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Abstract. We prove a compactness theorem for holomorphic curves in 4-dimensional symplec-
tizations that have embedded projections to the underlying 3-manifold. It strengthens the cylin-
drical case of the SFT compactness theorem [BEH+03] by using intersection theory to show that
degenerations of such sequences never give rise to multiple covers or nodes, so transversality is
easily achieved. This has application to the theory of stable finite energy foliations introduced
in [HWZ03], and also suggests a new approach to defining SFT-type invariants for contact 3-
manifolds, or more generally, 3-manifolds with stable Hamiltonian structures.
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1. Introduction and main results

Compactness arguments play a fundamental role in the application of pseudoholomor-
phic curves to problems in symplectic and contact geometry: in the closed case we have
Gromov’s compactness theorem, and more generally the compactness theorems of Sym-
plectic Field Theory [BEH+03] for punctured holomorphic curves in noncompact sym-
plectic cobordisms. As a rule, the singularities of the compactified moduli space have
positive virtual codimension, which translates into algebraic invariants if transversality
is achieved. In general, however, even if the moduli space of smooth curves is regular,
multiple covers can appear in the compactification and make transversality impossible
without abstract perturbations, thus presenting a large technical complication.
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The motivating idea of this paper is that by restricting to a certain geometrically
natural class of holomorphic curves in low dimensional settings, one can use topologi-
cal constraints to prevent the aforementioned analytical difficulties from arising—in fact
the compactified moduli space turns out to have a miraculously nice structure. Exam-
ples of this phenomenon have been seen previously in the compactness arguments of
[HWZ03] and [Wen08], both of which deal with stable finite energy foliations on contact
3-manifolds. Roughly speaking, a finite energy foliation on a contact manifold (M, ξ)
is an R-invariant collection of pseudoholomorphic curves in R ×M which project to a
foliation of M outside some set of closed Reeb orbits. The foliation is called stable if
it deforms smoothly under sufficiently small perturbations of the data on M; in particu-
lar, this requires that every leaf be parametrized by an embedded holomorphic curve of
index 1 or 2. As is shown in [Wenb], the class of holomorphic curves we consider here
consists (in the positive index case) of precisely those curves which can be used to form
finite energy foliations.

To illustrate the need for a compactness theorem, consider for the moment the fol-
lowing question: can a stable finite energy foliation be deformed smoothly under generic
homotopies of the contact form or complex structure? Figure 1 shows that the answer in
general is no. Here we see a homotopy of the contact form which moves two of the Reeb
orbits that bound leaves of the foliation, and the families of leaves deform smoothly up
until the isolated parameter value τ = 1/2. At this value a nongeneric index 0 leaf ap-
pears, producing a discontinuous change in the structure of the foliation. The remarkable
fact is that, at least in this example, the foliation survives this discontinuous change: the
leaves of the unstable foliation at parameter τ = 1/2 can be glued to produce a stable
foliation for τ = 1/2+ ε. To prove that this is what should happen in general, one needs
two fundamental ingredients:

• Compactness: the set of parameter values for which a foliation exists is closed.
• Fredholm/gluing theory: that set is also open.

The second ingredient only works if the linearized Cauchy–Riemann operator achieves
transversality: taking the homotopy to be sufficiently generic guarantees this, but only
for somewhere injective holomorphic curves. In this regard, the standard compactness
theory fails, as it may in general allow all manner of multiply covered curves to appear.
The result of this paper is to strengthen the standard compactness theory accordingly for
the relevant class of holomorphic curves; this is a necessary step toward carrying out the
homotopy argument described above.

Along similar lines, M. Hutchings [Hut02] has proved a strong version of SFT-type
compactness for a class of embedded index 1 and 2 curves in 4-dimensional symplectiza-
tions, a result which forms the analytical basis of Periodic Floer Homology and Embed-
ded Contact Homology. The result proved here is different in several respects. The condi-
tion on our set of curves is seemingly stricter than that of Hutchings (though technically,
neither implies the other), and the result is correspondingly stronger: where Hutchings’
limits allow certain types of multiple covers (over trivial cylinders), ours do not. In a dif-
ferent sense, the setup for our main result is more general because it uses no genericity
assumptions and is valid for arbitrary (also negative) Fredholm indices. The restriction on
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Fig. 1. Four steps in the deformation of a stable finite energy foliation under a generic homotopy
of contact forms {λτ }τ∈[0,1]. Each picture is a cross section, consisting mainly of Reeb orbits that
point through the page, index 1 holomorphic curves (which appear isolated) and index 2 holomor-
phic curves (which appear in 1-parameter families). The τ = 1/2 picture also contains a nongeneric
index 0 holomorphic curve.

multiple covers in the limit arises from topological considerations, independent of anal-
ysis; in particular, we make crucial use of the recently developed intersection theory for
punctured holomorphic curves, due to R. Siefring [Siea].

Hutchings’ results suggest another possible application for our compactness theory:
it may be possible to define specifically low-dimensional symplectic or contact invariants
(as in Gromov–Witten or Symplectic Field Theory [EGH00]) by counting this restricted
class of holomorphic curves. If such a theory exists, it has an immediate technical advan-
tage over general SFT, in that it seemingly can be defined without any need for restrictive
topological assumptions (e.g. semipositivity) or abstract perturbations.
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The present work is part of a larger program involving compactness for a special
class of embedded holomorphic curves in 4-dimensional symplectic cobordisms. We fo-
cus here on the special case where the target space is the R-invariant symplectization of
a 3-manifold M . The relevant class of holomorphic curves is then distinguished by the
property of being not only embedded in R × M but also having embedded projections
to M . We will give the required definitions and state simple versions of the main theo-
rems in §1.1; these are implied by some slightly more technical results which we state
and prove in §7, after developing the necessary machinery. We will also give some more
details in §1.2 on the general program into which this work fits, and state some partial
results for nontrivial symplectic cobordisms.

1.1. Setup and main results

The following structure was introduced in [BEH+03] as a general setting in which one
has compactness results for punctured holomorphic curves. LetM be a closed, oriented 3-
manifold. We define a stable Hamiltonian structure onM to be a tupleH = (ξ,X, ω, J ),
where1

• ξ is a smooth cooriented 2-plane distribution on M ,
• ω is a smooth closed 2-form on M which restricts to a symplectic structure on the

vector bundle ξ → M ,
• X is a smooth vector field which is transverse to ξ , satisfies ω(X, ·) ≡ 0, and whose

flow preserves ξ ,
• J is a smooth complex structure on the bundle ξ → M , compatible with ω in the sense

that ω(·, J ·) defines a bundle metric.

It follows from these definitions that the flow ofX also preserves the symplectic structure
defined by ω on ξ , and the special 1-form λ associated to ξ and X by the conditions

λ(X) ≡ 1, ker λ ≡ ξ

satisfies dλ(X, ·) ≡ 0.
An important example of a stable Hamiltonian structure arises when λ is a contact

form on M; then dλ defines a symplectic structure on the contact structure ξ := ker λ, so
if Xλ is the corresponding Reeb vector field and J is any complex structure on ξ compat-
ible with dλ, we obtain a stable Hamiltonian structure in the form (ξ,Xλ, dλ, J ). A few
non-contact examples may be found in [BEH+03], some of which have also appeared in
applications, e.g. in [EKP06] and [Wen08].

We shall denote periodic orbits of X by γ = (x, T ), where T > 0 and x : R → M

satisfies ẋ = X(x) and x(T ) = x(0). If x, x′ : R → M differ only by x(t) = x′(t + c)
for some c ∈ R, we regard these as the same orbit γ = (x, T ) = (x′, T ). We say that

1 The tuple (ξ,X, ω), not including J , is equivalent to a framed stable Hamiltonian structure in
the definition given by [Sieb]. A similar definition appears in [EKP06] with the additional require-
ment that ω be exact. The inclusion of J in the data is not so natural geometrically, but convenient
for our purposes.
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γ has covering number k ∈ N if T = kτ , where τ > 0 is the minimal period, i.e. the
smallest number τ > 0 such that x(τ) = x(0). An orbit with covering number 1 is called
simply covered. The k-fold cover of γ = (x, T ) will be denoted by

γ k = (x, kT ).

We shall occasionally abuse notation and regard γ as a subset of M; it should always be
remembered that the orbit itself is specified by both this subset and the period.

The open 4-manifold R ×M is called the symplectization of M , and it has a natural
R-invariant almost complex structure J̃ associated to any stable Hamiltonian structure
H = (ξ,X, ω, J ). This is defined by J̃ ∂a = X and J̃ v = Jv for v ∈ ξ , where a
denotes the coordinate on the R-factor and ∂a is the unit vector in the R-direction. We
then consider pseudoholomorphic (or J̃ -holomorphic) curves

ũ = (a, u) : (6̇, j)→ (R×M, J̃ ),

where 6̇ = 6 \0, (6, j) is a closed Riemann surface, 0 ⊂ 6 is a finite set of punctures,
and by definition ũ satisfies the nonlinear Cauchy–Riemann equation T ũ ◦ j = J̃ ◦T ũ. It
is convenient to think of (6̇, j) as a Riemann surface with cylindrical ends, and we will
sometimes refer to neighborhoods of the punctures as ends of 6̇.

The energy of a punctured pseudoholomorphic curve ũ = (a, u) : (6̇, j) →

(R×M, J̃ ) is defined by
E(ũ) = Eω(ũ)+ Eλ(ũ),

where

Eω(ũ) =

∫
6̇

u∗ω (1.1)

is the so-called ω-energy, and

Eλ(ũ) = sup
ϕ∈T

∫
6

ũ∗(dϕ ∧ λ),

with T := {ϕ ∈ C∞(R, [0, 1]) | ϕ′ ≥ 0}. An easy computation shows that both integrands
are nonnegative whenever ũ is J̃ -holomorphic, and such a curve is constant if and only
if E(ũ) = 0. When ũ is proper, connected, J̃ -holomorphic and satisfies E(ũ) < ∞, we
call it a finite energy surface. As shown in [Hof93, HWZ96], finite energy surfaces have
asymptotically cylindrical behavior at the punctures: this means the map ũ : 6̇→ R×M
approaches {±∞} × γz at each puncture z ∈ 0, where γz is a (perhaps multiply covered)
periodic orbit of X. (See Prop. 3.1 for a precise statement.) The sign in this expression
partitions 0 into positive and negative punctures, 0 = 0+ ∪ 0−.

Definition 1.1. The trivial cylinder over a periodic orbit γ = (x, T ) of X is the finite
energy surface with one positive and one negative puncture given by

ũ : R× S1
→ R×M : (s, t) 7→ (T s, x(T t)).
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Let ϕtX denote the time-t flow of X, and recall that a periodic orbit γ = (x, T ) of X is
called nondegenerate if the linearized time-T return map dϕTX(x(0))|ξx(0) does not have 1
in its spectrum. Choosing a unitary trivialization 8 of ξ along x, one can associate to any
nondegenerate orbit γ its Conley–Zehnder index µ8CZ(γ ) ∈ Z. The odd/even parity of
µ8CZ(γ ) is independent of the choice of 8, and we call the orbit odd or even accordingly.
Dynamically, even orbits are always hyperbolic, elliptic orbits are always odd, and there
can also exist odd hyperbolic orbits, whose double covers are then even. The following
piece of terminology is borrowed from Symplectic Field Theory [EGH00], where the
orbits in question are precisely those which must be excluded in order to define coherent
orientations.

Definition 1.2. A bad orbit of X is an even periodic orbit which is a double cover of an
odd hyperbolic orbit.

A stable Hamiltonian structureH = (ξ,X, ω, J ) will be called nondegenerate if all peri-
odic orbits ofX are nondegenerate, and we will say that a sequenceHk = (ξk, Xk, ωk, Jk)
converges to H = (ξ,X, ω, J ) if each piece of the data converges in the C∞-topology
on M . We shall be concerned mainly with the following special class of holomorphic
curves.

Definition 1.3. A finite energy surface ũ = (a, u) : 6̇ → R ×M will be called nicely
embedded if the map u : 6̇→ M is embedded.

By a compactness result in [BEH+03], sequences of finite energy surfaces with uniformly
bounded genus and energy have subsequences convergent to stable holomorphic buildings
(see Figure 2). We will give precise definitions in §2; for now, let us simply recall that
a holomorphic building ũ consists of finitely many levels, each of which is a (possibly
disconnected) nodal J̃ -holomorphic curve with finite energy, and neighboring levels can
be attached to each other along matching breaking orbits. Every holomorphic building ũ
defines a graph Gũ whose vertices correspond to the smooth connected components of ũ,
with edges representing each node and breaking orbit. We say that the building ũ is con-
nected if the graph Gũ is connected.

Definition 1.4. For a holomorphic building ũ, a breaking orbit will be called trivial if
deletion of the corresponding edge from Gũ divides the graph into two components, one
of which only has vertices corresponding to trivial cylinders. Breaking orbits that do not
have this property will be called nontrivial.

Definition 1.5. We say that a holomorphic building is nicely embedded if

(1) It has no nodes.
(2) Each connected component is either a trivial cylinder or is nicely embedded.
(3) If ṽ1 = (b1, v1) and ṽ2 = (b2, v2) are any two distinct connected components, then

the maps v1 and v2 either are identical or have no intersections.
(4) Every nontrivial breaking orbit is even, and either simply covered or both doubly

covered and bad.
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Fig. 2. A sequence of finite energy surfaces of genus 2 converging to a stable holomorphic building
with three levels and arithmetic genus 2. The middle level has a node.

Theorem 1. Assume Hk = (ξk, Xk, ωk, Jk) is a sequence of stable Hamiltonian struc-
tures converging to a nondegenerate stable Hamiltonian structureH = (ξ,X, ω, J ), and
ũk = (ak, uk) : 6̇→ R×M are J̃k-holomorphic finite energy surfaces which are nicely
embedded and converge in the sense of [BEH+03] to a stable J̃ -holomorphic building ũ.
Then ũ is nicely embedded.

Note that this statement assumes nothing about the index of the curves ũk . We will there-
fore obtain a stronger statement by restricting attention to generic data and curves of
positive index. Suppose ũ : 6̇ → R ×M is a finite energy surface with nondegenerate
asymptotic orbits γz at the punctures z ∈ 0, and 8 denotes a choice of unitary trivializa-
tion for ξ along each γz. Then the Conley–Zehnder index of ũwith respect to8 is defined
to be the sum

µ8(ũ) =
∑
z∈0+

µ8CZ(γz)−
∑
z∈0−

µ8CZ(γz). (1.2)

Note that the parities of the orbits γz partition 0 into sets of even and odd punctures,
which we denote by

0 = 00 ∪ 01.

The Fredholm index of ũ is

ind(ũ) = −χ(6̇)+ 2c81 (u
∗ξ)+ µ8CZ(ũ), (1.3)

where c81 (u
∗ξ) denotes the relative first Chern number of the bundle u∗ξ → 6̇ with

respect to 8, defined by counting zeros of a generic section that is constant with respect
to 8 near the ends. As shown in [HWZ99], ind(ũ) is indeed the index of the linearized
Cauchy–Riemann operator, and gives the virtual dimension of the moduli space of finite
energy surfaces in a neighborhood of ũ.

For the following definition, it is useful to observe from (1.3) that ind(ũ) + 00 is
always even.
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Definition 1.6. The normal first Chern number cN (ũ) ∈ Z of a finite energy surface ũ of
genus g is defined by the relation

2cN (ũ) = ind(ũ)− 2+ 2g + #00.

The meaning of cN (ũ) is most easily seen by considering an immersed, closed curve
ũ = (a, u) : 6 → R ×M: then we have 2cN (ũ) = −χ(6) + 2c1(u

∗ξ) − 2 + 2g =
2c1(u

∗T (R × M)) − 2χ(6) = 2c1(Nũ), where Nũ → 6 is the normal bundle. More
generally, for immersed curves with punctures, cN (ũ) should be interpreted as the relative
first Chern number of Nũ → 6̇ with respect to special trivializations at the asymptotic
orbits; this notion will be made precise in §6. The “nicely embedded” condition is relevant
to the normal first Chern number for the following reason: u is injective if and only if ũ
is embedded and there is never any intersection between ũ and its R-translations ũc :=
(a + c, u) for c ∈ R. In this case, ũ belongs to a 1-parameter family of nonintersecting
finite energy surfaces, which can be described via zero free sections of Nũ. This implies
morally that cN (ũ) = 0, a statement which becomes literally true after applying the
appropriate asymptotic constraints (see §5). In fact, one can show that for generic J (or
generic parametrized families Jτ ), the condition cN (ũ) = 0 is necessary for ũ and all
other finite energy surfaces nearby to have embedded projections intoM . A more detailed
discussion of this may be found in [Wenb]. Note also that a linearized version of positivity
of intersections (see the discussion of windπ (ũ) in §4) implies cN (ũ) ≥ 0 for any nicely
embedded curve—thus cN (ũ) = 0 is a minimality condition.

According to Definition 1.6, the condition cN (ũ) = 0 allows exactly two cases where
ũ can have positive index. We will say that a nicely embedded curve ũ is stable if either

• ũ has index 2, genus 0 and no even punctures, or
• ũ has index 1, genus 0 and exactly one even puncture.

Theorem 2. In addition to the assumptions of Theorem 1, suppose the choice of J in H
is generic and the curves ũk are stable.

(1) If ind(ũ) = 1, then ũ is a stable nicely embedded finite energy surface, hence the
moduli space of such curves up to R-translation is compact.

(2) If ind(ũ) = 2, then either ũ is a nicely embedded finite energy surface, or it is a
building with exactly two nicely embedded connected components, both stable with
index 1, with projections that do not intersect each other inM , and connected to each
other along a unique nontrivial breaking orbit.

Figure 3 shows a possible limit of stable index 2 curves. Stranger things can happen if
the genericity assumption is weakened: for example, if J is not generic but belongs to a
generic 1-parameter family {Jτ }τ∈R, then ũ can contain index 0 components (arbitrarily
many, in principle) with #00 = 2, and there may be distinct nicely embedded components
with identical images (Figure 4).
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Fig. 3. A sequence of stable nicely embedded finite energy surfaces degenerating in accordance
with Theorem 2. The numbers indicate the Fredholm indices of the components and parities of the
orbits. Note that each of the index 0 curves in the limit is a trivial cylinder, and the odd breaking or-
bits are thus trivial. The limit has exactly two nontrivial components (of index 1) and one nontrivial
breaking orbit (even); the latter is also the unique even orbit for each of the index 1 components.
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Fig. 4. Convergence of stable nicely embedded index 2 curves in the absence of genericity: the
limit can now have more than two nontrivial components, because nontrivial index 0 curves may
appear. If the two odd orbits on the left are identical, it can also occur that the two components of
the top level in the limit are identical curves, an outcome that is forbidden in the generic case.

1.2. Discussion

The class of stable nicely embedded finite energy surfaces that we have defined above
is of great interest in the theory of stable finite energy foliations introduced by Hofer,
Wysocki and Zehnder in [HWZ03]. As shown in [Wenb], these are precisely the curves
whose moduli spaces form local foliations in both R×M andM . Thus Theorem 1, when
combined with some intersection theory and standard gluing analysis, can be seen as a
tool for proving stability of holomorphic foliations under R-invariant homotopies.

Likewise, Theorem 2 guarantees a particularly nice structure for the moduli space
of leaves in a fixed foliation. This provides the first half of the proof of an informal
conjecture suggested in [Wen05], that to every stable finite energy foliation F one can
associate various SFT-type algebraic structures, in particular a Contact Homology algebra
HC∗(F). In fact, the result suggests more than this, since it does not assume the existence
of any foliation: one might hope to encode this compactification of the space of nicely
embedded index 2 curves algebraically as in SFT, thus defining new invariants that count
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nicely embedded index 1 curves. In this case the transversality problem is already solved
for generic J , so one would not need any abstract perturbations or restrictive assumptions
on the target space.

To carry these ideas further, one needs a corresponding compactness theorem for
punctured holomorphic curves u : 6̇ → W in nontrivial symplectic cobordisms (W,ω)
with compatible J . In this case the “nicely embedded” condition makes no sense, but one
can formulate an appropriate generalization using the intersection theory of punctured
holomorphic curves defined in [Siea] (a conceptual summary without proofs can also be
found in [Wena]). In this theory, the standard adjunction formula for closed holomorphic
curves has a generalization of the form

i(u, u) = 2δ(u)+ cN (u)+ cov∞(u).

Here i(u, u) and δ(u) are generalizations of the homological self-intersection number and
singularity number respectively: they are homotopy invariant integers that count intersec-
tions and singularities in addition to some nonnegative “asymptotic terms” (which vanish
under generic perturbations). The normal first Chern number cN (u) is again the integer
given by Definition 1.6, and cov∞(u) is a nonnegative integer that depends only on the
asymptotic orbits of u; it is zero if and only if all the relevant extremal eigenfunctions are
simply covered (cf. §3). Generically, one can now characterize moduli spaces of nicely
embedded curves in symplectizations by the condition i(ũ, ũ) = 0, and this is a sensible
condition to apply to certain curves in symplectic cobordisms as well. Of particular inter-
est is the space of somewhere injective index 2 curves u : 6̇→ W with i(u, u) = 0: these
are automatically embedded and satisfy cN (u) = cov∞(u) = 0. By a result in [Wenb]
in fact, such a curve is always regular and comes in a smooth 2-dimensional family of
nonintersecting curves, which foliate a neighborhood of u(6̇) in W .

We can now state two partial results that we conjecture to be special cases of a more
general theorem. Assume for both that (W, J ) is an asymptotically cylindrical almost
complex manifold as in [BEH+03].

Theorem. Suppose W is closed and uk : 6 → W is a sequence of closed, somewhere
injective J -holomorphic curves with ind(uk) = 2 and i(uk, uk) = 0, converging to a
nodal curve u. Then u is either a smooth embedded curve or a nodal curve consisting of
two embedded index 0 components that intersect each other once transversely. These fit
together with all smooth curves close to u as a singular foliation of some neighborhood
of the image of u, with the nodal point as an isolated singularity.

Remark. We will not prove this here, but hope to include it in a future paper as a special
case of a much harder theorem for symplectic cobordisms. The closed case is compara-
tively simple and requires no substantially new technology, only the adjunction formula
and some covering relations for i(u, u) and cN (u). It can also easily be generalized to
apply to any 2-dimensional moduli space of curves that are embedded outside a set of
marked points z1, . . . , zN satisfying fixed point constraints u(zj ) = pj ∈ W ; one must
then assume that i(u, u) has the smallest value allowed by the constraints. The local struc-
ture of such moduli spaces is studied in [Wenb], showing that locally they form singular
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foliations in W . In this way one can also accomodate immersed curves if the images of
the self-intersections are fixed.

Theorem ([Wena]). Suppose J is generic and uk : 6̇ → W is a sequence of embedded,
punctured finite energy J -holomorphic curves with ind(uk) = 2 and i(uk, uk) = 0, and
they converge to a smooth multiple cover u = v ◦ϕ. Then v is an embedded index 0 curve
with i(v, v) = −1 and u is immersed. Moreover, the moduli space of curves close to u is
a smooth orbifold, all other curves close to u are embedded, and they fit together with v
as a foliation of some neighborhood of the image of v.

In both cases, as with Theorems 1 and 2, the upshot is that the degeneration in the limit
is nice enough so that transversality can still be achieved—this is true even in the second
case, despite the appearance of a multiple cover in the limit. (The latter can happen only
in symplectic cobordisms that are both noncompact and nontrivial.) The reason one ob-
tains smoothness in this case has to do with the transversality results of Hofer, Lizan and
Sikorav [Hof97], which are generalized in [Wena]; specifically in dimension 4, one can
sometimes use topological constraints to prove transversality for all J (not just generic
choices). This does not depend on u being somewhere injective, though it is important
that u is immersed, and in fact the proof of the latter fact is also based partly on such
transversality arguments; see [Wena] for details.

2. Holomorphic buildings in symplectizations

In this and the next few sections, we assemble some definitions and known results on
punctured holomorphic curves and holomorphic buildings, fixing terminology and nota-
tion that will be used throughout.

Let D denote the open unit disk in C, and write Ḋ = D \ {0}. We define the circle
compactification of Ḋ as follows. Using the biholomorphic map

ϕ : (0,∞)× S1
→ D \ {0} : (s, t) 7→ e−2π(s+it)

to identify Ḋ with the half-cylinder, define D := Ḋ ∪ ({∞}× S1) ∼= (0,∞]× S1. This is
a topological surface with boundary, and has natural smooth structures over the interior
intD = Ḋ as well as the boundary ∂D = δ0 := {∞} × S1.

We use this to define a circle compactification 6 for 6̇ = 6 \ 0, where (6, j) is any
Riemann surface with isolated punctures 0 ⊂ 6. For each z ∈ 0, choose coordinates to
identify a neighborhood of z biholomorphically with D, identify the punctured neighbor-
hood as above with a half-cylinder and then add a circle at infinity δz ∼= {∞} × S1 by
replacing the half-cylinder with (0,∞]×S1. The result is an oriented topological surface
with boundary,

6 = 6̇ ∪
⋃
z∈0

δz,

where the subsets int6 = 6̇ and ∂6 =
⋃
z∈0 δz inherit natural smooth structures that

are independent of the choices of holomorphic coordinates. The interior also has a con-
formal structure, and the complex structure on Tz6 for z ∈ 0 defines a special class of
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diffeomorphisms ϕ : S1
→ δz, which are all related to each other by a constant shift,

i.e. ϕ1(t) = ϕ2(t + const). For any two punctures z1, z2 ∈ 0, an orientation reversing dif-
feomorphism ψ : δz1 → δz2 will be called orthogonal if it can be written as ψ(t) = −t
with respect to some choice of special diffeomorphisms δzi ∼= S1. Observe that 6 is
compact if 6 is closed.

A closed nodal Riemann surface with marked points consists of the data

S = (S, j, 0,1),

where (S, j) is a closed (but not necessarily connected) Riemann surface, and 0,1 ⊂ S
are disjoint finite subsets with the following additional structure:

• 0 is ordered,
• elements of 1 are grouped into pairs z1, z1, . . . , zn, zn.

We call 1 the double points of S, and 0 the marked points. Let Ṡ = S \ (0 ∪ 1), with
circle compactification S. For a pair {z, z} ⊂ 1, a decoration at {z, z} is an orientation
reversing orthogonal diffeomorphism ψ : δz → δz, and a decoration ψ of S is a choice of
decorations at all pairs {z, z} ⊂ 1; we can regard this as a diffeomorphism on a certain
subset of ∂S. We call S := (S, j, 0,1,ψ) a decorated nodal Riemann surface.

Given S with decoration ψ , define

S = S/{z ∼ ψ(z)}.

This is an oriented topological surface with boundary, with a conformal structure that
degenerates at ∂S =

⋃
z∈0 δz and also at a certain set of disjoint circles 21 ⊂ S, one for

each double point pair {z, z} ⊂ 1. There is a natural inclusion of Ṡ into S as the subset

Ṡ = int S \21.

We say that the nodal surface S is connected if S is connected, and define its arith-
metic genus to be the genus of S. Neither of these definitions depends on the choice of
decoration.

Let M be a closed 3-manifold with stable Hamiltonian structure H = (ξ,X, ω, J )

and associated almost complex structure J̃ . If S = (S, j, 0,1) is a closed nodal Riemann
surface with marked points, a nodal J̃ -holomorphic curve

ũ : S→ R×M

is a proper finite energy pseudoholomorphic map ũ = (a, u) : (S \ 0, j)→ (R×M, J̃ )
such that for each pair {z, z} ⊂ 1, ũ(z) = ũ(z). In this context each pair {z, z} ⊂ 1 is
called a nodal pair, or simply a node of ũ. The marked points 0 are called punctures of ũ,
and the asymptotic behavior of a : S \ 0 → R determines the sign of each, defining a
partition 0 = 0+ ∪ 0−. Observe that for any decoration ψ of S, ũ : S \ 0 → M has a
natural continuous extension

(ā, ū) : S→ [−∞,∞]×M,
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which is constant on each connected component of 21 and maps ∂S to {±∞} ×M; in
particular, the restriction of ū to each δz ⊂ ∂S for z ∈ 0± defines a positively/negatively
oriented parametrization of a periodic orbit γz of X.

Consider next a collection of nodal J̃ -holomorphic curves

ũm = (am, um) : Sm = (Sm, jm, 0m,1m)→ R×M

form = 1, . . . , n. Denote ∂±Sm =
⋃
z∈0±m

δz, and suppose there are orientation reversing
orthogonal diffeomorphisms

ϕm : ∂+Sm→ ∂−Sm+1

for each m = 1, . . . , n− 1. Then the collection

ũ = (ũ1, . . . , ũn;ϕ1, . . . , ϕn−1)

is called a J̃ -holomorphic building of height n if for each m = 1, . . . , n− 1,

ūm|∂+Sm = ūm+1 ◦ ϕm.

The nodal curves ũm are called levels of ũ. For each m = 1, . . . , n− 1 and z ∈ 0+m , there
is a unique z ∈ 0−m+1 such that ϕm(δz) = δz. We then call the pair {z, z} a breaking pair,
and denote by γ(z,z) the breaking orbit parametrized by ūm|δz and ūm+1|δz . Let1C denote
the set of all punctures in 01 ∪ · · · ∪ 0n that belong to breaking pairs.

Define the partially decorated nodal Riemann surface S = (S, j, 0,1, ϕ), where
(S, j) is the disjoint union of (S1, j1), . . . , (Sn, jn), 0 = 0+ ∪0− := 0+n ∪0

−

1 , 1 is the
union of the breaking pairs in1C with the nodal pairs in1N := 11∪· · ·∪1n, and ϕ is the
collection of decorations at the breaking pairs {z, z} defined by ϕm : ∂+Sm → ∂−Sm+1.
We will call S the domain of ũ, and indicate this via the shorthand notation

ũ : S→ R×M.

Choosing arbitrary decorations ψm for each Sm, these together with ϕ define a decoration
ψ for S, and S is now the surface obtained from S1 ∪ · · · ∪ Sn by gluing boundaries
together via ϕ. There is then a continuous map

ū : S→ M

such that ū|Sm = ūm. The orbits γz parametrized by ū|δz for z ∈ 0± are called asymptotic
orbits of ũ.

Remark 2.1. Technically, what we have defined should be called holomorphic buildings
with zero marked points, since all the marked points of S are being viewed as punctures
of ũ. One can also define holomorphic buildings with marked points, though we will not
need them here; see [BEH+03] for details.

The relationship of a building ũ to its domain S gives rise to a slightly more general
notion which we will find useful.
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Definition 2.2. Suppose S = (S, j, 0,1,ψ) is a nodal Riemann surface with 1 parti-
tioned into two sets 1C ∪ 1N, each organized in pairs, called breaking pairs and nodal
pairs respectively, and ψ denotes a choice of decoration at each of the breaking pairs.
A generalized J̃ -holomorphic building ũ : S → R × M is then a proper finite energy
J̃ -holomorphic map ũ = (a, u) : S \ (0 ∪1C)→ R×M such that

(1) For each nodal pair {z, z} ⊂ 1N, ũ(z) = ũ(z).
(2) If we complete ψ to a decoration of S by choosing arbitrary decorations at the nodal

pairs, then u : S \ (0 ∪1) extends to a continuous map ū : S→ M .

Considering orientations, we see that each breaking pair {z, z} ⊂ 1C includes one posi-
tive and one negative puncture of ũ.

Just as with nodal Riemann surfaces, we say that the generalized building ũ : S →
R × M is connected if S is connected, and its arithmetic genus is defined as the genus
of S. A connected component of ũ is the finite energy surface obtained by restricting
the map ũ : S \ (0 ∪ 1C) → R ×M to any connected component of its domain. The
sets 0± ⊂ S are the positive and negative punctures of ũ. In general, each connected
component may have some punctures that do not belong to 0 but are included among the
breaking pairs 1C; we call these breaking punctures.

Every holomorphic building is also a generalized holomorphic building in an obvious
way. The main difference is that the components of generalized buildings cannot in gen-
eral be assigned levels, and every component may have positive and negative punctures
which are not breaking punctures; holomorphic buildings have these only at the top and
bottom levels.

Definition 2.3. A generalized building ũ : S → R × M is stable if each connected
component Ṡi ⊂ S \ (0 ∪1) on which ũ is constant satisfies χ(Ṡi) < 0.

Notation. For any generalized holomorphic building ũ and puncture z ∈ 0, we will
always denote by

γz := ū(δz)

the asymptotic orbit at z, and for breaking pairs {z, z} ⊂ 1C denote the breaking orbit
ū(δz) = ū(δz) by

γ(z,z) = γz = γz.

Unless stated otherwise, the domain S will be assumed to consist of the data (S, j, 0,
1, ϕ) as defined above. When multiple domains are under discussion, we will often use S′
to denote a second domain (S′, j ′, 0′,1′, ϕ′), or similarly St

= (St, j t, 0t,1t, ϕt) and
so forth.

Definition 2.4. Given a generalized holomorphic building ũ : S→ R×M , an augmen-
tation of ũ at a puncture z ∈ 0± is the generalized building ũ′ : S′→ R×M , defined as
follows:

(1) (S′, j ′) is the disjoint union of (S, j) with a sphere (ST , jT ) := (S2, i). Denote by
p−, p+ ∈ S

′ the points 0 and∞ respectively in ST .
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(2) 0′ = (0 ∪ {p±}) \ {z}.
(3) 1′C is 1C with the addition of one extra pair {z, p∓}.
(4) 1′N = 1N.
(5) ũ′|S\(0∪1C) = ũ and ũ′|ST \{p+,p−} is a trivial cylinder over γz. A decoration is then

chosen at 1′C \1C so that ũ′ is a generalized holomorphic building.

An augmentation at a breaking pair {z, z} ⊂ 1C is defined in the same manner with the
following changes:

(1) 0′ = 0.
(2) 1′C is 1C with two additional pairs, {z, p−} and {p+, z}.
(3) ũ′|ST \{p+,p−} is a trivial cylinder over γ(z,z).

In general, an augmentation of ũ is any generalized building obtained from ũ by a finite
sequence of these two operations.

Augmentation is essentially the operation of shifting levels of ũ by inserting trivial cylin-
ders. One should think of ũ′ as being homotopic to ũ, generalizing the fact that a finite
energy surface ṽ = (b, v) is homotopic to any of its R-translations ṽc = (b + c, v) for
c ∈ R; an augmentation is in some sense a sequence of infinite R-translations.

Just as one can insert trivial cylinders in a generalized building, one can also “col-
lapse” them.

Definition 2.5. Suppose ũ : S → R × M is a generalized holomorphic building such
that at least one connected component is not a trivial cylinder. The core of ũ is then the
unique generalized building ũK : SK

→ R×M such that ũ is an augmentation of ũK and
no connected component of ũK is a trivial cylinder.

Definition 2.6. Given a generalized building ũ : S→ R ×M , a subbuilding ũ′ : S′ →
R×M of ũ is a generalized building such that

(1) S′ is an open and closed subset of S, on which j ′ = j .
(2) 0′ is the union of 0∩S′ with all z ∈ S′ for which {z, z′} is a breaking pair in1C with

z′ 6∈ S′.
(3) 1′C is the set of all breaking pairs {z, z} in 1C for which both z and z are in S′, and

ψ ′ is the restriction of ψ .
(4) 1′N is the set of all nodal pairs {z, z} in 1N for which both z and z are in S′.
(5) ũ′ = ũ|S′\(0′∪1′C).

We refer to [BEH+03] for the detailed definition of what it means for a sequence of finite
energy surfaces to converge to a holomorphic building. We will only need to use the
following fact, immediate from the definition:

Proposition 2.7. If ũk = (ak, uk) : (6̇k, jk) → (R × M, J̃k) is a sequence of finite
energy surfaces converging to a J̃ -holomorphic building ũ : S → R × M , then for
sufficiently large k there exist homeomorphisms ϕk : S→ 6k , restricting to smooth maps
S \ (∂S ∪21)→ 6̇k , such that
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(1) uk ◦ ϕk → u in C∞loc(S \ (∂S ∪21),M).
(2) ūk ◦ ϕk → ū in C0(S,M).

The proof of Theorem 1 will rely heavily on our ability to control the normal first Chern
number for components of a holomorphic building. Positivity of intersections guarantees
that this number is nonnegative for any finite energy surface that is not preserved by the
R-action. The hardest part of the proof therefore involves the so-called trivial curves, for
which this number can be negative.

Definition 2.8. A finite energy surface ũ : 6̇ → R ×M will be called a trivial curve if
Eω(ũ) = 0, and nontrivial if Eω(ũ) > 0.

Examining the integrand in (1.1), one finds that a finite energy surface ũ = (a, u) : 6̇→
R×M is trivial if and only if the image of du(z) is everywhere tangent toX, which means
u(6̇) is contained in a single periodic orbit γ . If ũ is not constant, then this implies one
can always write ũ = ṽ ◦ ϕ where ϕ : 6̇→ R× S1 is a holomorphic branched cover and
ṽ is the trivial cylinder over γ .

Definition 2.9. A holomorphic building or generalized holomorphic building will be
called trivial if it is connected, has no nodes, and all its connected components are trivial
curves. Additionally, such a building will be called cylindrical if it has arithmetic genus
zero and exactly two punctures.

Observe that every nonconstant trivial curve has at least one positive and one negative
puncture, and the same statement therefore holds for trivial (generalized) buildings. It
follows that in general a trivial building ũ : S→ R ×M has χ(S) ≤ 0, with equality if
and only if ũ is cylindrical.

Proposition 2.10. A nonconstant trivial building is cylindrical if and only if it is an aug-
mentation of a trivial cylinder.

Proof. Observe first that the statement is true for any building ũ with only one level
(i.e. a finite energy surface), for then ũ covers a trivial cylinder ṽ by a holomorphic map
ϕ : R×S1

→ R×S1 of degree k ∈ N, and every such map is of the form ϕ(s, t) = (ks, kt)

up to constant shifts in s and t .
For a more general trivial building ũ : S→ R×M with two punctures and χ(S) = 0,

we need only observe that under these assumptions, no connected component of ũ can
have nontrivial genus or more than two punctures. ut

3. Asymptotic eigenfunctions

Let γ = (x, T ) be a periodic orbit of X, and writing S1 := R/Z, define the parametriza-
tion

x : S1
→ M : t 7→ x(T t).
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We can then view the normal bundle to γ as the induced bundle x∗ξ → S1. Choosing any
symmetric connection ∇ on M , we define the asymptotic operator

Aγ : 0(x∗ξ)→ 0(x∗ξ) : v 7→ −J (∇tv − T∇vX).

One can check that this expression does not depend on the choice ∇ and gives a well
defined section of x∗ξ . Morally, Aγ is the Hessian of a certain action functional on
C∞(S1,M), whose critical points are the closed characteristics of X. As an unbounded
operator on L2(x∗ξ) with domain H 1(x∗ξ), Aγ is self-adjoint, with spectrum σ(Aγ )
consisting of isolated real eigenvalues of multiplicity at most two. We shall sometimes
refer to the eigenfunctions of Aγ as asymptotic eigenfunctions. Recall that the orbit γ is
degenerate if and only if 0 ∈ σ(Aγ ).

Operators of this form are fundamental in the asymptotic analysis of punctured holo-
morphic curves, as demonstrated by the following result proved in [HWZ96, Mor03,
Sieb]. Denote

R+ = [0,∞), R− = (−∞, 0], Z± = R± × S1,

and assign to Z± the standard complex structure i ∂
∂s
=

∂
∂t

in terms of the coordinates
(s, t) ∈ Z±. We will use the term asymptotically constant reparametrization to mean a
smooth embedding ϕ : Z± → Z± for which there are constants s0 ∈ R and t0 ∈ S1 such
that ϕ(s − s0, t − t0)− (s, t)→ 0 with all derivatives as s →±∞.

Proposition 3.1. Suppose ũ = (a, u) : Z± → R± ×M is a proper finite energy half-
cylinder asymptotic to a nondegenerate orbit γ = (x, T ). Then there is an asymptotically
constant reparametrization ϕ : Z± → Z± such that for |s| sufficiently large, ũ ◦ ϕ :
Z± → R ×M is either (T s, x(T t)) or satisfies the following asymptotic formula: there
exists an eigenfunction e ∈ 0(x∗ξ) of Aγ with negative/positive eigenvalue λ such that

ũ ◦ ϕ(s, t) = exp(T s,x(T t))[e
λs
· (e(t)+ r(s, t))],

where exp is defined with respect to any R-invariant connection on R×M and r(s, t) ∈
ξx(T t) satisfies r(s, t)→ 0 with all derivatives as s →±∞.

Since nontrivial eigenfunctions e ∈ 0(x∗ξ) are never zero, this implies in particular that
u(s, t) is either contained in γ or never intersects γ for sufficiently large |s|. Similar
formulas are proved in [Sieb] for the relative asymptotic behavior of distinct holomorphic
half-cylinders approaching the same orbit; this is fundamental to the intersection-theoretic
results that we will review in §4.

Proposition 3.1 obviously applies to finite energy surfaces ũ : 6̇ → R×M by iden-
tifying a punctured disk-like neighborhood of each puncture z ∈ 0± biholomorphically
with Z±.

Definition 3.2. For ũ : Z± → R± ×M as in Proposition 3.1, if ũ satisfies the asymp-
totic formula with a nontrivial eigenfunction e and eigenvalue λ, we call |λ| > 0 the
transversal convergence rate of ũ and say that e controls the asymptotic approach of ũ
to γ . Otherwise, if ũ is simply a reparametrization of (T s, x(T t)) near infinity, we define
the transversal convergence rate to be +∞. Similar wording will be used also for more
general punctured holomorphic curves ũ : 6̇→ R×M approaching orbits γz at z ∈ 0.
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It will be important to understand the eigenfunctions of Aγ in greater detail. For k ∈ N,
define a parametrization of γ k by

xk : S1
→ M : t 7→ x(kT t).

Choose a unitary trivialization8 of x∗ξ , and use8 also to denote the natural trivialization
induced on x∗kξ . Every nowhere zero section v ∈ 0(x∗ξ) now has a well defined winding
number

wind8(v) ∈ Z.

By a result in [HWZ95], the winding number of a nontrivial eigenfunction e of Aγ de-
pends only on its eigenvalue λ, thus we can sensibly write wind8(e) = wind8(λ). In fact,
the result in question proves:

Proposition 3.3. wind8 : σ(Aγ ) → Z is a nondecreasing function, and for each
k ∈ Z, there are precisely two eigenvalues λ ∈ σ(Aγ ) counted with multiplicity such
that wind8(λ) = k.

Assuming γ to be nondegenerate, we now define the integers

α8−(γ ) = max{wind8(λ) | λ ∈ σ(Aγ ), λ < 0},

α8+(γ ) = min{wind8(λ) | λ ∈ σ(Aγ ), λ > 0},

p(γ ) = α8+(γ )− α
8
−(γ ),

(3.1)

noting that the parity p(γ ) ∈ {0, 1} does not depend on 8. Another result in [HWZ95]
then gives the following formula for the Conley–Zehnder index:

µ8CZ(γ ) = 2α8−(γ )+ p(γ ) = 2α8+(γ )− p(γ ). (3.2)

Definition 3.4. We will say that a nontrivial eigenfunction e of Aγ is a positive/negative
extremal eigenfunction of γ if wind8(e) = α8±(γ ).

If e ∈ 0(x∗ξ) satisfies Aγ e = λe, we define the k-fold cover ek ∈ 0(x∗kξ) by ek(t) =
e(kt) and find Aγ kek = kλek . In general, an eigenfunction f of Aγ is called a k-fold
cover if there is an orbit ζ and eigenfunction e of Aζ such that ζ k = γ and ek = f . We
say that f is simply covered if it is not a k-fold cover for any k > 1.

Lemma 3.5. A nontrivial eigenfunction f of Aγ k is a k-fold cover if and only if
wind8(f ) ∈ kZ.

Proof. Clearly if f = ek then wind8(f ) = kwind8(e) ∈ kZ. To see the converse, note
that by Proposition 3.3 there is a two-dimensional space of eigenfunctions e of Aγ having
any given integer value of wind8(e). This gives rise to a two-dimensional space of k-fold
covers ek with winding kwind8(e). Since this attains all winding numbers in kZ, every
eigenfunction of Aγ k that is not a k-fold cover has winding in Z \ kZ. ut
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Proposition 3.6. Let γ be a simply covered periodic orbit,8 a unitary trivialization of ξ
along γ and k ∈ N. Then a nontrivial eigenfunction e of Aγ k is simply covered if and
only if k and wind8(e) are relatively prime.

Proof. From the lemma, we see that e is an n-fold cover if and only if n divides both k
and wind8(e). So e is simply covered if and only if this is not true for any n ∈ {2, . . . , k}.

ut

4. Intersection theory

If ũ = (a, u) : 6̇ → R×M is a finite energy surface and π : TM → ξ is the fiberwise
linear projection along X, then the composition π ◦ T u : T 6̇→ ξ defines a section

πT u : 6̇→ HomC(T 6̇, u
∗ξ).

It is shown in [HWZ95] that πT u satisfies the similarity principle, thus it is either triv-
ial or has only isolated positive zeros; the latter is the case unless Eω(ũ) = 0. Assum-
ing Eω(ũ) > 0 and ũ also has nondegenerate asymptotic orbits, the asymptotic formula
of Proposition 3.1 implies that πT u has no zeros outside some compact subset, and its
winding near infinity is controlled by eigenfunctions of asymptotic operators. We can thus
define the integer

windπ (ũ) ≥ 0

as the algebraic count of zeros of πT u. It follows from the nonlinear Cauchy–Riemann
equation that windπ (ũ) = 0 if and only if u : 6̇→ M is immersed and transverse to X.

Recalling the formula for cN (ũ) from Definition 1.6, a result in [HWZ95] shows that
all finite energy surfaces ũ with Eω(ũ) > 0 satisfy windπ (ũ) ≤ cN (ũ). Actually one can
state this in a slightly stronger form as an equality. For z ∈ 0±, let ez be an asymptotic
eigenfunction that controls the approach of ũ to γz, choose a unitary trivialization 8 of ξ
along γz and define the asymptotic defect of ũ at z to be the nonnegative integer

def z∞(ũ) = |α
8
∓(γz)− wind8(ez)|.

This is zero if and only if the asymptotic approach to γz is controlled by an extremal
eigenfunction. The total asymptotic defect of ũ is then defined as

def∞(ũ) =
∑
z∈0

def z∞(ũ).

Now the argument in [HWZ95] implies:

Proposition 4.1. For any finite energy surface ũ with Eω(ũ) > 0 and nondegenerate
asymptotic orbits,

windπ (ũ)+ def∞(ũ) = cN (ũ),

and both terms on the left hand side are nonnegative.
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Next we collect some important results from the intersection theory of finite energy sur-
faces, due to R. Siefring. In the following, we assume all periodic orbits of X are non-
degenerate and write punctured holomorphic disks as half-cylinders Z± → R± × M .
These statements, proved in [Siea], are all based on the construction of homotopy in-
variant “asymptotic intersection numbers”, which are well defined due to the relative
asymptotic formulas proved in [Sieb].

Proposition 4.2. Suppose ũ = (a, u) : Z± → R± ×M is a proper finite energy half-
cylinder such that u : Z± → M is embedded. Then any asymptotic eigenfunction con-
trolling ũ at infinity is simply covered.

Proposition 4.3. Suppose ũ = (a, u) : Z±→ R±×M and ṽ = (b, v) : Z±→ R±×M
are proper finite energy half-cylinders asymptotic to γm and γ n respectively for some
simply covered orbit γ and m, n ∈ N. Assume also that u and v are both embedded and
do not intersect each other. Then m = n, and the asymptotic eigenfunctions controlling ũ
and ṽ at infinity have the same winding number.

Proposition 4.4. Suppose ũ+ : (a+, u+) : Z+ → R+ ×M and ũ− : (a−, u−) : Z− →
R− ×M are proper finite energy half-cylinders asymptotic to γ k+ and γ k− respectively
for some simply covered periodic orbit γ and k± ∈ N. Assume also u+ and u− are both
embedded and do not intersect each other. Then both have asymptotic defect zero, and
either

(1) γ is even and k+ = k− = 1, or
(2) γ is odd hyperbolic and k+ = k− = 2, hence γ k+ = γ k− is bad.

5. Constraints at the asymptotic orbits

Given a periodic orbit γ , a positive/negative asymptotic constraint for γ is a real num-
ber c ≥ 0 such that ∓c 6∈ σ(Aγ ). We will say that a proper finite energy half-cylinder
ũ : Z± → R± ×M asymptotic to γ is compatible with this constraint if its transversal
convergence rate (recall Definition 3.2) is strictly greater than c. Similarly, for a general-
ized holomorphic building ũ : S → R × M with punctures 0 = 0+ ∪ 0−, denote by
c = {cz}z∈0 an association of a positive/negative asymptotic constraint cz to each asymp-
totic orbit γz for z ∈ 0±, and say that ũ is compatible with c if for every z ∈ 0, the
corresponding end has transversal convergence rate strictly greater than cz. Observe that
the space of holomorphic buildings compatible with a given set of asymptotic constraints
is a closed subset of the space of all holomorphic buildings.

Let γ be a nondegenerate orbit and fix a unitary trivialization8 of ξ along γ . Then if c
is a positive asymptotic constraint for γ , define the positive constrained Conley–Zehnder
index by

µ8CZ(γ ; c) = µ
8
CZ(γ )− #(σ (Aγ ) ∩ (−c, 0)), (5.1)

where eigenvalues are counted with multiplicity. Similarly, for c a negative asymptotic
constraint, define the negative constrained Conley–Zehnder index

µ8CZ(γ ;−c) = µ
8
CZ(γ )+ #(σ (Aγ ) ∩ (0, c)), (5.2)
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and if ũ : S → R ×M is a holomorphic building compatible with constraints c, choose
unitary trivializations 8 for ξ along all asymptotic orbits γz and define the total con-
strained Conley–Zehnder index

µ8CZ(ũ; c) =
∑
z∈0+

µ8CZ(γz; cz)−
∑
z∈0−

µ8CZ(γz;−cz).

The even/odd parity of the constrained indices µ8CZ(γz;±cz) for z ∈ 0± defines a con-
strained parity for each puncture, thus defining a new partition

0 = 00(c) ∪ 01(c).

Now define the constrained Fredholm index

ind(ũ; c) = −χ(S)+ 2c81 (ū
∗ξ)+ µCZ(ũ; c). (5.3)

As shown in [Wenb] (based on arguments in [HWZ99]), if ũ is a finite energy surface,
ind(ũ; c) is the virtual dimension of the moduli space of finite energy surfaces near ũ that
are compatible with c.

The relation between Conley–Zehnder indices and winding numbers has a straight-
forward generalization to the constrained case. Given an orbit γ and c ∈ R with −c 6∈
σ(Aγ ), define

α8−(γ ; c) = max{wind8(λ) | λ ∈ σ(Aγ ), λ < −c},

α8+(γ ; c) = min{wind8(λ) | λ ∈ σ(Aγ ), λ > −c},

p(γ ; c) = α8+(γ ; c)− α
8
−(γ ; c).

(5.4)

Then combining (3.2) with (5.1) and (5.2), we have

µ8CZ(γ ; c) = 2α8−(γ ; c)+ p(γ ; c) = 2α8+(γ ; c)− p(γ ; c). (5.5)

A nontrivial eigenfunction e of Aγ will now be called a positive/negative extremal eigen-
function with respect to the constraint |c| if wind8(e) = α8±(γ ; c).

Now if ũ : 6̇ → R×M is a finite energy surface compatible with c and Eω(ũ) > 0,
define the constrained asymptotic defect at z ∈ 0± by

def z∞(ũ; cz) = |α
8
∓(γz;±cz)− wind8(ez)|,

where ez is an eigenfunction controlling the asymptotic approach of ũ to γz. The total
constrained asymptotic defect is then

def∞(ũ; c) :=
∑
z∈0

def z∞(ũ; cz).

This sum is nonnegative, and is zero if and only if ũ is controlled by extremal eigenfunc-
tions with respect to the constraints at every puncture.

If ũ is a generalized building compatible with constraints c, then every subbuilding
ũ0 is compatible with a natural set of induced constraints ĉ defined as follows. For each
puncture z of ũ0 that is also a puncture of ũ, set ĉz = cz, and for all other punctures of ũ0
(i.e. those which are only breaking punctures of ũ), set ĉz = 0. The following relation is
easily verified using (5.3).
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Proposition 5.1. If ũ : S → R ×M is a generalized holomorphic building compatible
with constraints c and it has connected components ũi with induced constraints ci , then

ind(ũ; c) =
∑
i

ind(ũi; ci)+ #1N.

Suppose now that ũ′ is an augmentation of ũ; there is then a canonical bijection between
the sets of punctures for each, so a set of asymptotic constraints c on either induces one
on the other, which we will also denote by c. However, if ũ′ is compatible with c, it is not
necessarily true that ũ is as well. Indeed, it may happen that for a given puncture z ∈ 0,
the component of ũ′ containing z is a trivial cylinder, and is therefore compatible with
arbitrarily strict asymptotic constraints, which is not necessarily true for ũ. On the other
hand, if ũ′ arises as the limit of a sequence ũk of finite energy surfaces compatible with c,
then in a neighborhood of z ∈ 0, convergence to ũ′ and convergence to ũ are equivalent
notions. It follows that both ũ and ũ′ are in this case compatible with c; this is true in
particular if ũ is the core of ũ′.

6. The normal first Chern number

Suppose ũ : S→ R×M is a generalized holomorphic building compatible with asymp-
totic constraints c = {cz}z∈0 , and the asymptotic orbits γz are all nondegenerate. Fix a
unitary trivialization 8 for ξ along each γz.

Definition 6.1. Define the constrained normal first Chern number of ũ with respect to c
as the integer

cN (ũ; c) = c81 (ū
∗ξ)− χ(S)+

∑
z∈0+

α8−(γz; cz)−
∑
z∈0−

α8+(γz;−cz).

One can easily check that this does not depend on 8, and a simple computation using
(5.5) and (5.3) shows that

2cN (ũ; c) = ind(ũ; c)− 2+ 2g + #00(c), (6.1)

where g is the arithmetic genus of ũ. The new formula is therefore consistent with Defi-
nition 1.6.

The following result is immediate from the definition.

Proposition 6.2. If ũ′ is an augmentation of ũ then cN (ũ′; c) = cN (ũ; c).

We also have an immediate generalization of Proposition 4.1:

Proposition 6.3. If ũ is a finite energy surface compatible with c and Eω(ũ) > 0, then

windπ (ũ)+ def∞(ũ; c) = cN (ũ; c),

and both terms on the left hand side are nonnegative.
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Proposition 6.4. Suppose ũ : S→ R ×M is a generalized holomorphic building com-
patible with asymptotic constraints c, and ũi : Ṡi → R×M are the connected components
of ũ, with induced constraints ci for i = 1, . . . , N . Then

cN (ũ; c) =
N∑
i=1

cN (ũi; ci)+
∑

{z,z}⊂1C

p(γ(z,z))+ #1N.

Proof. We must check that cN behaves appropriately under certain natural operations on
generalized holomorphic buildings. The simplest such operation is the disjoint union of
two buildings ũ : S→ R×M and ũ′ : S′→ R×M with constraints c and c′ respectively:
this defines a building ũ t ũ′ : S t S′ → R ×M , compatible with the obvious union of
constraints c t c′. Clearly, then,

cN (ũ t ũ
′
; c t c′) = cN (ũ; c)+ cN (ũ′; c′).

Next, if ũ : S→ R ×M is a building with two points z, z′ ∈ S \ (0 ∪ 1) such that
ũ(z) = ũ(z′), we can add a node to ũ and define �(z,z′)ũ : �(z,z′)S→ R×M by adding
{z, z′} to the set of nodal pairs. This decreases the Euler characteristic of S by 2, thus

cN (�(z,z′)ũ; c) = cN (ũ; c)+ 2.

Similarly, if there are punctures z ∈ 0+ and z ∈ 0− for which γz = γz and cz = cz = 0,
then we can change ũ by “gluing” these punctures, which means adding {z, z} to the set
of breaking pairs and choosing an appropriate decoration so that the result is a general-
ized holomorphic building �(z,z)ũ : �(z,z)S → R × M . By losing two unconstrained
punctures, this operation subtracts α8−(γz)− α

8
+(γz) = −p(γ(z,z)) from cN (ũ; c), hence

cN (�(z,z)ũ; c) = cN (ũ; c)+ p(γ(z,z)).

Composing these operations as often as necessary gives the stated result. ut

7. Proofs of the main results

We will now state and prove stronger, more technical versions of Theorems 1 and 2.
AssumeHk = (ξk, Xk, ωk, Jk) is a sequence of stable Hamiltonian structures converging
to H = (ξ,X, ω, J ), where the latter is nondegenerate, and ũ : S → R × M is a
J̃ -holomorphic building compatible with asymptotic constraints c = {cz}z∈0 . Since the
orbits γz are nondegenerate, for sufficiently large k there are unique periodic orbits γz,k
of Xk such that

γz,k → γz,

in the sense that these orbits have parametrizations S1
→ M that converge in the C∞-

topology. We may also assume that for each z ∈ 0±, ∓cz 6∈ σ(Aγz,k ).
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Theorem 3. Assume ũk are nicely embedded J̃k-holomorphic finite energy surfaces con-
verging to the J̃ -holomorphic building ũ, such that the ũk are also compatible with c and
cN (ũk; c) = 0. Then ũ is nicely embedded, its core ũK is compatible with c, and for every
connected component ṽi of ũK with induced constraints ci , cN (ṽi; ci) = 0.

Remark 7.1. If ũk → ũ under the assumptions of Theorem 1, then one can assume
after taking a subsequence that all the ũk are compatible with some choice of asymptotic
constraints c such that cN (ũk; c) = windπ (ũk)+def∞(ũk; c) = 0. This is why Theorem 3
implies Theorem 1. Similarly, Theorem 2 is a special case of the next statement.

Theorem 4. In addition to the assumptions of Theorem 3, suppose J is generic. Then
ind(ũ; c) is either 1 or 2. If it is 1, then ũ is a finite energy surface, hence the moduli
space of such curves with constraint c is compact. If ind(ũ; c) = 2 and ũ is not a finite
energy surface, then it has exactly two nontrivial connected components ṽi = (bi, vi),
both with ind(ṽi; ci) = 1, such that v1 and v2 have no intersections in M and they are
connected to each other by a unique nontrivial breaking orbit.

We begin now with some preparations for the proof of Theorem 3. By Proposition 2.7, we
can assume without loss of generality that the curves ũk have a fixed domain 6̇ = 6 \ 0
with varying complex structures jk , and there is a fixed homeomorphism

ψ : S→ 6

such that uk ◦ ψ → u in C∞loc(S \ (∂S ∪ 21),M) and ūk ◦ ψ → ū in C0(S,M). The
punctures 0± of ũk and ũ are also identified via ψ , so we shall use the same notation for
both; the asymptotic orbit of ũk at z ∈ 0 is then γz,k for sufficiently large k.

Lemma 7.2. The building ũ has at least one nontrivial component.

Proof. If ũ : S → R × M is a trivial building, then ū : S → M represents the trivial
homology class [ū] = 0 ∈ H2(M). Perturbing ũ to ũk with asymptotic orbits γz,k for
sufficiently large k, we also have [ūk] = 0 ∈ H2(M), thus Eωk (ũk) =

∫
6̇
u∗kωk =

〈[ωk], [ūk]〉 = 0. This is a contradiction, since ũk is assumed to be nicely embedded, and
thus nontrivial. ut

Lemma 7.3. For each k, uk(6̇) ⊂ M is disjoint from each of the orbits γz,k ⊂ M for
z ∈ 0.

Proof. Since uk is embedded, it follows from the nonlinear Cauchy–Riemann equation
that it is also transverse to Xk , thus any intersection with γz,k is transverse and implies
transverse intersections of uk with its image in a neighborhood of z. ut

Lemma 7.4. For every z ∈ 0±, the extremal negative/positive eigenfunctions of γz with
respect to cz are simply covered. Moreover, if z and ζ are distinct punctures with the same
sign and γz and γζ cover the same simply covered orbit, then γz = γζ .
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Proof. Since def∞(ũk; c) ≤ cN (ũk; c) = 0, ũk is controlled by extremal eigenfunctions
with respect to c at each puncture, and these must then be simply covered by Proposi-
tion 4.2. Similarly Proposition 4.3 implies that distinct positive/negative ends of ũk ap-
proaching covers of the same orbit must approach with the same covering number. Both
statements hold also in the limit due to the nondegeneracy of the orbits γz. ut

Lemma 7.5. Suppose z+ ∈ 0+ and z− ∈ 0− are such that γz+ and γz− cover the same
simply covered orbit. Then γz+ = γz− and it is either a simply covered even orbit or a
doubly covered bad orbit with simply covered extremal eigenfunctions. Moreover, we can
reset cz+ = cz− = 0 without changing ind(ũ; c) or cN (ũ; c).

Proof. For γz±,k , the first part of the statement follows from Proposition 4.4 since uk
is embedded, and the second part results from the fact that γz±,k is therefore even and
ũk is controlled by extremal eigenfunctions (in the unconstrained sense) at both of these
punctures, so Aγz± can have no eigenvalues between cz± and 0. The same result is true
for γz± due to nondegeneracy. ut

Lemma 7.6. For every connected component ṽi = (bi, vi) : Ṡi → R×M of ũ, either ṽi
is a trivial curve or vi : Ṡi → M is injective. Moreover, for any two such components ṽ1
and ṽ2 that are not trivial, v1(Ṡ1) and v2(Ṡ2) are either disjoint or identical, the latter if
and only if ṽ1 can be obtained from ṽ2 by R-translation (up to parametrization).

Proof. Suppose ṽi = (bi, vi) : Ṡi → R ×M is a nontrivial connected component of ũ,
so Eω(ṽi) > 0 and consequently the section

πT vi : Ṡi → HomC(T Ṡi, v
∗

i ξ)

has only finitely many zeros, all positive. We claim first that ṽi is somewhere injective. If
not, then there exists a somewhere injective finite energy surface w̃i = (βi, wi) : Ṡ′i →
R × M and a holomorphic branched cover ϕi : Ṡi → Ṡ′i of degree k ≥ 2 such that
ṽi = w̃i ◦ϕi . We can therefore find an embedded loop α′ : S1

→ Ṡ′i which does not lift to
Ṡi , and by small perturbations of α′, we may assume it misses all punctures and zeros of
πTwi . Now choose an embedded loop α : S1

→ Ṡi which projects to an n-fold cover of
α′ for some n ≥ 2, and denote C = α(S1) ⊂ Ṡi , C′ = α′(S1) ⊂ Ṡ′i . Choose also an open
neighborhood U ′ of C′ and a corresponding neighborhood U of C such that ϕi(U) = U ′.
The restriction ϕi |U : U → U ′ is an n-fold covering map, and we may assume without
loss of generality that vi |U : U → M and wi |U ′ : U ′ → M are both transverse to X.
From this we can derive a contradiction. Indeed, any map v′ : U → M that is C∞-close
to vi |U can be written on some neighborhood of C as

v′(z) = ϕ
f (z)
X (vi(z))

where ϕtX denotes the flow of X and f is a smooth real-valued function defined on some
neighborhood of C. Choosing any nontrivial deck transformation g : U → U for the
covering map ϕi |U , there is necessarily a point z ∈ C at which f (z) = f ◦ g(z), and
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thus v′(z) = v′(g(z)). By Proposition 2.7, this is true in particular for a suitable restric-
tion of uk for k sufficiently large, contradicting the assumption that uk is embedded. We
conclude that ṽi is somewhere injective.

Now denote R-translations of finite energy surfaces ũ = (a, u) by ũc := (a + c, u)
for c ∈ R. Suppose that ṽ1 and ṽ2 are two nontrivial components and v1(z1) = v2(z2).
This gives an intersection ṽ1(z1) = ṽ

c
2(z2) for some c ∈ R. If the intersection is isolated

then it is positive, and yields an isolated intersection of ũk and ũc
′

k for some c′ ∈ R,
again contradicting the fact that uk is embedded. The alternative, since ṽ1 and ṽ2 are
both somewhere injective, is that ṽ1 and ṽc2 are identical up to parametrization. The same
argument applies to intersections of v1 with itself: since ṽ1 is somewhere injective, the
intersection of ṽ1 with ṽc1 is then necessarily isolated, otherwise ṽ1 and ṽc1 are identical
up to parametrization; this is impossible in light of the asymptotic behavior described in
Proposition 3.1. ut

We shall call a nonconstant trivial subbuilding of ũ maximal if every component attached
to it by a breaking orbit is nontrivial. Given such a subbuilding ũt : St

→ R ×M , we
introduce the following notation: write the punctures of ũt as

0̂± = 0̂±C ∪ 0̂
±

E ,

where 0̂E := 0̂ ∩ 0 and 0̂C consists of all punctures of ũt that arise from breaking
punctures of ũ. Assume #0̂+C = p, #0̂−C = q, #0̂+E = r and #0̂−E = s; we have necessarily
#0̂+ = p + r > 0, #0̂− = q + s > 0 and since ũ is connected and has nontrivial
components, #0̂C = p + q > 0. Every asymptotic orbit of ũt covers the same simply
covered orbit γ , so denote the orbit at z ∈ 0̂ by

γz = γ
mz

for some multiplicity mz ∈ N. Each z ∈ 0̂±C belongs to a breaking pair {z, ẑ} ⊂ 1C
of ũ, and the component ṽz = (bz, vz) of ũ containing ẑ is necessarily nontrivial, and
negatively/positively asymptotic to γmz at ẑ. We know now from Lemma 7.6 that each
of the maps vz is injective (thus embedded near the punctures), and any two of them are
either disjoint or identical. Then by the intersection-theoretic results of §4, all the mz for
z ∈ 0̂C equal a fixed number mC ∈ N, and the asymptotic approach of each ṽz to γmC is
controlled by eigenfunctions ez with the same winding wind8(ez) := wC ∈ Z. Likewise
for z ∈ 0̂±E , Lemmas 7.4 and 7.5 imply that all mz equal a fixed multiplicity mE ∈ N,
and there is a fixed extremal winding number wE := α8∓(γ

mE; cz). Note that if both 0̂+E
and 0̂−E are nonempty, then α8+(γ

mE; cz) = α
8
+(γ

mE) = α8−(γ
mE) = α8−(γ

mE; cz); this
follows from Lemma 7.5.

Lemma 7.7. For the maximal trivial subbuilding ũt described above, mC = mE and
wC = wE.

Proof. There is nothing to prove if 0̂E = ∅, so assume r + s > 0. Define the compact
subset6t

= ψ(St
) ⊂ 6 and recall that for sufficiently large k, ūk ◦ψ |St is C0-close to ūt.

Let γk be the unique simply covered orbit ofXk for sufficiently large k such that γk → γ .
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Then some cover of γk is an asymptotic orbit of ũk , thus by Lemma 7.3, we can assume
ūk(6

t
) lies in a fixed tubular neighborhood Nγ of γ but without intersecting γk . We can

also arrange that ūk have the following behavior at each component of ∂6t:

• for z ∈ 0̂±C , wind8(ūk(ψ(δz))) = ±wC,
• for z ∈ 0̂±E , wind8(ūk(ψ(δz))) = ±wE.

The crucial observation is now that ūk(6
t
) realizes a homology inH2(Nγ \γk) ∼= H2(T

2).
From this we obtain the relations

pmC + rmE = qmC + smE,

pwC + rwE = qwC + swE,

and consequently (
mC mE
wC wE

)(
p − q

r − s

)
=

(
0
0

)
.

If p = q and r = s, then both of these are nonzero and Proposition 4.4 implies that
either γ is even and mC = mE = 1, or γ is odd hyperbolic and mC = mE = 2, with
wC = wE = α8+(γ

mC) = α8−(γ
mC) in either case. Otherwise the determinant of the

matrix above must vanish, so mCwE = mEwC. However, by Proposition 4.2, wC and wE
are winding numbers of simply covered eigenfunctions for γmC and γmE respectively,
thus Proposition 3.6 implies that mC and wC are relatively prime, as are mE and wE. This
implies mC = mE and wC = wE. ut

Corollary 7.8 If ũt : St
→ R×M is the maximal trivial subbuilding above with induced

asymptotic constraints ĉ = {ĉz}z∈0̂ , then

cN (ũ
t
; ĉ)+

∑
z∈0̂C

[p(γz)+ def ẑ∞(ṽz)] = −χ(S
t
).

In particular, this sum is nonnegative, and is zero if and only if ũt is cylindrical.

Proof. By the lemma we have #0̂+ = #0̂− and can write m := mE = mC and w :=
wE = wC = α

8
∓(γ

m
; cz) for each z ∈ 0̂±E . Then, noting that c81 ((ū

t)∗ξ) = 0,

cN (ũ
t
; ĉ)+

∑
z∈0̂C

[p(γz)+ def ẑ∞(ṽz)]

= − χ(St
)+

∑
z∈0̂+

α8−(γ
m
; ĉz)−

∑
z∈0̂−

α8+(γ
m
; ĉz)

+

∑
z∈0̂C

[α8+(γ
m)− α8−(γ

m)]

+

∑
z∈0̂+C

[w − α8+(γ
m)]+

∑
z∈0̂−C

[α8−(γ
m)− w]

= − χ(St
)+

∑
z∈0̂+

w −
∑
z∈0̂−

w = −χ(St
). ut
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We shall handle constant components of ũ similarly. Call a connected subbuilding ũc :
Sc
→ R×M of ũ a constant subbuilding if every connected component of ũc is constant.

Further, call it a maximal constant subbuilding if every constant component of ũ that is
attached by a node to some component of ũc is also in ũc. Note that constant subbuildings
cannot have punctures, thus Sc

is closed. Denote by 1̂N ⊂ Sc the set of points z ∈ Sc

that belong to nodal pairs {z, z′} ⊂ 1N of S such that ũ is not constant near z′; this set is
necessarily nonempty since ũ is connected. Then the stability condition on ũ implies

χ(Sc
\ 1̂N) < 0.

Thus cN (ũc) + 2#1̂N = −χ(S
c
) + #1̂N + #1̂N = −χ(S

c
\ 1̂N) + #1̂N > #1̂N > 0.

We have proved:

Lemma 7.9. For any maximal constant subbuilding ũc of ũ with nodes 1̂N connecting it
to nonconstant components of ũ,

cN (ũ
c)+ 2#1̂N > 0.

All the ingredients are now in place.

Proof of Theorem 3. By the above results, ũ consists of the following pieces:

(1) Maximal constant subbuildings ũc such that cN (ũc)+ 2#1̂N > 0.
(2) Maximal trivial subbuildings ũt with induced asymptotic constraints ct, for which

the sum of cN (ũt
; ct) +

∑
z∈0̂C

p(γz) with the asymptotic defects of all neighboring
nontrivial ends is nonnegative, and zero if and only if ũt is cylindrical.

(3) Nontrivial connected components ṽ = (b, v) with v injective.

Note that each nontrivial component ṽ is compatible with induced asymptotic con-
straints ĉ and satisfies cN (ṽ; ĉ)− def∞(ṽ; ĉ) = windπ (ṽ) ≥ 0.

Since cN (ũ; c) = 0, we conclude from Proposition 6.4 that ũ contains no constant
subbuildings or nodes, every trivial subbuilding is cylindrical and every nontrivial compo-
nent ṽ has windπ (ṽ) = 0. Such components ṽ are therefore nicely embedded. A slightly
stronger statement results from the observation that the core ũK is also compatible with c
and only contains nicely embedded components. Thus each of these components ṽ satis-
fies cN (ṽ; ĉ) = 0, where ĉ are now the constraints induced on ṽ as a subbuilding of ũK.

ut

Proof of Theorem 4. For a given set of asymptotic constraints c, the R-invariance of J̃
together with a standard transversality argument (cf. [Wenb]) imply that for generic ω-
compatible choices of J , all nontrivial somewhere injective finite energy surfaces w̃ com-
patible with c satisfy ind(w̃; c) ≥ 1. Moreover, cN (u; c) = 0 implies ind(u; c) ≤ 2 due to
(6.1), thus this index can only be 1 or 2. Likewise each connected component of ũK has
constrained index at least 1, and by Proposition 5.1, these add up to ind(ũ; c). We con-
clude there is exactly one component if ind(ũ; c) = 1, and at most two if ind(ũ; c) = 2.
In the latter case, both nontrivial components ṽi have ind(ṽi; ci) = 1, so by (6.1), each
has a unique puncture whose constrained parity is even; this is therefore the unique break-
ing puncture. Since the ends of ṽ1 and ṽ2 approaching this breaking orbit have opposite
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signs, ṽ1 and ṽ2 cannot be the same up to R-translation, thus their projections to M are
disjoint. ut
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