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Abstract. This paper uses combinatorial group theory to help answer some long-standing ques-
tions about the genera of orientable surfaces that carry particular kinds of regular maps. By classi-
fying all orientably-regular maps whose automorphism group has order coprime to g−1, where g is
the genus, all orientably-regular maps of genus p+1 for p prime are determined. As a consequence,
it is shown that orientable surfaces of infinitely many genera carry no regular map that is chiral (ir-
reflexible), and that orientable surfaces of infinitely many genera carry no reflexible regular map
with simple underlying graph. Another consequence is a simpler proof of the Breda–Nedela–Širáň
classification of non-orientable regular maps of Euler characteristic −p where p is prime.
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1. Introduction

Regular maps are generalizations of the platonic solids (viewed as tessellations of the
sphere) to surfaces of higher genus. Their formal study was initiated by Brahana [4] in
the 1920s and continued by Coxeter (see [10]) and others decades later. Regular maps
on the sphere and the torus and other orientable surfaces of small genus are now quite
well understood, but until recently, the situation for surfaces of higher genus has been
something of a mystery. In particular, some long-standing questions have remained open,
about the genera of orientable surfaces carrying a regular map having no multiple edges,
or a regular map that is chiral (admitting no reflectional symmetry). This paper takes a
significant step towards answering these questions.

Here, a map M is an embedding of a connected graph or multigraph into a closed
surface, such that each component (or face) of the complement is simply connected. The
genus and the Euler characteristic of the map M are defined as the genus and the Euler
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characteristic of the supporting surface. The topological dual of M (which is denoted
by M∗) is obtained from M by interchanging the roles of vertices and faces in the usual
way.

An automorphism of a map M is any permutation of the edges of the underlying
(multi)graph that preserves the embedding, or equivalently, any automorphism of the
(multi)graph induced by a homeomorphism of the supporting surface. By connected-
ness, any automorphism is uniquely determined by its effect on any flag (which is an
incident vertex-edge pair (v, e) taken together with a chosen side along the edge e). The
automorphism group of M is denoted by Aut(M). If the surface is orientable, then the
subgroup of Aut(M) of all orientation-preserving automorphisms is denoted Auto(M),
and this has index at most 2 in Aut(M); if M admits an orientation-reversing automor-
phism (so that Auto(M) has index 2 in Aut(M)), then M is said to be reflexible, and
otherwise M is chiral. If the surface is non-orientable, then there is no such distinc-
tion.

An orientable map M is called regular (or orientably-regular, or sometimes rotary)
if G = Auto(M) acts regularly on the set of oriented edges (or arcs) of M . The pla-
tonic solids give the most famous examples. If each face has size k and each vertex
has valence m, then the map M is said to have type {k,m}, and M is regular if and
only if there is a k-fold rotation X about the centre of a face f and an m-fold rota-
tion Y about an incident vertex v, with product XY an involutory rotation around the
midpoint of an edge e incident with v and f . By connectedness, X and Y generate
G = Auto(M), which is therefore a quotient of the ordinary (k,m, 2) triangle group
1o(k,m, 2) = 〈x, y, z | xk = ym = z2

= xyz = 1〉 (under an epimorphism taking x
to X and y to Y ). The dual M∗ is also regular, with the roles of X and Y interchanged,
and the map M (or its dual M∗) is reflexible if and only if the group G = Auto(M)
admits an automorphism of order 2 taking X to X−1 and Y to Y−1, or equivalently (fol-
lowing conjugation by X), an automorphism of order 2 taking X to X−1 and XY to
Y−1X−1

= (XY)−1
= XY .

Conversely, given any epimorphism θ from 1o(k,m, 2) to a finite group G with
torsion-free kernel, a map M can be constructed using (right) cosets of the images of
〈x〉, 〈y〉 and 〈z〉 as vertices, faces and edges, with incidence given by non-empty intersec-
tion, and then G acts regularly on the ordered edges of M by (right) multiplication. From
this point of view the study of regular maps is simply the study of smooth quotients of
triangle groups—with ‘smooth’ here meaning that the orders of the generators x, y and z
are preserved.

Deep connections exist between maps and other branches of mathematics, however,
which go far beyond group theory, and include hyperbolic geometry, Riemann surfaces
and, rather surprisingly, number fields and Galois theory. A brief summary can be given
as follows. If 1/k + 1/m < 1/2, then the (k,m, 2)-triangle group acts as a group of
hyperbolic isometries preserving an infinite tessellation of the hyperbolic plane consist-
ing of congruent k-gons, with m of them meeting at each vertex. Factoring out by any
torsion-free normal subgroup of finite index yields (as quotient space) a regular map of
type {k,m} on some compact, orientable surface, endowed with hyperbolic geometry and
complex structure from the Poincaré metric on the complex upper half-plane (on which
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the triangle group acts). If the normality condition is dropped, one still obtains maps (not
necessarily regular) on compact surfaces. Maps can thus be viewed as complex algebraic
curves; moreover, by substantial results in algebraic varieties, the curves can be taken to
be defined over algebraic number fields.

This connection has opened up the possibility of studying the absolute Galois group
by its action on maps defined in terms of the natural action of the group on coefficients of
the defining polynomial of the corresponding Riemann surface over an algebraic number
field, as suggested in Grothendieck’s programme [11]. Further details about these and
other exciting connections can be found in excellent survey papers by Jones [14] and
Jones and Singerman [15].

By a celebrated theorem of Hurwitz, for any g ≥ 2 the order of a finite group acting
as a group of conformal automorphisms of the Riemann surface of genus g is bounded
above by 84(g−1). A classical problem here is classification of the largest possible group
of automorphisms for any given genus g ≥ 2. As was shown by Accola [1], this problem
reduces to a large extent, for infinitely many genera, to the classification of all regular
maps on a surface of given genus. For example, the case where g = p+1 for some prime
p and the group has order greater than 6(g − 1) has been dealt with by Belolipetsky and
Jones [2], and involves three families of chiral maps (which will reappear in Section 3 of
this paper).

It is well known that for every g > 0 there exists a reflexible regular map of type
{4g, 4g} on an orientable surface of genus g (with dihedral automorphism group). It fol-
lows that there are no ‘gaps’ in the genus spectrum of orientable surfaces carrying reflex-
ible regular maps. On the other hand, the underlying graphs for these maps are highly
degenerate, being bouquets of 2g loops based at a single vertex.

There is no analogous family for non-orientable surfaces. Indeed, it has been known
for some time that there are gaps in the the genus spectrum of non-orientable regular
maps, at least for small genera (see [18], for example). This has led to a fundamental
question about whether or not there exist infinitely many gaps in the genus spectrum of
non-orientable regular maps. A similar question has been raised about the genus spectrum
of orientably-regular but chiral maps.

On the positive side, the connection between regular maps and smooth quotients of
triangle groups has been exploited on occasion to construct various infinite families of
regular maps, with the aim of filling possible gaps. For example, this approach was taken
by Conder and Everitt [8] to prove that non-orientable surfaces of more than 75 per cent
of all genera carry some regular map. The same kind of approach, sometimes with the
help of group-theoretic procedures now available in systems like MAGMA [3], has been
taken successfully to determine all regular maps of various small genera, including all
orientably-regular maps of genus 2 to 15; see [7] and references therein.

Until very recently, however, there has been no significant classification of regular
maps by supporting surface for an infinite family of genera. A major breakthrough was
achieved in a classification by Breda d’Azevedo, Nedela and Širáň [5] of regular maps on
non-orientable surfaces of Euler characteristic−p, for p an odd prime. One consequence
of this classification is that there are no such maps for p ≡ 1 mod 12, thereby exhibiting
infinitely many gaps in the genus spectrum of non-orientable regular maps. This has been
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taken further by Conder, Potočnik and Širáň [9], in showing that there are no regular maps
of Euler characteristic −p2 for any prime p > 7.

Recently, Conder extended the computer-assisted search for all regular maps of small
Euler characteristic, using a new version of an algorithm for finding all normal subgroups
of up to a given index in a finitely-presented group; see [6]. The resulting lists of all
regular maps of characteristic−1 to−200 reveal patterns in the genus spectrum of various
kinds of regular maps never seen before, and these have led us to the main observations
that we prove in this paper.

As in [5], if one attempts to classify regular maps on some orientable surface of genus
g, one may begin with the Euler–Poincaré formula

2− 2g = χ = V − E + F = |G|
(

1
k
−

1
2
+

1
m

)
,

which relates the type {k,m} of the mapM and the order ofG = Auto(M) to the genus g.
This yields an equation in integers with |G| and g − 1 appearing on different sides of
the equation. Two natural extremes arise that one has to consider: the case where g − 1
dividesG on one hand, and the case where g−1 and |G| are relatively prime on the other.

In this paper we apply combinatorial group theory (sometimes in a remarkably ele-
mentary way) to prove a number of results in this direction. First, we classify all orient-
ably-regular maps M of genus g > 1 such that g − 1 is a prime dividing |Auto(M)|.
Second, we make a major advance by producing a classification of all orientably-regular
maps M of genus g ≥ 0 for which g − 1 and |Auto(M)| are relatively prime. As a conse-
quence of these results, we obtain a complete classification of all orientably-regular maps
M of genus p + 1 where p is prime, and as corollaries, we have the following:

(1) If p is a prime such that p − 1 is not divisible by 3, 5 or 8, then every orientably-
regular map of genus g = p + 1 is reflexible.

(2) If M is an orientably-regular but chiral map of genus g = p + 1, where p is prime,
and p − 1 is not divisible by 5 or 8, then either M or its topological dual M∗ has
multiple edges.

(3) IfM is a reflexible orientably-regular map of genus g = p+ 1, where p is prime and
p > 13, then either M or M∗ has multiple edges, and if p ≡ 1 mod 6, then both M
and M∗ have multiple edges.

The first of these shows there exist infinitely many gaps in the spectrum of orientably-
regular maps that are chiral, and the third shows there exist infinitely many gaps in the
spectrum of reflexible orientably-regular maps that have simple underlying graphs. We
also obtain from this work a new and more concise proof of the classification result of [5]
for non-orientable maps.

The fact that we could take a common approach to considering genus questions for
simplicity, reflexibility, and non-orientability, we found surprising. We acknowledge the
use of MAGMA in helping us obtain these results, and for showing us the best way forward
in some of the proofs.
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2. Preliminaries

For an orientably-regular mapM of type {k,m}, we will always letG = Auto(M), which
is generated by single-step rotations X and Y about a face and incident vertex, such that
XY reverses an incident edge. Thus Xk = Ym = (XY)2 = 1.

We will define the X-core of G to be the largest normal subgroup of G contained in
〈X〉 and denote this by Co(X), and define the Y-core Co(Y ) similarly. Note that if 〈Y 〉
stabilizes the vertex v, then the stabilizers of the neighbours of v are conjugates of 〈Y 〉
by XY i for 0 ≤ i < m, so the existence of multiple edges incident to v is equivalent to
having 〈Y 〉XY

i
= 〈Y 〉XY

j
for some i 6= j , which in turn is easily seen to be equivalent

to Co(Y ) being non-trivial. We will say the group G is non-degenerate if both Co(X)
and Co(Y ) are trivial, degenerate if Co(X) or Co(Y ) is non-trivial, singly-degenerate if
exactly one of them is non-trivial, and doubly-degenerate if both are non-trivial. If G is
non-degenerate (resp. singly-degenerate, or doubly-degenerate) then both (resp. exactly
one of, or neither of) the map M and its dual M∗ will have simple underlying graph.

Further, we will say that G is XY-disjoint if 〈X〉 ∩ 〈Y 〉 = {1}. Note that if G is
non-degenerate, then it must be XY-disjoint, but not conversely.

We will make extensive use of a number of key theorems from group theory:

Theorem 2.1 (Schur–Zassenhaus theorem). If N is a normal subgroup of the finite
group G, such that the order |N | and the index |G : N | are coprime, then G contains
a subgroup of order |G :N |, and any two such subgroups are conjugate in G.

Theorem 2.2 (Transfer to a central subgroup). If H is a subgroup of the centre Z(G)
of the group G, with finite index |G :H | = m, then the mapping τ : G → G given by
x 7→ xm (for all x ∈ G) is a homomorphism.

Corollary 2.3 (Schur’s theorem). If the centre Z(G) of a group G has finite index m,
then the commutator subgroupG′ is finite and the order of every element ofG′ dividesm.

Theorem 2.4 (Ito’s theorem). If the group G is expressible as AB where A and B are
abelian subgroups of G, then the commutator subgroup G′ is abelian (and hence G is
solvable).

The proofs of the first three of these can be found in [16, Chapters 9 & 10], and the fourth
in [12].

We will also require the classification of non-solvable, almost Sylow-cyclic groups.
A finite group G is said to be almost Sylow-cyclic if all its Sylow subgroups of odd or-
der are cyclic and (when |G| is even) all its Sylow 2-subgroups have a cyclic subgroup
of index 2. Classification of all solvable almost Sylow-cyclic groups is a classical re-
sult by Zassenhaus. The non-solvable case is covered by the results of Suzuki [17] and
Wong [19], giving the following:

Theorem 2.5 (Suzuki and Wong). Let G be a finite, non-solvable, almost Sylow-cyclic
group. ThenG has a subgroupG0 of index at most 2 such thatG0 is isomorphic toH×L,
where H is isomorphic to a semi-direct product of two cyclic groups of order u and v,
and L ∼= SL(2, q) or PSL(2, q) for some prime q > 3, with u, v and |L| being pairwise
relatively prime.
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Finally, we need the following important observations, the second using the fact that if G
is abelian then X = Co(X) and Y = Co(Y ) so G is doubly-degenerate. Here, and later,
CG(H) denotes the centralizer of the subgroup H in the group G.

Lemma 2.6. Every element of Co(X) and every element of Co(Y ) commutes with all
squares in G. In particular, if Y has odd order, then Co(X) is central in G.

Proof. Consider the homomorphism θ : G → Aut(Co(Y )) given by conjugation. As
G = 〈XY, Y 〉, the θ -image of XY generates im θ , so this has order at most 2. Hence all
squares and all elements of odd order in G lie in ker θ = CG(Co(Y )). The same is true
for Co(X). In particular, if Y has odd order then G = 〈X, Y 〉 ⊆ CG(Co(X)). ut

Lemma 2.7. If G has a normal cyclic subgroup N , then either G is degenerate or 2|N |
divides the Euler characteristic χ of the map M .

Proof. SupposeG is non-degenerate. ThenXY /∈ N , for otherwiseXY would be the only
involution in the cyclic normal subgroup N , making XY central, and then G = 〈X,XY 〉
would be abelian and hence degenerate. Also 〈X〉 ∩ N and 〈Y 〉 ∩ N are characteristic
in the cyclic subgroup N and so normal in G, hence both are trivial. Thus G/N is the
orientation-preserving group of automorphisms of an orientably-regular map of the same
type as M . It follows that in applying the Euler–Poincaré formula, we simply replace |G|
by |G/N |, so this quotient map has Euler characteristic χ/|N |, which is an even integer,
and hence 2|N | divides χ . ut

3. The case where p divides |G|

In this section we find all possibilities for an orientably-regular map M of genus p + 1
where p is prime, p > 13 and |Auto(M)| is divisible by p. All such maps turn out to be
chiral, and fall into three families (as arose in a slightly different context in [2]).

Theorem 3.1. Let M be an orientably-regular map of genus g = p + 1 for some prime
p > 13, and let G = Auto(M) be its group of orientation-preserving automorphisms. If
p divides the order of G, then one of the following holds:

(a) M has type {8, 8} and |G| = 8p, with p ≡ 1 mod 8,
(b) M has type {5, 10} and |G| = 10p, with p ≡ 1 mod 10,
(c) M has type {6, 6} and |G| = 12p, with p ≡ 1 mod 6.

Moreover, in each of these three cases M is chiral, and in cases (a) and (b) the group G
is non-degenerate, while in case (c) it is singly-degenerate. Up to equivalence and duality
there is one chiral pair of such maps for each p in cases (a) and (c), and there are two
chiral pairs for each p in case (b).

Proof. First suppose p > 84, and let the mapM have type {k,m}. By the Euler–Poincaré
formula, we know that |G| = R(g− 1) = Rp where R = 4km/(km− 2k− 2m) satisfies
4 < R ≤ 84. Since p divides |G|, we see that G has a unique Sylow p-subgroup P ,
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which is cyclic, and normal inG with index R. In particular, since R is the order ofG/P ,
we see that R is an even integer, so R ≥ 6, but R is not divisible by p.

Now if p divides k or m, then since p does not divide R = 4km/(km− 2k− 2m), we
find that p has to divide both k andm, and hence p2 divides km− 2k− 2m, so p2 divides
k + m. On the other hand, since k and m are divisible by p, which is greater than 6, the
ratio R = 4km/(km−2k−2m) is less than 12, and hence |G| = Rp < 12p. In particular,
each of k and m is less than 12p, so k + m < 24p, which makes it impossible for p2 to
divide k +m. Thus p divides neither k nor m.

Next, let X and Y be generators for M satisfying the usual relations Xk = Ym =

(XY)2 = 1. Then each of 〈X〉 and 〈Y 〉 has trivial intersection with P (since p divides
neither k nor m), as does 〈XY 〉 (since |P | = p is odd). Hence the quotient G/P is the
orientation-preserving group of automorphisms of an orientably-regular map of the same
type {k,m} as M , with Euler characteristic −2p/p = −2, so genus 2.

The orientably-regular maps of genus 2 are well known, and listed in [7]. In particular,
we find from this list that one of the following holds:

(a) {k,m} = {8, 8} and G/P ∼= C8;
(b) {k,m} = {5, 10} and G/P ∼= C10;
(c) {k,m} = {6, 6} and G/P ∼= C6 × C2;
(d) {k,m} = {4, 8} and G/P ∼= C8 o C2, metacyclic of order 16;
(e) {k,m} = {4, 6} and G/P ∼= C3 oD4, of order 24 (with centre of order 2);
(f) {k,m} = {3, 8} and G/P ∼= GL(2, 3), of order 48.

We will consider each of these cases in turn, using the following observations.
Since Aut(P ) ∼= Aut(Cp) is cyclic, we know that G/CG(P ) is abelian and hence

CG(P ) contains G′. On the other hand, G itself is not abelian, for otherwise the order
of G would divide 2k and then be coprime to p, contradiction.

Now consider case (a). Here G/P is cyclic of order 8, so G is a semi-direct product
of Cp by C8. As Y has order 8 and XY has order 2 (but G itself is not cyclic) we have
XY = wY 4 for some non-trivial element w of P , and indeed w must generate P (since
|P | is prime). Also 1 = (XY)2 = w(wY

4
), so Y 4 conjugates w to w−1, and hence

conjugation by Y induces an automorphism of P of order 8. In particular, p is congruent
to 1 mod 8. AlsoX = XYY−1

= wY 3. Note there are four possibilities: if c is a primitive
8th root of 1 in Zp, then Y−1wY = wc

i
where i = 1, 3, 5 or 7. None of these gives a

reflexible map, for if τ were an automorphism that inverts both X and Y , then τ would
take w = XY−3 to X−1Y 3

= Y−3w−1Y 3
= (w−1)Y

3
, and then could not have order 2.

Hence these four possibilities fall into two chiral pairs, with one pair dual to the other.
Also in each case it is easy to see that 〈X〉 and 〈Y 〉 are both core-free, so the map M
and its dual both have simple underlying graphs. Hence in case (a), up to equivalence
and duality we have just one chiral pair of non-degenerate maps of type {8, 8} and genus
p + 1, whenever p ≡ 1 mod 8.

Similarly, in case (b) we know G/P is cyclic (of order 10), so G is a semi-direct
product of Cp by C10, and assuming X has order 5 while Y has order 10, we have XY =
wY 5 for some generator w of P . Also 1 = (XY)2 = w(wY

5
), so conjugation by Y 5

invertsw. Furthermore,X = XYY−1
= wY 4, and asX has order 5, we see that Y 4 cannot
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centralizew (or elseX = wY 4 would have order 5p), and hence conjugation by Y induces
an automorphism of P of order 10. In particular, p is congruent to 1 mod 10. Again there
are four possibilities: if c is a primitive 10th root of 1 in Zp, then Y−1wY = wc

i
where

i = 1, 3, 7 or 9. All give irreflexible maps, by the same kind of argument as in case (a),
and again both 〈X〉 and 〈Y 〉 are core-free. Hence in case (b), up to equivalence we have
two chiral pairs of non-degenerate maps of type {5, 10} and genus p+1, whenever p ≡ 1
mod 10.

In case (c), the quotient G/P is isomorphic to C6 × C2. Now P cannot be central-
ized by XY (of order 2), for otherwise 〈XY,P 〉 would be an abelian normal subgroup of
order 2p in G, with unique involution XY , and then XY would be central in G, making
G = 〈XY,X〉 abelian. Similarly, P cannot be centralized by X2 or Y 2 (of order 3), for
otherwise CG(P ) would contain a characteristic subgroup K of order 3 that would then
be normal in G, and the quotient G/K of order 4p would be (2, 2, 2)-generated, which
is impossible. On the other hand, G/CG(P ) is isomorphic to a subgroup of Aut(P ) and
is therefore cyclic, and is a quotient of G/P ∼= C6 × C2, so must be cyclic of order 6.
It follows that p ≡ 1 mod 6, and that conjugation by XY inverts every element of P ,
and conjugation by either X or Y induces an automorphism of P of order 6. Without
loss of generality (by moving to the dual if necessary), we may suppose that conjugation
of P by Y has order 6, with Y 3 inverting every element of P . Then XY 4

= (XY)Y 3

centralizes P , so conjugation by X induces the same automorphism of P as conjuga-
tion by Y−4

= Y 2, and therefore X3 centralizes P . Thus CG(P ) = 〈X3, P 〉, of or-
der 2p. In particular, 〈X3

〉 is normal in G, so 〈X〉 is not core-free. On the other hand,
clearly 〈Y 〉 is core-free. As before, however, both the map and its dual are irreflex-
ible, since if τ were an automorphism of G inverting both X and Y , then τ would take
w = X2Y−4 to w = X−2Y 4

= Y−4w−1Y 4, and so τ could not have order 2. In fact
there are two possibilities: if c is a primitive 6th root of 1 in Zp, and w is a genera-
tor of P , then YwY−1

= wc
±1

. Hence up to equivalence and duality we have just one
chiral pair of singly-degenerate maps of type {6, 6} and genus p + 1, whenever p ≡ 1
mod 6.

On the other hand, cases (d) to (f) are impossible. To see this, first note that |P | and
|G : P | are coprime, so by the Schur–Zassenhaus theorem, CG(P ) has a subgroup K
of order |CG(P ) : P |, and hence CG(P ) is a direct product K × P . Each of K and P
is characteristic in CG(P ) and so is normal in G, and G/K is a quotient of G of order
|G :CG(P )||P |. In case (d), the abelianization ofG/P can be seen from [7, map R2.3] to
be isomorphic to C2×C2, and it follows that the largest cyclic quotient ofG has order 2.
Thus CG(P ) has index 1 or 2 in G, so G/K has order p or 2p, which is impossible for
a quotient of a (4, 8, 2)-generated group. Cases (e) and (f) are even easier: G/CG(P ) is
a cyclic quotient of the ordinary (4, 6, 2) or (3, 8, 2) triangle group and so has order at
most 2, so |G : CG(P )| = 1 or 2, and G/K has order p or 2p, again a contradiction.

This completes the proof for p > 84. For 13 < p < 84, we may refer to the lists of
all orientably-regular maps of genus 2 to 100 computed by Conder [6], or use the same
arguments as in the paper [2] by Belolipetsky and Jones. ut



The genera, reflexibility and simplicity of regular maps 351

4. The coprime classification: XY-disjoint case

In this section we begin to consider the case where |G| is coprime to −χ/2 = g − 1,
where g is the genus of the respective orientably-regular mapM . We will suppose thatM
has at least one edge, so that |G| is even, and hence g−1 must be odd. The Euler–Poincaré
formula gives

4km(g − 1) = −2kmχ = |G|(km− 2k − 2m).

Dividing by d = gcd(k,m), we have

4 lcm(k,m)(g − 1) = |G|(km/d − 2k/d − 2m/d).

Since gcd(|G|, g − 1) = 1, this gives 4 lcm(k,m) = |G|t , where t is a positive integer.
On the other hand, since k and m are element orders, lcm(k,m) divides |G|, and hence t
divides 4, so t = 1, 2 or 4. In fact, t = (km/d−2k/d−2m/d)/(g−1), which will be odd
if and only if km/d−2k/d−2m/d is odd, and hence t = 1 if and only if k andm are both
odd. Thus |G| = 4 lcm(k,m) whenever k and m are both odd, while |G| = lcm(k,m) or
|G| = 2 lcm(k,m) if at least one of k and m is even.

Next, we show that the group G is almost Sylow-cyclic. Letting k = k′d and m =
m′d , we have gcd(k,m′) = gcd(k′, m) = 1, and

|G| =
4 lcm(k,m)

t
=

4km
td
=

4
t
k′m =

4
t
km′.

It follows that if q is the largest power of any odd prime divisor of |G|, then either q
divides k but not m′, or q divides m but not k′, and in particular, 〈X〉 or 〈Y 〉 contains a
cyclic Sylow q-subgroup of G. For Sylow 2-subgroups, the situation is similar: if both k
and m are odd, then t = 1, and a Sylow 2-subgroup ofG has order 4, so contains a cyclic
subgroup of index 2; otherwise |G| = k′m, km′, 2k′m or 2km′, and 〈X〉 or 〈Y 〉 contains a
cyclic subgroup of index 1 or 2 in a Sylow 2-subgroup of G.

In the special case where G is XY -disjoint, the elements XiY j are all distinct for
0 ≤ i < k and 0 ≤ j < m, so km ≤ |G| ≤ 4 lcm(k,m) = 4km/d , and therefore
d ≤ 4. Moreover, since |G| = 4 lcm(k,m) only when k and m are odd, in which case
d = gcd(k,m) is odd, it follows that d ≤ 3. On the other hand, if at least one of k and
m is even, then km ≤ |G| ≤ 2 lcm(k,m) = 2km/d , so d ≤ 2, and hence if d = 3 then
k and m are both odd. Similarly, if d = 2, then the inequality km ≤ |G| ≤ 2 lcm(k,m)
forces |G| = km, which in turn implies that |G| = 2km if and only if k and m have
opposite parity.

Summarizing, and without loss of generality (by taking the dual if necessary), we
have the following possibilities when the group G is XY-disjoint:

(A) |G| = km, where gcd(k,m) = 1 or 2, and k is even,
(B) |G| = 2km, where gcd(k,m) = 1, and k is even but m is odd,
(C) |G| = 4km/3, where gcd(k,m) = 3, and k,m are both odd,
(D) |G| = 4km, where gcd(k,m) = 1, and k,m are both odd.
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We will classify the possibilities for all groups of each of these types (not just those corre-
sponding to maps for which g−1 and |G| are coprime), and give explicit presentations for
the groupG in each case. In Section 8 we will drop the assumption thatG is XY-disjoint,
to deal with the general case.

First, for each of the above types we consider the possibilities for the abelianization
G/G′, where G′ is the commutator subgroup of G.

Lemma 4.1. If G is XY-disjoint, then G/G′ is isomorphic to a subgroup of C2 × C2 for
type (A), of C2 for type (B), or of C3 for type (C), while G/G′ is trivial (and so G is
perfect) for type (D).

Proof. These possibilities follow from the fact that G/G′ is an abelian group generated
by the images of X and Y , of orders dividing k and m, with product of order dividing 2.
For type (A), we have G/G′ ∼= 1, C2 or C2 × C2 since gcd(k,m) = 1 or 2; for type (B),
G/G′ ∼= 1 or C2 since gcd(k,m) = 1; for type (C),G/G′ ∼= 1 or C3 since gcd(k,m) = 3
and k,m are both odd; and for type (D), G/G′ ∼= 1 since gcd(k,m) = 1, and k,m are
both odd. ut

Now for type (A) we have the following:

Lemma 4.2. For coprime positive integers u and v, the group with presentation 〈X, Y |
X2u
= Y 2v

= (XY)2 = [X2, Y 2] = 1〉 is a group of order 4uv, in which XY 2X−1
=

Y−2 and YX2Y−1
= X−2.

Proof. In the given group G, let K be the subgroup generated by the elements X2

and YX2Y−1 (each of order dividing u). Note that Y normalizes K , with Y 2 central-
izing K , since [X2, Y 2] = 1 and then YX2Y−1

= Y−1X2Y . As (XY)2 = 1 we have
X(YX2Y−1)X−1

= (XY)X2(XY)−1
= Y−1X−1X2XY = Y−1X2Y = YX2Y−1, so

X centralizes K , and therefore K is normal in G. Also K is abelian (because X cen-
tralizes YX2Y−1), and so |K| divides u2. Furthermore, the quotient G/K (obtained by
adding the relation X2

= 1) is dihedral of order 4v, so K has index 4v in G. Simi-
larly, the subgroup L generated by Y 2 and XY 2X−1 is an abelian normal subgroup of G
of index 4u and order dividing v2. Since gcd(u, v) = 1, it follows that |G| = 4uv, with
|K| = v and |L| = u. Finally, sinceG/K is dihedral we haveXY 2X−1

= wY−2 for some
w ∈ K , but then w = XY 2X−1Y 2 lies in K ∩L which is trivial (since gcd(u, v) = 1), so
XY 2X−1Y 2

= 1. Similarly YX2Y−1X2
= 1. ut

Theorem 4.3. Suppose that G is XY-disjoint and of type (A). Then either k = 2 and
G is dihedral of order 2m where m is odd, or otherwise k = 2u and m = 2v with
gcd(u, v) = 1, and G is an extension of Cuv by C2 × C2, with presentation 〈X, Y |
X2u
= Y 2v

= (XY)2 = [X2, Y 2] = 1〉. In the latter case, XY 2X−1
= Y−2 and

YX2Y−1
= X−2, and so G is degenerate in both cases.

Proof. First, since |G| = km, andG isXY-disjoint, we know thatG = 〈X〉〈Y 〉, and so by
Ito’s theorem, G′ is abelian, and hence G is solvable. Moreover,G/G′ ∼= C2 or C2×C2,
so G′ contains both X2 and Y 2, and therefore [X2, Y 2] = 1.
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Now suppose G/G′ ∼= C2. Then without loss of generality we can assume not only
that k is even but also thatG′ is generated byX2 and Y (withXYX = Y−1). In particular,
X2 commutes with Y . Moreover,m is odd and so gcd(k,m) = 1, for otherwise by Lemma
4.2 the elements X2 and Y 2 would generate a normal subgroup of index 4, with abelian
quotient, contradicting the assumption that G/G′ ∼= C2. Also XYX−1

= Y−1X−2
=

(X2Y )−1, and as XYX−1 is conjugate to Y (and so has order m), while X2Y has order
(k/2)m, we find that k/2 = 1, so k = 2. Hence G is dihedral, and then Co(Y ) = 〈Y 〉, so
G is degenerate.

Suppose instead that G/G′ ∼= C2 × C2. Then k and m must both be even, so k = 2u
and m = 2v with gcd(u, v) = 1, and then Lemma 4.2 gives XY 2X−1

= Y−2 and
YX2Y−1

= X−2. In particular, Co(X) = 〈X2
〉 and Co(Y ) = 〈Y 2

〉, so G is degenerate.
Also G′ is generated by the commuting elements X2 and Y 2 of coprime orders u and v,
so G′ is cyclic of order uv. ut

In the two cases given by Theorem 4.3, we will say that G is of type (A1) or (A2),
respectively. For the other three types, we proceed thus:

Theorem 4.4. If G is non-degenerate, and of type (B), (C) or (D), then:

(B) G ∼= 〈X, Y | X4
= Y 3

= (XY)2 = 1〉 ∼= S4, or
(C) G ∼= 〈X, Y | X3

= Y 3
= (XY)2 = 1〉 ∼= A4, or

(D) G ∼= 〈X, Y | X3
= Y 5

= (XY)2 = 1〉 ∼= A5.

Proof. First, suppose thatG is solvable, and let J be any minimal normal subgroup ofG.
Then J is elementary abelian, and further, since G is almost Sylow-cyclic, J is isomor-
phic to Cq for some prime q, or to C2×C2. By Lemma 2.7, however, J cannot be cyclic,
and therefore J ∼= C2 × C2. Moreover, since G is perfect for type (D), that means we
only need to consider types (B) and (C).

For type (B), the quotientG/J has order |G|/4 = (k/2)m, wherem is odd, so J must
contain Xk/2, and hence G/J is the product of its subgroups 〈X〉J/J and 〈Y 〉J/J , of
orders k/2 andm, which intersect trivially. By the same argument as in the first part of the
proof of the last theorem (for case (A)), we find that G/J is dihedral, so k/2 = 2, giving
k = 4, and the subgroup 〈Y 〉J/J is normal in G/J . On the other hand, no non-trivial
element of 〈Y 〉 can centralize J , for otherwise that element would generate a characteristic
central subgroup of 〈Y 〉J , and then be normal in G, contradicting the assumption that G
is non-degenerate. As J is isomorphic to C2 × C2, we know Aut(J ) is isomorphic to S3,
and then since Y has odd order, it follows that 〈Y 〉 has order 3. Thus {k,m} = {4, 3}, and
G ∼= S4, as claimed.

For type (C), we see that G/J has order |G|/4 = km/3, which is odd, so XY ∈ J ,
and henceG/J = 〈XY, Y 〉/J is cyclic. In particular, J containsG′, and then sinceG/G′

has order 1 or 3, we must have G/J ∼= C3. Thus |G| = 3|J | = 12, giving k = m = 3
and G ∼= A4.

Next, suppose instead thatG is not solvable. SinceG is almost Sylow-cyclic, Theorem
2.5 implies that G has a subgroup G0 of index at most 2 such that G0 is isomorphic to
H × L, where H ∼= Cu o Cv (a semi-direct product of Cu by Cv) and L ∼= SL(2, q)



354 Marston D. E. Conder et al.

or PSL(2, q), for some prime q > 3, and that u, v and |L| are pairwise coprime. Clearly
H is a characteristic subgroup of G0 and hence is a normal subgroup of G, and also its
cyclic subgroup of order u is normal inG; but on the other hand, Lemma 2.7 showsG has
no cyclic normal subgroup, so H is trivial. Similarly, if L ∼= SL(2, q) then L contains a
unique involution, which then generates a cyclic normal subgroup ofG, again not allowed
by Lemma 2.7. Thus G0 = L ∼= PSL(2, q).

Finally, we use the fact that the order of any element of PSL(2, q) divides q, (q−1)/2
or (q + 1)/2. Let ε = |G :G0|, so that |G| = ε|PSL(2, q)| = ε(q − 1)q(q + 1)/2. Now
G0 ∼= PSL(2, q) contains the elements Xε (of order k/ε) and Y (of odd order m), and
therefore k/ε ≤ q and m ≤ q. But also |G| = 2km, 4km/3 or 4km, so the odd prime q
must divide k or m, and hence either k = qε and m ≤ (q + 1)/2, or m = q and
k ≤ (q + 1)ε/2. In both cases, km ≤ q(q + 1)ε/2, and therefore

ε(q + 1)q(q − 1)/2 = |G| ≤ 4km ≤ 2q(q + 1)ε,

which implies (q − 1)/2 ≤ 2, so q = 5. In particular, the inequalities above become
equalities, so |G| = 4km = 2q(q + 1)ε. Thus G has type (D), making k odd, and so
|G :G0| = ε = 1, giving {k,m} = {(q+ 1)/2, q} = {3, 5} andG ∼= PSL(2, 5) ∼= A5. ut

We will now allow the possibility that the group G is degenerate.

Theorem 4.5. Suppose G is XY-disjoint, and of type (B), (C) or (D), and let L be the
normal subgroup Co(X)Co(Y ). Then L is cyclic, and G/L is non-degenerate, so G/L ∼=
S4, A4 or A5 respectively. In particular, G is non-solvable only for type (D).

Proof. First, observe thatm is odd, so by Lemma 2.6, Co(X) is central inG, and therefore
L is abelian. In fact, since gcd(k,m) is odd and G is almost Sylow-cyclic, L is cyclic.
Moreover, Y centralizes L (since Co(X) is central), and by Lemma 2.6 we know that X2

centralizes Co(Y ), and so X2 centralizes L. For types (C) and (D), we know k is odd, and
hence also X centralizes L for those two types.

Now let Ḡ = G/L and let X̄ and Ȳ be the images of X and Y in Ḡ. We will show
that the X- and Y-cores of Ḡ are trivial, so Ḡ is non-degenerate. Suppose Ȳ s generates
the Y-core of Ḡ. Then K = 〈Y s〉L is normal in G, and abelian since Y centralizes L,
and cyclic since gcd(k,m) is odd and G is almost Sylow-cyclic. Since K is cyclic, 〈Y s〉
is characteristic in K , and therefore normal in G, so 〈Y s〉 ⊆ Co(Y ). This tells us that
the Y-core of Ḡ is trivial. Similarly, if X̄r generates the X-core of Ḡ, then J = 〈Xr 〉L
is normal in G, and is generated by Xr and Co(Y ) = 〈Y v〉, say. The same argument
as above shows that if Xr centralizes L then 〈Xr 〉 ⊆ Co(X) and so X̄r is trivial. In
particular, this holds for types (C) and (D), where X centralizes L, and also for type (B)
when r is even. Otherwise, if G has type (B) and r is odd, then |G/J | = 2rv, where r
and v are both odd, andG/J is (r, v, 2)-generated; but then the Euler characteristic of the
associated orientable surface is 2rv/r − 2rv/2 + 2rv/v = 2v − rv + 2r , which is odd,
contradiction. Hence r must be even when G has type (B), and it follows that the X-core
of Ḡ is trivial, for all three types.
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Thus G/L = Ḡ is non-degenerate, and so by Theorem 4.4, G/L ∼= S4, A4 or A5.
Finally, as L is a cyclic normal subgroup of G, we see that G is solvable if and only if
G/L ∼= S4 or A4, and hence if and only if G has type (B) or (C). ut

Lemma 4.6. For every odd positive integer v, the group with presentation 〈X, Y | X4

= Y 3v
= (XY)2 = [X2, Y 3] = 1〉 is an extension of Cv by S4, of order 24v, and in this

group, XY 3X−1
= Y−3.

Proof. In the given group G, let K be the subgroup generated by the elements Y 3 and
XY 3X−1 (each of order dividing v). Note that X normalizes K , with X2 centraliz-
ing K , since [X2, Y 3] = 1 and then XY 3X−1

= X−1Y 3X. As (YX)2 = 1 we have
Y (XY 3X−1)Y−1

= X−1Y−1Y 3YX = X−1Y 3X = XY 3X−1, so Y centralizes K , and
therefore K is normal in G. Also K is abelian (because Y centralizes XY 3X−1), and so
|K| divides v2. Furthermore, the quotient G/K (obtained by adding the relation Y 3

= 1)
is isomorphic to the ordinary (4, 3, 2) triangle group S4, so K has index 24 in G. The
pre-image of the Klein 4-subgroup V4 of S4 is an abelian normal subgroup L of G, gen-
erated by K and conjugates of X2, and has order 4v. The Sylow 2-subgroup P of L is
characteristic in L and therefore normal in G, and since P contains X2 the quotient G/P
is dihedral. It follows thatXY 3X−1

= wY−3 for some w ∈ P , but then w = XY 3X−1Y 3

lies in K ∩ P which is trivial (since v is odd), so XY 3X−1Y 3
= 1. ut

Lemma 4.7. The group 〈X, Y | (XY)2 = Y 3
= [X4, Y ] = 1〉 has order 144, and is a

central product of C6 by S4.

Proof. First, clearly X4 is central, and the quotient of this group by 〈X4
〉 is the ordinary

(4, 3, 2) triangle group S4. Hence all we need to do is prove that X4 has order 6. Let
H be the subgroup generated by u = X2 and v = (XY−1)2, which has index 6, with
Schreier transversal {1, Y, Y−1, X,XY,XY−1

}. By Reidemeister–Schreier theory [13],
we find thatH has presentation 〈u, v | u2v2

= u2(uv−1)2 = (u−1v)2v2
= 1〉. (In fact the

3rd relation is redundant.) In this group, u2 is central, and v−1uv = (u−1v)−2u−1v2
=

v2u−1v2
= u−5, so u2

= v−1u2v = (v−1uv)2 = (u−5)2 = u−10, so u12
= 1. Thus X

has order 24, as required. ut

Theorem 4.8. Suppose G is XY-disjoint, and of type (B), (C) or (D), and G is degener-
ate. Then G is of type (B), and has a presentation of one of these two forms:

(B1) G ∼= 〈X, Y | X4
= Y 3v

= (XY)2 = [X2, Y 3] = 1〉, or
(B2) G ∼= 〈X, Y | X8

= Y 3v
= (XY)2 = [X4, Y ] = [X2, Y 3] = 1〉.

In particular, XY 3X−1
= Y−3 in both of these two cases, so that if G has type (B1) with

v > 1 or type (B2) then G is degenerate. On the other hand, if G is XY-disjoint of type
(C) or (D), or type (B1) with v = 1, then G is non-degenerate.

Proof. Again let L = Co(X)Co(Y ), which by Theorem 4.5 is cyclic.
If G has type (B), then by Theorem 4.5 we know G/L ∼= S4, so that Co(X) = 〈X4

〉

and Co(Y ) = 〈Y 3
〉. Now by Lemma 2.6, [X2, Y 3] = 1 and 〈X4

〉 = Co(X) is central inG.
It follows from Lemma 4.7 that in the quotient G/Co(Y ) = G/〈Y 3

〉, the image of 〈X4
〉
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has order dividing 6. But gcd(k,m) = 1, so gcd(k, 3) = 1, so Co(X) has order 1 or 2, and
hence k = 4 or 8. If k = 4, then we have the presentation in Lemma 4.6 forG, giving case
(B1) and the relation XY 3X−1

= Y−3. On the other hand, if k = 8, with Co(X) = 〈X4
〉,

then G/Co(X) has presentation of the form (B1), and so XY 3X−1
= Y−3 or Y−3X4.

The latter is impossible, however, because Y−3X4 has even order (withX4 being central),
while the conjugate XY 3X−1 of Y 3 has odd order m/3. Thus we obtain the presentation
in case (B2), and the relation XY 3X−1

= Y−3.
If G has type (C), then G/L ∼= A4, so Co(X) = 〈X3

〉 and Co(Y ) = 〈Y 3
〉, and

G/G′ ∼= C3. Also, L is central (as shown in the proof of Theorem 4.5), so by Schur’s
theorem, the exponent of G′ divides |G : L| = 12. Hence the orders k/3 and m/3 of
X3 and Y 3 divide 12, so divide 3. But k 6= 9, for otherwise every Sylow 3-subgroup of
G would contain Co(X) as its only subgroup of order 3, so 〈Y 〉 would intersect Co(X)
non-trivially, contradiction. Similarly m 6= 9, so {k,m} = {3, 3}, making Co(X)Co(Y )
trivial and G non-degenerate.

Finally, if G has type (D), then G/L ∼= A5. Again L is central (as in the proof of
Theorem 4.5), and so by Schur’s theorem, the exponent of G′ divides |G :L| = 60. But
here G = G′, so k and m divide 60, and as k and m are odd and gcd(k,m) = 1, the only
possibility is {k,m} = {3, 5}, making G non-degenerate. ut

To summarize, we have the following possibilities when G is XY-disjoint. Here by ‘ad-
ditional relations’ we mean relations which define the group G = Auto(M) when taken
together with the standard relations Xk = Ym = (XY)2 = 1. We also add (for later use
in Section 8) the case (A0) of the trivial group, which is the automorphism group of a
1-vertex, 0-edge, 1-face map on the sphere.

Table 1. Classification of XY-disjoint cases

Case Type Genus |G| Conditions Additional relations

A0 – 0 1 — —
A1 {2, v} 0 2v v odd —
A2 {2u, 2v} (u− 1)(v − 1) 4uv gcd(u, v) = 1 [X2, Y 2] = 1
B1 {4, 3v} 3(v − 1) 24v v odd [X2, Y 3] = 1
B2 {8, 3v} 9v − 7 48v v odd [X4, Y ] = [X2, Y 3] = 1
C {3, 3} 0 12 — —
D {3, 5} 0 60 — —

Note that in each case, there is one map for every choice of the given parameters.
Moreover, all these maps are reflexible, because the presentation for G in each case is
preserved by an involutory automorphism τ that inverts the generators X and Y . The
underlying graphs of the non-trivial maps and their duals are covers of cycles or dipoles
in case (A), the octahedron or cube in case (B), the tetrahedron in case (C), and the
dodecahedron or icosahedron in case (D). Simplicity (or otherwise) of the underlying
graphs will be considered in the next section.



The genera, reflexibility and simplicity of regular maps 357

5. Maps with simple underlying graphs

We can now give our main theorems about degeneracy:

Theorem 5.1. Suppose M is an orientably-regular map of genus g = p + 1, where p is
prime. If the underlying graph of at least one of M and its dual M∗ is simple, then up to
duality, one of the following holds:

(a) p ≡ 1 mod 6, and M is chiral, of type {6, 6},
(b) p ≡ 1 mod 8, and M is chiral, of type {8, 8},
(c) p ≡ 1 mod 10, and M is chiral, of type {5, 10},
(d) p ≡ 5 mod 6, and M is reflexible, of type {4, p + 4},
(e) p = 2, and M is reflexible, of type {3, 7}, {3, 8}, {3, 12}, {4, 6} or {4, 8},
(f) p = 3, and M is reflexible, of type {3, 12}, {4, 5}, {4, 6} or {5, 5},
(g) p = 5, and M is reflexible, of type {3, 10}, {4, 6} or {5, 10}
(h) p = 7, and M is reflexible, of type {3, 8},
(i) p = 13, and M is reflexible, of type {3, 7}.

Moreover, in cases (b) and (c) the underlying graphs of bothM andM∗ are simple, while
in cases (a) and (d), one of them is simple while the other is not. Up to equivalence and
duality the numbers of such maps are as follows: one chiral pair for each p in cases (a)
and (b), two chiral pairs for each p in case (c), one map for each p in case (d), one map
of each given type in cases (e) to (g), two maps in case (h), and three maps in case (i).

Corollary 5.2. Suppose M is an orientably-regular map of genus g = p+ 1, where p is
prime. IfM is chiral and p− 1 is not divisible by 5 or 8, or ifM is reflexible and p > 13,
then either M or M∗ has multiple edges. Moreover, if M is reflexible, p > 13 and p ≡ 1
mod 6, then both M and M∗ have multiple edges.

Proof (of 5.1). Let G = Auto(M), and suppose that G is not doubly-degenerate. Then G
isXY-disjoint. If p divides |G|, then by Theorem 3.1, we know that eitherM is chiral and
one of cases (a) to (c) holds, or otherwise p ≤ 13. In the latter case, we find easily thatM
orM∗ has to be one of the reflexible maps R3.1 (of type {3, 7}), R3.2 (of type {3, 8}), R3.3
(of type {3, 12}), R3.4 (of type {4, 6}), R3.5 (of type {4, 8}), R4.1 (of type {3, 12}), R4.2
(of type {4, 5}), R4.3 (of type {4, 6}), R4.6 (of type {5, 5}), R6.1 (of type {3, 10}), R6.2 (of
type {4, 6}), R6.6 (of type {5, 10}), R8.1 (of type {3, 8}), R8.2 (of type {3, 8}), R14.1 (of
type {3, 7}), R14.2 (of type {3, 7}) or R14.3 (of type {3, 7}) from the tables in [7]. On the
other hand, if |G| is coprime to p = g− 1, then the theorems in Section 4 apply. For type
(A) we have no examples of genus g > 1, since X2 and either Y or Y 2 always generate a
normal subgroup of G. For type (B), the examples of type {4, 3v} are singly-degenerate,
and reflexible, with genus g = 3v − 3 for v odd, so p = g − 1 = 3v − 4 ≡ 5 mod 6;
these give the maps in case (d) in the statement of the theorem. On the other hand, the
examples of type {8, 3v} are doubly-degenerate. Finally, for types (C) and (D) the only
examples are A4 and A5, with genus 0. ut
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6. Reflexibility

Next, we prove our main results about reflexibility:

Theorem 6.1. Suppose M is an orientably-regular map of genus g = p + 1, where p is
prime. If M is chiral, then p divides |Aut(M)| and M or its dual M∗ belongs to one of
the three families of maps of types {6, 6}, {8, 8} or {5, 10} from Theorem 3.1, and p ≡ 1
mod 6, 8 or 10 respectively. In all other cases, M is reflexible.

Proof. Let G = Auto(M) be the group of orientation-preserving automorphisms of M .
If p divides |G|, then by Theorem 3.1 and inspection of the tables in [7], we know that
either M or M∗ belongs to one of the three families of chiral maps from Theorem 3.1, or
otherwise M is a reflexible map of genus at most 14. On the other hand, suppose |G| is
coprime to p = g − 1. If G is XY-disjoint, then we may consider types (A) to (D) from
Section 4 in turn; in each case, the group G has a defining presentation in which every
relation is of the form Xk = 1, Ym = 1, (XY)2 = 1, [X2, Y 2] = 1, [X2, Y 3] = 1, or
[X4, Y ] = 1, but these relations are all preserved by an automorphism τ that inverts the
two generators X and Y , and so the corresponding map is always reflexible. When G is
not XY-disjoint, its cyclic normal subgroup N = 〈X〉∩ 〈Y 〉 is generated by some element
of the form Xi which coincides with Y j (for some i and j ), and then a presentation for
G can be obtained from one for G/N in a way that ensures that every relation is of the
form Xk = 1, Ym = 1, (XY)2 = 1, [X2, Y 2] = 1, [X4, Y ] = 1, [X2, Y 3] = 1, or
Xi = Y j for some i, j , and again every relation of one of these forms is preserved by an
automorphism τ that inverts the two generators X and Y , and so the corresponding map
is always reflexible. (Full details will be given in Section 8.) ut

Corollary 6.2. There is no orientably-regular but chiral map of genus g = p+ 1, where
p is a prime such that p − 1 is not divisible by 3, 5 or 8.

7. Non-orientable regular maps of negative prime characteristic

Let M be a non-orientable regular map of type {k,m}. Then its automorphism group
G = Aut(M) is generated by three involutions a, b, c satisfying the relations (ab)k =
(bc)m = (ca)2 = 1 (among others), and further, G = 〈a, b, c〉 = 〈X, Y 〉 where X = ab
and Y = bc. Conjugation by b is an (inner) automorphism of G that inverts each of X
and Y—and, similarly, conjugation by a inverts X and XY , and conjugation by c inverts
Y and XY . Conversely, if G is any finite group generated by elements X and Y of orders
k and m for which XY has order 2, and G contains an element of order 2 that conjugates
any two of X, Y and XY to their respective inverses, then G is the automorphism group
of such a non-orientable regular map M .

If M has Euler characteristic −p for some odd prime p, then its orientable double
cover M̃ of M has the same type {k,m} but its Euler characteristic is 2χ(M) = −2p,
so M̃ has genus p + 1, and its full automorphism group is G × C2, with G preserving
orientation. Hence our observations from earlier sections apply to G acting on M̃ . In
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particular, since M̃ is not chiral, we find that either p ≤ 13, or otherwise p does not
divide |G|.

The non-orientable regular maps of genus 2 to 15 are given in [7], and from there
we find that the only examples of small negative prime characteristic are N4.1 (of type
{4, 6}), N4.2 (of type {4, 6}), N5.1 (of type {4, 5}), N5.2 (of type {4, 6}), N5.3 (of type
{5, 5}), N5.4 (of type {6, 6}), N7.1 (of type {4, 6}), N7.2 (of type {4, 9}), N9.1 (of type
{3, 8}), N9.2 (of type {3, 8}), N9.3 (of type {6, 10}), N13.1 (of type {4, 15}), N13.2 (of
type {6, 14}), and N15.1 (of type {3, 7}).

Lemma 7.1. For p odd, the group G has no central involution, so G is XY-disjoint.

Proof. It is easy to check that this holds for the above examples of small characteristic.
Hence we may suppose that p does not divide |G|, and then G is almost Sylow-cyclic.
Now the subgroup 〈a, c〉 (which stabilizes an edge ofM) is isomorphic to C2×C2, and so
by almost Sylow-cyclicity ofG, every involution inGmust be conjugate to one of a, c or
ac. The involutions a and c are not central in G, for otherwise X = ab or Y = bc would
have order 2, giving k = 2 or m = 2, which is impossible when M has characteristic
−p. Also ac = XY is not central, for otherwise G = 〈XY, Y 〉 would be abelian. Hence
G has no central involution. Finally, consider N = 〈X〉 ∩ 〈Y 〉. This is a central cyclic
subgroup of G, but also each of its elements is inverted under conjugation by b, so it has
order 1 or 2. SinceG has no central involutions, we conclude that N is trivial, and thusG
is XY-disjoint. ut

It follows that all examples other than those of small genus can be found from the families
of maps that we considered in Section 4.

For type (A), we need gcd(k,m) = 2, for otherwise k = 2 and so the map is planar
(and therefore orientable). Thus k = 2r and m = 2s with gcd(r, s) = 1, and G is an
extension of a cyclic group of order rs byC2×C2, with presentation 〈X, Y | X2r

= Y 2s
=

(XY)2 = [X2, Y 2] = 1〉. Now in this group, each ofX2 and Y 2 generates a cyclic normal
subgroup, which by the above lemma contains no involution, so r and s are both odd. The
Euler–Poincaré formula now implies that p = −χ(M) = |G|/4 − |G|/2k − |G|/2m =
rs− s− r = (r−1)(s−1)−1 is congruent to 3 mod 4. On the other hand, since r is odd
and X2Y = YX−2 (by Lemma 4.2), we have XrYXr = XYX−(r−1)Xr = XYX = Y−1,
so conjugation by the involution Xr inverts Y . Similarly, conjugation by the involution
Y s inverts X. It follows that XrY s is an involution that conjugates each of X and Y to
its inverse, and hence one such non-orientable map of type {2r, 2s} and characteristic
r+ s− rs exists for all odd positive integers r and s. The maps N9.3 (of type {6, 10}) and
N13.2 (of type {6, 14}) are examples.

For type (B), we need k = 4 (since Xk/2 cannot be central), and so G is an exten-
sion of a cyclic group of odd order v by PSL(2, 3) ∼= S4, with presentation 〈X, Y |
X4
= Y 3v

= (XY)2 = [X2, Y 3] = 1〉. The Euler–Poincaré formula implies that
p = −χ(M) = |G|/4 − |G|/8 − |G|/6v = 3v − 4 is congruent to 5 mod 6. On
the other hand, consider T = YX2Y−1, which (as a conjugate of X2) is an involution.
Now also Y−2X is an involution, since the relations Y 3X = XY−3 (from Lemma 4.6)
and (YX)2 = 1 imply Y−2X = YY−3X = YXY 3

= X−1Y 2
= (Y−2X)−1. Thus
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TX = YX2Y−1X = X−1Y−1XY−1X, being conjugate to Y−2X, is an involution,
so TXT = X−1. Similarly TXY is an involution as well, since TXY = X−1T Y =

X−1YX2
= X−1(YX)X, and therefore TXYT = (XY)−1. Hence T is an involution that

inverts each ofX andXY by conjugation, and it follows that one such non-orientable map
of type {4, 3v} and characteristic 4− 3v exists for every odd integer v. In fact these maps
are members of the family constructed in Example 3.1 of [8], with YX2Y−1 giving the
‘inner reflector’ in the quotient S4, and they include the maps N7.2 (of type {4, 9}) and
N13.1 (of type {4, 15}).

Finally, once again for types (C) and (D) the only examples have G ∼= A4 and A5,
which are impossible for negative Euler characteristic.

Thus we have the following, most of which was proved in [5]:

Theorem 7.2. Suppose M is a non-orientable regular map of characteristic −p, where
p is prime. Then up to duality, one of the following holds:

(a) p ≡ 3 mod 4, and M has type {2r, 2s}, for r, s odd and p = rs − s − r ,
(b) p ≡ 5 mod 6, and M has type {4, p + 4},
(c) p = 2, and M has type {4, 6},
(d) p = 3, and M has type {4, 5}, {4, 6}, {5, 5} or {6, 6},
(e) p = 5, and M has type {4, 6},
(f) p = 7, and M has type {3, 8},
(g) p = 13, and M has type {3, 7}.

Moreover, there is just one such map in each of cases (a), (b), (d), (e) and (g), while there
are two in cases (c) and (f). Hence in particular, if p is prime, p > 13 and p ≡ 1 mod 12,
then there exists no non-orientable regular map of characteristic −p.

8. The full classification

In this section, we complete the classification of orientably-regular maps M for which
|Auto(M)| is coprime to g − 1, where g is the genus of M , and hence obtain a full
classification of all orientably-regular maps of genus p + 1 where p is prime.

As previously, we suppose M has type {k,m}, and let X and Y be generators of
G = Auto(M) satisfying Xk = Ym = (XY)2 = 1, and also we let N = 〈X〉 ∩ 〈Y 〉.
The condition that |G| is coprime to g − 1 implies that g is even, and that G is almost
Sylow-cyclic. Moreover, the quotient G/N is XY-disjoint, and so from Section 4 we
have a classification of all the possibilities forG/N when this is non-trivial, with specific
presentations for G/N in each case.

Here we drop the assumption that G is XY -disjoint, to allow the possibility that N is
non-trivial. Let n = |N | and h = |G/N |, and then let k = rn and m = sn, so that r and s
are the orders of the images of X and Y in the quotientG/N . WhenG/N is of type (A2),
we may suppose without loss of generality that v = s/2 is odd, and so can take v to be
odd in all four of the first cases from Table 1 in Section 4.

With the above notation assumed, we will use the following:
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Lemma 8.1. If h > 1 then XhY h = 1.

Proof. Consider the transfer homomorphism f : G→ N , given by x 7→ x|G:N |
= xh for

all x ∈ G. If h > 1 then h = |G/N | is even (by what we found in Section 4), and as XY
has order 2 it follows that 1 = (XY)h = f (XY) = f (X)f (Y ) = XhY h. ut

Lemma 8.2. Let C be a cyclic group of order ab, where a, b > 1, and let B be its unique
subgroup of order b and index a. Suppose C has an (involutory) automorphism that fixes
B and inverts each element of the quotient C/B. Then gcd(a, b) = 1 or 2. Hence, in
particular, if a or b is odd then gcd(a, b) = 1. If, however, b is even and a is divisible
by 4, then b/2 is odd and gcd(a, b/2) = 1.

Proof. The given automorphism α of C takes x 7→ xe (for all x ∈ C) for some e coprime
to |C| = ab. Since α fixes B we have ae ≡ a mod ab, and since α inverts each element
of C/B we have e ≡ ja − 1 mod ab for some j . From these two congruences we find
that (ja− 2)a ≡ (e− 1)a ≡ 0 mod ab, and hence ja− 2 is a multiple of b. This implies
that gcd(a, b) divides 2, and the rest follows easily. ut

Corollary 8.3. If G/N is of type (A1), (A2), (B1) or (B2), as in Table 1 (with v odd in
case (A2)), then gcd(v, n) = 1; moreover, if G/N is of type (A2), then gcd(u, n) = 1
whenever u or n is odd.

Proof. In each case, v is odd, and 〈Y 〉 contains a normal cyclic subgroup of order vn,
containing N . Call this subgroup C. Then since X = (XY)Y−1, conjugation by X is an
involutory automorphism of C, that induces the inversion mapping on C/N (since G/N
is dihedral in case (A1), and XY 2X−1

= Y−2 mod N in case (A2), and XY 3X−1
= Y−3

mod N in cases (B1) and (B2)). As N is central, Lemma 8.2 applies, with B = N and
(a, b) = (v, n), and since v is odd, this gives gcd(v, n) = 1. Similarly, if u or n is odd in
case (A2), then gcd(u, n) = 1. ut

We can now proceed to the full classification:

Theorem 8.4. Suppose M is an orientably-regular map of type {k,m} and genus g with
orientation-preserving automorphism group G = Auto(M), having the property that |G|
is coprime to g − 1. Then up to duality, one of the following holds:

(A0) k = m = n, |G| = n, and g = n/4, for some n ≡ 0 mod 8,
(A1) k = 2n, m = vn, |G| = 2vn, and g = v(n− 1)/2, for some v and n such

that v is odd, n ≡ 1 mod 4, and gcd(v, n) = gcd(v + 2, n) = 1,
(A2) k = 2un, m = 2vn, |G| = 4uvn, and g = uvn− (u+ v)+ 1, for some u, v

and n such that gcd(u, v) = gcd(u+ v, n) = 1, and either n is odd and
gcd(uv, n) = 1, or n ≡ 2 mod 4 and gcd(uv, n/2) = 1,

(B1) k = 4n, m = 3vn, |G| = 24vn, and g = 6vn− 3v − 3 for some v and n
such that v is odd, and gcd(3v, n) = gcd(3v + 4, n) = 1, and n 6≡ 0 mod 4,

(B2) k = 8n, m = 3vn, |G| = 48vn, and g = 12vn− 3v − 7 for some v and n
such that v and n are both odd, and gcd(3v, n) = gcd(3v + 8, n) = 1,

(C) k = m = 3n, |G| = 12n, and g = 3n− 3 for some odd n,
(D) k = 3n, m = 5n, |G| = 60n, and g = 15n− 15 for some n coprime to 30.
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Moreover, there is just one such map for every choice of the parameters in each case, and
all of these maps are reflexible. Presentations for G are given in Table 2.

Table 2. Presentations for G = Auto(M) when |G| is coprime to g − 1

Type Additional relations in defining presentation for G

(A0) {n, n} XY = Y n/2

(A1) {2n, vn} X2vY 2v
= 1

(A2) {2un, 2vn} [X2, Y 2] = X4uvY 4uv
= 1, if n is odd,

or [X2, Y 2] = X4uvY 4uv
= 1, Xun = Y vn, if n ≡ 2 mod 4

(B1) {4n, 3vn} [X2, Y 3] = X24vY 24v
= 1, if n is odd,

or [X2, Y 3] = X24vY 24v
= 1, X2n

= Y 3vn/2, if n ≡ 2 mod 4
(B2) {8n, 3vn} [X4, Y ] = [X2, Y 3] = X48vY 48v

= 1
(C) {3n, 3n} X12Y 12

= 1

(D) {3n, 5n} X60Y 60
= 1

Proof. First, suppose |G/N | = h = 1. Then G = N is cyclic, and k = m = n = |G|,
and the Euler–Poincaré formula gives g − 1 = (m/2 − 1 − 1)/2 = m/4 − 1, so m/4
is even, say m = 8t . Hence the map has type {8t, 8t} and genus 2t . Also XY = Y 4t

and hence X = Y 4t−1, so clearly there is one such map for each positive integer t . This
accounts for item (A0).

From now on, we suppose h > 1. In all cases, the genus g can be calculated from the
Euler–Poincaré formula, and many of the conditions on the parameters follow immedi-
ately from that (and the assumption that |G| is coprime to g). Also a relation of the form
XhY h = 1 in each case follows from Lemma 8.1, and the relations [X2, Y 2] = 1 (in case
(A2)) and [X2, Y 3] = 1 (in cases (B1) and (B2)) follow from Lemma 2.6.

In case (A1) from Section 4, we have h = 2v and (r, s) = (2, v), where v is odd.
In this case 2(g − 1) = v(n − 1) − 2, and as this must be twice an odd integer, we find
n ≡ 1 mod 4. Also Corollary 8.3 tells us that gcd(v, n) = 1. The relation X2vY 2v

= 1
(from Lemma 8.1) can be rewritten as (X2)v = (Y v)2, and because gcd(n, 2v) = 1, this
expresses X2 as a power of Y v in N and vice versa.

In case (A2), we have h = 4uv and (r, s) = (2u, 2v), with gcd(2u, v) = 1.
If n is odd, then Corollary 8.3 gives gcd(u, n) = gcd(v, n) = 1, so gcd(uv, n) = 1.

Accordingly, the relation X4uvY 4uv
= 1 rewritten as (X2u)2v(Y 2v)2u = 1 expresses X2u

as a power of Y 2v inN , and vice versa. On the other hand, if n is even, then gcd(v, n) = 1
by Corollary 8.3, and also u is even, since gcd(u + v, n) = 1 by the genus calculation.
Next, as the 2-part of |G| divides 2un, some power of X generates a cyclic group C
of index 2 in a Sylow 2-subgroup H of G, and conjugation by an element z of H\C
is an involutory automorphism α of C that centralizes B = C ∩ N . Moreover, in the
dihedral quotient G/〈Y 2

〉, the image of z inverts all elements of the image of C, which
is C〈Y 2

〉/〈Y 2
〉 ∼= C/(C ∩ 〈Y 2

〉) = C/B. Thus Lemma 8.2 applies, with a = |C/B|
divisible by 4 since u is even, and with b as the 2-part of n. It follows that b/2 is odd, so
n/2 is odd, hence gcd(2u, n/2) = 1, and thus gcd(h, n/2) = gcd(2uv, n/2) = 1. When
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taken together with the obvious relation Xun = Y vn (giving the central involution of N ),
the relation X4uvY 4uv

= 1 rewritten as (X2u)2v(Y 2v)2u = 1 is now enough to express
X2u and Y 2v in terms of each other in N . This gives the presentations for type (A2) in
Table 2.

In case (B1), we have h = 24v and (r, s) = (4, 3v), where v is odd. The relation
X24vY 24v

= 1 tells us that (X4)6v and (Y 3v)8 are mutually inverse elements of N . As
these have orders n/gcd(n, 6v) and n/gcd(n, 8) respectively, we find that gcd(n, 6v) =
gcd(n, 8), which must be at most 2. In particular, this implies that gcd(n, 3v) = 1. If n
is odd, then X24vY 24v

= 1 expresses X4 as a power of Y 3v and vice versa. On the other
hand, if n is even, then as in case (A2) some power of X generates a cyclic group C
having index 2 in a Sylow subgroupH ofG, and conjugation by an element ofH\C is an
involutory automorphism α of C that centralizes B = C ∩N . Here α inverts all elements
of C/B since a Sylow 2-subgroup of the quotient G/N ∼= S4 is dihedral. By Lemma
8.2 with a = |C/B| = 4, we find that n/2 is odd. When taken together with the obvious
relationX2n

= Y 3vn/2 (giving the central involution ofN ), the relation (X4)6v(Y 3v)8 = 1
is now enough to express X4 and Y 3v in terms of each other in N .

In case (B2), we have h = 48v, with r = 8 and s = 3v, where v is odd. The relation
1 = X48vY 48v

= (X8)6v(Y 3v)16 tells us that gcd(n, 6v) = gcd(n, 12), which must be
at most 2, and hence gcd(n, 3v) = 1. Here Co(X) = 〈X4

〉 and Co(Y ) = 〈Y 3
〉, and

Lemma 2.6 shows that Y 2 centralizes Co(X) and X2 centralizes Co(Y ). It follows that
X4 commutes with both Y 2 and Y 3, and so commutes with Y . Thus X4 is central. Now
we can use Lemma 8.2 applied to a Sylow 2-subgroup C of 〈X〉 and a subgroup B of
index 4 in C (containing C ∩ 〈X4

〉), with b as the 2-part of 2n, and get gcd(4, b/2) = 1,
from which it follows that n is odd. In particular, Y has odd order, so X48vY 48v

= 1
expresses X8 as a power of Y 3v and vice versa.

In case (C), we have h = 12 and r = s = 3. The genus calculation shows n is odd,
and the relation X12Y 12

= 1 tells us that X3 and Y 3 are elements of N whose 4th powers
are mutually inverse (and in fact implies X3Y 3

= 1). This gives item (g).
Similarly, in case (D), where h = 12 and (r, s) = (3, 5), we find that n is odd (by

the genus calculation). The relation X60Y 60
= 1 gives (X3)20

= (Y 5)−12 (and in fact
implies X15Y 15

= 1). This expresses X3 and Y 5 in terms of each other in N , and also
gives gcd(n, 5) = 1 and gcd(n, 3) = 1, so gcd(n, 30) = 1. In particular, by Schur–
Zassenhaus, G ∼= Cn × A5.

This completes the classification. Reflexibility of the maps follows from the fact that
the relations in the defining presentations for the groupG = Auto(M) in each case are all
preserved by replacing X and Y by their inverses. ut

Finally, we have the following consequence of this classification:

Corollary 8.5. SupposeM is an orientably-regular map of genus p+1 where p is prime.
Then up to duality:

(a) M is one of the chiral maps described in Theorem 3.1, or
(b) M is one of the reflexible maps described in Theorem 8.4, or
(c) M is one of the reflexible maps of genus 3, 4, 6, 8, 12 or 14 listed in [7] and not

already included in case (b).
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