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Abstract. We prove a ratio ergodic theorem for non-singular free Zd and Rd actions, along balls in
an arbitrary norm. Using a Chacon–Ornstein type lemma the proof is reduced to a statement about
the amount of mass of a probability measure that can concentrate on (thickened) boundaries of
balls in Rd . The proof relies on geometric properties of norms, including the Besicovitch covering
lemma and the fact that boundaries of balls have lower dimension than the ambient space. We also
show that for general group actions, the Besicovitch covering property not only implies the maximal
inequality, but is equivalent to it, implying that further generalization may require new methods.

Keywords. Group actions, measure preserving transformations, commuting transformations, non-
singular actions, ergodic theorem, maximal inequality

1. Introduction

Consider a non-singular action of a group G on a standard σ -finite measure space
(�,B, µ), which we denote ω 7→ T gω; we shall assume that the action is free and
ergodic. From the action on � there is induced an isometric linear action on L∞, also de-
noted T g , given by T gf = f ◦T g

−1
; and this in turn induces an isometric linear action on

the Banach dual of L∞, whose restriction to L1 is given by T̂ gf = (f ◦ T g
−1
) ·

d(µ◦T g)
dµ

(in the measure preserving case the Radon–Nikodym derivative is identically 1 and T̂
reduces to the usual Koopman operator).

For Z-actions, there is in this setting an analogue to Birkhoff’s ergodic theorem which
is due to Hopf [Hop], later generalized by Hurewicz [Hur44] to a “measureless” state-
ment, and by Chacon–Ornstein to the operator setting [CO60]. Hopf’s ratio ergodic the-
orem states that, for an ergodic Z-action generated by a transformation T : �→ �, for
any f, g ∈ L1 with

∫
g dµ 6= 0, the following ratios converge almost surely:

Rn(f, g) =

∑n
k=0 T̂

kf∑n
k=0 T̂

kg
.
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If in addition T is conservative (i.e. has no non-trivial wandering sets), or if the one-sided
sum is replaced with the symmetric sum from −n to n, then the limit is the constant
function

∫
f/
∫
g. Note that for probability-preserving actions this is equivalent to the

usual ergodic theorem: Rn becomes an ergodic average by setting g ≡ 1. For general
actions this equivalence is false: for example, for measure-preserving actions of an infinite
measure the ergodic averages converge to 0, and not to the mean.

While the ergodic theorem for measure-preserving actions on probability spaces has
been broadly generalized to the group setting [OW87], the ratio theorem has not seen
similar extensions, even to Zd -actions. For a time it was thought no such extension was
possible. The natural thing to try in Zd is to sum over the cubes Qn = [0; n]d , but there
is a counter-example, due to Brunel and Krengel, showing that these ratios may diverge
for d > 1 [Kre85]. However, recently J. Feldman [Fel07] proved a partial result for Zd ,
showing that if the generators of the action act conservatively then the ratio theorem holds
for sums over the symmetric cubes [−n; n]d . However, the conservativity requirement is
essential to the argument, and is more restrictive than one would like, since there are
certainly actions that are conservative but whose generators are not (consider for example
the Z2 action generated by translation by

√
2 and

√
3 on R; the action is conservative but

no cyclic subgroup acts conservatively).
Our main result is an unconditional ratio theorem for multiparameter actions:

Theorem 1.1. Let {T u}u∈Zd be a free, non-singular ergodic action on a standard σ -finite
measure space. Let ‖ · ‖ be a norm on Rd and let Bn = {u ∈ Zd : ‖u‖ ≤ n}. Then for
every f, g ∈ L1 with

∫
g 6= 0, we have

Rn(f, g) =

∑
u∈Bn

T̂ uf∑
u∈Bn

T̂ ug
−−−→
n→∞

∫
f∫
g

almost everywhere.

A similar result holds for Rd -actions.
The method of proof follows a two-step argument that is by now standard and goes

back to Hopf. With g fixed, one first proves that Rn(f, g) converges for f in some dense
subset F ⊆ L1. Then one applies a maximal inequality to go from F to its closure (we
shall discuss maximal inequalities in more detail below). In Feldman’s proof the conser-
vativity assumption is used to construct a special family of functions which is dense and
for which the ratios converge. We shall instead work with the larger subspace generated
by g and bounded co-boundaries:

F = span{g, h− T̂ uh : u ∈ Zd , h ∈ L1
∩ L∞}.

A standard argument shows thatF is dense inL1 (see e.g. [Fel07, Aar97]). SinceRn(g, g)
≡ 1, convergence of Rn(f, g) for all f ∈ F will follow once it is established for co-
boundaries f = h− T̂ uh. For such f some cancellation occurs in the sum

∑
v∈Bn

T̂ vf ,
and some algebra (given in Section 5, or see [Bec83]) reduces the problem to the follow-
ing variant of the Chacon–Ornstein lemma, into the proof of which goes most of the hard
work:
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Theorem 1.2. Under the hypotheses of Theorem 1.1, for any h ∈ L∞ ∩ L1, and for any
t > 0, ∑

u∈Bn+t\Bn−t
T̂ uh∑

u∈Bn
T̂ uh

→ 0

almost surely.

Note that for d = 1 the numerator contains only two terms and it suffices to show that
the denominator tends to∞; this follows easily for conservative actions, while the non-
conservative case can be proved directly. On the other hand, for d > 1 the number of terms
in the numerator is on the order of nd−1, and when the measure is infinite the denominator
satisfies n−d

∑
u∈Bn

T̂ uh→ 0. Thus a more sophisticated argument is necessary.
Our proof of Theorem 1.2 applies the transference principle to reduce theorem 1.2 to

a geometric statement about the amount of mass which can concentrate on boundaries of
balls for finite measures in Rd . In the proof we use two facts related to the finite dimen-
sion of Rd (with combinatorial analogs in Zd ). One is the Besicovitch covering lemma,
about which we shall have more to say below. The other is (a variant of) the fact that
the boundaries of balls in Rd are manifolds of lower dimension, which is closely related
to finite topological dimension of Rd . This property has apparently not been exploited
before in this context.

It is also worth noting that our method does not require us to distinguish between the
conservative and non-conservative case.

As we have mentioned already, in order to derive the ratio theorem from Theorem 1.2
one uses the maximal inequality, which is the second subject of this paper. We shall denote
by Bn an increasing sequence of finite subsets of G which satisfy e ∈ B0 (here e is the
identity element in G).

Definition 1.3. An ergodic action of G admits a ratio maximal inequality (with respect
to (Bn)) if, for every 0 ≤ g ∈ L1 there is a constant M such that, for every 0 ≤ f ∈ L1

and ε > 0,

µg{ω ∈ � : sup
n
Rn(f, g) > ε} ≤

M

ε

∫
f dµ

where dµg = g · dµ. We say that there is a maximal inequality for G (with respect to
(Bn)) if every action admits a maximal inequality.

Notice that when µ(�) = 1, we can take g ≡ 1. Then µg = µ and Rn(f, g) are the
ergodic averages of f , so the ratio maximal inequality reduces to the usual maximal
inequality. Note also that we allow the constant M to depend on g, since this is what is
used in the proof of the ergodic theorem.

The ordinary maximal inequality for probability-preserving actions of amenable
groups is known to hold quite generally [Lin01, Wei03], but this is not so in the non-
singular case. Indeed, if the Krengel–Brunel counter-example is examined closely it is
evident that there is a dense class of functions f for which the ratio theorem holds. The
problem must be that the maximal inequality fails. This is closely related to the fact that
the sum is over one-sided cubes Qn = [1; n]d , which fail to satisfy the Besicovitch cov-
ering property:
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Definition 1.4. A sequence (Bn) of subsets of G satisfies the Besicovitch covering prop-
erty with constant C if the following holds. If E ⊆ G is finite, and for each g ∈ E we are
given a translate Bn(g)g of one of the Bn’s, then there is a subfamily of these translates
which covers E in such a way that no point in G is covered more than C times.

This geometric property has found many applications in analysis; an excellent source on
this is [dG75]. That it implies the ratio maximal inequality was first shown by M. Becker
[Bec83] for balls Bn ⊆ Rd in a given norm. A maximal inequality relying on the Besicov-
itch property was later also established by E. Lindenstrauss and D. Rudolph for a more
general class of non-singular group actions [Lin06]. A short proof of the general case can
be found in Feldman’s paper [Fel07]. Other applications of the Besicovitch property to
ergodic theory appear in [Hoc06].

It is thus known that the Besicovitch property implies the ratio maximal inequality. It
has apparently not been observed before that it is also necessary.

Theorem 1.5. Let G be a countable group and Br ⊆ G an increasing sequence of sym-
metric sets with

⋂
Br = {e}. Then there is a ratio maximal inequality for G if and only

if Bn satisfies the Besicovitch property.

Actually, more is true: if Bn is not Besicovitch then the ratio maximal inequality fails
for every free action of the group. Contrast this with the usual maximal inequality, which
holds for any measure-preserving action of an amenable group on a probability space, as
long as the averages are taken over a tempered Følner sequence [Lin01, Wei03].

One should note that the Besicovitch property is rather rare. It fails, for example, for
the Heisenberg group when Bn are balls with respect to several natural metrics [Rig04].

It is not clear what all this says about the ratio ergodic theorem. For probability-
preserving actions of amenable groups the ratio theorem along tempered Følner sequences
follows from the ordinary ergodic theorem. At the same time, the ratio maximal inequality
fails, as we saw before. The ratio ergodic theorem does hold, for trivial reasons, for dissi-
pative actions (e.g. on atomic measure spaces). This leaves the hope that a ratio theorem
may persist in a more general setting, even without a maximal inequality.

The rest of this paper is organized as follows. In the next section we discuss the
Besicovitch property and prove Theorem 1.5. In Section 3 we discuss some covering and
disjointification lemmas. In Section 4 we define coarse dimension and prove our main
tool about concentration of measures on ball boundaries. In Section 5 we complete the
proofs of Theorem 1.2 and the ratio theorem, 1.1.

2. The Besicovitch lemma and the maximal inequality

In this section we prove Theorem 1.5. We shall reformulate the Besicovitch covering
property for metric spaces and present it in several equivalent forms. An excellent source
on these matters is [dG75].

Given a metric space (X, d) we denote by Br(x) the open ball of radius r centered
at x. We think of balls as carrying with them the information about their center and radius,
which are not in general determined by the ball as a set.
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A finite family of balls U = {Br(i)(xi) : 1 ≤ i ≤ N} is called a carpet over
{x1, . . . , xN }. It is sometimes convenient to regard carpets as ordered sets. Note that the
statement that U is a carpet over E is stronger than the statement that it covers E, since
the former asserts that each x ∈ E is the center of some ball in U , whereas the latter only
says that x belongs to some ball.

We say that a collection of sets has multiplicity ≤ m if every point is contained in at
most m elements of the collection.

A metric space satisfies the Besicovitch property with constant C [Bes45, dG75] if
for any carpet over E there exists a subcarpet which covers E and has multiplicity ≤ C.
The main example for this is Rd with a norm-induced metric; this was shown by Morse
[Mor47]. A more accessible proof can be found in [dG75] or can be deduced from Propo-
sition 4.2 below.

This definition of the Besicovitch property is consistent with the one in the introduc-
tion if X = G is a group, d is a right-invariant metric onG, and Bn are the balls of radius
n around the group’s identity element. We shall allow ourselves to switch freely between
these two formalisms, which are notationally identical.

We say that a sequence Br(i)(xi) is incremental if r(i) is non-increasing and xi /∈⋃
j<i Br(j)(xi).

The Besicovitch property has several equivalent forms which are useful in applica-
tions.

Proposition 2.1. Let X be a metric space and C ∈ N. The following are equivalent:

(1) X has the Besicovitch property with constant C.
(2) For any carpet U over E and A,B ⊆ E, if t > 0 and |A ∩ F |/|B ∩ F | < t for every

F ∈ U , then |A|/|B| < Ct .
(3) For any carpet U over E and A,B ⊆ E, if t > 0 and |A ∩ F |/|B ∩ F | > t for every

F ∈ U , then |A|/|B| > (1/C)t .
(4) Every incremental sequence has multiplicity ≤ C.
(5) For any carpet U over E there is an incremental sequence of sets from U covering E

and with multiplicity ≤ C

Proof. (1) implies (2): Using (1) we may pass to a subcollection {Fi}i∈I ⊆ U with
multiplicity ≤ C, and which covers E, and hence covers A and B. It now follows that

|A| ≤
∑
i

|A ∩ Fi | < t
∑
|B ∩ Fi | ≤ Ct

∣∣∣⋃
i

(B ∩ Fi)

∣∣∣ = Ct |B|.
(2) and (3) are equivalent on reversing the roles of A and B.
(2) implies (4): Let Br(1)(x1), . . . , Br(N)(xN ) be an incremental sequence. For each

i, note that if j < i then xi /∈ Br(j)(xj ) because the sequence is incremental, and also,
since r(j) do not increase, if j > i then xi /∈ Br(j)(xj ). Thus each xi is covered by
exactly one of the sets Br(j)(xj ). Next, let y 6= xi , i = 1, . . . , N . Choose1 ε ≥ 0 so that
xi /∈ Bε(y); setting A = {xi : y ∈ Br(i)(xi)} and B = {y} we see that for any t > 1 the

1 In the case of sets in a group rather than balls in a metric space, the existence of such an ε
follows from the assumption that B0 = {e}.
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hypothesis of (2) is satisfied with respect to the carpet {Bε(y)}∪ {Br(i)(xi) : xi ∈ A} over
{x1, . . . , xN , y}, implying thatN = |A|/|B| < Ct for every t > 1, and the claim follows.

(4) implies (5): Let U = {Br(1)(x1), . . . , Br(N)(xN )} be a carpet over the set E =
{x1, . . . , xN }. Without loss of generality we may assume that r(1) ≥ · · · ≥ r(N). Iterate
over i from 1 to N and at each stage discard the set Br(i)(xi) if xi belongs to the union
of the sets selected previously and otherwise keep it. We obtain an incremental sequence
which covers E, and by (4) has multiplicity ≤ C.

The implication (5)⇒(1) is trivial. ut

We can now prove Theorem 1.5:

Theorem. LetG be a countable group and Br ⊆ G an increasing sequence of symmetric
sets with

⋂
Br = {e}. ThenG satisfies a ratio maximal inequality for sums over Br if and

only if X satisfies the Besicovitch property with respect to Br .

Proof. One direction is the ratio maximal inequality of Becker and of Lindenstrauss and
Rudolph [Bec83, Lin06].

Conversely, suppose the Besicovitch property fails. Given an action of G and func-
tions f, h ∈ L1 let us write

C(f, h) =
µh{supn Rn(f, h) > ε}∫

f dµ

where dµh = h · dµ. We are out to show that for some h ∈ L1 this quantity is not
bounded above as f varies.

We start with the action ofG on itself by left translation, T gx = gx, and let µ be Haar
(counting) measure, which is clearly preserved. By Proposition 2.1, for everyM > 0 there
is a t > 0 and finite sets U,V ⊆ G, and n(g) ∈ N for g ∈ U ∪ V , such that

|U ∩ Bn(g)g|/|V ∩ Bn(g)g| > t

for g ∈ U ∪ V , but |U |/|V | < t/M . Let f = 1U and h = 1V . Then{
x ∈ V : sup

n

#{g ∈ Bn : T gx ∈ U}
#{g ∈ Bn : T gx ∈ V }

> t

}
= V

so

µh

(
x ∈ G : sup

n

∑
g∈Bn

f (T gx)∑
g∈Bn

h(T gx)
> t

)
= µh(V ) = |V | >

M

t
|U | =

M

t

∫
f dµ.

We have found that for each M > 0 there are f, h ∈ L1(G) with

C(f, h) > M.

This is already enough to conclude that the ratio maximal inequality cannot hold with a
constant which is independent of h.

We next want to show that for every action of G on a measure space (�,F , µ), there
is a fixed h with supf∈L1 C(f, h) = ∞. We prove this for the case that the measure space
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is non-atomic and the action measure preserving. The proof for the atomic case is simpler,
so we omit it.

We construct by induction functions which will establish our claim. Suppose we have
0 ≤ fk, h ∈ L1(�) for 1 ≤ k ≤ n such that C(fk, h) > k. Using what we know about
the action of G on itself, we can find 0 ≤ f ′, h′ ∈ L1(G) so that C(f ′, h′) > n + 1.
Below we show how to merge h, h′ into a function h′′ ∈ L1(�), and to construct a
function fn+1 ∈ L

1(�) derived from f ′ so that C(fk, h′′) > k for 1 ≤ k ≤ n + 1 and
‖h − h′′‖1 < ε, where ε is a parameter which can be chosen arbitrarily small. Once this
is done, we can iterate the process and pass to a limit function h∗ ∈ L1(�) which, for the
sequence fk constructed, satisfies C(fk, h∗)→∞, completing the proof of the theorem.

Fix ε > 0. We may assume that the functions f ′, h′ that we have found on G are
supported inside BN0 for someN0 and that if Ri(f ′, h′)(g) > n+1 for some i and g ∈ G
then g ∈ BN0 . If ω ∈ � let ik(ω) be the first index such that Rik(ω)(fk, h)(ω) > k. Since
ik(·) is measurable for k = 1, . . . , n, there is some N1 such that µh(ik > N1) < ε for
each k. Set N = max{N0, N1}.

Using the fact that the action is non-atomic and free, we can find a set A ⊆ � with
positive µ-measure, so that gA ∩ g′A = ∅ whenever g, g′ ∈ B−1

N BN , and so that

Ã = ∪
g∈B−1

N BN
gA

has measure less than ε, both with respect to µ and with respect to µh [Wei03]. By the
choice of N , if h′′ is a function that differs from h only on

⋃
g∈BN

gA then C(f, h′′) >
C(fk, h

′′)− 2ε, because for ω ∈ � \ Ã, we have T̂ gh(ω) = T̂ gh′′(ω) as long as g ∈ BN ,
implying Rik(ω)(f, h

′)(ω) = Rik(ω)(f, h)(ω) outside of Ã and outside the set where
ik > N .

Define h′′(ω) = h′(g) for ω ∈ gA and g ∈ BN0 , and h′′ = h otherwise. By the above,
C(fk, h

′′) > C(fk, h)− ε for k = 1, . . . , n and ‖h− h′′‖1 =
∫
Ã
|h− h′′| dµ, which can

be made > k and < 2−n respectively by choosing ε small enough.
Finally, define the function fn+1(ω) = f ′(g) for ω ∈ gA and g ∈ BN0 , and 0

otherwise. Since on BNA we have Ri(fn+1, h
′′) = Ri(f

′, h′) for i ≤ N0, it follows that
C(fn+1, h

′′) > n + 1 (notice that C(·, ·) is invariant under scaling of µ, which explains
why constructing f ′′, h′′ on a part of the measure space which is small with respect to µ
does not ruin the property C(f ′, h′) > n+ 1). ut

3. The doubling property and disjointification

Another property of metric spaces which is related (but not equivalent) to the Besicovitch
property is the doubling condition. Let (X, d) be a metric space, and suppose we are
given a measure on X which we denote by | · |; in our setting it will be Haar measure, and
for Zd will denote the usual counting measure. We say that (X, d) satisfies the doubling
condition with constant D if for every ball Br(x) we have |B2r(x)| ≤ D|Br(x)|. This
is satisfied for the groups Zd , Rd for any norm; for finitely generated groups with word
metric this condition is equivalent to polynomial growth.
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In this section we derive some covering lemmas based on the doubling and Besicov-
itch properties. For this we require some more notation. Write radB for the radius of a
ball B, and if U is a collection of balls we write rmaxU and rminU for the maximal and
minimal radii of balls in U , respectively.

We say that U is well-separated if any two balls in U are at distance at least rminU
from each other (the distance between sets A and B is inf{d(a, b) : a ∈ A, b ∈ B}).

The doubling condition together with the Besicovitch property implies the following
standard covering result which can be found e.g. in [dG75].

Lemma 3.1. Let X be a metric space with a measure, and suppose it satisfies the Besi-
covitch property with constant C and the doubling condition with constant D. Then for
every finite E ⊆ X and every carpet U over E there is a subcollection V ⊆ U which
covers E and which can be partitioned into χ = CD2

+ 1 subcollections, each of which
is well-separated.

Proof. We begin with a few observations. Let x ∈ X an let W be a collection of n
balls of radius R centered inside B3R(x), and suppose W has multiplicity ≤ C. Then⋃
W ⊆ B4R(x), so

n|BR(x)| ≤ C · |B4R(x)| ≤ D
2
· C · |BR(x)|,

hence n ≤ CD2
= χ − 1.

Next, supposeW consists of balls of radius≥ R which intersect B2R(x), and suppose
W has multiplicity ≤ C. By replacing each ball B ∈W with a ball of radius R contained
in B and centered within B3R(x), we conclude again that |W| ≤ χ − 1.

We now prove the lemma. By (5) of Proposition 2.1, choose an incremental sequence
U1, . . . , Un ∈ U covering E, and assign colors 1, 2, . . . , χ to the Ui as follows. Color U1
arbitrarily. Assuming we have colored U1, . . . , Uk consider Uk+1. By the above, Uk+1
cannot be within distance radUk of more than χ −1 of the balls we have already colored,
so there is a color which we can assign to it without violating the coloring condition.
When all the balls are colored, set Vk = the balls colored k. Clearly each collection is
well-separated. ut

For a metric space X, we denote by χ(X) the smallest constant χ for which X satisfies
the conclusion of the proposition. Clearly, if Y ⊆ X then χ(Y ) ≤ χ(X). If X satisfies the
hypotheses of the proposition then χ(X) ≤ CD2

+1, so this bound holds for any Y ⊆ X,
even though Y may no longer satisfy the doubling condition.

Corollary 3.2. In the notation of the previous lemma, assume there is given a finite mea-
sure µ supported in a set E. Then there is a well-separated subset of U which covers a
set of mass ≥ (1/χ)µ(E).

Proof. Color the balls as in the previous lemma. Each monochromatic collection of balls
is well-separated and since there are χ colors, and the union covers E, one color class
covers a 1/χ -fraction of the mass. ut

Our next objective is a lemma like the above except that, instead of capturing mass in a
well-separated collection of balls, we do so with spheres, or more precisely thick spheres.
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This is too much to hope for in general, but we can do it under the hypothesis that the
balls we begin with contain some fraction of their mass on their boundaries.

For a metric space X, the t-boundary of a ball Br(x) is defined for t ≤ r by

∂tBr(x) = Br+t (x) \ Br−t (x);

this is called a thick sphere; we say that its radius is r and thickness t , and agree that the
sphere carries this information with it (r, t are not determined from ∂tBr(x) in general).
Also write ∂Br(x) for the usual topological boundary of Br(x), which is a sphere. We
apply these operations to collections elementwise, i.e. if U is a collection of balls we
write ∂U = {∂B : B ∈ ∂U}, etc.

If U is a collection of spheres we define rminU , rmaxU in the same way as for balls.
For R > 0, we say the collection is R-separated if any two members are at distance at
least R from each other. If this is true for R = rminU we say the collection is well-
separated. Thus the t-boundaries of an R-separated collection of balls are (R − 2t)-
separated. Note that anR-separated family of spheres may be nested: although the spheres
are disjoint, the corresponding balls may be contained in each other.

A sequence U1, . . . ,Up of carpets over E is called a stack, and p is its height.
Given a measure µ, a set F and a collection U of sets, we say that U covers an ε-

fraction of F if µ(F ∩
⋃
U) ≥ εµ(F ).

Lemma 3.3. Let X be a metric space satisfying the Besicovitch and doubling properties
and let χ = χ(X). For 0 < ε, δ < 1 and d ∈ N let p =

⌈ 2χ
εδ

⌉
, and suppose that

(1) µ is a finite measure on X.
(2) F ⊆ X is finite and µ(F) > δµ(X).
(3) U1, . . . ,Up is a stack over F with rminUi ≥ rmaxUi−1.
(4) µ(∂1B) > εµ(B) for each B ∈

⋃
i Ui .

Then there is an integer k ≥ 1 and a subcollection V ⊆
⋃
i≥k Ui of spheres such that:

(a) ∂V is well-separated.
(b) For r = rmaxUk−1, the set

⋃
B∈V ∂2rB contains more than 1/2 of (the µ-mass of) F .

Remark. If we assume that rminUk > 4 rmaxUk−1 then we can conclude that the col-
lection ∂2rB, B ∈ V , is pairwise disjoint.

Proof. For convenience we assume µ(X) = 1. The proof follows the usual Vitali-like
exhaustion scheme. We describe a recursive procedure for constructing V , and show that
it will eventually terminate with a suitable collection. Our induction hypothesis is that at
the k-th stage we have constructed a collection V ⊆

⋃
i>p−k Ui with ∂V well-separated,

and with µ(
⋃
B∈V ∂2rB) ≥

εδ
2χ · k for r = rmaxUk−1.

We begin for k = 0 with V = ∅, which satisfy this trivially. Assuming we have
completed the k-th stage, let r = rmaxUk−1. Distinguish two cases.

If µ(F ∩
⋃
B∈V ∂2rB) >

1
2µ(F), then V is the desired collection and we are done.
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Otherwise let G = F \
⋃
B∈V ∂2rB, so µ(G) > 1

2µ(F) ≥
1
2δ. By Corollary 3.2 we

may choose a well-separated subcollection of balls U ′ ⊆ Uk−1 with µ(
⋃
U ′) > δ

2χ , so

by assumption µ(
⋃
B∈U ′ ∂B) >

εδ
2χ . Since the centers of B ∈ U ′ are at distance at least

2r ≥ 2 rmaxU ′ from each S ∈ ∂V , the collection ∂V ∪ ∂U ′ is well-separated, and we
have

µ
( ⋃
B∈V∪U ′

∂B
)
= µ

(⋃
B∈V

∂B
)
= µ

( ⋃
B∈U ′

∂B
)
≥
εδ

2χ
k +

εδ

2χ
=
εδ

2χ
(k + 1),

so we complete the recursive step by adding U ′ to V .
It only remains to show that this cannot continue for p steps; and indeed, if it did we

would have µ(
⋃
B∈V ∂B) > 1, which is impossible. ut

4. Coarse dimension and non-concentration of mass on boundaries

For a metric space with a measure, let us say that a ball is ε-thick if an ε-fraction of its
mass is concentrated on its boundary. In this section we derive a theorem which says,
roughly, that given a finite measure on Rd , only a relatively small mass of points can
have the property that they lie at the center of many ε-thick balls. This result depends on
a metric property that is closely related to topological dimension, which we call coarse
dimension. Informally, we wish to express the fact that the boundary of balls is of a lower
dimension than the ambient space. This is not quite what we need, since we are using
thick boundaries in place of topological boundaries. In general it is not true that ∂1B

has lower dimension than X; in Rd , for example, ∂1Br(x) has non-empty interior so it
has full dimension. However, from the point of view of balls with radius � 1, ∂1Br(x)

looks more or less like the lower-dimensional subset ∂Br(x) (and for balls whose radius
is� r , ∂1Br(x) looks like a point). For this reason we introduce a parameter R0 which
specifies how big balls must be in order to pick up the “large scale” geometry. We make
the following provisional definition, which is neither general nor particularly elegant, but
is convenient for the induction which is to follow.

Definition 4.1. For metric spaces X and R0 > 1, the relation cdimR0 X = k (read: X
has coarse dimension k at scales ≥ R0) is defined by recursion on k:

• cdimR0 X = −1 for X = ∅ and any R0,
• cdimR0 X = k if cdimR0 X 6= k − 1 and, for every t ≥ 1, every r ≥ tR0 and every
x ∈ X, the subspace Y = ∂tBr(x) satisfies cdimtR0 Y = m for some m ≤ k − 1.

In showing that Rd has finite coarse dimension we use a property which is closely related
to (and implies) the Besicovitch property, though the two are apparently not equivalent
for general metric spaces.

Proposition 4.2. Let ‖ · ‖ be a norm on Rd . Then there are R0 > 1 and k ∈ N with the
following property. Suppose that r(1) ≥ · · · ≥ r(k) ≥ R0 and x1, . . . , xk ∈ Rd are such
that xi ∈ Rd \

⋃
j<i Br(j)−1(xj ). Then

⋂k
i=1 ∂1Br(i)(xi) = ∅.
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Proof. Let x ∈ Rd and r > 1. If y ∈ ∂Br(x), then the point y′ = 2x − y antipodally
opposite to y on ∂Br(x) is at distance at least r from any ball Bs(y) with 1 ≤ s ≤ r . It
follows that there is an ε > 0 such that if z ∈ ∂Br(x) ∩ ∂Bs(y), then the angle ∠xyz is
greater than ε. By compactness of ∂Br(x) we can choose ε uniform in y. By continuity
of the map (u, v,w) 7→ ∠uvw, compactness and the assumption s ≥ 1, we find that for
some δ > 0, the same remains true if we perturb y, z by δ.

Since the metric is translation invariant, we have shown the following: there is a 0 <
δ < 1 such that, for any 1 ≤ s ≤ r and any three points x ∈ Rd , y ∈ ∂δ/2Br(x) and
z ∈ ∂δ/2Bs(y), the angle ∠xyz is at least ε. Rescaling and setting R0 = 2/δ, we find that
if R0 ≤ s ≤ r , y ∈ ∂1Br(x) and z ∈ ∂1Bs(y) then ∠xyz > ε.

Returning to the situation in the formulation of the lemma, if x ∈
⋂k
i=1 ∂1Br(i)(xi),

then ∠xixxj > ε for all 1 ≤ i < j ≤ k, and by compactness of the unit sphere this cannot
happen for k arbitrarily large. The lemma follows. ut

Corollary 4.3. Rd has finite coarse dimension with respect to any norm-induced metric.

Proof. Let ‖·‖ be a fixed norm and let k′, R0 be the constants as in Proposition 4.2. Let k′′

be the size of the maximal (1− 1/R0)-separated set of points in B2(0). Let k = k′k′′; we
claim that cdimR0 Rd ≤ k. Unraveling the definition of coarse dimension, it is apparent
that in order to prove this it suffices to show that if we are given

(1) a sequence t (1), . . . , t (k) ≥ 1,
(2) a sequence r(1), . . . , r(k) such that r(i) ≥ t (1) · . . . · t (i)R0,
(3) points x1, . . . , xk ∈ Rd such that xi ∈ ∂t (j)Br(j)(xj ) for j < i,

then
⋂k
i=1 ∂t (i)Br(i)(xi) = ∅.

First, we claim that we may assume that each of the sequences is of length k′, but
that the radii are non-increasing. This will follow if we show that r(j) ≤ r(1) for some
2 ≤ j ≤ k′′ + 1, because we can then repeat this with r(j) instead of r(1), and so on k′

times. To show that such a j exists, consider the points x2, . . . , xk′′+1 and suppose that
r(j) ≥ r(1) for 2 ≤ j ≤ k′′ + 1. Observe that by (3) the xj are all located within the ball
Br(1)+t (1)(x1) ⊆ B2r(1)(x1), because by (2), t (1) ≤ r(1)/R0 ≤ r(1). Also, by (2) and (3),
if i > j then

d(xi, xj ) ≥ r(j)− t (j) ≥ r(j)(1− 1/R0)

so that if r(j) ≥ r(1) we have d(xi, xj ) ≥ r(1)(1 − 1/R0). Thus x2, . . . , xk′′+1 is an
r(1)(1−1/R0)-separated set in the ballB2r(1)(x1), and rescaling we obtain a contradiction
to the definition of k′′.

Now we assume the sequences have length k′ and the radii are non-increasing. Let
t = max ti and replace ‖ · ‖ with ‖ · ‖∗ = (1/t)‖ · ‖. After this rescaling, we wish to show
that

⋂k′

i=1 ∂
∗
ti/t
B∗r(i)/t (xi) = ∅, where the ∗’s indicate operations with respect to ‖ ·‖∗. For

this it is enough to show that
⋂k′

i=1 ∂
∗

1B
∗

r(i)/t (xi) = ∅, and this will follow once we verify
the hypothesis of the previous proposition for the norm ‖ · ‖∗; and indeed, clearly r(i)/t
is still decreasing; xi ∈ ∂t (j)Br(j)(xj ) implies xi ∈ ∂∗1B

∗

r(j)/t (xj ); and the inequalities
r(i) ≥ r(k) ≥ t (1) · . . . · t (k′)R0 and ti ≥ 1 imply r(i)/t ≥ R0, as required there. ut
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We can now state and prove the main result of this section, which is the main tool in
the proof of Theorem 1.2. Although it is Rd that we have in mind, the formulation is for
general metric spaces in order to facilitate the inductive proof.

Theorem 4.4. Fix k, χ ∈ N and 0 < ε, δ < 1 and set q =
( 200χ2

ε2δ3

)k
· 1000k

2
. Suppose

that

(1) X is a metric space with χ(X) ≤ χ and cdimR0 X = k for some R0 > 2,
(2) µ is a finite measure on X,
(3) F ⊆ X is finite,
(4) U1, . . . ,Uq is a stack over F with

(a) rminUi ≥ (rmaxUi−1)
2,

(b) rminU1 ≥ max{2, R0},
(5) µ(∂1B) ≥ εµ(B) for each B ∈

⋃
i Ui .

Then µ(F) ≤ δµ(X).

Remark. No attempt has been made to optimize the conditions. A slower rate of growth
in (4a) would probably suffice.

Proof. Define integers Q(k, χ, ε, δ) recursively by

Q(0, χ, ε, δ) = 1,

Q(k, χ, ε, δ) =

⌈
2χ
εδ

⌉
·

(
1+

⌈
64χ
εδ2

⌉)
·

(
1+Q

(
k − 1, χ,

ε

2
,
δ

8

))
.

One may verify that q ≥ Q(k, χ, ε, δ), so it suffices to prove the claim for q =
Q(k, χ, ε, δ); this we do by induction on k.

For k = 0 the claim is trivial, since then ∂1B = ∅ for any ball B. We can therefore
have µ(∂1B) ≥ εµ(B) only when µ(B) = 0, implying that each point in F has mass 0,
so µ(F) = 0.

Assume that the claim holds for k − 1. We suppose that X,R0, χ, µ, F,U1, . . . ,Uq
satisfy the hypotheses of the theorem but µ(F) > δµ(X), and proceed to derive a contra-
diction.

Preliminary disjointification. We first pass to a subsequence of the given carpets and
extract a disjoint family of balls from them. Let

N = q/

⌈
2χ
εδ

⌉
.

Since q/N =
⌈ 2χ
εδ

⌉
, we may apply Corollary 3.2 to the stack {UiN }1≤i≤q/N obtained by

choosing each N -th element of the original stack. We get an n0 ≥ 1 and a collection

V ⊆
⋃

i≥N(n0+1)

Ui

such that ∂V is well-separated, and such that, setting r = rmaxUn0 we have

µ
(
F ∩

⋃
B∈V

∂2rB
)
≥

1
2
µ(F) >

δ

2
µ(X).
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We denote the union on the left hand side by

Y =
⋃
B∈V

∂2rB.

From now on we can forget about the carpets Ui for i < n0N and i > (n0 + 1)N ; we
work only with V and Ui , n0N ≤ i ≤ (n0 + 1)N .

Outline of the argument. Roughly, our argument proceeds as follows. The set Y is
made up of a union of thick spheres, and each is of lower coarse dimension than X. Let
S be one of these spheres, and suppose that some non-trivial fraction of its mass comes
from F . Consider the stack obtained by fixing a large p (but still much smaller than N )
and selecting from the stack Un0N ,Un0N+1, . . . ,Un0N+p those balls centered in F ∩ S.
The induction hypothesis can be applied to show that for a non-trivial fraction of points
x ∈ F ∩ S there is a ball in this stack whose 1-boundary with respect to S contains only
an ε/2-fraction of the ball’s mass. However, with respect to X these 1-boundaries contain
an ε-fraction of the mass. Therefore, the difference—an ε/2 of the ball’s mass—lies out-
side S. Passing to a disjoint subcollection of these balls centered in S, we obtain a set of
mass equal to some non-trivial fraction of F ∩ S, located outside of S but nearby. Now,
since the mass of F ∩ Y is large, the situation described can be repeated for spheres S
containing a non-negligible fraction of Y , and the masses obtained outside each sphere
will be disjoint from each other. We conclude that, in the near vicinity of Y but disjoint
from Y there is a set with mass a small but constant fraction of µ(X). Next, we repeat
this argument, replacing Y with a small neighborhood of Y , and using the next p carpets
Un0N+p+1, . . . ,Un0N+2p, and get another mass increment. After doing this sufficiently
many times we will have accumulated more mass than there is in X altogether, a contra-
diction.

Partitioning into further substacks. Let us denote

r+i = rmaxUi, r−i = rminUi,

and set
p = Q(k − 1, χ, ε/2, δ/8).

We partition the carpets {Ui}n0N+1≤i≤(n0+1)N−1 into substacks of height p + 1. More
precisely, let M = N/(p + 1), and for 0 ≤ j ≤ M − 1 define

m(j) = n0N + 1+ (p + 1) · j

so for each such j we get the stack {Um(j)+i}1≤i≤p. The first thing to note is that all
the balls in these stacks are from carpets Ui below U(n0+1)N , which is the level where V
begins. Consequently, the radii of all these balls are much smaller than the radii of balls
in V; indeed, the largest possible radius in our substacks is

r+m(M−1)+p = r
+

(n0+1)N−1 <
1

r+(n0+1)N−1
r+(n0+1)N <

1
2

rminV

by (4a) and (4b).
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Thickening the set Y . For 0 ≤ j ≤ M − 1 it will be convenient to denote

1jB = ∂r+
m(j)
B

and to thicken the set Y by thickening each sphere in Y , obtaining

Yj =
⋃
B∈V

1jB.

Let us note several properties of the Yj . First, clearly Y1 ⊆ · · · ⊆ YM , and Y ⊆ Yj ,
implying

µ(F ∩ Yj ) ≥ µ(F ∩ Y ) ≥
δ

2
µ(X),

To see this it is enough to show that Y ⊆ Y0, and indeed by (4a) and (4b),

r+m(0) = r
+

n0N+1 > r2
≥ 2r,

so, since Y0, Y are obtained, respectively, as the r+m(0)-thickening and r-thickening of the
same spheres, the claim follows.

Second, each Yj is the disjoint union of the thick spheres 1jB, B ∈ V . This follows
from the inequality r+m (j) <

1
2 rminV , noted above, and the fact that V is well-spaced.

Third, let 0 ≤ j ≤ M−2, and x ∈ ∂r+
m(j)
B for someB ∈ V . Suppose thatB ′ ∈ Um(j)+i

for some 1 ≤ i ≤ p is centered at x; then ∂1B
′
⊆ 1j+1B. To see this, suppose that y ∈ B

and z ∈ ∂1B
′. Then

d(y, z) ≤ d(y, x)+ d(x, z) ≤ r+m(j) + r
+

m(j)+i + 1 ≤ 2r+m(j)+p < r+m(j+1),

which proves the claim.

Spheres in Yj containing a large proportion of F . For each 0 ≤ j ≤ M − 1, define

Wj =

{
B ∈ V : µ(F ∩1jB) >

δ

4
µ(1jB)

}
.

A Markov-type argument now shows that the spheres inWj contain a large fraction ofX:

δ

2
µ(X) < µ(F ∩ Yj )

= µ
(
F ∩

⋃
B∈V

1jB
)
= µ

(
F

⋃
B∈Wj

1jB
)
+ µ

(
F ∩

⋃
B∈V\Wj

1jB
)

≤ µ
(
F ∩

⋃
B∈Wj

1jB
)
+
δ

4
µ
( ⋃
B∈V\Wj

1jB
)

≤ µ
(
F ∩

⋃
B∈Wj

1jB
)
+
δ

4
µ(X)
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and, rearranging, we get

µ
(
F ∩

⋃
B∈Wj

1jB
)
>
δ

4
µ(X).

Applying the induction hypothesis to fat spheres. Fix 0 ≤ j ≤ M−1 and let S = 1jB
for some B ∈Wj . Put µS = µ|S , i.e. µS(A) = µ(A ∩ S), and FS = F ∩ S.

Consider the stack {U ′t }1≤t≤p over FS obtained by selecting from {Um(j)+t }1≤t≤p
those balls with centers in FS . This is a stack in X, but from it we get a stack in S by
intersecting each ball with S.

We claim that S, µS , FS and this stack satisfy conditions (1) to (4b) of the theorem,
with k − 1 in place of k and r+m(j)R0 in place of R0. Indeed, S = ∂r+

m(j)
B, so it has

coarse dimension ≤ k − 1 at scales ≥ r+m(j)R0, and χ(S) ≤ χ(X) because S ⊆ X. The
relative growth of radii in U ′i is inherited from Ui . Finally, U ′1 ⊆ Um(j)+1, so by the growth
assumption for the original stack,

rminU ′1 ≥ r
−

m(j)+1 ≥ (r
+

m(j))
2
≥ r+m(j)R0

and clearly also rminU ′1 ≥ 2, which verifies (4b).
Let

F ′S =

{
x ∈ FS : µS(∂1B

′) ≥
ε

2
µS(B

′) for every B ′ ∈ U ′t , 1 ≤ t ≤ p
}

Applying the induction hypothesis to the stack obtained by restricting each U ′t to balls
with center in F ′S , and recalling the definition of p, we find that

µS(F
′

S) ≤
δ

8
µS(S).

Since S = 1jB for some B ∈Wj , we know that µS(FS) > (δ/4)µS(S); so

µS(FS \ F
′

S) >
δ

8
µS(S) =

δ

8
µ(S).

Estimating the mass outside of a fat sphere. For each x ∈ FS \ F ′S there are some
1 ≤ t ≤ p and B ′ ∈ U ′t , centered at x, with

µ(∂1B
′
∩ S) = µS(∂1B

′) ≤
ε

2
µS(B

′
∩ S).

But by (5) we have
µ(∂1B

′) ≥ εµ(B ′) ≥ εµS(B
′);

therefore,
µ(∂1B

′
\ S) ≥

ε

2
µ(B ′ ∩ S).

Estimating the mass between Yj and Yj+1. Applying Corollary 3.2 to each of the balls
above as x runs over FS \F ′S , we choose a disjoint collection C of balls centered in FS \F ′S
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satisfying the last inequality, and which cover a 1
χ

-fraction of FS \ F ′S and so has mass

> δ
8χµ(S). The corresponding union of 1-spheres, since each contains an ε-fraction of the

mass of the solid ball, has mass > εδ
8χµ(S); and since at least half this mass lies outside

of S, we get

µ
((⋃

B ′∈C
∂1B
′

)
\ S
)
≥

εδ

16χ
µ(S).

The set on the left hand side is in the complement of S = 1jB, but certainly lies inside
1j+1B, and these sets are disjoint for distinct B ∈ V . Hence the contribution of mass
near each S is disjoint from the contributions of other S’s, so

µ(Yj+1 \ Yj ) ≥
∑
B∈Wj

µ(1j+1B \1jB) ≥
∑
B∈Wj

εδ

16χ
µ(1jB)

=
εδ

16χ
µ
( ⋃
B∈Wj

1jB
)
≥

εδ

16χ
·
δ

4
µ(X)

because µ(
⋃
B∈Wj

1jB) ≥ µ(Yj ) >
δ
4µ(X).

The punchline. The number of Yj ’s has been arranged to be

M =
N

p + 1
=

q

d2χ/εδe(p + 1)
≥

64χ
εδ2 + 1

so the relations Yj ⊆ Yj+1 and µ(Yj+1 \ Yj ) >
εδ

16χ ·
δ
4µ(X) imply

µ(YM) ≥ M ·
εδ

16χ
·
δ

4
µ(X) > µ(X),

which is the desired contradiction. ut

It is not hard to see that a similar result holds if µ is a Borel measure, F is a Borel
set and the carpets are measurable (i.e. the function rn : F → R+ describing the radii
of the balls in the n-th carpet is measurable). One way to see this is to discretize the
data. For a fine partition P = {Pi} of X, choose a representative xi ∈ Pi in each atom,
set r ′n(x) =

∫
Pi
rn, and replace µ with the atomic measure supported on the xi with

µ′({xi}) = µ(Pi). Applying the discrete lemma above to µ′ and the new stack, with
suitably modified parameters, we can deduce the result for the original measure.

5. Proof of the ratio theorem for Zd

Given what we have proven so far, Theorems 1.2 and 1.1 now follow by fairly standard
arguments.

Proof of Theorem 1.2. This is a standard application of the transference together with
Theorem 4.4. Let Zd act on a σ -finite measure space (�,B, µ) by non-singular trans-
formations. By passing to an equivalent measure, we may assume that µ(�) = 1. Let T
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act by translation on L∞, and let T̂ be the dual action of T on L1
⊆ (L∞)∗, which is a

linear, order-preserving isometry defined by the condition
∫
T̂ uf · g dµ =

∫
f · T ug dµ

for f ∈ L∞ and g ∈ L1, and explicitly by

T̂ uf (ω) = f (T −uω) ·
dT uµ

dµ
.

Fix a norm ‖ · ‖ on Rd , and let cdimR0 Rd = k and χ(Rd) = χ for appropriate
parameters R0, k, χ .

Let 1 ≤ f ∈ L∞ ⊆ L1. We are out to prove that

sn(ω) =

∑
u∈∂1Bn

T̂ uf (ω)∑
u∈Bn

T̂ uf (ω)
→ 0

for a.e. ω (from this the case of thick boundaries ∂t follows by rescaling the norm). Set

Aε = {ω ∈ � : lim sup sn(ω) > ε}

and suppose that µ(Aε) > 0 for some ε. We construct a sequence

2R0 = r
−

0 = r
+

0 ≤ r
−

1 ≤ r
+

1 ≤ r
−

2 ≤ r
+

2 ≤ · · ·

satisfying r−i ≥ (r
+

i−1)
2 and r−1 ≥ max{2, R0}, and a set of points A ⊆ Aε, so that for

every ω ∈ A and i ≥ 1 there is an ni = ni(ω) ∈ (r
−

i , r
+

i ) with s(ni, ω) > ε, and
µ(A) > 1

2µ(Aε). We do this by recursion, so that going into the i-th stage we have
defined r±j for j < i and sets Aε ⊇ C0 ⊇ C1 ⊇ · · · ⊇ Ci−1 satisfying the above and
µ(Cj ) ≥ (

1
2 +

1
j+1 )µ(Aε). In order to define r±i and Ci , first set r−i = (2 ∨ r

+

i−1)
2. Now,

since Ci−1 ⊆ Aε, for every ω ∈ Ci−1 there is an n = n(ω) ≥ r−i with s(n, ω) > ε; so
we can choose r+i so that n(ω) ≤ r+i on a subset of Ci−1 of measure > ( 1

2 +
1
i+1 )µ(Aε).

This set will be Ci , and A =
⋂
∞

j=1 Cj .
We are now ready to apply the transference principle. Fix δ and n > r+q , where

q = q(k, χ, ε, δ) is as in Theorem 4.4. Then

µ(A) =

∫
1A dµ =

1
|Bn|

∑
u∈Bn

∫
T̂ u1A dµ =

1
|Bn|

∫ ∑
u∈Bn

T̂ u1A dµ.

Next, we bound the sum
∑
u∈Bn

T̂ u1A. Fix ω ∈ � and consider the measure ν = νω,n on
B2n defined by ν({u}) = T̂ uf (ω). Let

U = Uω,n = {u ∈ Bn : T −uω ∈ A}.

By the definition of A there is a stack of height q over U satisfying the hypothesis of
Theorem 4.4, and all the balls in the stack are of radius ≤ r+q < n, implying that they are
contained in B2n. Thus, by Theorem 4.4,

ν(U) ≤ δν(B2n) = δ
∑
u∈B2n

T̂ uf (ω) ≤ δ‖f ‖∞
∑
u∈B2n

T̂ u1.
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We have arranged things so that∑
u∈Bn

T̂ u1A(ω) = νω,n(Uω,n),

therefore ∑
u∈Bn

T̂ u1A(ω) ≤ νω,n(Uω,n) ≤ δ‖f ‖∞
∑
u∈B2n

T̂ u1.

Dividing by |Bn| and integrating we get

µ(A) ≤
1
|Bn|

∫
δ‖f ‖∞

∑
u∈B2n

T̂ u1 dµ ≤
δ‖f ‖∞

|Bn|
|B2n|

∫
1 dµ ≤ 2d‖f ‖∞δ.

because |Bn|/|B2n| ≤ 2d . The right hand side can be made arbitrarily small, soµ(A) = 0;
hence also µ(Aε) = 0.

Finally, sn(ω)→ 0 if and only if ω /∈
⋃
∞

m=1A1/m, and the set on the right is seen to
have measure 0. This completes the proof of Theorem 1.2. ut

Proof of Theorem 1.1. The proof is standard. By passing to an equivalent measure we
may assume that µ is finite. We first prove the case g ≡ 1. Consider the space

F = span{1, f − T̂ vf : v ∈ Zd and f ∈ L∞}.

One shows that F is dense in L1; the proof follows the same lines as Riesz’s proof of
the mean ergodic theorem, using the duality relation (L1)∗ = L∞ instead of self-duality
of L2. See [Fel07, Aar97].

Next, one shows that the ratios Rn(f, 1) converge for every member f of F . Indeed,
note that Rn(1, 1) ≡ 1; whereas if f ∈ L∞ then the ratios Rn(f − T vf, 1) satisfy∣∣∣∣

∑
u∈Bn

T̂ u(f − T̂ vf )∑
u∈Bn

T̂ u1

∣∣∣∣ ≤
∑
u∈∂‖v‖Bn

T̂ u|f |∑
u∈Bn

T̂ u1
=

∑
u∈∂‖v‖Bn

T̂ u|f |∑
u∈Bn

T̂ u|f |
·

∑
u∈Bn

T̂ u|f |∑
u∈Bn

T̂ u1

≤

∑
u∈∂‖v‖Bn

T̂ u|f |∑
u∈Bn

T̂ u|f |
· ‖f ‖∞

and the right hand side converges to 0 a.e. by Theorem 1.2. From this it follows that
Rn(f, 1)→

∫
f for any f ∈ F .

The case g ≡ 1 is concluded by applying the maximal inequality to get convergence
on the closure of F , which is all of L1. This standard argument can be found in [Aar97].
It is also easy to check that the correct limit is obtained.

Finally, the case of general g ∈ L1 is deduced from the equality Rn(f, g) =

Rn(f, 1)/Rn(g, 1). ut
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