
DOI 10.4171/JEMS/195

J. Eur. Math. Soc. 12, 221–240 c© European Mathematical Society 2010

Vladimir Maz’ya

Estimates for differential operators of
vector analysis involving L1-norm

Received July 27, 2008 and in revised form September 27, 2008

Abstract. New Hardy and Sobolev type inequalities involving L1-norms of scalar and vector-
valued functions in Rn are obtained. The work is related to some problems stated in the recent
paper by Bourgain and Brezis [BB2].
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1. Introduction

Starting with the pioneering paper by Bourgain and Brezis [BB1], much interest arose
in various L1-estimates for vector fields (see [BB2], [BB3], [BV1], [BV2], [LS], [VS1]–
[VS4], [Ma2], [MS] et al.). The present article belongs to the same area and it was in-
spired by a question Haı̈m Brezis asked me at a recent conference in Rome. The question
concerns the validity of the Hardy-type inequality∫

Rn
|Du(x)|

dx

|x|
≤ const ·

∫
Rn
|1u(x)| dx (1)

in the case of divergence free 1u and, in a modified form, is included in Open Problem 1
formulated in [BB3, p. 295].

In this paper a positive answer to Brezis’ question is given (Theorem 2) and some
related results are obtained. For instance, by Theorem 1, the inequality∣∣∣∣∫Rn

n∑
j=1

aj

∣∣∣∣ ∂u∂xj
∣∣∣∣ dx|x|

∣∣∣∣ ≤ const ·
∫

Rn
|1u| dx, (2)

where aj are real constants, holds for all real-valued scalar functions u ∈ C∞0 if and only
if

n∑
j=1

aj = 0.
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At the end of the paper certain inequalities for vector-valued functions involving Hilbert–
Sobolev spacesH−s(Rn) of negative order are collected. For example, by Theorem 3(iii),
the estimate ∣∣‖g‖2H−n/2 − n‖div g‖2H−1−n/2

∣∣ ≤ (2√π)−n
0(n/2)

‖g‖2
L1 (3)

holds for all g ∈ L1 with div g ∈ H−1−n/2. An assertion dual to (3) replies in affirmative
to Open Problem 2 on p. 297 in [BB3] for the particular case l = 1, p = 2, s = n/2.

We make no difference in notations between spaces of scalar and vector-valued func-
tions. If the domain of integration is not indicated, the integral is taken over Rn. We never
mention Rn in notations of function spaces.

2. Inequality for scalar functions

Theorem 1. Let f and8 denote scalar real-valued functions defined on Rn. Assume that
f ∈ L1 and ∫

f (x) dx = 0. (4)

Furthermore, let 8 be Lipschitz on the unit sphere Sn−1 and positively homogeneous of
degree q ∈ [1, n/(n− 1)). Denote by u the Newtonian (logarithmic for n = 2) potential
of f :

u(x) =

∫
0(x − y)f (y) dy,

where 0(x) is the fundamental solution of −1. A necessary and sufficient condition for
the inequality

sup
R>0

∣∣∣∣ ∫
|x|<R

8
(
∇u(x)

)
|x|n(q−1)−q dx

∣∣∣∣ ≤ C(∫ |f (x)| dx)q (5)

to hold for all f is ∫
Sn−1

8(x) dωx = 0. (6)

The constant C in (5) depends only on 8, q, and n.

Here and elsewhere dωx is the area element of the unit sphere Sn−1 at the point x/|x|.

Conjecture. It seems plausible that the inequality (5) holds also for the critical value
q = n/(n − 1). The following simple assertion obtained in [MS] speaks in favour. The
inequality ∣∣∣∣∫R2

2∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx

∣∣∣∣ ≤ C(∫R2
|1u| dx

)2

with aij = const holds for all u ∈ C∞0 if and only if a11 + a22 = 0.

Proof of Theorem 1. The necessity of (6) can be derived by putting a sequence of radial
mollifications of the Dirac function in place of f in (5).
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Let us prove the sufficiency of (6). We write ∇u(x) in the form

∇u(x) =

4∑
j=1

Aj (x),

where

A1(x) =
1
|Sn−1|

∫
|y|<|x|/2

(
y − x

|y − x|n
+

x

|x|n

)
f (y) dy,

A2(x) =
1
|Sn−1|

∫
|x|/2<|y|<2|x|

y − x

|y − x|n
f (y) dy,

A3(x) =
1
|Sn−1|

∫
|y|>2|x|

y − x

|y − x|n
f (y) dy,

A4(x) =
−1
|Sn−1|

x

|x|n

∫
|y|<|x|/2

f (y) dy.

By (6), for all R > 0, ∫
|x|<R

8(A4(x))|x|
n(q−1)−q dx = 0. (7)

We check directly that

|A1(x)| ≤
c

|x|n

∫
|y|<|x|/2

|f (y)| |y| dy, (8)

|A2(x)| ≤ c

∫
|x|/2<|y|<2|x|

|f (y)|

|y − x|n−1 dy, (9)

|A3(x)| ≤ c

∫
|y|>2|x|

|f (y)|
dy

|y|n−1 . (10)

(Here and elsewhere, by c we denote constants depending only on n and q.) Hence∫ 3∑
j=1

|Aj (x)|
dx

|x|
≤ c

∫
|f (y)|

(
|y|

∫
|x|>2|y|

dx

|x|n+1 +

∫
|y|/2<|x|<2|y|

dx

|x| |x − y|n−1

+
1
|y|n−1

∫
|x|<|y|/2

dx

|x|

)
dy

≤ c

∫
|f (y)| dy. (11)

Since 8 is Lipschitz on Sn−1 and positively homogeneous of degree q, we have

|8(a + b)−8(a)| ≤ C8(|a|
q−1
|b| + |b|q)
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for all a and b in Rn. Now, we deduce from (7) that the left-hand side of (5) does not
exceed

cC8

(∫ 3∑
j=1

|Aj (x)| |A4(x)|
q−1
|x|n(q−1)−q dx+

∫ 3∑
j=1

|Aj (x)|
q
|x|n(q−1)−q dx

)
. (12)

Because of (11), the first integral in (12) is dominated by

c ‖f ‖
q−1
L1

∫ 3∑
j=1

|Aj (x)|
dx

|x|
≤ c C8‖f ‖

q

L1 . (13)

Let us turn to the second integral in (12). We deduce from (8) and Minkowski’s in-
equality that

‖A1‖Lq (|x|n(q−1)−q dx) ≤ c

∫
|y| |f (y)|

(∫
|x|>2|y|

dx

|x|n+q

)1/q

dy. (14)

Similarly, by (9),

‖A2‖Lq (|x|n(q−1)−q dx) ≤ c

∫
|f (y)|

(∫
2|y|>|x|>|y|/2

|x|n(q−1)−q dx

|y − x|(n−1)q

)1/q

dy, (15)

and by (10),

‖A3‖Lq (|x|n(q−1)−q dx) ≤ c

∫
|f (y)|

(∫
|x|<|y|/2

|x|n(q−1)−q dx

)1/q
dy

|y|n−1 . (16)

The right-hand sides in (14)–(16) are each majorized by c‖f ‖L1 . Therefore

3∑
k=1

‖Ak‖Lq (|x|n(q−1)−q dx) ≤ c‖f ‖L1 . (17)

The proof is complete. ut

3. Inequalities for vector functions

We turn to a generalization of the inequality (1).

Theorem 2. Let f be an n-dimensional vector-valued function in L1 subject to

div f = 0. (18)

Also, let u denote the solution of −1u = f in Rn represented in the form

u(x) =
∫
0(x − y) f(y) dy.
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Then there is a constant c depending on n and q ∈ [1, n/(n− 1)) such that(∫
|Du(x)|q |x|n(q−1)−q dx

)1/q

≤ c

∫
|f(x)| dx, (19)

where Du is the Jacobi matrix (∂ui/∂xj )ni,j=1.

Remark 1. The case q ∈ (1, n/(n− 1)) in Theorem 2 is a consequence of the marginal
cases q = 1 and q = n/(n− 1) because of the Hölder inequality

‖ϕ‖Lq (|x|n(q−1)−q dx) ≤ ‖ϕ‖
1−n(1−1/q)
L1(|x|−1 dx)

‖ϕ‖
n(1−1/q)
Ln/(n−1) .

However, we prefer to deal with all values of q in the interval [1, n/(n − 1)) simultane-
ously and independently of the deeper case q = n/(n− 1) treated in [BB2].

Proof of Theorem 2. It follows from f ∈ L1 that the Fourier transform f̂ is continuous.
Since ξ · f̂(ξ) = 0 by (18), we have |ξ |−1ξ · f̂(0) = 0 for all ξ ∈ Rn \ {0}, which is
equivalent to ∫

f(y) dy = 0. (20)

(The implication (18)⇒(20) was noted in [BV1]).
By the integral representation u = (−1)−1f we have∣∣∣∣ ∂u

∂xk
(x)

∣∣∣∣ ≤ 1
|Sn−1|

∣∣∣∣∫ yk − xk

|y − x|n
f(y) dy

∣∣∣∣.
Obviously, ∣∣∣∣ ∂u

∂xk
(x)

∣∣∣∣ ≤ 1
|Sn−1|

4∑
k=1

Ak(x), (21)

where

A1(x) =

∣∣∣∣∫
|y|<|x|/2

(
yk − xk

|y − x|n
+

xk

|x|n

)
f(y) dy

∣∣∣∣,
A2(x) =

∣∣∣∣∫
|x|/2<|y|<2|x|

yk − xk

|y − x|n
f(y) dy

∣∣∣∣,
A3(x) =

∣∣∣∣∫
|y|>2|x|

yk − xk

|y − x|n
f(y) dy

∣∣∣∣,
A4(x) =

1
|x|n−1

∣∣∣∣∫
|y|<|x|/2

f(y) dy
∣∣∣∣. (22)

Clearly,A1,A2 andA3 satisfy (14)–(16) with f replaced by f. Therefore, by Minkowski’s
inequality (see the proof of (17)), we have

3∑
k=1

‖Ak‖Lq (|x|n(q−1)−q dx) ≤ c‖f‖L1 . (23)
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Let the n× n skew-symmetric matrix F be defined by

F := curl u :=
(
∂ui

∂xj
−
∂uj

∂xi

)n
i,j=1

,

i.e.,
F := curl (−1)−1f, (24)

where (−1)−1 stands for the Newtonian (logarithmic for n = 2) potential. Let F =
(Fij )

n
i,j=1 and Fj = (F1j , . . . , Fnj )

t with t indicating the transposition of a matrix. We
need the row divergence of the matrix F :

DivF = (div F1, . . . , div Fn).

Since
(Div curl)t = ∇div−1 and div f = 0,

we have
DivF = Div curl (−1)−1f = f t . (25)

We turn to A4(x) defined in (22). By (25), from Green’s formula we obtain

A4(x) =
1
|x|n−1

∣∣∣∣∫
|y|<|x|/2

DivF(y) dy
∣∣∣∣ ≤ c ∫

|y|=|x|/2
|F(y)| dωy, (26)

where |F | is a matrix norm. The result will follow from (23), (26), and the next lemma.

Lemma. Let F be the same skew-symmetric matrix field as in Theorem 2. Then(∫
|F(x)|q |x|n(q−1)−q dx

)1/q

≤ c

∫
|DivF(x)| dx, (27)

where q ∈ [1, n/(n− 1)) and c depends only on n and q.

Proof. Using (24) and (25), we have

F(x) = (curl (−1)−1(DivF)t )(x)

=

(∫
E1

+

∫
E2

+

∫
E3

)
curlx((0(x − y)− 0(x))(DivF(y))t dy, (28)

where

E1 = {y : |y| ≤ |x|/2}, E2 = {y : |x|/2 < |y| < 2|x|}, E3 = {y : |y| ≥ 2|x|}.

Obviously, the norm of the integral over E1 does not exceed

c

|x|n−1

∫
|y|<|x|/2

|DivF(y)| dy (29)
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and the norm of the integral over E2 is dominated by

c

∫
|x|/2<|y|<2|x|

|DivF(y)|
dy

|x − y|n−1 . (30)

We write the integral over E3 as∫
E3

curlx
(
0(x − y)(DivF(y))t

)
dy +

∫
E3

curlx
(
−0(x)(DivF(y))t

)
dy. (31)

The matrix norm of the first term in (31) does not exceed

c

∫
|y|>2|x|

|DivF(y)|
dy

|y|n−1 . (32)

Let us denote the second integral in (31) by G(x) and put

G = (G1, . . . ,Gn), where Gj = (G1j , . . . ,Gnj )
t .

Estimating the Lq(|x|n(q−1)−q dx)-norms of the majorants (29), (30), and (32) by Minko-
wski’s inequality, in the same way as we did forA1,A2, andA3 in the proof of Theorem 2,
we obtain

‖F − G‖Lq (|x|n(q−1)−qdx) ≤ c‖DivF‖L1 . (33)

By definitions of curl and Div,

Gij (x) =
∂0

∂xj
(x)

∫
E3

div Fi(y) dy −
∂0

∂xi
(x)

∫
E3

div Fj (y) dy

= |Sn−1
|
−1
|x|1−n

(
xi

|x|

∫
E3

div Fj (y) dy −
xj

|x|

∫
E3

div Fj (y) dy
)

and by Green’s formula,

Gij (x) =
2n−1

|Sn−1|

(
xi

|x|

∫
|y|=2|x|

(
y

|y|
,Fj (y)

)
dωy −

xj

|x|

∫
|y|=2|x|

(
y

|y|
,Fi(y)

)
dωy

)
,

(34)
where (· , ·) stands for the inner product in Rn. Obviously,∫

|z|=|x|

Gij (z)
zi

|z|
dωz =

2n−1

|Sn−1|

(
|Sn−1

|

∫
|y|=2|x|

(
y

|y|
,Fj (y)

)
dωy

−

∫
Sn−1

zizj

|z|2
dωz

∫
|y|=2|x|

(
y

|y|
,Fi(y)

)
dωy

)
and since ∫

Sn−1

zizj

|z|2
dωz =

δ
j
i

n
|Sn−1

|,
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we obtain ∫
|z|=|x|

(
z

|z|
,Gj (z)

)
dωz = 2n−1 n− 1

n

∫
|y|=2|x|

(
y

|y|
,Fj (y)

)
dωy . (35)

For an arbitrary r > 0 and a vector function v we set

P(v; r) :=
∫
|y|=r

y

|y|
v(y) dωy .

Now, using the majorants (29), (30), and (32), we deduce from (28) and the definition of
G that∣∣P(Fj ; |x|)− P(Gj ; |x|)∣∣
≤ c

(
1
|x|n

∫
E1

|DivF(y)| dy +
∫
E2

|DivF(y)|
dy

|x − y|n−1 +

∫
E3

|DivF(y)|
dy

|y|n−1

)
.

By (35) the left-hand side can be written in the form∣∣∣∣P(Fj ; |x|)− 2n−1 n− 1
n

P(Fj ; 2|x|)
∣∣∣∣.

Using the same argument as at the end of the proof of Theorem 1, we arrive at(∫ ∣∣∣∣P(Fj ; |x|)− 2n−1 n− 1
n

P(Fj ; 2|x|)
∣∣∣∣q |x|n(q−1)−q dx

)1/q

≤ c0

∫
|DivF(x)| dx,

which yields∣∣∣∣(∫ ∣∣P(Fj ; |x|)∣∣q |x|n(q−1)−q dx

)1/q

−2n−1 n−1
n

(∫
|P(Fj ; 2|x|)|q |x|n(q−1)−q dx

)1/q ∣∣∣∣
≤ c0

∫
|DivF(x)| dx.

Replacing 2x by x in the second integral of the last inequality, we can simplify this in-
equality to the form(∫ ∣∣P(Fj ; |x|)∣∣q |x|n(q−1)−q dx

)1/q

≤ nc0

∫
|DivF(x)| dx. (36)

By (34) and (36),

‖Gj‖Lq (|x|n(q−1)−q dx) ≤ c

(∫
|P(Fj ; |x|)|q |x|n(q−1)−q dx

)1/q

≤ c

∫
|DivF(x)| dx,

which together with (33) completes the proof. ut
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4. Generalization of Theorem 2

In this section we show that Theorem 2 can be extended to vector fields f which are not
necessarily divergence free.

First, let us collect some notation and known facts to be used in what follows. Let
BR = {x ∈ Rn : |x| < R}. The mean value of an integral with respect to a finite measure
will be denoted by the integral with a bar. By ϕ̂ we denote the Fourier transform of the
distribution ϕ (see Sect. 7.1 in [H]).

The space of distributions ϕ with ∇ϕ ∈ L1 will be denoted by L1
1. This space is

endowed with the seminorm ‖∇ϕ‖L1 . It is well known and can be easily proved that the
finite limit

ϕ∞ := lim
R→∞

∫
−
|x|=R

ϕ(x) dωx

exists for every ϕ ∈ L1
1. Furthermore, ϕ∞ = 0 is equivalent to the inclusion of ϕ in the

closure L̊1
1 of C∞0 in L1

1.

The weighted Sobolev-type inequality for all ϕ ∈ L̊1
1,

‖ϕ‖Lq (|x|n(q−1)−q dx) ≤ c ‖∇ϕ‖L1 (37)

with q ∈ [1, n/(n− 1)), can be found, for example, in [Ma1, Corollary 2.1.6].
We formulate and prove a result concerning the case q > 1.

Proposition 1. Let q ∈ (1, n/(n− 1)) and let u = (−1)−1f, where f is a vector field in
L1 subject to (20). Also let

h := div f and ∇(−1)−1h ∈ L1.

Then
‖Du‖Lq (|x|n(q−1)−q dx) ≤ c(‖f‖L1 + ‖∇(−1)

−1h‖L1). (38)

Proof. Note that the vector-valued function −ξ |ξ |−2(f̂(ξ), ξ) is the Fourier transform of
∇(−1)−1h and that it is equal to zero at the point ξ = 0 since f̂(0) = 0. Hence∫

∇(−1)−1h(y) dy = 0.

We see that the vector field f + ∇(−1)−1h is divergence free and integrable. Therefore,
by Theorem 2,

‖D(−1)−1(f+∇(−1)−1h
)
‖Lq (|x|n(q−1)−q dx) ≤ c(‖f‖L1 + ‖∇(−1)

−1h‖L1), (39)

which implies

‖Du‖Lq (|x|n(q−1)−q dx)

≤ c
(
‖f‖L1 + ‖D(−1)

−1
∇(−1)−1h‖Lq (|x|n(q−1)−q dx) + ‖∇(−1)

−1h‖L1
)
. (40)
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Since the singular integral operator D(−1)−1
∇ is continuous in Lq(|x|n(q−1)−q dx) for

q ∈ (1, n/(n− 1)) (see [St1]), we derive from (40) that

‖Du‖Lq (|x|n(q−1)−q dx) ≤ c
(
‖f‖L1+‖(−1)

−1h‖Lq (|x|n(q−1)−q dx)+‖∇(−1)
−1h‖L1

)
. (41)

Recalling that h = div f, we have∫
−
B2R\BR

|(−1)−1h(x)| dx ≤ cR−n
∫
|f(y)|

∫
B2R\BR

dx

|x − y|n−1 dy

≤ c

(
R1−n

∫
BR

|f(y)| dy +
∫

Rn\BR
|f(y)|

dy

|y|n−1

)
.

Hence
lim
R→∞

∫
−
B2R\BR

|(−1)−1h(x)| dx = 0

and by (−1)−1h ∈ L1
1 we see that

lim
R→∞

∫
−
|x|=R

(−1)−1h(x) dωx = 0,

i.e., (−1)−1h ∈ L̊1
1.

Using (37), we remove the second norm on the right-hand side of (41) by changing
the value of the factor c. The result follows. ut

We turn to the case q = 1 which is more technical being based on properties of the Riesz
transform in the Hardy space H.

By definition, the space H consists of all integrable functions orthogonal to 1 and is
endowed with the norm

‖ϕ‖H = ‖ϕ‖L1 + ‖∇(−1)
−1/2ϕ‖L1 . (42)

This space can be introduced also as the completion in the norm (42) of the set of func-
tions ϕ such that ϕ̂ ∈ C∞0 (R

n
\{0}) (see [St2, Sect. 3]).

The result concerning q = 1 which is analogous to Proposition 1 is stated as follows.

Proposition 2. Let u = (−1)−1f, where f is a vector field in L1 subject to (20). Also let

h := div f and (−1)−1/2h ∈ H.

Then
‖Du‖L1(|x|−1 dx) ≤ c(‖f‖L1 + ‖(−1)

−1/2h‖H). (43)

Proof. Let us show that
D(−1)−1

∇(−1)−1h ∈ L1
1 (44)

if (−1)−1/2h ∈ H. The Fourier transform of

∂2

∂xi∂xj
(−1)−1 ∂

∂xk
(−1)−1h
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equals
ξiξj |ξ |

−2ξk|ξ |
−2(f̂(ξ), ξ)

and vanishes at ξ = 0 because f̂(0) = 0. Furthermore, by definition of H and the conti-
nuity of ∇(−1)−1/2 in H (see [St2, Sect. 3.4]), we obtain

‖∂xiD(−1)
−1
∇(−1)−1h‖L1 ≤ ‖D(−1)

−1/2
∇(−1)−1/2(−1)−1/2h‖H

≤ c‖(−1)−1/2h‖H, (45)

i.e. (44) holds. Next we check that the mean value ofD(−1)−1
∇(−1)−1h on the sphere

∂BR tends to zero as R→∞. Since h = div f, it follows that pointwise

|D(−1)−1
∇(−1)−1h| ≤ c(−1)−1/2

|f|.

Therefore,∫
−
B2R\BR

|D(−1)−1
∇(−1)−1h(x)| dx ≤ cR−n

∫
|f(y)|

∫
B2R\BR

dx

|x − y|n−1 dy

≤ c

(
R1−n

∫
BR

|f(y)| dy +
∫

Rn\BR
|f(y)|

dy

|y|n−1

)
.

Hence
lim
R→∞

∫
−
B2R\BR

|D(−1)−1
∇(−1)−1h(x)| dx = 0,

which ensures that the mean value just mentioned tends to zero. Now we can conclude
that

D(−1)−1
∇(−1)−1h ∈ L̊1

1.

This inclusion, together with (37) for q = 1 and (45), shows that the second norm on the
right-hand side of (40) does not exceed

c‖D(−1)−1
∇(−1)−1h‖L1

1
≤ c1‖(−1)

−1/2h‖H.

As for the third norm, it has the majorant c2‖(−1)
−1/2h‖H by definition of H. The result

follows.

5. Inequalities involving L2 Sobolev norms of negative order

In the following, the notation Hl will be used for the space of distributions h with finite
norm

‖h‖Hl :=
(∫
|ĥ(ξ)|2|ξ |2l dξ

)1/2

,

where l ∈ R1.
We will denote by | · | and (·, ·) the norm and the inner product in the complex Eu-

clidean space.
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Theorem 3. Let g ∈ C∞0 and

gε(x) := g(x)− (2π)−n/2εne−|εx|
2/2
∫

g(y) dy. (46)

(i) The limit below exists and satisfies the inequality∣∣∣ lim
ε→0+

(‖gε‖2H−n/2 − n‖div gε‖2H−1−n/2)

∣∣∣ ≤ (n− 1)(2
√
π)−n

0(1+ n/2)
‖g‖2

L1 . (47)

(ii) The inequality

lim sup
ε→0+

∣∣‖gε‖2H−n/2 − c1‖div gε‖2H−1−n/2

∣∣ ≤ c2‖g‖2L1 (48)

with certain constants c1 and c2 implies c1 = n. The constant c2 satisfies

c2 ≥
(n− 1)(2

√
π)−n

0(1+ n/2)
, (49)

i.e. (47) is sharp.
(iii) If ∫

g(y) dy = 0, (50)

then ∣∣‖g‖2H−n/2 − n ‖div g‖2H−1−n/2

∣∣ ≤ (2√π)−n
0(n/2)

‖g‖2
L1 . (51)

Proof. (i) The expression in parentheses on the left-hand side of (47) can be written as

(2π)−n
(∫
|ĝε(ξ)|2

dξ

|ξ |n
− n

∫
|(ĝε(ξ), ξ)|2

dξ

|ξ |2+n

)
= (2π)−n

( ∑
1≤j,k≤n

∫
δkj |ξ |

2
− nξj ξk

|ξ |n+2 ĝε,j (ξ) ĝε,k(ξ) dξ

)
, (52)

where all integrals are absolutely convergent. By (46),

ĝε(ξ) = ĝ(ξ)− e−|ξ |
2/2ε2

ĝ(0).

We note that for any t > 0,∫
|ξ |>t

δkj |ξ |
2
− nξj ξk

|ξ |n+2 e−|ξ |
2/2ε2

dξ = 0

and ∫
|ξ |>t

δkj |ξ |
2
− nξj ξk

|ξ |n+2 e−|ξ |
2/ε2

ĝj (0) ĝk(0) dξ = 0.
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Therefore∫
|ξ |>t

δkj |ξ |
2
− nξj ξk

|ξ |n+2 ĝε,j (ξ) ĝε,k(ξ) dξ =

∫
|ξ |>t

δkj |ξ |
2
− nξj ξk

|ξ |n+2 ĝj (ξ) ĝk(ξ) dξ +O(ε)

uniformly with respect to t . Hence the value (52) tends to

(2π)−n
( ∑

1≤j,k≤n

∫
δkj |ξ |

2
− nξj ξk

|ξ |n+2 ĝj (ξ) ĝk(ξ) dξ

)
(53)

as ε→ 0+, where the integral is understood as the Cauchy value.
Note that for n > 2,

(|ξ |2 − nξ2
k )|ξ |

−2−n
= (2− n)−1 ∂

2

∂ξ2
k

1
|ξ |n−2 −

|Sn−1
|

n
δ(ξ)

and

ξj ξk|ξ |
−2−n

= n−1(n− 2)−1 ∂2

∂ξj∂ξk

1
|ξ |n−2 for j 6= k.

Analogously, for n = 2,

(|ξ |2 − 2ξ2
k )|ξ |

−4
= −

∂

∂ξk

ξk

|ξ |2
− πδ(ξ), (54)

and

ξj ξk|ξ |
−4
= −

1
2
∂

∂ξj

ξk

|ξ |2
for j 6= k. (55)

Therefore, in the case n > 2, we express (53) as

(2π)−n
∑

1≤k≤n

∫ (
1

2− n
∂2

∂ξ2
k

1
|ξ |n−2 −

|Sn−1
|

n
δ(ξ)

)
ĝk(ξ) ĝk(ξ) dξ

− (2π)−nn
∑
j 6=k

∫
1

n(n− 2)

(
∂2

∂ξj∂ξk

1
|ξ |n−2

)
ĝk(ξ) ĝj (ξ) dξ.

Using Parseval’s formula once more, we write the limit of the right-hand side in (52) as
ε→ 0+ in the form

∑
1≤k≤n

∫
gk(x)F−1

ξ→x

((
1

2− n
∂2

∂ξ2
k

1
|ξ |n−2 −

|Sn−1
|

n
δ(ξ)

)
ĝk(ξ)

)
dx

−

∑
j 6=k

∫
1

n− 2
gj (x)F−1

ξ→x

((
∂2

∂ξj∂ξk

1
|ξ |n−2

)
ĝk(ξ)

)
dx, (56)
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where F−1 means the inverse Fourier transform (see formula (7.1.4) in [H]). Since
F−1(ûv̂) = u ∗ v, where ∗ denotes the convolution, we have

F−1
ξ→x

((
∂2

∂ξj∂ξk

1
|ξ |n−2

)
ĥ(ξ)

)
= −

(
xj xk

(
F−1
ξ→x

1
|ξ |n−2

))
∗ h

= −(2π)−n(n− 2)|Sn−1
|
xj xk

|x|2
∗ h (57)

for 1 ≤ j, k ≤ n.
Now let n = 2. By (54) and Parseval’s formula, we present (53) in the form analogous

to (56),

(2π)−2
∑

1≤k≤2

∫ (
−
∂

∂ξk

ξk

|ξ |2
− πδ(ξ)

)
ĝk(ξ) ĝk(ξ) dξ

+ (2π)−2
∑
j 6=k

∫ (
∂

∂ξj

ξk

|ξ |2

)
ĝk(ξ) ĝj (ξ) dξ

=

∑
1≤k≤2

∫
F−1
ξ→x

((
−
∂

∂ξk

ξk

|ξ |2
− πδ(ξ)

)
ĝk(ξ)

)
gk(x) dx

+

∑
j 6=k

∫
F−1
ξ→x

((
∂

∂ξj

ξk

|ξ |2

)
ĝk(ξ)

)
gj (x) dx. (58)

We check directly that

F−1
ξ→x

((
∂

∂ξj

ξk

|ξ |2

)
ĥ(ξ)

)
= ixjF−1

ξ→x

ξk

|ξ |2
ĥ(ξ) = −(2π)−2 xj xk

|x|2
∗ h.

Combining this with (57), we deduce from (56) and (58) that for every n ≥ 2 the limit of
the expression (52) as ε→ 0+ is equal to( ∑

1≤k≤n

∫ ((
|Sn−1

|

(2π)n
x2
k

|x|2
−
|Sn−1

|

(2π)nn

)
∗ gk

)
gk dx +

∑
j 6=k

|Sn−1
|

(2π)n

(
xj xk

|x|2
∗ gk

)
gj dx

)

=
|Sn−1

|

(2π)n

(∫ ∑
1≤j,k≤n

(
xj xk

|x|2
∗ gj

)
gk dx −

1
n

n∑
k=1

(∫
gk dx

)2)

=
|Sn−1

|

(2π)n

∫ ∫ (
M
(
x − y

|x − y|

)
g(x), g(y)

)
dx dy, (59)

where M(ω) is the (n× n)-matrix given by

M(ω) = (ωj ωk − n
−1δkj )

n
j,k=1. (60)

Since the norm of M(ω) does not exceed (n − 1) n−1, it follows that the absolute value
of the last double integral is not greater than

|Sn−1
|(n− 1)

(2π)nn

(∫
|g(x)| dx

)2

. (61)
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Hence (61) is a majorant for the left-hand side of (47). It remains to recall that |Sn−1
| =

2πn/2/0(n/2).
(ii) By (48) and (i),

|n− c1|

n
lim sup
ε→0+

‖gε‖2H−n/2

≤
c1

n
lim sup
ε→0+

∣∣‖gε‖2H−n/2 − n‖div gε‖2H−1−n/2

∣∣+ c2‖g‖2L1 ≤ c3‖g‖2L1 . (62)

Since L1 is not embedded into H−n/2, we have c1 = n.
Suppose that (48) holds. Then c1 = n and by (52) and (53) the inequality

(2π)−n
∣∣∣∣ ∑
1≤j,k≤n

∫
δkj |ξ |

2
− nξj ξk

|ξ |n+2 ĝj (ξ) ĝk(ξ) dξ

∣∣∣∣ ≤ c2‖g‖2L1 (63)

holds for g ∈ C∞0 with the integral understood as the Cauchy value. It was shown in the
proof of part (i) that (53) is equal to (59). Thus (63) can be written as the inequality

|Sn−1
|

(2π)n

∣∣∣∣∫ ∫ (M(
x − y

|x − y|

)
g(x), g(y)

)
dx dy

∣∣∣∣ ≤ c2‖g‖2L1 , (64)

where the matrixM = (mjk)nj,k=1 is defined by (60). Let θ denote the north pole of Sn−1,
i.e. θ = (0, . . . , 0, 1). We choose the vector function g in (64) as (0, . . . , η(|x|)ϕ(x/|x|)),
where η ∈ C∞0 ([0,∞)), η ≥ 0, and ϕ is a regularization of the δ-function on Sn−1

concentrated at θ . Then (64) implies

|Sn−1
|

(2π)n

∣∣∣∣∫ ∞
0

∫
∞

0
mnn

(
ρ − r

|ρ − r|
θ

)
η(r)rn−1η(ρ)ρn−1 dr dρ

∣∣∣∣ ≤ c2

∣∣∣∣∫ ∞
0

η(r)rn−1 dt

∣∣∣∣2,
and since mnn(±θ) = 1− 1/n, we obtain c2 ≥ (1− 1/n)(2π)−n|Sn−1

|.
(iii) By (50), we change n−1 in (60) to 1/2 and notice that the norm of the matrix

(ωjωk − δ
k
j /2)

n
j,k=1 equals 1/2. Inequality (51) follows. ut

As an immediate consequence of Theorem 3(iii), we derive

Corollary. Let u be a scalar function in C∞0 . Then

‖u‖H1−n/2 ≤

(
(2
√
π)−n

0(n/2)(n− 1)

)1/2

‖∇u‖L1 . (65)

Proof. It suffices to put g = ∇u in (51) and note that

‖g‖H−n/2 = ‖∇u‖H−n/2 = ‖u‖H1−n/2

and
‖div g‖H−1−n/2 = ‖1u‖H−1−n/2 = ‖u‖H1−n/2 . ut
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Remark 2. Passing from quadratic to sesquilinear forms in the proof of Theorem 3(i)
leads to the identity

(−1)−n/2(g+ n(−1)−1
∇div g)(x) =

21−nπ−n/2

0(n/2)

∫
N
(
x − y

|x − y|

)
g(y) dy (66)

for all g ∈ C∞0 orthogonal to 1. The kernel N (ω) is the matrix function (ωjωk)nj,k=1.
Needless to say, if additionally g is divergence free, we have the representation

(−1)−n/2g(x) =
21−nπ−n/2

0(n/2)

∫
N
(
x − y

|x − y|

)
g(y) dy. (67)

Another consequence of the identity (66) is obtained by putting g = ∇u in it, where
u is a scalar function in C∞0 . Then

(−1)−n/2∇u(x) =
21−nπ−n/2

(1− n)0(n/2)

∫
N
(
x − y

|x − y|

)
∇u(y) dy. (68)

Remark 3. If div g ∈ H−1−n/2 and g ∈ L1, then g is orthogonal to 1 (see the beginning
of the proof of Theorem 2). On the other hand, even if g ∈ C∞0 but∫

g(y) dy 6= 0,

both norms ‖div g‖H−1−n/2 and ‖g‖H−n/2 are infinite. The estimate (47) shows that the
formal expression

‖g‖2H−n/2 − n‖div g‖2H−1−n/2 (69)

can be given a meaning as the finite limit ε → 0+ on the left-hand side of (47). One can
see that the limit does not change if (46) is replaced by

gε(x) = g(x)− εnη(εx)
∫

g(y) dy,

where η is an arbitrary function in the Schwartz space S normalized by∫
η(y) dy = 1.

By Theorem 3(iii) and a duality argument, similar to that used in [BB3], one can
arrive at the following existence result which is supplied with a proof for the reader’s
convenience.

Proposition 3. For any vector function u ∈ Hn/2 there exists a vector function v ∈ L∞
and a scalar function ϕ ∈ H1+n/2 satisfying u = v+ gradϕ.

Proof. By B we denote the Banach space of pairs {g, k} ∈ L1
×H−1−n/2 endowed with

the norm
‖{g, k}‖B = ‖g‖L1 + ‖k‖H−1−n/2 .
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Representing {g, k} as {g, 0} + {0, k}, we see that an arbitrary linear functional on B can
be given by ∫

(v, g) dx +
∫
ϕk dx, (70)

where v ∈ L∞ and ϕ ∈ H1+n/2. The range of the operator

L1
∩H−n/2 3 g 7→ {g,−div g},

which is a closed subspace of B, will be denoted by S.
Any vector-valued function u ∈ Hn/2 generates the continuous functional

f (g) =
∫
(u, g) dx (71)

on the space H−n/2. By (51),

|f (g)| ≤ cn‖u‖Hn/2(‖g‖L1 + ‖div g‖H−1−n/2). (72)

We introduce the functional 8 by

8({g, k}) := f (g) for k = −div g,

i.e. 8 is defined on S. Being prescribed on a closed subspace of B, this functional is
bounded in the norm of B because of (72). By the Hahn–Banach theorem, 8 can be
extended with preservation of the norm onto the whole space B. Using (70) and (71), we
see that there exist v ∈ L∞ and ϕ ∈ H1+n/2 such that, for all g ∈ L1

∩H−n/2,∫
(u, g) dx =

∫
((v, g)− ϕ div g) dx.

The result follows. ut

The next assertion guarantees the existence of a solution u ∈ H2−n/2 to the equation
−1u = f provided that f is a vector field in L1 subject to div f ∈ H−1−n/2.

Proposition 4. Under the condition on f just mentioned, we have∣∣‖(−1)−1f‖2H2−n/2 − n‖div f‖2H−1−n/2

∣∣ ≤ (2√π)−n
0(n/2)

‖f‖2
L1 . (73)

Proof. It suffices to replace g by f in (51). ut

In Theorem 4 below we obtain an estimate which leads by duality to the following exis-
tence result. Its proof is quite similar to that of Proposition 3 and is omitted.

Proposition 5. Let f be a divergence free vector-valued function on R3 from the space
H1/2. Then the equation

curl u = f in R3

has a solution in H3/2
∩ L∞.
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Theorem 4. Let

curl w = f+ g in R3, (74)

where

div w = 0, f ∈ H−3/2(R3)

and

g ∈ L1(R3),

∫
R3

g(y) dy = 0.

Then

∣∣‖1w+ curl f‖2H−5/2 − 2 ‖div f‖2H−5/2

∣∣ ≤ 1
4π2

(∫
R3
|g(x)| dx

)2

. (75)

Proof. Since curl2 w = −1w, by (74) we have−1w = curl f+curl g. Using the identity
div curl w = 0, we see that div f+ div g = 0. Therefore,

‖1w+ curl f‖2H−5/2 − 2‖div f‖2H−5/2 = ‖curl g‖2H−5/2 − 2‖div g‖2H−5/2 .

The right-hand side can be written in the form

(2π)−3
∣∣∣∣∫R3

(|ξ × ĝ|2 − 2|(ξ, ĝ)|2)
dξ

|ξ |5

∣∣∣∣ = (2π)−3
∣∣∣∣∫R3

(|ξ |2|ĝ|2 − 3|(ξ, ĝ)|2)
dξ

|ξ |5

∣∣∣∣.
This value is a particular case of (52) for n = 3 and hence it does not exceed

1
4π2

(∫
R3
|g(x)| dx

)2

(see the proof of Theorem 3(iii)). ut

Remark 5. It is natural to ask how the results of the present section change if the role
of the homogeneous space Hl is played by the standard Sobolev space H l endowed with
the norm

‖φ‖H l :=
(∫
|φ̂(ξ)|2(|ξ |2 + 1)l/2 dξ

)1/2

.

Restricting ourselves to Theorem 3, we check directly that∣∣∣ lim
ε→0+

(‖gε‖2H−n/2 − n‖div gε‖2H−1−n/2)

∣∣∣
= (2π)−n

∣∣∣∣ ∑
1≤j,k≤n

∫
δkj (|ξ |

2
+ 1)− nξj ξk

(|ξ |2 + 1)1+n/2
ĝj (ξ) ĝk(ξ) dξ

∣∣∣∣,
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which in its turn is equal to

(2π)−n(n− 2)−1
∣∣∣∣ ∑
1≤j,k≤n

∫
∂2

∂ξj∂ξk
(|ξ |2 + 1)(2−n)/2ĝj (ξ)ĝk(ξ) dξ

∣∣∣∣
= c

∣∣∣∣∫ ∑
1≤j,k≤n

xj − yj

|x − y|

xk − yk

|x − y|
|x − y|K1(|x − y|)gj (x)gk(y) dx dy

∣∣∣∣,
where K1 is the modified Bessel function of the third kind. Since the function tK1(t) is
bounded, we obtain∣∣∣ lim

ε→0+
(‖gε‖2H−n/2 − n‖div gε‖2H−1−n/2)

∣∣∣ ≤ c(n)(∫ |g(x)| dx)2

.

Needless to say, this inequality becomes

∣∣‖g‖2
H−n/2

− n‖div g‖2
H−1−n/2

∣∣ ≤ c(n)(∫ |g(x)| dx)2

if the last norm of div g is finite.
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