, where f has property P and g has
property Q. In §3, we also introduce a two-to-one analog σ2 of the odometer, and we
establish another Shelah–Weiss-style dichotomy theorem:

Theorem F. Suppose that f is a Borel function on a Polish space. Then exactly one of
the following holds:
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(1) The function f can be decomposed into antichainable and essentially injective parts.
(2) There is a continuous Kakutani embedding of σ2 into f .

For each limit ordinal α < ω1, the unilateral shift on αN is given by sα(〈xn〉n∈N) =
〈xn+1〉n∈N. We also use sN to denote sω. Let s(N) denote the restriction of sN to the set
(N)N of injective sequences of natural numbers. As the antichains An = {x ∈ (N)N :
x(0) = n} cover (N)N, it follows that s(N) is antichainable.

We say that f : X→ X is Borel embeddable into g : Y → Y , or f vB g, if there is a
Borel injection π : X→ Y such that π ◦f = g ◦π . In §3, we also establish a maximality
result for the injective shift:

Theorem G. Every antichainable, aperiodic, countable-to-one Borel function on a Pol-
ish space is Borel embeddable into s(N).

In §4, we prove a maximality result for the two-to-one analog of the odometer:

Theorem H. Every aperiodic, countable-to-one Borel function on a Polish space is Ka-
kutani embeddable into σ2.

By combining Theorems F and H, we obtain the following:

Theorem I. All aperiodic, essentially countable-to-one Borel functions on Polish spaces
which cannot be decomposed into antichainable and essentially injective parts are Kaku-
tani bi-reducible. Moreover, the class of such functions is closed under Kakutani equiva-
lence.

We say that a function f is well-founded if there is no sequence 〈xn〉n∈N such that
xn = f (xn+1) for all n ∈ N. It is easy to see that every well-founded Borel function
is antichainable.

For each limit ordinal α < ω1, let s[α] denote the restriction of sα to the set [α]N of
strictly increasing sequences of ordinals strictly less than α. It is clear that these functions
are well-founded. We also use s[N] and [N]N to denote s[ω] and [ω]N. In §5, we show that
s[N] is the minimal obstruction to essential injectivity:

Theorem J. Suppose that f is a Borel function on a Polish space. Then exactly one of
the following holds:

(1) The function f is essentially injective.
(2) There is a continuous Kakutani embedding of s[N] into f .

By combining Theorems E and J, we obtain a characterization of smoothness:

Theorem K. Suppose that f is a Borel function on a Polish space. Then exactly one of
the following holds:

(1) The function f is smooth.
(2) There is a continuous Kakutani embedding of σ or s[N] into f .

We also obtain a maximality result for the increasing shift:
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Theorem L. Suppose that f is an aperiodic Borel function on a Polish space. Then the
following are equivalent:

(1) The function f is both finite-to-one and well-founded.
(2) There is a Borel embedding of f into s[N].
(3) There is a Kakutani embedding of f into s[N].

By combining Theorems J and L, we obtain the following:

Theorem M. All aperiodic, essentially both finite-to-one and well-founded, non-smooth
Borel functions on Polish spaces are Kakutani bi-reducible. Moreover, the class of such
functions is closed under Kakutani equivalence.

Theorem N. All aperiodic Borel functions on Polish spaces which can be decomposed
into an essentially injective, non-smooth part and an essentially both finite-to-one and
well-founded, non-smooth part are Kakutani bi-reducible. Moreover, the class of such
functions is closed under Kakutani equivalence.

In §6, we turn our attention to the class of antichainable, aperiodic Borel functions which
are not essentially finite-to-one. Examples include the functions of the form s[ωα], where
1 < α < ω1 and the notation ωα refers to ordinal exponentiation. In fact, we show
that every aperiodic, countable-to-one, well-founded Borel function is Borel embeddable
into one of these. Although these functions are all Kakutani equivalent, it turns out that
they are strictly≤K -increasing, thus Kakutani bi-reducibility is much finer than Kakutani
equivalence.

We also consider functions whose restrictions to complete, stable Borel sets are ill-
founded. Examples include the restrictions s〈α〉 of sα to the sets of the form

〈α〉N = {x ∈ αN : ∀n ∈ N (x(n) ≤ x(n+ 1)) and ∀n ∈ N ∃m ≥ n (x(m) < x(m+ 1))}.

Again, we see that the functions of the form s〈ωα〉, where 1 < α < ω1, are strictly ≤K -
increasing, and that every aperiodic, countable-to-one Borel function in a natural subclass
of the antichainable functions is Borel embeddable into one of these.

The product of functions f : X→ X and g : Y → Y is the function f ×g : X×Y →
X × Y given by (f × g)(x, y) = (f (x), g(y)). We have thus far been unable to produce
an aperiodic Borel function which lies strictly ≤K -between s[N] and s[N] × s(N). In §6,
we show that Kakutani equivalence of antichainable, aperiodic, countable-to-one Borel
functions trivializes above the latter:

Theorem O. All antichainable, aperiodic, essentially countable-to-one Borel functions
on Polish spaces to which s[N] × s(N) is Kakutani reducible are Kakutani equivalent.
Moreover, the class of such functions is closed under Kakutani bi-reducibility.

Theorem P. All aperiodic, essentially countable-to-one Borel functions on Polish spaces
which can be decomposed into an antichainable part to which s[N] × s(N) is Kakutani re-
ducible and an essentially injective, non-smooth part are Kakutani equivalent. Moreover,
the class of such functions is closed under Kakutani bi-reducibility.
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In §7, we consider the remaining gap in our knowledge of Kakutani equivalence of ape-
riodic, countable-to-one Borel functions:

Theorem Q. Suppose that X is a Polish space and f : X → X is an aperiodic, es-
sentially countable-to-one, non-smooth Borel function on a Polish space which is not
Kakutani equivalent to one of the following functions:

(1) The odometer σ .
(2) The increasing shift s[N].
(3) The disjoint sum σ ⊕ s[N].
(4) The 2-to-1 analog of the odometer σ2.
(5) The injective shift s(N).
(6) The disjoint sum σ ⊕ s(N).

Then f can be decomposed into a part which is essentially injective and a part which is
essentially strictly ≤K -between s[N] and s[N] × s(N).

It is tempting to conjecture that there are no Borel functions which are strictly ≤K -
between s[N] and s[N] × s(N), from which it follows that Kakutani equivalence of ape-
riodic, countable-to-one Borel functions on uncountable Polish spaces is an equivalence
relation with exactly seven classes (see Proposition 7.4). This conjecture, in turn, is a
consequence of:

Conjecture R. Suppose that f is an aperiodic, countable-to-one, well-founded Borel
function on a Polish space. Then exactly one of the following holds:

(1) The function f is essentially finite-to-one.
(2) There is a Kakutani reduction of s[N] × s(N) to f .

smooth

σ s[N]

σ⊕s[N]

s(N)

σ⊕s(N)

σ2

Fig. 1. Kakutani equivalence of countable-to-one Borel functions.

1.3. Notation

We gather here various notation for future reference. Suppose that X and Y are Polish
spaces, f : X→ X, and g : Y → Y .
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• The functions f and g are Borel isomorphic, or f ∼=B g, if there is a Borel isomorphism
π : X→ Y such that π ◦ f = g ◦ π .
• The function f is Borel embeddable into the function g, or f vB g, if there is a stable

Borel set B ⊆ Y such that f ∼=B gB .
• The function f is Kakutani embeddable into the function g, or f vK g, if there is a

recurrent Borel set B ⊆ Y such that f ∼=B gB .
• The functions f and g are Kakutani bi-embeddable, or f ∼=K g, if f vK g and
g vK f .
• The function f is Kakutani reducible to the function g, or f ≤K g, if there is a com-

plete, stable Borel set A ⊆ X such that fA vK g.
• The functions f and g are Kakutani bi-reducible, or f 'K g, if f ≤K g and g ≤K f .
• The function f is Kakutani equivalent to the function g, or f ≈K g, if there are

complete, recurrent Borel sets A ⊆ X and B ⊆ Y such that fA ∼=B gB .

Clearly vB , vK , and ≤K are quasi-orders, and ∼=B , ∼=K , and 'K are equivalence
relations (this remains open for ≈K ). They are related as follows: f ∼=B g ⇒ f ∼=K g

⇒ f 'K g ⇒ f ≈K g and f vB g ⇒ f vK g ⇒ f ≤K g.
For each limit ordinal α < ω1, the sets [α]N and 〈α〉N are given by

[α]N = {x ∈ αN : ∀n ∈ N (x(n) < x(n+ 1))}

and

〈α〉N = {x ∈ αN : ∀n ∈ N (x(n) ≤ x(n+ 1)) and ∀n ∈ N ∃m ≥ n (x(m) < x(m+ 1))}.

We use sα to denote the unilateral shift on αN, and we use s[α] and s〈α〉 to denote the
restrictions of sα to [α]N and 〈α〉N. We also use sN and s[N] to denote sω and s[ω], and we
use s(N) to denote the restriction of sN to the set (N)N of injective sequences of natural
numbers.

2. Kakutani equivalence of automorphisms and R-flows

In this section, we completely classify aperiodic Borel automorphisms and R-flows up to
Kakutani equivalence and time-change isomorphism.

We first mention some basic facts concerning smooth functions. Suppose that f :
X→ X and A ⊆ X. The forward (f -)saturation of A is given by [A]→f =

⋃
n∈N f

n(A),
and the (f -)saturation of A is given by [A]f =

⋃
n∈N f

−n([A]→f ). If A is a recur-
rent Borel set, then [A]f =

⋃
n∈N f

−n(A), thus [A]f is also Borel. We say that A is
(f -)invariant if A = f−1(A), or equivalently, if A = [A]f .

Proposition 2.1. Suppose that X is a Polish space, f : X → X is a smooth Borel
function, and B ⊆ X is a recurrent Borel set. Then fB is smooth.

Proof. A partial (f -)transversal is a set which intersects every orbit in at most one point.
Note that ifA is a Borel partial transversal, then the non-negative powers of f are injective
on A, so each of the sets f n(A) is Borel (see, for example, Theorem 15.1 of [11]), thus
so too is [A]f .
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Fix a Borel transversal A of f . Then the sets An = f n(A) ∩ B are Borel partial
fB -transversals whose union intersects every fB -orbit. It follows that the set

⋃
n∈NAn \⋃

m<n[Am]f is a Borel transversal of fB , thus fB is smooth. ut

Proposition 2.2. All aperiodic, smooth Borel functions on Polish spaces with the same
number of orbits are Kakutani bi-reducible. Moreover, the class of aperiodic, smooth
Borel functions on Polish spaces with a given number of orbits is closed under Kakutani
equivalence.

Proof. Suppose that X and Y are Polish spaces and f : X → X and g : Y → Y are
aperiodic, smooth Borel functions with the same number of orbits. Fix Borel transversals
A ⊆ X and B ⊆ Y of f and g. As |A| = |B|, there is a Borel isomorphism φ : A→ B

(see, for example, Theorem 15.6 of [11]). For each x ∈ [A]→f , let n(x) denote the unique
natural number n such that x ∈ f n(A), and define ψ : [A]→f → A by ψ(x) = y ⇔

x = f n(x)(y). Clearly ψ is Borel (see, for example, Theorem 14.12 of [11]), so the map
π : [A]→f → Y given by π(x) = gn(x) ◦φ ◦ψ(x) is a Borel isomorphism of f |[A]→f and
g|[B]→g , thus f 'K g.

Suppose now that f and g are Kakutani equivalent aperiodic Borel functions on Polish
spaces. It is clear that f and g have the same number of orbits. Fix complete, recurrent
Borel sets A and B such that fA ∼=B gB . Fix a Borel isomorphism π of fA and gB . If g is
smooth, then Proposition 2.1 ensures that there is a Borel gB -transversal C. Then π−1(C)

is a Borel f -transversal, thus f is smooth. ut

Remark 2.3. A similar argument shows that if f and g are aperiodic, smooth Borel
automorphisms of Polish spaces with the same number of orbits, then f ∼=B g.

Of course, the difficult part of our task is to understand Kakutani embeddability of
non-smooth Borel automorphisms. A measure onX is (f -)ergodic if every invariant Borel
set is null or conull. Shelah–Weiss [18] have shown that every non-smooth Borel auto-
morphism has an atomless, ergodic probability measure. The technical result from which
their theorem was obtained can be rephrased as follows:

Theorem 2.4 (Shelah–Weiss). The odometer is continuously Kakutani embeddable into
every non-smooth Borel automorphism of a Polish space.

That is, the odometer is vK -minimal among all non-smooth Borel automorphisms. By
modifying the construction from the proof of Theorem 7.1 of [3], we have shown that
the odometer is also maximal. Rather than give our original argument here, we will show
instead a topological strengthening which has been subsequently obtained by Boykin–
Jackson (a sketch of their proof appears in [1]).

Remark 2.5. Given a Polish space X and a non-smooth Borel function f : X → X, it
will sometimes be useful to isolate an invariant Borel set B ⊆ X on which f is smooth
and has uncountably many orbits. Although Silver’s theorem [19] implies that this can
be done, it seems worth noting that we can also obtain the desired fact as a corollary
of the observation that there is such a set for the odometer, along with Theorems 2.4
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and 5.5. Moreover, in the special case that f is injective, the latter theorem is unnecessary.
Alternatively, in the special case that f is countable-to-one (which is all that we require),
the desired fact can also be obtained from a fairly straightforward splitting construction.

Suppose that X and Y are Polish spaces and E and F are Borel equivalence relations
on X and Y . A reduction of E to F is a function π : X → Y such that x1Ex2 ⇔

π(x1)Fπ(x2), for all x1, x2 ∈ X. An embedding is an injective reduction. The tail equiv-
alence relation induced by a Borel function f : X→ X is given by

xEt (f )y ⇔ ∃m, n ∈ N (fm(x) = f n(y)).

When f is bijective, this is the usual orbit equivalence relation of f . The aperiodic part
of f is given by Aper(f ) = {x ∈ X : |[x]→f | = ℵ0}. It is straightforward to check that
Aper(f ) is Borel and f |(X \ Aper(f )) is smooth.

Theorem 2.6 (Boykin–Jackson). Suppose that X is a zero-dimensional Polish space
and f : X → X is a homeomorphism. Then there is a continuous embedding of Et (f )
into Et (σ ) whose restriction to the aperiodic part of f is a Kakutani embedding.

Proof. Fix an enumeration 〈Uj 〉j∈N of an algebra of clopen sets which separates points
of X, and set Uij = Uj \

⋃
0<k<2i+1 f−k(Uj ). Put Vi0 = Wi0 = ∅, and given Vij and

Vi′(j+1), for i′ < i, define

Wi(j+1) =
⋃

0<k<2i+1

f−k(Vij ) ∪
⋃

0<k<2i+1

f k(Vij ) ∪
⋃
i′<i

Vi′(j+1),

Vi(j+1) = Vij ∪ (Uij \Wi(j+1)).

It is clear that Vij ⊆ Vi(j+1) for all i, j ∈ N, and this easily implies that Wij ⊆ Wi(j+1)
for all i, j ∈ N. It is also clear that for all j ∈ N, the sets Vij are pairwise disjoint, thus
so too are the sets Vi =

⋃
j∈N Vij . Define Wi =

⋃
j∈NWij .

We say that a set B ⊆ X is k-discrete if f i(B) ∩ f j (B) = ∅ for all i < j < k.

Lemma 2.7. The set Vi is a maximal 2i+1-discrete subset of X \Wi .

Proof. A straightforward induction using the facts that Uij is 2i+1-discrete and⋃
0<k<2i+1 f−k(Vij ) ∪

⋃
0<k<2i+1 f k(Vij ) ⊆ Wi(j+1) shows that Vij is 2i+1-discrete,

thus so too is Vi . Another straightforward induction using this fact then shows that
Vij ∩ Wij = ∅, thus Vi ∩ Wi = ∅. To see that Vi is maximal, suppose that Vi ∪ {x}
is a 2i+1-discrete subset of X \Wi , fix j ∈ N such that {x} = Uj ∩ {f k(x)}k<2i+1 , and
observe that x ∈ Uij \Wi ⊆ Uij \Wi(j+1) ⊆ Vi(j+1) ⊆ Vi . ut

Lemma 2.8. Suppose that |[x]f | ≥ 2i+1. Then x ∈ Vi ∪ Wi and there exists 0 < k <

3 · 2i+1 such that f−k(x) ∈ Vi .

Proof. To see that x ∈ Vi ∪ Wi , fix j ∈ N such that {x} = Uj ∩ {f
k(x)}k<2i+1 , and

observe that x ∈ Uij , thus x ∈ Vi(j+1) ∪Wi(j+1) ⊆ Vi ∪Wi .
Now set I = {f−l(x) : 2i+1

≤ l < 2 · 2i+1
}. Lemma 2.7 implies that |I ∩ Vi′ | ≤

2i+1/2i
′
+1
= 2i−i

′

for all i′ ≤ i, so |I ∩
⋃
i′<i Vi′ | ≤

∑
i′<i 2i−i

′

=
∑

1≤i′≤i 2i
′

< 2i+1,
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thus there exists 2i+1
≤ l < 2 · 2i+1 such that f−l(x) /∈

⋃
i′<i Vi′ . By Lemma 2.7, there

exists m < 2i+1 such that f−(l±m)(x) ∈ Vi , so k = l ±m is as desired. ut

For i, j ∈ N and k < 3 · 2i+1, define Vijk ⊆ Vij by

Vijk = {x ∈ Vij : ∀0 < i < k (f i(x) ∈ Wij ) and f k(x) ∈ Vij }.

For l < k, put Xijkl = f l(Vijk). Set Xijk =
⋃
l<k Xijkl and Xij =

⋃
k<3·2i+1 Xijk ,

and for x ∈ Xij , let kij (x) and lij (x) denote the unique natural numbers such that x ∈
Xijkij (x)lij (x). For x ∈

⋃
i≤j Xij , let ij (x) denote the largest i ≤ j such that x ∈ Xij ,

and set dj (x) = lij (x)j (x). We also put dj (x) = ij (x) = 0 for x /∈
⋃
i≤j Xij . Define

fj : X→ X by fj (x) = f−dj (x)(x).

Lemma 2.9. Suppose that n ∈ N and x ∈ X. Then there exists j0 ∈ N such that fj (x) =
fj ◦ f

n(x) for all j ≥ j0.

Proof. Suppose first that [x]f is finite. Clearly we can assume that |[x]f | ≥ 2, in which
case Lemma 2.7 ensures that there is a largest i ∈ N such that Vi ∩ [x]f 6= ∅. Then
|Vi ∩ [x]f | = 1, since otherwise Lemma 2.7 implies that |[x]f | ≥ 2i+2, and Lemma 2.8
then ensures that Vi+1 ∩ [x]f 6= ∅, which contradicts our choice of i. Lemma 2.7 implies
that |[x]f | ≥ 2i+1, so Lemma 2.8 ensures that [x]f ⊆ Vi ∪ Wi . Fix j0 ∈ N such that
[x]f ⊆ Vij0 ∪ Wij0 , and observe that if j ≥ j0, then [x]f ⊆ Xij , so ij |[x]f is constant
with value i, thus fj |[x]f is constant with value the unique point of Vi∩[x]f . In particular,
it follows that fj (x) = fj ◦ f n(x).

Suppose now that [x]f is infinite. As the sets Vi are pairwise disjoint, there exists
i0 ∈ N such that x, f (x), . . . , f n(x) /∈

⋃
i≥i0

Vi . By Lemma 2.8, there exists k <

3·2i0+1
−n least such that f−k(x) ∈ Vi0 . As Lemma 2.8 also ensures that [x]f ⊆ Vi0∪Wi0 ,

there exists j0 ∈ N such that f l−k(x) ∈ Vi0j0 ∪Wi0j0 for all l < 3 · 2i0+1. If j ≥ j0, then
ij (x), ij ◦ f

n(x) ≥ i0, so ij (x) = ij ◦ f n(x), thus fj (x) = fj ◦ f n(x). ut

We are now ready to describe the embedding. Let x(i) denote χUi (x), and let x|k de-
note

⊕
i<k x(i), where

⊕
denotes concatenation (and we abuse notation by identifying

sequences of length one with their single entry).
Define φj : X → 2j (3·2

j+1) by φj (x) =
⊕

k<3·2j+1 f k ◦ fj (x)|j. The strings φj (x)
simply code up larger and larger pieces of [x]f . Note, however, that [x]f cannot be recov-
ered from these pieces alone, as the relevant offsets are also required. These offsets are
coded up by the maps ψj : X→ 2j+5 given by

ψj (x) = b(dj+1(x)− dj (x)+ 3 · 2j+1)|(j + 5),

where b(i) = σ i(0∞) denotes the reverse base 2 representation of i. We claim that the
map π : X → 2N given by π(x) =

⊕
j∈N φj (x)ψj (x) is as desired. Before we check

this, it will be convenient to describe first ≤σ in a somewhat different fashion.
The reverse lexicographic ordering of 2n is given by

s ≤0 t ⇔ (s = t or s ◦ δ(s, t) < t ◦ δ(s, t)),
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[fj+1(x)](0)
[fj+1(x)](1)

...

[fj+1(x)](j−1)

...

· · ·

[fj (x)](0)
[fj (x)](1)

...

[fj (x)](j−1)

...

· · ·

x(0)
x(1)

...

x(j−1)

...

· · ·

[f 3·2j+1
−1
◦fj (x)](0)

[f 3·2j+1
−1
◦fj (x)](1)
...

[f 3·2j+1
−1
◦fj (x)](j−1)

...

φj (x)

︷ ︸︸ ︷dj+1(x)−dj (x)

Fig. 2. φj (x) approximates [x]f and ψj (x) codes the offset.

where δ(s, t) is the largest m < n for which s(m) 6= t (m). We define ≤0 on 2N by

x ≤0 y ⇔ ∃n ∈ N (x|n ≤0 y|n and ∀m ≥ n (x(m) = y(m))).

Define also E0 on 2N by xE0y ⇔ ∃n ∈ N ∀m ≥ n (x(m) = y(m)). A straightfor-
ward induction shows that (E0,≤0) and (Et (σ ),≤σ ) agree off the eventually constant
sequences, and a casual inspection of the construction of π reveals that no point of its
range is eventually constant, so it only remains to show:

(1) If xEt (f )y, then π(x)E0π(y).
(2) If x <f y, then π(x) <0 π(y).
(3) If π(x)E0π(y), then xEt (f )y.

To see (1), appeal to Lemma 2.9 to find j0 ∈ N sufficiently large that fj (x) = fj (y)
for all j ≥ j0, and observe that φj (x) = φj (y) and ψj (x) = ψj (y), for all j ≥ j0, thus
π(x)E0π(y).

To see (2), appeal to Lemma 2.9 to find j0 ∈ N least such that fj (x) = fj (y) for
all j ≥ j0. Then j0 > 0 and f−dj0−1(x)(x) <f f

−dj0−1(y)(y), so dj0(x) − dj0−1(x) <

dj0(y) − dj0−1(y), thus ψj0−1(x) <0 ψj0−1(y). As φj (x) = φj (y) and ψj (x) = ψj (y),
for all j ≥ j0, it follows that π(x) <0 π(y).

To see (3), suppose that φj (x) = φj (y) and ψj (x) = ψj (y), for all j ≥ j0, and set
i = dj0(x) − dj0(y). A straightforward induction shows that i = dj (x) − dj (y) for all
j ≥ j0. Identifying φj (x) and φj (y) with the corresponding elements of (2j )3·2

j+1
, it

follows that if j ≥ j0, then

x|j = f dj (x) ◦ fj (x)|j = [φj (x)](dj (x)) = [φj (y)](dj (y)+ i) = f dj (y)+i ◦ fj (y)|j

= f i(y)|j,

so x = f i(y), thus xEt (f )y. ut

By combining Theorems 2.4 and 2.6, we obtain a still stronger result:
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Theorem 2.10 (Boykin–Jackson). Suppose that X and Y are Polish spaces, X is zero-
dimensional, f : X → X is a homeomorphism, and g : Y → Y is a non-smooth
Borel automorphism. Then there is a continuous embedding of Et (f ) into Et (g) whose
restriction to the aperiodic part of f is a Kakutani embedding.

Proof. The most natural proof of Theorem 2.4 first produces a continuous function φ :
2N
→ Y such that x ≤0 y ⇔ φ(x) ≤g φ(y), for all x, y ∈ 2N (in §3, we shall see

how to accomplish such tasks in a somewhat more general setting). As the image of the
embedding ψ : X → 2N produced by the proof of Theorem 2.6 avoids the eventually
constant sequences, it follows that the map π = φ ◦ ψ is as desired. ut

As a corollary, we now have the following fact (which we obtained some time before the
more detailed analysis of Boykin–Jackson [1] was known):

Theorem 2.11. There are exactly two Kakutani bi-embeddability classes of aperiodic
Borel automorphisms of uncountable Polish spaces. In order of Kakutani embeddability,
these are:

(1) The aperiodic, smooth Borel automorphisms.
(2) The aperiodic, non-smooth Borel automorphisms.

Proof. It is enough to show that if X and Y are Polish spaces, f : X→ X is an aperiodic
Borel automorphism, and g : Y → Y is a non-smooth Borel automorphism, then f vK g.
By standard change of topology results (see, for example, §13 of [11]), we can assume
that X is zero-dimensional and f is a homeomorphism, and Theorem 2.10 then ensures
that f vK g. ut

This brings us to the primary result of this section:

Theorem 2.12. Up to Kakutani equivalence, there are exactly two aperiodic Borel auto-
morphisms of uncountable Polish spaces.

Proof. We begin with the following general fact:

Lemma 2.13. Suppose that X and Y are Polish spaces, f : X → X and g : Y → Y

are Borel functions, and A ⊆ X and B ⊆ Y are complete, recurrent Borel sets such that
fA vK g and gB vK f . Then f ≈K g.

Proof. Fix Kakutani embeddings φ of fA into g and ψ of gB into f . We proceed via a
standard Schröder–Bernstein argument.

Set C0 = X \ [ψ(B)]f , and recursively define Dn = [φ(A ∩ Cn)]g and Cn+1 =

[ψ(B ∩Dn)]f . Setting C =
⋃
n∈N Cn andD =

⋃
n∈NDn, it follows that φ is a Kakutani

embedding of fA∩C onto a gD-complete set.
To see that ψ is a Kakutani embedding of gB\D onto an fX\C-complete set, observe

that [ψ(B \D)]f = [ψ(B)]f \ [ψ(B ∩D)]f , since ψ is a Kakutani embedding and D is
g-invariant, and

[ψ(B)]f \
⋃
n∈N

[ψ(B ∩Dn)]f = (X \ C0) \
⋃
n∈N

Cn+1 = X \ C.
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fA∩C gD

fX\C gB\D

φ

ψ

Fig. 3. A witness to the Kakutani equivalence of f and g.

Set C′ = (A ∩ C) ∪ ψ(B \ D) and D′ = φ(A ∩ C) ∪ (B \ D), and observe that
φ|(A ∩ C)⊕ ψ−1

|ψ(B \D) is a Borel isomorphism of fC′ and gD′ , thus f ≈K g. ut

The desired result clearly follows from Theorem 2.11 and Lemma 2.13. ut

We can describe also the Kakutani equivalence class of the non-smooth Borel automor-
phisms within the class of all aperiodic Borel functions:

Theorem 2.14. All aperiodic, essentially injective, non-smooth Borel functions on Polish
spaces are Kakutani bi-reducible. Moreover, the class of such functions is closed under
Kakutani equivalence.

Proof. Suppose first that X and Y are Polish spaces and f : X → X and g : Y → Y

are aperiodic, essentially injective, non-smooth Borel functions. Fix a complete, recur-
rent Borel set A ⊆ X such that fA is injective. A straightforward induction shows that⋃
i≤n f

i(A) is a recurrent Borel set whose induced transformation is injective, thus [A]→f
is a stable Borel set whose induced transformation is injective. By replacing A with its
forward saturation, we can therefore assume that A is stable. Similarly, there is a com-
plete, stable Borel set B ⊆ Y such that gB is injective. By throwing out invariant Borel
sets on which f and g are smooth and have uncountably many orbits, we can assume that
fA is a Borel automorphism of A and gB is a Borel automorphism of B. Then fA ∼=K gB ,
by Theorem 2.11.

Suppose now that f and g are Kakutani equivalent aperiodic Borel functions on Pol-
ish spaces. If g is non-smooth, then Proposition 2.2 ensures that f is non-smooth. If g
is essentially injective, then there is a g-complete, stable Borel set whose induced trans-
formation is injective. As such sets can be pulled back through Kakutani embeddings, it
follows that f is essentially injective. ut

In light of the proof of Theorem 2.12, it is natural to ask, when given two aperiodic,
non-smooth Borel automorphisms, whether there is necessarily a Kakutani embedding
of one onto a complete set of the other. Dougherty–Jackson–Kechris [3] have shown
the weakening of Theorem 2.11 where Kakutani embeddability of f into g is replaced
with Borel embeddability of Et (f ) into Et (g). In fact, the analogous question for Borel
embeddability has a positive answer:
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Proposition 2.15. Suppose that f and g are aperiodic, countable-to-one, non-smooth
Borel functions on Polish spaces. Then at least one ofEt (f ) orEt (g) is Borel embeddable
onto a complete set of the other.

Proof. Suppose that X is a Polish space and E is a countable Borel equivalence relation
on X. The (E-)saturation of a set B ⊆ X is given by [B]E = {x ∈ X : ∃y ∈ B (xEy)}.
The Lusin–Novikov uniformization theorem (see, for example, Theorem 18.10 of [11])
implies that saturations of Borel sets are Borel. A set B ⊆ X is (E-)invariant if B =
[B]E , and a measure on X is (E-)ergodic if every invariant Borel subset of X is null or
conull. A measure on X is (E-)invariant if every Borel automorphism of X whose graph
is contained in E is measure preserving.

We use EI(E) to denote the set of ergodic, invariant probability measures on X. The
Farrell–Varadarajan uniform ergodic decomposition theorem [4, 20] ensures that EI(E)
is a Borel subset of the Polish space of all probability measures on X, thus |EI(E)| ∈
{0, 1, . . . ,ℵ0, c} (see, for example, Theorem 13.6 of [11]).

A transversal of E is a set which intersects every E-class in exactly one point, and
a set is (E-)complete if it intersects every E-class in at least one point. We say that E is
smooth if it has a Borel transversal, and we say that E is aperiodic if all of its equivalence
classes are infinite.

Lemma 2.16. Suppose thatX is a Polish space,E is an aperiodic, non-smooth countable
Borel equivalence relation on X, |EI(E)| = κ , and λ ∈ {0, 1, . . . ,ℵ0, c}. Then there is a
complete Borel set D ⊆ X such that |EI(E|D)| = κ + λ and E|D is aperiodic.

Proof. By the Harrington–Kechris–Louveau theorem [8], there is a continuous embed-
ding φ of E0 into E. Define ψ : 2N

× 2N
→ 2N by ψ(x, y) =

⊕
n∈N(x|n) ⊕ y(n),

and observe that for all x ∈ 2N, the function ψx : 2N
→ 2N given by ψx(y) = ψ(x, y)

is an embedding of E0 into itself, thus the well known fact that the usual product mea-
sure on 2N is the unique ergodic, invariant probability measure for E0 implies that its
image under ψx is the unique ergodic, invariant probability measure for E0|ψx(2N). Fix
a Borel set A ⊆ 2N of cardinality λ, and observe that the restriction of E0 to the set
B = ψ(A × 2N) has λ-many ergodic, invariant probability measures (since the satura-
tions of the sets of the form ψx(2N) are pairwise disjoint), while the restriction of E0 to
[B]E0 has none (since the latter set is null with respect to the usual product measure). Set
C = X\[φ(B)]E andD = C∪φ(B). Then |EI(E|D)| = |EI(E|C)|+|EI(E|φ(B))| =
|EI(E)| + |EI(E0|B)| = κ + λ. ut

By reversing the roles of f and g if necessary, we can assume that Et (f ) admits at least
as many ergodic, invariant probability measures as Et (g). By Lemma 2.16, there is a
complete Borel set B such that Et (g)|B is aperiodic and Et (f ) and Et (g)|B admit the
same number of ergodic, invariant probability measures. It then follows from Corollary
8.2 and Theorem 9.1 of [3] that Et (f ) is Borel isomorphic to Et (g)|B, and any such
isomorphism gives rise to the desired embedding. ut

Nevertheless, we have the following negative answer to our original question:

Proposition 2.17. There is a σ -invariant Borel set B ⊆ 2N such that neither σ |B nor
σ |(2N

\ B) is Kakutani embeddable onto a complete set of the other.
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Proof. Let µ denote the usual product measure on 2N, and note that since µ is the unique
ergodic, invariant probability measure for σ , then for every σ -invariant Borel set B ⊆ 2N,
exactly one of σ |B and σ |(2N

\ B) admits an ergodic, invariant probability measure. We
will arrange things so that σ |B admits such a measure. This guarantees that σ |(2N

\ B)

is not Kakutani embeddable onto a (σ |B)-complete set, since µ could be pulled back
through any such embedding.

Lemma 1.17 of [9] ensures that for each n ∈ Z+, there is a maximal (n · 3n)-discrete
Borel set An ⊆ X. Set A′n =

⋃
i<n σ

i(An), noting that µ(A′n) ≤ 1/3n. Set A = 2N
\⋃

n∈Z+ A
′
n and B = [A]σ . As µ(A) ≥ 1/2, it follows that µ(B) = 1.

Suppose, towards a contradiction, that π : B → 2N
\ B is a Kakutani embedding of

σ |B onto a σ |(2N
\B)-complete set. Then the set A′ = A∪π(A) has large gaps on every

orbit, in the sense that

∀x ∈ 2N
∀m ∈ N ∃n ∈ N (σ n(x), σ n+1(x), . . . , σ n+m(x) 6∈ A′). (†)

However, the fact that A′ is complete ensures that there exist n ∈ N and s ∈ 2n such
that Ns \ A′ is meager, thus so too is the set

⋃
k∈Z σ

k·2n(Ns \ A′). As σ 2n(Ns) = Ns , it
then follows that the set Ns \

⋂
k∈Z σ

k·2n(A′) is meager, so there exists x ∈ Ns such that
σ k·2

n
(x) ∈ A′ for all k ∈ Z, which contradicts (†). ut

Remark 2.18. In fact, there are large collections of Borel automorphisms whose induced
equivalence relations are Borel isomorphic, but for which no automorphism in the collec-
tion is Kakutani embeddable onto a complete set of any of the others. This follows from
the deep results of Ornstein–Rudolph–Weiss [16] on the usual measure-theoretic notion
of Kakutani equivalence.

Next we take care of the second goal of this section:

Theorem 2.19. All free, non-smooth Borel R-flows on Polish spaces are time-change
isomorphic.

Proof. Wagh [21] has shown that every free Borel R-flow X admits a complete Borel set
A ⊆ X which is ≤X-discrete, in the sense that there exists ε > 0 such that t + x /∈ A
for all 0 < t < ε and x ∈ A. Clearly such a set can be modified so as to ensure that
its intersection with each orbit is of type Z, in which case there is an aperiodic Borel
automorphism f : A→ A of the complete set which induces the same partial orderings
of its orbits as does the flow. Suppose now that Y is another free Borel R-flow, and build
a Borel complete set B ⊆ Y and an aperiodic Borel automorphism g : B → B in the
same fashion. If X and Y are non-smooth, then f and g are non-smooth, so Theorem
2.12 implies that f ≈K g, from which it easily follows that X and Y are time-change
isomorphic. ut

Remark 2.20. Suppose that X and Y are Borel R-flows, and set φr(x) = r + x. We say
that X and Y are C∞-time-change isomorphic if there are Borel functions π : X → Y

and f : X × R→ R such that, if we set fx(r) = f (x, r), then:

(1) ∀x ∈ X (fx is an increasing, C∞ function which fixes 0).
(2) ∀x1, x2 ∈ X ∀r ∈ R (x2 = φr(x1)⇔ π(x2) = φfx1 (r)

◦ π(x1)).
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It is not hard to modify the above argument to show that any two free, non-smooth Borel
R-flows are C∞-time-change isomorphic.

Remark 2.21. The notion of C∞-time-change isomorphism applies to all (not neces-
sarily free) Borel R-flows. Using a theorem of D. E. Miller [14], it is not difficult to
classify all Borel R-flows up to C∞-time-change isomorphism. Let Fix(X) denote the set
of x ∈ X for which |[x]R| = 1, and let Per(X) denote the set of x ∈ X \ Fix(X) such that
φr(x) = x for some r > 0. The restriction of the R-flow to Fix(X) ∪ Per(X) is smooth.
Let Aper(X) = X \ (Fix(X) ∪ Per(X)). Then X and Y are C∞-time-change isomorphic
if and only if |Fix(X)| = |Fix(Y )|, |Per(X)| = |Per(Y )|, |Aper(X)| = |Aper(Y )|, and X
is smooth ⇔ Y is smooth.

Finally, we remark that the sorts of results we have obtained in this section break down
if we substantially strengthen the notion of Kakutani equivalence. If we require, for exam-
ple, that the images of our embeddings have bounded gaps, then there are continuum-sized
collections of Borel automorphisms which are incomparable, and the notion of embed-
dability becomes 61

2-complete (in the codes).

3. Dichotomy theorems for generalizations of the odometer

In this section, we prove Glimm–Effros-style dichotomy theorems which characterize the
circumstances under which certain generalizations of the odometer are Kakutani embed-
dable into a given Borel function.

We first describe our generalizations of the odometer. For notational convenience, we
make the usual identification of each natural number d with the set of strictly smaller
natural numbers. We also identify d × 20 with d, and (d × 2n) × 2 with d × 2n+1.
A d-blueprint is a sequence 〈sn〉n∈N ∈

∏
n∈N d × 2n such that:

(1) ∀m, n ∈ N (sm1 6v sn).
(2) ∀s ∈ d × 2<N

∃n ∈ N (s v sn or sn1 v s).

Given such a d-blueprint, setDd,0 = d and Rd,0 = {d}, and recursively defineDd,n, Rd,n
⊆ (d + 1)× 2n by

Dd,n+1 = (Dd,n × 2) ∪ {d1n0} and Rd,n+1 = (Rd,n × 2) ∪ {sn1}.

A straightforward induction ensures that d1n0 /∈ Dd,n×2 (and a straightforward induction
using condition (1) ensures that sn1 /∈ Rd,n × 2). We can therefore recursively define
σd,n : Dd,n→ Rd,n by setting σd,0(c) = d and

σd,n+1(si) =

{
σd,n(s)i if s ∈ Dd,n,
sn1 if si = d1n0.

SetDd =
⋃
n∈N{sx : s ∈ Dd,n and x ∈ 2N

} and Rd =
⋃
n∈N{sx : s ∈ Rd,n and x ∈ 2N

},
and define σd : Dd → Rd by σd(sx) = σd,n(s)x for n ∈ N and s ∈ Dd,n.
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...

d

...

...

d0 s01

d1 ...

...

...

...

d01 s011

d11

d00 s010

d10

s11

Fig. 4. The first three approximations σd,0, σd,1, and σd,2 to σd .

Remark 3.1. A straightforward induction shows that the unique 1-blueprint is given by
sn = 0n+1. The corresponding function σ1 is simply the restriction of the odometer to the
set 2N

\ {1∞}.

Remark 3.2. For d ≥ 2, there are many d-blueprints. Nevertheless, the results of this
section imply that the exact choice of blueprint (or even the choice of d ≥ 2) does not
affect the Kakutani bi-embeddability class of σd . This is the reason we do not bother to
include the d-blueprint we have in mind in our notation for σd .

We also use E0 to denote the analogous equivalence relation on (d + 1)× 2N.

Proposition 3.3. The tail equivalence relation induced by σd is E0.

Proof. It is clear that Et (σd) ⊆ E0. To see that E0 ⊆ Et (σd), note first that by a straight-
forward induction, for each n ∈ N and s, t ∈ (d + 1)× 2n there exist j, k ∈ N such that
σ
j
d,n(s) = σ

k
d,n(t) = d1n. Suppose now that xE0y, and fix n ∈ N such that x(m) = y(m)

for all m > n, as well as j, k ∈ N such that σ jd,n(x|(n + 1)) = σ kd,n(y|(n + 1)). Then

σ
j
d (x) = σ

k
d (y), thus xEt (σd)y. ut

Proposition 3.4. Suppose that B ⊆ (d + 1) × 2N is a non-meager Borel set. Then B is
not a σd -antichain.

Proof. Fix n ∈ N and s ∈ (d + 1) × 2n such that B is comeager in Ns . Fix t ≤σd,n s
which is not in Rd,n. Condition (2) ensures that there exist m ≥ n and u ∈ 2m−n such
that sm = tu. Then su0 ≤σd,m+1 d1m0 ≤σd,m+1 tu1 ≤σd,m+1 su1. Fix x ∈ 2N with
su0x, su1x ∈ B, and note that su0x ≤σd su1x, thus B is not an antichain. ut

We say that x and y are (f -)incomparable, or x ⊥f y, if x 6≤f y and y 6≤f x. We say that
a set A ⊆ X is (f -)linear if x ≤f y or y ≤f x, for all x, y ∈ Et (f )|A.
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Proposition 3.5. Suppose that d ≥ 2 and B ⊆ (d + 1)× 2N is a non-meager Borel set.
Then B is not σd -linear.

Proof. Fix n ∈ N and s ∈ (d + 1) × 2n such that B is comeager in Ns . As d ≥ 2,
a straightforward induction shows that there exists t ∈ Dd,n \ (Rd,n ∪ {sn}), and it fol-
lows that t1 /∈ Rd,n+1 and s0 ⊥σd,n+1 t1. Condition (2) ensures that there exist m > n

and u ∈ 2m−n−1 such that sm = t1u. Then s0u0 ≤σd,m+1 d1m0 ≤σd,m+1 t1u1. As
s0u1 ⊥σd,m+1 t1u1 and the forward orbit of s0u0 is linearly ordered by ≤σd,m+1 , it fol-
lows that s0u0 ⊥σd,m+1 s0u1. Fix x ∈ 2N such that s0u0x, s0u1x ∈ B, and observe that
s0u0x ⊥σd s0u1x, thus B is not linear. ut

Given a partial function f on X, we say that a set A ⊆ X is (f -)recurrent if for all
x ∈ A ∩ dom(f ), there exists n ∈ Z+ such that f n(x) ∈ A. We then define Kakutani
embeddability and equivalence of Borel partial functions as before.

Given a partial function p on a finite set S, we use Kak(p, f ) to denote the set of all
Kakutani embeddings of p into f , and we use Ip to denote the σ -ideal generated by the
sets of the form {π ∈ Kak(p, f ) : π(s) ∈ B}, where s ∈ S and B is a Borel f -antichain.
We say that Ip trivializes if Kak(p, f ) ∈ Ip.

Theorem 3.6. Suppose that X is a Polish space and f : X → X is a Borel function.
Then exactly one of the following holds:

(1) The σ -ideal Iσd,0 trivializes.
(2) There is a continuous Kakutani embedding of σd into f .

Proof. To see that (1) and (2) are mutually exclusive suppose, towards a contradiction,
that Iσd,0 trivializes and there is a Kakutani embedding π of σd into f . Fix Borel an-
tichains An ⊆ X whose union intersects the range of every Kakutani embedding of σd,0
into f , and putBn = π−1(An). Then each of the setsBn is an antichain, and their unionB
intersects the range of every Kakutani embedding of σd,0 into σd . Proposition 3.4 ensures
that B is meager, thus so too is [B]σd . Fix x ∈ ((d + 1) × 2N) \ [B]σd , and observe that
σd,0 6vK σd |[x]σd , which is absurd.

It remains to show that if (1) fails, then (2) holds. By standard change of topology
results, we can assume that f is continuous. We also assume that X = NN, as the general
case is handled similarly. A (d, n)-configuration is a quadruple (k, u, v,w), where k ∈ N,
u : (d + 1)× 2n→ Nk , v : d → Z+, and w : n→ Z+, with the following properties:

• ∀i, j ≤ n ∀s, t ∈ (d + 1)× 2n (s(n) 6= t (n)⇒ f i(Nu(s)) ∩ f j (Nu(t)) = ∅).
• ∀i < n ∀s, t ∈ (d + 1)× 2n (s 6≤σd,n t ⇒ f i(Nu(s)) ∩Nu(t) = ∅).

Associated with (k, u, v,w) is the set Kak(k, u, v,w) of Kakutani embeddings π :
(d + 1)× 2n→ NN of σd,n into f with the following properties:

• ∀s ∈ (d + 1)× 2n (π(s) ∈ Nu(s)).
• ∀c < d ∀s ∈ 2n (π(ds) = f v(c) ◦ π(cs)).
• ∀m < n ∀t ∈ 2n−m−1 (π(sm1t) = f w(m) ◦ π(d1m0t)).

We say that (k, u, v,w) is reasonable if Kak(k, u, v,w) /∈ Iσd,n .
An extension of (k, u, v,w) is a (d, n + 1)-configuration (k′, u′, v′, w′) such that

u(s) v u′(si), v = v′, and w = w′|n, for all i < 2 and s ∈ (d + 1)× 2n.
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Lemma 3.7. Every reasonable (d, n)-configuration has a reasonable extension.

Proof. Suppose, towards a contradiction, that (k, u, v,w) is a reasonable (d, n)-config-
uration with no reasonable extension. Then there are countably many Borel antichains
whose union B intersects the range of every Kakutani embedding in Kak(k′, u′, v′, w′),
for every extension (k′, u′, v′, w′) of (k, u, v,w). Define

A = {π ∈ Kak(k, u, v,w) : π((d + 1)× 2n) ⊆ Aper(f ) \ B}.

The fact that (k, u, v,w) is reasonable ensures that A /∈ Iσd,n .
Let S denote the (necessarily finite) set of pairs (i, s) ∈ N× ((d + 1)× 2n) such that

f i ◦ π(s) ≤f f n ◦ π(d1n) for some (equivalently, all) π ∈ Kak(k, u, v,w). For each
m ∈ N, let Gm denote the set of functions g : S → 2m such that g(0, s) 6= g(i, s) for all
(i, s) ∈ S with i ∈ Z+. For each g ∈ Gm, let Ag,m denote the set of π ∈ A such that
g(i, s) = f i ◦ π(s)|m for all (i, s) ∈ S. As A ⊆

⋃
m∈N

⋃
g∈Gm

Ag,m, there exist m ∈ N
and g ∈ Gm such that Ag,m 6∈ Iσd,n . Set A′ = Ag,m.

Observe now that if π0, π1 ∈ A′ and π0(sn) <f π1(sn), then the fact that g ∈ Gm
ensures that f n ◦ π0(d1n) <f π1(sn). Let π denote the Kakutani embedding of σd,n+1
into f given by π(si) = πi(s). As there is an extension (k′, u′, v′, w′) of (k, u, v,w)
with π ∈ Kak(k′, u′, v′, w′), the definition of B ensures that there exist i < 2 and
s ∈ (d + 1)× 2n such that πi(s) ∈ B, which contradicts the fact that πi ∈ A. It therefore
follows that the set A = {π(sn) : π ∈ A′} is an antichain. As the property of being an
antichain is co-analytic on analytic, the first reflection theorem (see, for example, Theo-
rem 35.10 of [11]) implies that A is contained in a Borel antichain, thus A′ ∈ Iσd,n , the
desired contradiction. ut

If Id,0 does not trivialize, then Lemma 3.7 ensures that there is a sequence of reasonable
(d, n)-configurations (kn, un, vn, wn), each of which is extended by the next. Define a
continuous function π∞ : (d + 1)× 2N

→ NN by

π∞(x) = lim
n→∞

un(x|(n+ 1)).

Lemma 3.8. Suppose that c < d and x ∈ 2N. Then π∞(dx) = f v0(c) ◦ π∞(cx).

Proof. By the continuity of f , it is enough to show that if U is an open neighborhood
of π∞(cx) and V is an open neighborhood of π∞(dx), then there exist y ∈ U and
z ∈ V such that z = f v0(c)(y). Towards this end, fix n ∈ N sufficiently large that
Nun(c(x|n)) ⊆ U and Nun(d(x|n)) ⊆ V , fix π ∈ Kak(kn, un, vn, wn), and observe that
y = π(c(x|n)) and z = π(d(x|n)) are as desired. ut

Lemma 3.9. Suppose thatm∈N and x∈2N. Then π∞(sm1x)=f wm+1(m) ◦π∞(d1m0x).

Proof. By the continuity of f , it is enough to show that if U is an open neighbor-
hood of π∞(d1m0x) and V is an open neighborhood of π∞(sm1x), then there ex-
ist y ∈ U and z ∈ V such that z = f wm+1(m)(y). Towards this end, fix n ∈ N
sufficiently large that Num+1+n(d1m0(x|n)) ⊆ U and Num+1+n(sm1(x|n)) ⊆ V , fix π ∈
Kak(km+1+n, um+1+n, vm+1+n, wm+1+n), and observe that y = π(d1m0(x|n)) and
z = π(sm1(x|n)) are as desired. ut
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Lemma 3.10. Suppose that x, y ∈ (d + 1) × 2N, x(n) 6= y(n), and i, j ≤ n. Then
f i ◦ π∞(x) 6= f

j
◦ π∞(y).

Proof. The fact that x(n) 6= y(n) ensures that f i(Nun(x|(n+1))) ∩ f
j (Nun(y|(n+1))) = ∅,

thus f i ◦ π∞(x) 6= f j ◦ π∞(y). ut

Lemma 3.11. Suppose that x, y ∈ (d + 1)× 2N, x|(n+ 1) 6≤σd,n y|(n+ 1), and i < n.
Then f i ◦ π∞(x) 6= π∞(y).

Proof. The fact that x|(n+1) 6≤σd,n y|(n+1) ensures that f i(Nun(x|(n+1)))∩Nun(y|(n+1))

= ∅, thus f i ◦ π∞(x) 6= π∞(y). ut

Lemmas 3.8 and 3.9 imply that if x ≤σd y, then π∞(x) ≤f π∞(y). Lemma 3.10 implies
that π∞ is injective and if (x, y) /∈ E0, then (π∞(x), π∞(y)) /∈ Et (f ). Lemma 3.11
implies that if x 6≤σd y and xE0y, then π∞(x) 6≤f π∞(y). It follows that π∞ is the
desired Kakutani embedding. ut

Theorem 3.12. Suppose that X is a Polish space and f : X → X is a Borel function.
Then exactly one of the following holds:

(1) The function f is antichainable.
(2) There is a continuous Kakutani embedding of σ1 into f .

Proof. In light of Theorem 3.6, it is enough to show that if Iσ1,0 trivializes, then f is
antichainable. Towards this end, suppose that there are countably many Borel antichains
whose union A intersects the range of every Kakutani embedding of σ1,0 into f , and
observe that the complement of A is necessarily an antichain (since otherwise there is a
Kakutani embedding of σ1,0 into f whose range is disjoint from A), thus f is antichain-
able. ut

We can now tie together several different properties of Borel functions:

Theorem 3.13. Suppose that X is a Polish space and f : X → X is an aperiodic Borel
function. Then the following are equivalent:

(1) The function f is antichainable.
(2) There is no continuous Kakutani embedding of σ into f .
(3) There is a decreasing sequence 〈Bn〉n∈N of complete, stable Borel sets with empty

intersection.

Moreover, if f is countable-to-one, then these are equivalent to:

(4) There is a Borel embedding of f into s(N).
(5) There is a Kakutani embedding of f into s(N).

Proof. To see (1)⇔ (2), simply note that σ and σ1 are continuously Kakutani bi-embed-
dable, and appeal to Theorem 3.12. To see (1) ⇒ (3), fix Borel antichains An whose
union is X, and note that the sets

Bn = X \
⋃
m<n

⋃
i∈N

f−i(Am)
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are as desired. To see (3) ⇒ (1), suppose that 〈Bn〉n∈N is a decreasing sequence of
complete, stable Borel sets with empty intersection, and observe that the sets

Amn = f
−(m+1)(Bn) \

⋃
l≤m

f−l(Bn),

for m, n ∈ N, are Borel antichains whose union is X.
Suppose now that f is countable-to-one. Obviously (4) ⇒ (5), and (5) ⇒ (1) is

a consequence of the fact that antichainability is closed under Kakutani embeddability.
To see (1) ⇒ (4), fix a partition of X into Borel antichains An, and let φ(x) denote the
unique n ∈ N such that x ∈ An. An (f -)generator is a function ψ : X → Y such that
for all distinct x1, x2 ∈ X, there exists n ∈ N with ψ ◦ f n(x1) 6= ψ ◦ f

n(x2). Theorem
7.6 of [12] ensures that there is a Borel generator ψ : X → N. Fix a bijection 〈·, ·〉 from
N× N to N, and define π : X→ (N)N by [π(x)](n) = 〈φ ◦ f n(x), ψ ◦ f n(x)〉. Then π
is a Borel embedding of f into s(N). ut

We close this section with one more dichotomy theorem:

Theorem 3.14. Suppose that X is a Polish space and f : X → X is a Borel function.
Then exactly one of the following holds:

(1) The function f can be decomposed into antichainable and essentially injective parts.
(2) There is a continuous Kakutani embedding of σ2 into f .

Proof. In light of Theorem 3.6, it is enough to show that if Iσ2,0 trivializes, then f can be
decomposed into antichainable and essentially injective parts. Towards this end, suppose
that there are Borel antichainsBn ⊆ X whose union intersects the range of every Kakutani
embedding of σ2,0 into f , set B =

⋃
n∈N

⋃
i∈N f

−i(Bn), and observe that the set X \ B
is necessarily linear (since otherwise there is a Kakutani embedding of σ2,0 into f whose
range is disjoint from B), thus f can be decomposed into antichainable and essentially
injective parts. ut

Remark 3.15. In the statement of Theorem 3.14, the map σ2 can be replaced with σd for
any d ≥ 2. This follows from Theorems 3.6 and 3.14 and the observation that the σ -ideal
Iσd corresponding to the function f = σ2 does not trivialize.

4. Maximality of many-to-one odometers

In this section, we characterize the Kakutani equivalence class of σ2.

Theorem 4.1. Suppose that X is a Polish space and f : X → X is an aperiodic,
countable-to-one Borel function. Then f vK σ2.

Proof. We say that a set C ⊆ X is (f -)convex if it is contained in a single Et (f )-class
and x ≤f y for all x ∈ C and y ∈ C \ f−1(C). We say that a Kakutani embedding
π : C → 3×2n of f |C into σ2,n is extendable if for all x ∈ C, there exists s ∈ D2,n\R2,n
such that π(x) is the ≤σ2,n -minimal iterate of s in π(C). An m-extension problem is a
quintuple (C,C0, C1, π0, π1) such that:
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(a) The sets C, C0, and C1 are convex, finite, and non-empty, and C is the disjoint union
of C0 and C1.

(b) The functions π0 and π1 are extendable Kakutani embeddings of f |C0 and f |C1
into σ2,m.

For each x ∈ C, let i(x) denote the unique i ∈ {0, 1} such that x ∈ Ci . An n-solution
is a pair (t0, t1), where t0, t1 ∈ 2n−m, such that the map x 7→ πi(x)(x)ti(x) is an extendable
Kakutani embedding of f |C into σ2,n.

Lemma 4.2. Suppose that m ∈ N. Then there exists n ≥ m such that every m-extension
problem has an n-solution.

Proof. As there are essentially only finitely many m-extension problems, we need only
show that for everym-extension problem (C,C0, C1, π0, π1), there exists n ∈ N such that
there is an n-solution. By reversing the roles of C0 and C1 if necessary, we can assume
that C0∩f

−1(C1) 6= ∅. By the extendability of π1, there exists s ∈ D2,m \R2,m such that
π1 ◦ f (x) is the ≤σ2,m -minimal iterate of s in π1(C1). Fix l ≥ m and t ∈ 2l−m such that
sl = st , as well as distinct sequences u, v ∈ D2,l \ R2,l , noting that u0, v0 ≤σ2,l+1 st1.
Fix k > l and w ∈ 2k−(l+1) such that sk = u0w, set n = k + 1, and observe that

π0(x)0k−m0 ≤σ2,n d1k0 ≤σ2,n u0w1 ≤σ2,n st1w1 ≤σ2,n (π1 ◦ f (x))t1w1,

thus (0n−m, t1w1) is the desired n-solution. ut

We say that a subequivalence relation F of Et (f ) is (f -)convex if all of its equivalence
classes are convex. Note that every such subequivalence relation is entirely determined
by f and the set {x ∈ X : xFf (x)}. The trivial equivalence relation on X is given by
1(X) = {(x, x) : x ∈ X}.

Lemma 4.3. There is an increasing sequence of convex finite Borel equivalence relations
Fn on X such that:

(1) The equivalence relation F0 is trivial.
(2) Every Fn+1-class is the (not necessarily disjoint) union of two Fn-classes.
(3) The union of the equivalence relations Fn is Et (f ).

Proof. By Corollary 8.2 of [3], there is an increasing sequence of finite Borel equivalence
relations F ′k onX such that F ′0 = 1(X) andEt (f ) =

⋃
k∈N F

′

k . Let F ′′k denote the convex
equivalence relation given by xF ′′k f (x) ⇔ xF ′kf (x). It is clear that F ′′0 = 1(X), the
sequence 〈F ′′k 〉k∈N is increasing, and Et (f ) =

⋃
k∈N F

′′

k .
We will now recursively construct convex finite Borel equivalence relations Fn on X

with the additional property that

∀k ∈ N ∀x ∈ X ([x]F ′′k ⊆ [x]Fn or [x]Fn ⊆ [x]F ′′k ). (†)

We begin by setting F0 = 1(X). Fix a Borel linear ordering ≤ of X. Given Fn, let
kn(x) denote the least natural number k such that [x]F ′′k 6⊆ [x]Fn . It is clear that xFny ⇒
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kn(x) = kn(y), so we can think of kn as a function which associates a natural number to
each Fn-class within the F ′′kn(x)-class of x. We now restrict our attention to the set

An = {x ∈ X : ∀y ∈ [x]F ′′
kn(x)

(kn(x) ≤ kn(y))}

of points whose Fn-classes are assigned minimal index within their F ′′kn(x)-classes. Note
that if x ∈ An, then kn|[x]F ′′

kn(x)
is constant, thus [x]F ′′

kn(x)
⊆ An. Set

Bn = {x ∈ An : (x, f (x)) ∈ F ′′kn(x) \ Fn}.

We would like to include the graph of f |Bn in Fn+1, but this could potentially lead to a
violation of condition (2). Instead, we restrict our attention to the set

Cn = {x ∈ Bn : ∀y ∈ Bn ∩ [x]F ′′
kn(x)

(x ≤ y)}.

Define Fn+1 on X by xFn+1f (x) ⇔ (xFnf (x) or x ∈ Cn).
It remains to check that the equivalence relation F =

⋃
n∈N Fn is Et (f ). Suppose,

towards a contradiction, that this is not the case, fix k ∈ N least such that F ′′k 6⊆ F , and
fix x ∈ X such that [x]F ′′k 6⊆ [x]F . Then (†) ensures that [x]F ′′k is F -invariant. Fix n ∈ N
sufficiently large that [y]Fn = [y]F for all y ∈ [x]F ′′k , and let y denote the ≤-minimal
element of [x]F ′′k such that (y, f (y)) /∈ F . Then y ∈ Cn, thus yFn+1f (y), the desired
contradiction. ut

Set k0 = 0. Given kn ∈ N, put ln = 3n · 2kn and fix kn+1 ≥ kn + ln sufficiently large that
every (kn + ln)-extension problem has a kn+1-solution.

We can clearly assume that X = 2N. We will recursively construct Borel functions
πn : 2N

→ 3 × 2kn such that πn|[x]Fn is an extendable Kakutani embedding of f |[x]Fn
into σ2,kn , for all x ∈ 2N. Define π0 : 2N

→ 3 by π0(x) = 2.
Suppose now that we have already defined πn : X→ 3× 2kn . For all x ∈ 2N, define

φn(x) : 3× 2kn → 2n by

[φn(x)](s) =

{
(πn|[x]Fn)

−1(s)|n if s ∈ πn([x]Fn),
0n otherwise.

As ln = 3n · 2kn , we can think of φn as a map from 2N into 2ln . As xFny ⇒ φn(x) =

φn(y), it follows that the map y 7→ πn(y)φn(y) is an extendable Kakutani embedding of
f |[x]Fn into σ2,kn+ln .

If [x]Fn = [x]Fn+1 and we set ψn(x) = 0kn+1−(kn+ln), then the map y 7→

πn(y)φn(y)ψn(y) is an extendable Kakutani embedding of f |[x]Fn+1 into σ2,kn+1 . Oth-
erwise, there exists (x0, x1) 6∈ Fn such that [x]Fn+1 = [x0]Fn ∪ [x1]Fn , in which case
there are sequences ti ∈ 2kn+1−(kn+ln) such that the map y 7→ πn(y)φn(y)ψn(y), where
ψn(y) = ti for y ∈ [xi]Fn , is an extendable Kakutani embedding of f |[x]Fn+1 into σ2,kn+1 .
It follows that there is an Fn-invariant Borel function ψn : 2N

→ 2kn+1−(kn+ln) such that
the map πn+1(x) = πn(x)φn(x)ψn(x) is as desired.

Define now π : 2N
→ 3× 2N by π(x) = limn→∞ πn(x). We will show that π is the

desired Kakutani embedding of f into σ2.
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Lemma 4.4. Suppose that x <f y. Then π(x) <σ2 π(y).

Proof. Fix n ∈ N such that xFny. Then πn(x) <σ2,kn
πn(y), and since [π(x)](i) =

[π(y)](i) for all i > kn, it follows that π(x) <σ2 π(y). ut

It remains to check that π(x) ≤σ2 π(y) ⇒ x ≤f y. We can clearly assume that x 6= y.
Fix n ∈ N sufficiently large that at least one of x|n or y|n is not 0n and φm(x)ψm(x) =
φm(y)ψm(y), for all m ≥ n. We will assume that x|n 6= 0n, as the other case is handled
similarly. As x|n = [φn(y)](πn(x)) 6= 0n, there exists z ∈ [y]Fn such that πn(x) =
πn(z). It follows that if m ≥ n, then πm(x) = πm(z), so x|m = [φm(y)](πm(x)) =
[φm(y)](πm(z)) = z|m, thus x = z, which implies that xFny. As π(x) ≤σ2 π(y), it
follows that πn(x) ≤σ2,kn

πn(y), thus x ≤f y. ut

As a corollary, we obtain the following:

Theorem 4.5. All aperiodic, essentially countable-to-one Borel functions on Polish
spaces which cannot be decomposed into antichainable and essentially injective parts
are Kakutani bi-reducible. Moreover, the class of such functions is closed under Kakutani
equivalence.

Proof. Suppose first that X and Y are Polish spaces and f : X→ X and g : Y → Y are
aperiodic, essentially countable-to-one Borel functions which cannot be decomposed into
antichainable and essentially injective parts. Fix a complete, recurrent Borel set A ⊆ X
such that fA is countable-to-one. A straightforward induction shows that

⋃
i≤n f

i(A) is
a recurrent Borel set whose induced transformation is countable-to-one, thus [A]→f is a
stable Borel set whose induced transformation is countable-to-one. By replacing A with
its forward saturation, we can therefore assume that A is stable. Theorems 3.14 and 4.1
then imply that fA vK σ2 vK g, thus symmetry ensures that f 'K g.

Suppose now that f and g are Kakutani equivalent aperiodic Borel functions on Polish
spaces. If g can be decomposed into antichainable and essentially injective parts, then
the fact that antichains and linear sets can be pulled back through Kakutani embeddings
ensures that f also admits such a decomposition. ut

It is a simple task to establish that the restriction of σ2 to the non-eventually constant
sequences is Kakutani equivalent to σ2. As the former function is total, we can safely
think of σ2 as a total function.

5. The shift on increasing sequences of natural numbers

In this section, we study Kakutani embeddability and equivalence of s[N]. While there
is a natural strategy for embedding s[N] directly, it will simplify matters to work instead
with the product of the unilateral shift s on 2N with the successor on N, i.e., the function
σ⊥ : 2N

× N→ 2N
× N given by σ⊥(x, n) = (s(x), n+ 1).

Proposition 5.1. There is a continuous embedding of σ⊥ into s[N].
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Proof. Define π : 2N
× N→ [N]N by [π(x,m)](n) = x(n) + 2(m + n). It is clear that

π is a continuous injection, and if n ∈ N and (x,m) ∈ 2N
× N, then

[s[N] ◦ π(x,m)](n) = x(n+ 1)+ 2(m+ n+ 1) = [π ◦ σ⊥(x,m)](n),

thus π is an embedding of σ⊥ into s[N]. ut

Proposition 5.2. There is a continuous Kakutani embedding of s[N] into σ⊥.

Proof. It is sufficient to show that there is a continuous isomorphism of s[N] and (σ⊥)B ,
where B = {(x, n) ∈ 2N

× N : x(0) = 1 and ∀n ∈ N ∃m ≥ n (x(m) = 1)}. Towards this
end, define π : [N]N → 2N

× N by π(x) = (
⊕

n∈N 10x(n+1)−x(n)−1, x(0)). It is clear
that π is a continuous injection, B = π([N]N), and if x ∈ [N]N, then

(σ⊥)B ◦ π(x) = (σ⊥)B

(⊕
n∈N

10x(n+1)−x(n)−1, x(0)
)
=

(⊕
n∈N

10x(n+2)−x(n+1)−1, x(1)
)

= π ◦ s[N](x),

thus π is an isomorphism of s[N] and (σ⊥)B . ut

A homomorphism from f : X→ X to g : Y → Y is a (not necessarily injective) function
π : X→ Y such that π ◦ f = g ◦ π .

Proposition 5.3. There is no Borel homomorphism from s[N] to σ⊥.

Proof. Recall that a directed graph on X is an irreflexive set G ⊆ X × X. A coloring of
G is a function c : X → Y such that c(x) 6= c(y) for all (x, y) ∈ G. When X is a Polish
space, the Borel chromatic number of G, or χB(G), is the least cardinal of the form |Y |,
where Y is a Polish space and c : X→ Y is a Borel coloring of G.

It is clear that χB(graph(σ⊥)) = 2 and, as noted in Example 3.2 of [12], the Galvin–
Prikry theorem [7] implies that χB(graph(s[N])) = ℵ0. As colorings can be pulled back
through homomorphisms, the proposition follows. ut

Remark 5.4. While the proof of Proposition 5.2 easily implies that there is a complete,
recurrent Borel set B ⊆ 2N

× N such that s[N] ∼=B (σ⊥)B , the Galvin–Prikry theorem
[7] ensures that if B ⊆ [N]N is a complete, recurrent Borel set, then s[N] vB sB , thus
σ⊥ 6∼=B (s[N])B , by Proposition 5.3.

We are now ready for the main result of this section:

Theorem 5.5. Suppose that X is a Polish space and f : X → X is Borel. Then exactly
one of the following holds:

(1) The function f is essentially injective.
(2) There is a continuous Kakutani embedding of σ⊥ into f .
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Proof. To see that (1) and (2) are mutually exclusive, suppose that f is essentially injec-
tive and π is a Kakutani embedding of σ⊥ into f . Fix a complete, linear Borel set B ⊆ X,
and observe that the Borel set C = [B]→f is linear. Fix k, n ∈ N and t ∈ 2k such that the
set A = π−1(C) is comeager in Nt × {n}, fix x ∈ 2N such that (t0x, n), (t1x, n) ∈ A,
and note that (x, k + n+ 1) = σ k+1

⊥
(t0x, n) = σ k+1

⊥
(t1x, n), which contradicts the fact

that A is linear and stable.
It remains to show ¬(1) ⇒ (2). By standard change of topology results, we can

assume that f is continuous. We also assume thatX = NN, as the general case is handled
similarly. Let sn denote the shift on 2≤n.

An n-configuration is a triple (k, u, v), where k ∈ N, u : 2n→ Nk , and v : n×2→ N,
with the property that

f j+
∑
i<l v(i,0)(Nu(0ls)) ∩ f

∑
i<m v(i,0)(Nu(0mt)) = ∅

for all j, l,m ≤ n, s ∈ 2n−l , and t ∈ 2n−m such that s 6≤sn t .
An extension of (k, u, v) is an (n+1)-configuration (k′, u′, v′) such that u(s) v u′(si)

and v = v′|(n× 2), for all i < 2 and s ∈ 2n.
A (k, u, v)-embedding is a Kakutani embedding π of sn into f such that π(s) ∈ Nu(s)

and π(t) = f v(n−m−1,j)
◦ π(jt), for all j < 2, m < n, s ∈ 2n, and t ∈ 2m.

We say that (k, u, v) is reasonable if there is no linear Borel set B ⊆ NN whose
saturation contains the range of every (k, u, v)-embedding.

Lemma 5.6. Every reasonable n-configuration has a reasonable extension.

Proof. Suppose, towards a contradiction, that (k, u, v) is a reasonable n-configuration,
and there is a linear Borel set D ⊆ NN whose saturation contains the range of every
(k′, u′, v′)-embedding, for every extension (k′, u′, v′) of (k, u, v).

Sublemma 5.7. There are (k, u, v)-embeddings π0 and π1, whose ranges are disjoint
from [D]f and contained in the same Et (f )-class, such that π0(∅) ⊥f π1(∅).

Proof. Let A denote the set of points of the form π(∅), where π is a (k, u, v)-embedding
whose range is disjoint from [D]f . Suppose, towards a contradiction, that A is linear. As
linearity is co-analytic on analytic, the first reflection theorem implies that there is a linear
Borel set containing A, which contradicts the reasonability of (k, u, v). ut

Fix π0 and π1 as in the conclusion of Sublemma 5.7, fix a Kakutani embedding π of sn+1
into f such that π(ti) = πi(t), for all i < 2 and t ∈ 2≤n, and observe that there is an
extension (k′, u′, v′) of (k, u, v) such that π is a (k′, u′, v′)-embedding. Then π(2n+1) ⊆

[D]f , the desired contradiction. ut

Lemma 5.6 ensures that if f is not essentially injective, then there is a sequence of rea-
sonable n-configurations (kn, un, vn), each of which is extended by the next. Define a
continuous function π∞ : 2N

× N→ NN by

π∞(x, 0) = lim
n→∞

un(x|n) and π∞(x,m) = f
∑
i<m vm(i,0) ◦ π∞(0mx, 0).
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Lemma 5.8. Suppose that j,m ∈ N and x ∈ NN. Then π∞(x,m + 1) = f vm+1(m,j) ◦

π∞(jx,m).

Proof. By the continuity of f , it is enough to show that if U is an open neighborhood of
π∞(jx,m) and V is an open neighborhood of π∞(x,m+ 1), then there exist y ∈ U and
z ∈ V such that z = f vm+1(m,j)(y). Towards this end, fix n > m such that

f
∑
i<m vm(i,0)(Nun((0mjx)|n)) ⊆ U and f

∑
i≤m vm+1(i,0)(Nun((0m+1x)|n)) ⊆ V,

as well as a (kn, un, vn)-embedding π , set y = π((jx)|(n−m)) and z = π(x|(n−m−1)),
and observe that z = f vn(m,j) ◦ π((jx)|(n−m)) = f vm+1(m,j)(y). ut

Lemma 5.8 implies that if (x, l) ≤σ⊥ (y,m), then π∞(x, l) ≤f π∞(y,m). Conversely,
suppose that (x, l) 6≤σ⊥ (y,m). If j ∈ N and n ≥ max(j, l,m) is sufficiently large that
x|(n− l) 6≤sn y|(n−m), then

f j+
∑
i<l vl(i,0)(Nun((0lx)|n)) ∩ f

∑
i<m vm(i,0)(Nun((0my)|n)) = ∅,

so f j ◦ π∞(x, l) 6= π∞(y,m), thus π∞ is the desired Kakutani embedding. ut

We observe next the corresponding result for the shift:

Theorem 5.9. Suppose that X is a Polish space and f : X → X is an aperiodic Borel
function. Then exactly one of the following holds:

(1) The function f is essentially injective.
(2) There is a continuous Kakutani embedding of s[N] into f .

Proof. As Propositions 5.1 and 5.2 imply that σ⊥ and s[N] are continuously Kakutani bi-
embeddable, the desired result follows from Theorem 5.5. ut

This leads us to a new dichotomy theorem for smoothness:

Theorem 5.10. Suppose that X is a Polish space and f : X→ X is Borel. Then exactly
one of the following holds:

(1) The function f is smooth.
(2) There is a continuous Kakutani embedding of σ or s[N] into f .

Proof. To see (1) ⇒ ¬(2), observe that if f is smooth, then f is antichainable and
essentially injective. As neither σ nor s[N] has both of these properties, it follows that
neither σ nor s[N] is Kakutani embeddable into f .

To see ¬(2)⇒ (1), we first note the following:

Lemma 5.11. Suppose that X is a Polish space and f : X → X is a Borel function
which is antichainable and essentially injective. Then f is smooth.

Proof. Fix Borel antichains Bn which cover X, as well as a complete, linear Borel set
B ⊆ X, and observe that the set

⋃
n∈N(B ∩Bn) \

⋃
m<n[B ∩Bm]f is a Borel transversal,

thus f is smooth. ut

The desired result follows from Theorems 3.13 and 5.9 and Lemma 5.11. ut

We have also the following trichotomy:
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Theorem 5.12. Suppose that X is a Polish space and f : X → X is an aperiodic,
non-smooth Borel function. Then exactly one of the following holds:

(1) The function f is antichainable.
(2) The function f is essentially injective.
(3) There is a continuous Kakutani embedding of σ ⊕ s[N] into f .

Proof. Lemma 5.11 ensures that (1) and (2) are mutually exclusive, Theorem 3.13 en-
sures that (1) and (3) are mutually exclusive, and Theorem 5.9 ensures that (2) and (3) are
mutually exclusive. Suppose now that both (1) and (2) fail. Theorem 3.13 then ensures
that there is an invariant Borel set B ⊆ X such that f |B is non-smooth and essentially
injective. Fix a finer Polish topology on X which generates the same Borel sets and with
respect to which B is clopen. Theorems 3.13 and 5.9 imply that there are Kakutani em-
beddings of σ into f |B and of s[N] into f |(X \ B) which are continuous with respect to
the new topology, and the theorem follows. ut

We see next a maximality property of the shift:

Theorem 5.13. Suppose that X is a Polish space and f : X → X is an aperiodic Borel
function. Then the following are equivalent:

(1) The function f is finite-to-one and well-founded.
(2) There is a Borel embedding of f into s[N].
(3) There is a Kakutani embedding of f into s[N].

Proof. It is clear that (2) ⇒ (3) ⇒ (1), so we shall focus on (1) ⇒ (2). We can
assume, without loss of generality, that X = 2N. Set n(x) = min{n ∈ N : f−n(x) = ∅},
k(x) = |f−1(x)|, and Xi = {x ∈ 2N : i < k(x)}. Fix Borel functions fi : Xi → 2N such
that f−1(x) = {fi(x) : i < k(x)} for all x ∈ 2N. Let m(x) denote the unique natural
number m such that x = fm ◦ f (x).

Set Seq(0) = ∅ and define Seq(n + 1) = Seq(n) ∪ (N × 2<N
× Seq(n)<N). Put

Seq =
⋃
n∈N Seq(n). The restriction of an element of Seq to a natural number i is de-

fined recursively by (m, s, 〈ul〉l<k)|i = (m, s|i, 〈ul |i〉l<k). We say that v is an immediate
predecessor of u if v = ul |i for some i ≤ |ul | and l < k, where u = (m, s, 〈ul〉l<k). The
predecessors of u are defined recursively as the elements of Seq which are either imme-
diate predecessors of u, or predecessors of ul for some l < k. As each element of Seq has
only finitely many predecessors, there is an injection φ : Seq→ N such that φ(s) ≤ φ(t)
whenever s is a predecessor of t .

The well-foundedness of f allows us to recursively define ψi : 2N
→ Seq by

ψi(x) = (m(x), x|i, 〈ψi ◦ fl(x)〉l<k(x)).

We claim that the function π : 2N
→ NN given by

[π(x)](i) = φ ◦ ψn◦f i (x) ◦ f
i(x)

is the desired embedding. To see this, note first that the definition of π easily implies that
s[N] ◦π = π ◦f , and if i ≤ j , then ψn◦f i (x) ◦f

i(x) is a predecessor of ψn◦f j (x) ◦f
j (x),

so [π(x)](i) ≤ [π(y)](j), thus π(2N) ⊆ [N]N.
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It only remains to prove that π is injective, for which it is sufficient to show that if
π(x)|(i + 1) = π(y)|(i + 1), then x|n ◦ f i(x) = y|n ◦ f i(y), for i ∈ N and x, y ∈ 2N.
We proceed by induction on i, simultaneously showing that m ◦ f j (x) = m ◦ f j (y)

for all j ≤ i and x, y ∈ 2N. The base case is clear, so suppose that i ∈ Z+, we have
already established the claim strictly below i, and we are given x, y ∈ 2N such that
π(x)|(i + 1) = π(y)|(i + 1). The fact that [π(x)](i) = [π(y)](i) then ensures that
m ◦ f i(x) = m ◦ f i(y), so it only remains to show that x|n ◦ f i(x) = y|n ◦ f i(y), for
which it is clearly sufficient to show that ψn◦f i (x)(x) = ψn◦f i (y)(y). Towards this end,
we will inductively show that

∀j ≤ i (ψn◦f i (x) ◦ f
j (x) = ψn◦f i (y) ◦ f

j (y)).

The base case j = i follows trivially from the fact that [π(x)](i) = [π(y)](i), so suppose
that j ∈ Z+ and we have already established the claim at j . As our original induction
hypothesis ensures that m ◦ f j−1(x) = m ◦ f j−1(y), it then follows that ψn◦f i (x) ◦
f j−1(x) = ψn◦f i (y) ◦ f

j−1(y), which completes the proof. ut

The shift satisfies also a similar theorem for Kakutani reducibility:

Theorem 5.14. Suppose that X is a Polish space and f : X → X is an aperiodic Borel
function. Then the following are equivalent:

(1) The function f is essentially both finite-to-one and well-founded.
(2) There is a Kakutani reduction of f to s[N].

Proof. To see (2) ⇒ (1), simply note that if f ≤K s[N], then there is a complete, stable
Borel set B ⊆ X such that fB vK s[N], thus fB is both finite-to-one and well-founded.

To see (1)⇒ (2), we first note the following fact:

Lemma 5.15. Suppose that B ⊆ X is a recurrent Borel set such that fB is finite-to-one
and well-founded. Then the set C = [B]→f is Borel and the function fC is finite-to-one
and well-founded.

Proof. The fact that fB is well-founded easily implies that fC is well-founded, and the
fact that f n|B is finite-to-one for all n ∈ N ensures that C is Borel. It remains to show
that f−1

C (x) is finite for all x ∈ C. Towards this end, fix i ∈ N least such that f i(x) ∈ B,
fix j ∈ N such that x ≤f f j (y) for all y ∈ f−1

B ◦ f
i(x), and observe that f−1

C (x) ⊆

{f k(y) : k < j and y ∈ f−1
B ◦ f

i(x)}. ut

Suppose that f is essentially both finite-to-one and well-founded. Lemma 5.15 implies
that there is a complete, stable Borel set B ⊆ X such that fB is finite-to-one and well-
founded, so Theorem 5.13 ensures that fB vK s[N], thus f ≤K s[N]. ut

We can now describe the Kakutani equivalence class of the increasing shift:

Theorem 5.16. All aperiodic, essentially both finite-to-one and well-founded, non-
smooth Borel functions on Polish spaces are Kakutani bi-reducible. Moreover, the class
of such functions is closed under Kakutani equivalence.
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Proof. Suppose first that X and Y are Polish spaces and f : X→ X and g : Y → Y are
aperiodic, essentially both finite-to-one and well-founded, non-smooth Borel functions
on Polish spaces. Theorem 5.14 ensures that f ≤K s[N] and Lemma 5.11 implies that g
is not essentially injective, so s[N] vK g by Theorem 5.9, thus f ≤K g.

Suppose now that f and g are Kakutani equivalent aperiodic Borel functions on Polish
spaces. If g is essentially both finite-to-one and well-founded, then Lemma 5.15 ensures
that there is a complete, stable Borel set B such that gB is finite-to-one and well-founded.
As f ≈K gB , it follows that there is a complete, recurrent Borel set A such that fA is
finite-to-one and well-founded. ut

Theorem 5.17. All aperiodic Borel functions on Polish spaces which can be decomposed
into an essentially injective, non-smooth part and an essentially both finite-to-one and
well-founded, non-smooth part are Kakutani bi-reducible. Moreover, the class of such
functions is closed under Kakutani equivalence.

Proof. This follows easily from Theorems 2.14 and 5.16. ut

6. Ranks on antichainable functions

In this section, we provide a more detailed picture of the antichainable Borel functions
under Kakutani equivalence, reducibility, and embeddability, with an emphasis on the
functions of the form s[α] and s〈α〉.

It is clear that s[α] vB s〈α〉, s[α] vB s[β], and s〈α〉 vB s〈β〉, for all limit ordinals
α < β < ω1. We shall eventually see that these inequalities are strict, even when Borel
embeddability is replaced with Kakutani embeddability. In fact, the first of these is strict
even when Borel embeddability is replaced with Kakutani reducibility. We shall now
check that this is not literally the case for the latter two inequalities, although as we shall
soon see, this is not so far from the truth.

Throughout this section, we use α + β, α · β, and αβ to refer to the corresponding
ordinal operations. An ordinal α is decomposable if there exist β, γ < α such that α =
β + γ . An ordinal α is indecomposable if it is not decomposable, or equivalently, if it
is isomorphic to all of its terminal segments. It is not difficult to show that ωα is the αth

indecomposable, non-zero ordinal.

Proposition 6.1. Suppose that α < β < γ < ω1 are limit ordinals and γ = β+α. Then
s[γ ] ≤K s[β] and s〈γ 〉 ≤K s〈β〉.

Proof. We will show that s[γ ] ≤K s[β], as the proof that s〈γ 〉 ≤K s〈β〉 is identical. Define
[γ \ β]N = [γ ]N ∩ (γ \ β)N, and observe that the set A = [β]N ∪ [γ \ β]N is complete
and stable. Fix order-preserving injections φ : β → β and ψ : γ \ β → β such that
φ(β) ∩ ψ(γ \ β) = ∅, and define π : A→ [β]N by

[π(x)](n) =

{
φ ◦ x(n) if x ∈ [β]N,
ψ ◦ x(n) if x ∈ [γ \ β]N.

It is clear that π is an embedding of (s[γ ])A into s[β], thus s[γ ] ≤K s[β]. ut
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In order to show that Proposition 6.1 is the best possible result along these lines, it will
be convenient to have at our disposal several invariants which come from classical ranks
on trees. Recall that a tree on N is a set T ⊆ N<N which is closed under initial segments.
We use i to denote the set of all such trees. Note that i is a closed subset of P(N<N), and
therefore inherits a Polish topology.

A derivative on i is a function D : i → i such that D(T ) ⊆ T and T ⊆ U ⇒

D(T ) ⊆ D(U), for all T ,U ∈ i. The iterates of a derivative D are the functions Dα :
i → i defined recursively by D0(T ) = T , Dα+1(T ) = D ◦ Dα(T ) for α < ω1, and
Dλ(T ) =

⋂
α<λD

α(T ) for limit ordinals λ ≤ ω1.
The D-rank of a tree T , or ρD(T ), is the least ordinal α < ω1 such that Dα(T ) =

Dα+1(T ). The D-rank of a sequence t ∈ T is given by

ρD(T , t) =

{
α if t ∈ Dα(T ) \Dα+1(T ),
ω1 if t ∈ Dω1(T ).

Note that if Dω1(T ) = ∅, then ρD(T ) = ρD(T ,∅)+ 1.
Suppose now that D is Borel, and set �D = {T ∈ i : Dω1(T ) = ∅}. Theorem 34.10

of [11] ensures that �D is co-analytic and ρD is a co-analytic rank on �D , thus Theorem
35.23 of [11] implies that if A ⊆ �D is analytic, then supT ∈A ρD(T ) < ω1.

The shift on T is the function sT : T \ {∅} → T given by sT (t) = t |n, where
n = |t | − 1. Let i(f, x) denote the analytic set of trees T for which there is a Kakutani
embedding π of sT into f such that π(∅) ≤f x. The D-rank of a point x ∈ X is given
by ρD(f, x) = sup{ρD(T ,∅) : T ∈ i(f, x)}. Note that the D-rank of a point is a local
property, in the sense that ρD(f, x) = ρD(f |[x]f , x).

The D-rank of f is given by ρD(f ) = supx∈X ρD(f, x). The stable D-rank of f , or
σD(f ), is the least ordinal α ≤ ω1 for which there is a complete, stable Borel set B ⊆ X
such that ρD(f |B) = α.

The derivatives we consider will have the property that if T and U are trees and
there is a Kakutani embedding of sT into sU , then ρD(T ) ≤ ρD(U). It is easy to see
that if D is such a derivative and f vK g, then ρD(f ) ≤ ρD(g), thus ρD is invariant
under Kakutani bi-embeddability. Similarly, if D is such a derivative and f ≤K g, then
σD(f ) ≤ σD(g), thus σD is invariant under Kakutani bi-reducibility. The Lusin–Novikov
uniformization theorem easily implies that ifD is such a derivative, f is countable-to-one,
and ρD(f ) < ω1, then the map x 7→ ρD(f, x) is Borel.

With these generalities out of the way, we are now ready to discuss the main two
derivatives that we work with here, which are given by

WF(T ) = {t ∈ T : ∃u ∈ T (t @ u)}

and
HI(T ) = {t ∈ T : ∃u, v ∈ T (t v u, v and u ⊥ v)},

where u is incomparable with v, or u ⊥ v, if u 6v v and v 6v u. We will also consider
the modification HI′ of HI in which we ask for an infinite set of pairwise incomparable
extensions.
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A sequence x ∈ NN is a branch of T if x|n ∈ T for all n ∈ N, and a tree T is perfect
if every sequence in T has a pair of incomparable extensions in T . It is easy to check that
WFω1(T ) = ∅ if and only if T does not have a branch, and HIω1(T ) = ∅ if and only if
T does not have a perfect subtree. It is also easy to see that HIω(T ) ⊆ HI′(T ) ⊆ HI(T ),
thus HIω1(T ) = (HI′)ω1(T ).

We say that a function f is hereditarily imperfect if there is no sequence 〈xs〉s∈2<N

such that s v t ⇒ xt ≤f xs and s ⊥ t ⇒ xs ⊥f xt , for all s, t ∈ 2<N. It is easy to see
that f is well-founded if and only if ρWF(f ) < ω1, and f is hereditarily imperfect if and
only if ρHI(f ) < ω1. It is also easy to see that ρHI′(f ) ≤ ρHI(f ) ≤ ω · ρHI′(f ).

Proposition 6.2. Suppose that α < ω1 is a limit ordinal, β < ω1, k < ω, x ∈ [α]N,
y ∈ 〈α〉N, and x(0) = ω ·β + k. Then ρWF(s[α], x) = x(0), ρHI(s[α], x) = ω ·β +bk/2c,
ρHI′(s[α], x) = β, ρWF(s〈α〉, y) = ω1, and ρHI(s〈α〉, y) = ρHI′(s〈α〉, y) = y(0).

Proof. It is clear that ρWF(s〈α〉, y) = ω1. As the proofs of the remaining statements
are essentially the same, we shall only prove that ρWF(s[α], x) = x(0). We proceed by
transfinite induction on x(0). It is clear that if x(0) = 0, then ρWF(s[α], x) = 0. Sup-
pose now that we have already established the lemma for all x ∈ [α]N with x(0) < β,
and observe that if x ∈ [α]N and x(0) = β, then the induction hypothesis ensures that
ρWF(s[α], x) = supγ<β ρWF(s[α], γ x)+ 1 = supγ<β γ + 1 = β. ut

As an immediate corollary, we obtain the following:

Proposition 6.3. Suppose that α, β < ω1 and α = ω · β. Then ρWF(s[α]) = ρHI(s[α]) =

ρHI(s〈α〉) = ρHI′(s〈α〉) = α, ρHI′(s[α]) = β, and ρWF(s〈α〉) = ω1.

While Propositions 6.1 and 6.3 together rule out the analog of Proposition 6.3 for stable
ranks at decomposable ordinals, we do have the next best thing:

Proposition 6.4. Suppose that α, γ < ω1 are limit ordinals, β < ω1, and α = ω · β is
indecomposable. Then σWF(s[α]) = σHI(s[α]) = σHI(s〈α〉) = σHI′(s〈α〉) = α, σHI′(s[α]) =

β, and σWF(s〈γ 〉) = ω1.

Proof. We shall only prove that σWF(s[α]) = α, as the other proofs are similar.

Lemma 6.5. Suppose that B ⊆ [α]N is a complete, stable Borel set. Then there exists
δ < α such that [α \ δ]N ∩ [x]s[α] ⊆ B for comeagerly many x ∈ [α]N.

Proof. As s[α] is a continuous, open map and [α]N =
⋃
n∈N s

−n
[α] (B), it follows that B is

non-meager in [α]N, so there exist n ∈ N and a strictly increasing sequence t ∈ αn such
that B is comeager in [α]N ∩Nt . Fix δ < α such that δ > t(i) for all i < n. The fact that
s[α] is continuous and open implies that sn[α](B) is comeager in [α \ δ]N. As B is stable,
it follows that the set M = [[α \ δ]N \ B]s[α] is meager, and it is clear that if x /∈ M , then
[α \ δ]N ∩ [x]s[α] ⊆ B. ut
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Suppose now that B ⊆ [α]N is a complete, stable Borel set. Noting that the set C =
{x ∈ [α]N : α = supn∈N x(n)} is comeager in [α]N, it follows from Lemma 6.5 that
there exists x ∈ C such that [α \ δ]N ∩ [x]s[α] ⊆ B. The fact that α is indecomposable
ensures that there is an order-preserving bijection φ : α \δ→ α, and Proposition 6.3 then
implies that ρWF(s[α]|B) ≥ supn∈N ρWF(s[α]|[α \ δ]N, sn[α](x)) = supn∈N φ ◦ x(n) = α,
thus σWF(s[α]) = α. ut

Remark 6.6. Propositions 6.1 and 6.4 imply that the stable ranks of s[α] and s〈α〉 are
indecomposable. In fact, a straightforward modification of the proof of Proposition 6.1
shows that if f is any aperiodic, countable-to-one Borel function on a Polish space, then
σWF(f ), σHI(f ), and σHI′(f ) are indecomposable.

As an immediate consequence of Proposition 6.4, we obtain the following:

Proposition 6.7. Suppose that α < β < ω1 are indecomposable limit ordinals and
γ, δ < ω1 are limit ordinals. Then s[β] 6≤K s〈α〉 and s〈γ 〉 6≤K s[δ].

Remark 6.8. An identical argument can be used to establish the analog of Proposition
6.7 in which the notion of Kakutani reducibility is weakened by removing the requirement
of injectivity, since stable ranks are invariant under such maps.

Next, we will show that every aperiodic, countable-to-one, well-founded Borel func-
tion is Borel embeddable into s[α] for some α < ω1. Perhaps the most natural way of
proving such a theorem would be to show that s[α] is universal among the aperiodic,
countable-to-one Borel functions f for which ρWF(f ) ≤ α. However, the following ob-
servation shows that this is false:

Proposition 6.9. Suppose that β < α < ω1 and α = ω · β. Then ρWF(s[α] × sN) = α,
but s[α] × sN 6≤K s[α].

Proof. Simply note that the proofs of Propositions 6.3 and 6.4 imply that ρWF(s[α] ×

sN) = σHI′(s[α] × sN) = α, while Proposition 6.4 ensures that σHI′(s[α]) = β. ut

Nevertheless, we do have the following:

Proposition 6.10. Suppose that α < ω1 is a limit ordinal. Then s[α] × sN vB s[ω·α].

Proof. Define π : [α]N × NN
→ [ω · α]N by [π(x, y)](n) = ω · x(n)+ y(n). It is clear

that π is injective, and if (x, y) ∈ [α]N × NN, then

s[ω·α] ◦ π(x, y) = s[ω·α](〈ω · x(n)+ y(n)〉n∈N) = 〈ω · x(n+ 1)+ y(n+ 1)〉n∈N
= π ◦ (s[α] × sN)(x, y),

thus π is an embedding of s[α] × sN into s[ω·α]. ut

Proposition 6.11. Suppose that α < ω1 is a limit ordinal. Then s[α] × sN vK s〈α〉.
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Proof. It is sufficient to show that s[α] × sN ∼=B (s〈α〉)B , where B = {x ∈ 〈α〉N : x(0) <
x(1)}. To this end, define π : [α]N×NN

→ B by π(x, y) = x(0)⊕
⊕

n∈N x(n+1)y(n)+1,
where x(n+1)y(n)+1 denotes the constant sequence of length y(n)+1 with value x(n+1).
Clearly π is bijective, and if (x, y) ∈ [α]N × NN, then

(s〈α〉)B ◦ π(x, y) = (s〈α〉)B

(
x(0)⊕

⊕
n∈N

x(n+ 1)y(n)+1
)

= x(1)⊕
⊕
n∈N

x(n+ 2)y(n+1)+1
= π ◦ (s[α] × sN)(x, y),

thus π is an isomorphism of s[α] × sN and (s〈α〉)B . ut

We will now establish that s[α] × sN does have the desired universality property, which
implies our earlier claim that every aperiodic, countable-to-one, well-founded Borel func-
tion is Borel embeddable into s[α], for some α < ω1.

Theorem 6.12. Suppose that α < ω1 is a limit ordinal, X is a Polish space, and f :
X→ X is an aperiodic, countable-to-one Borel function. Then the following are equiva-
lent:

(1) The WF-rank of f is at most α.
(2) There is a Borel embedding of f into s[α] × sN.
(3) There is a Kakutani embedding of f into s[α] × sN.

As a consequence, the following are also equivalent:

(a) The stable WF-rank of f is at most α.
(b) There is a Kakutani reduction of f into s[α] × sN.

Proof. We will only prove (1) ⇒ (2), as the rest of the theorem easily follows. Fix a
Borel generator χ : X→ N, and define π : X→ [α]N × NN by

[π(x)](n) = (ρWF(f, f
n(x)), χ ◦ f n(x)).

The fact that χ is a generator ensures that π is injective, and if x ∈ X, then

(s[α] × sN) ◦ π(x) = (s[α] × sN)(〈(ρWF(f, f
n(x)), χ ◦ f n(x))〉n∈N)

= 〈(ρWF(f, f
n+1(x)), χ ◦ f n+1(x))〉n∈N = π ◦ f (x),

thus φ is an embedding of f into s[α] × sN. ut

Along similar lines, we would next like to show that every aperiodic, countable-to-one,
hereditarily imperfect Borel function is Borel embeddable into s〈α〉 for some α < ω1.
Unfortunately, this is false, as such functions need not be antichainable. However, we do
have the following:

Proposition 6.13. Suppose that X is a Polish space and f : X → X is an aperiodic,
countable-to-one, hereditarily imperfect Borel function. Then f can be decomposed into
antichainable and essentially injective parts.
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Proof. Define A = {x ∈ X : ∀n ∈ N ∃m ≥ n (ρHI(f, f
n(x)) < ρHI(f, f

m(x)))}. It is
clear that A is an invariant Borel set. For each α < ρHI(f ) and n ∈ N, let Aαn denote
the set of all x ∈ A for which ρHI(f, x) = α and n is minimal with the property that
α < ρHI(f, f

n(x)). It is clear that these sets are antichains whose union is A, thus f |A is
antichainable.

Set B = X \ A and C = {x ∈ B : ∀n ∈ N (ρHI(f, x) = ρHI(f, f
n(x)))}. Clearly

C is an (f |B)-complete, stable Borel set. Now observe that if x, y ∈ C are distinct
and z = f (x) = f (y), then ρHI(f, z) > ρHI(f, x) = ρHI(f, y), which contradicts the
definition of C, so f |C is injective, thus f |B is essentially injective. ut

Let d denote the function from Z+ × NN to NN given by

[d(x)](n) =

{
x(0)− 1 if n = 0,
x(n) otherwise.

Given an aperiodic Borel function f : X→ X, define f ′ : X × NN
→ X × NN by

f ′(x, y) =

{
(f (x), sN(y)) if y(0) = 0,
(x, d(y)) otherwise.

A straightforward induction shows that ρHI(f
′) = ρWF(f ). John Clemens initially sug-

gested f ′ to us as a natural modification of f whose stable WF-rank is ω1.

Proposition 6.14. Suppose that α < ω1 is a limit ordinal. Then s′[α]
∼=B s〈α〉.

Proof. Define π : [α]N×NN
→ 〈α〉N by π(x, y) =

⊕
n∈N x(n)

y(n)+1, where x(n)y(n)+1

denotes the constant sequence of length y(n)+ 1 with value x(n). Clearly π is bijective,
and if (x, y) ∈ [α]N × NN, then

s〈α〉 ◦ π(x, y) = s〈α〉

(⊕
n∈N

x(n)y(n)+1
)
= x(0)y(0) ⊕

⊕
n∈N

x(n+ 1)y(n+1)+1

= π ◦ s′[α](x, y),

thus π is an isomorphism of s′[α] and s〈α〉. ut

Proposition 6.15. Suppose that α < ω1 is a limit ordinal. Then (s[α] × sN)′ vB s〈ω·α〉.
Proof. By Proposition 6.10, there is a Borel embedding of s[α] × sN into s[ω·α]. As any
such map clearly induces a Borel embedding of (s[α] × sN)′ into s′[ω·α], the desired result
follows from Proposition 6.14. ut

Theorem 6.16. Suppose that α < ω1 is a limit ordinal,X is a Polish space, and f : X→
X is an antichainable, aperiodic, countable-to-one Borel function. Then the following are
equivalent:
(1) The HI-rank of f is at most α.
(2) There is a Borel embedding of f into (s[α] × sN)′.
(3) There is a Kakutani embedding of f into (s[α] × sN)′.
As a consequence, the following are also equivalent:
(a) The stable HI-rank of f is at most α.
(b) There is a Kakutani reduction of f into (s[α] × sN)′.
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Proof. We will again prove only (1) ⇒ (2), as the rest of the theorem easily follows.
Set A = {x ∈ X : ρHI(f, x) < ρHI(f, f (x))} and B = {x ∈ X : ∀n ∈ N ∃m ≥
n (fm(x) ∈ A)}. The proof of Proposition 6.13 easily implies that the restriction of f
to the complement of B is essentially injective, thus smooth (by Lemma 5.11), and this
easily implies that it is Borel embeddable into (s[α] × sN)′. It is therefore sufficient to
show that fB vB (s[α] × sN)′.

For each x ∈ B, let k0(x) denote the least k ∈ N such that f k(x) ∈ A, and let kn+1(x)

denote the least k > kn(x) such that f k(x) ∈ A. Fix a Borel fA∩B -generator χ : A→ N,
and define l : X→ NN by

[l(x)](n) =

{
k0(x) if n = 0,
kn(x)− kn−1(x)− 1 otherwise.

Finally, define π : X→ [α]N × NN
× NN by

π(x) = (〈ρHI(f, f
kn(x)(x))〉n∈N, 〈χ ◦ f

kn(x)(x)〉n∈N, l(x)).

To see that π is injective, suppose that π(x) = π(y). The fact that χ is a generator then
implies that f k0(x)(x) = f k0(y)(y). Let z denote this common iterate, and observe that
the definition of k0(x) ensures that ρHI(x) = ρHI(y) = ρHI(z). This implies that x ≤f y
or y ≤f x, and since k0(x) = k0(y), it follows that x = y.

Observe now that if x ∈ B and k0(x) = 0, then

(s[α] × sN)
′
◦ π(x) = (s[α] × sN)

′(〈ρHI(f, f
kn(x)(x))〉n∈N, 〈χ ◦ f

kn(x)(x)〉n∈N, l(x))

= (〈ρHI(f, f
kn+1(x)(x))〉n∈N, 〈χ ◦ f

kn+1(x)(x)〉n∈N, sN ◦ l(x))

= π ◦ f (x).

Similarly, if x ∈ B and k0(x) > 0, then

(s[α] × sN)
′
◦ π(x) = (s[α] × sN)

′(〈ρHI(f, f
kn(x)(x))〉n∈N, 〈χ ◦ f

kn(x)(x)〉n∈N, l(x))

= (〈ρHI(f, f
kn(x)(x))〉n∈N, 〈χ ◦ f

kn(x)(x)〉n∈N, d ◦ l(x))

= π ◦ f (x),

thus π is an embedding of fB into (s[α] × sN)′. ut

It is important to note that if the definition of Kakutani reducibility is relaxed in such a
fashion that we can freely go down to complete, recurrent Borel sets, then much of the
hierarchy we have described in this section collapses:

Proposition 6.17. Suppose thatX is a Polish space and f : X→ X is an antichainable,
aperiodic, countable-to-one Borel function. Then there is a complete, recurrent Borel set
B ⊆ X such that ρWF(fB) = ω, thus fB vB s[N] × sN.

Proof. By Theorem 3.13, there is a decreasing sequence 〈An〉n∈N of complete, stable
Borel sets with empty intersection. Set Bn = f−1(An) \ An, and observe that if x ∈ Bm,
y ∈ Bn, and x <f y, then m < n. Setting B =

⋃
n∈N Bn, it follows that ρWF(fB) = ω,

thus Theorem 6.12 ensures that fB vB s[N] × sN. ut
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Fig. 5. Kakutani reducibility of countable-to-one Borel functions.

We can now verify that Kakutani equivalence trivializes above s[N] × sN:

Theorem 6.18. All antichainable, aperiodic, essentially countable-to-one Borel func-
tions on Polish spaces to which s[N] × sN is Kakutani reducible are Kakutani equivalent.
Moreover, the class of such functions is closed under Kakutani bi-reducibility.

Proof. Suppose first that X and Y are Polish spaces and f : X→ X and g : Y → Y are
antichainable, aperiodic, essentially countable-to-one Borel functions to which s[N] × sN
is Kakutani reducible. Proposition 6.17 implies that there are complete, recurrent Borel
sets A ⊆ X and B ⊆ Y and Kakutani embeddings φA : A → [N]N × NN and φB :
B → [N]N × NN of fA and gB into s[N] × sN. Fix complete, stable Borel sets C,D ⊆
[N]N × NN such that (s[N] × sN)C vK f and (s[N] × sN)D vK g, and note that the sets
A′ = A ∩ φ−1

A (D) and B ′ = B ∩ φ−1
B (C) are complete and recurrent. As fA′ vK g and

gB ′ vK f , Lemma 2.13 ensures that f ≈K g.
Suppose now that f and g are Kakutani bi-reducible aperiodic Borel functions on

Polish spaces. The fact that ≤K is a quasi-order ensures that s[N] × sN ≤K f if and only
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if s[N] × sN ≤K g. It is clear that f is antichainable and essentially countable-to-one if
and only if g is antichainable and essentially countable-to-one. ut

Theorem 6.19. All aperiodic, essentially countable-to-one Borel functions on Polish
spaces which can be decomposed into an antichainable part to which s[N]×sN is Kakutani
reducible and an essentially injective, non-smooth part are Kakutani equivalent. More-
over, the class of such functions is closed under Kakutani bi-reducibility.

Proof. This follows easily from Theorems 2.14 and 6.18. ut

Finally, we check that the hierarchy does not collapse completely:

Proposition 6.20. The function s[N] × sN is not essentially finite-to-one.

Proof. Suppose, towards a contradiction, that A ⊆ [N]N × NN is a complete, recur-
rent Borel set such that (s[N] × sN)A is essentially finite-to-one. By Lemma 5.15, we
can assume that A is stable, so ρHI′((s[N] × sN)A) = 0, which contradicts the fact that
σHI′(s[N] × sN) = ω. ut

We close this section by noting that s[α] × sN and s[α] × s(N) are Borel bi-embeddable,
thus our results remain true if we replace the former with the latter.

7. Kakutani equivalence of countable-to-one functions

We begin this section with a summary of our knowledge of Kakutani equivalence:

Theorem 7.1. Suppose that X is a Polish space and f : X → X is an aperiodic, es-
sentially countable-to-one, non-smooth Borel function on a Polish space which is not
Kakutani equivalent to one of the following functions:

(1) The odometer σ .
(2) The increasing shift s[N].
(3) The disjoint sum σ ⊕ s[N].
(4) The 2-to-1 analog of the odometer σ2.
(5) The injective shift s(N).
(6) The disjoint sum σ ⊕ s(N).

Then f can be decomposed into a part which is essentially injective and a part which is
essentially strictly ≤K -between s[N] and s[N] × s(N).

Proof. Clearly we can assume that f is countable-to-one. By Theorem 4.5, our assump-
tion that f 6≈K σ2 ensures that f is of the form fa ⊕ fi , where fa is antichainable and
fi is essentially injective. Note that fa cannot be essentially injective, since otherwise f
is essentially injective, in which case Theorem 2.14 ensures that f ≈K σ . As Theorem
2.14 ensures that fi is either smooth or Kakutani equivalent to σ , we can clearly assume
that f is antichainable and non-essentially injective. By Proposition 6.17, there is a com-
plete, recurrent Borel set B ⊆ X such that fB vB s[N] × s(N). Theorem 5.9 implies that
s[N] vK fB , and it follows that s[N] <K fB , since otherwise Theorem 5.16 ensures that
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f ≈K s[N]. Finally, observe that fB <K s[N] × s(N), since otherwise Theorem 6.18 en-
sures that f ≈K s(N). ut

Although the hierarchy of antichainable Borel functions under Kakutani reducibility is
non-trivial, the following still seems quite plausible:

Conjecture 7.2. Kakutani reducibility of aperiodic, countable-to-one Borel functions is
a well-quasi-order.

Perhaps the results of Louveau–Saint-Raymond [13] on Borel linear orders are relevant
here. As for Kakutani equivalence, we suggest the following:

Conjecture 7.3. There is no aperiodic Borel function which lies strictly≤K -between s[N]
and s[N] × s(N).

A positive solution to this conjecture would completely determine Kakutani equiva-
lence of aperiodic, countable-to-one Borel functions:

Proposition 7.4. Suppose that there is no aperiodic Borel function which lies strictly
≤K -between s[N] and s[N] × s(N). Then Kakutani equivalence of aperiodic, countable-to-
one Borel functions on uncountable Polish spaces is an equivalence relation with exactly
seven classes.

Proof. This follows from Proposition 2.2, Lemma 2.13, and Theorem 7.1. ut

Finally, we mention one more conjecture which is motivated by the sorts of dichotomy
theorems that we have proven here:

Conjecture 7.5. Suppose that X is a Polish space and f : X → X is an aperiodic,
countable-to-one, well-founded Borel function. Then exactly one of the following holds:

(1) The function f is essentially finite-to-one.
(2) There is a Kakutani reduction of s[N] × s(N) to f .

To see that Conjecture 7.5 implies Conjecture 7.3, observe that if s[N] <K f ≤K s[N] ×

s(N), then Theorem 5.14 implies that f is not essentially finite-to-one, thus Conjecture
7.5 ensures that f 'K s[N] × s(N).
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