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Abstract. We consider superconductors of Type II near the transition from the ‘bulk superconduct-
ing’ to the ‘surface superconducting’ state. We prove a new L∞ estimate on the order parameter
in the bulk, i.e. away from the boundary. This solves an open problem posed by Aftalion and Ser-
faty [AS].

1. Introduction

We consider a superconducting wire of cross section � ⊂ R2, which we assume to be
regular and bounded. The state of the material is described by the Ginzburg–Landau func-
tional, which we write as

G(ψ,A) =
∫
�

(
|pκσAψ |

2
− κ2
|ψ |2+

κ2

2
|ψ |4

)
dx+ (κσ )2

∫
�

|curl A−β|2 dx. (1.1)

We use the notation pA = −i∇ + A for the magnetic gradient. In (1.1), κ, σ are pos-
itive parameters, the wave function (order parameter) ψ describes the superconducting
properties of the given material and (κσ )curl A gives the induced magnetic field. The
function (κσ )β represents the external magnetic field; in this paper we will for simplicity
consider the case β = 1, corresponding to a constant external field of intensity κσ . We
refer to [deGe, Ti] for a general introduction to the physics of superconductivity and the
Ginzburg–Landau model.

Consider the case σ = κ/b with b > 0. In the limit κ →∞ (called Type II limit), the
following scenario presents itself. If b < 20, where 20 ≈ 0.59 is a universal constant,
the only minimizer of G (for large κ) is the state (ψ = 0,A = F), where curl F = 1
[LuPa, HePa, FoHe1]. This is interpreted as the loss of superconductivity for large exter-
nal magnetic fields, and the value of σ where this happens is denoted by HC3 and called
the ‘third critical field’.
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Physicists consider a second critical field, HC2 , which can be described as follows
(a precise definition being difficult to give). If σ < HC2 , the material is in its supercon-
ducting state in (part of) the interior of the sample, whereas for σ > HC2 superconduc-
tivity is restricted to a narrow region near the boundary of�. Various investigations show
that—for large values of κ—this transition takes place near the value σ = κ , so even
though this critical field is difficult to define, one expects that HC2 ≈ κ [SS, Pan].

In this paper we will study what happens in the limit of large κ—the Type II limit—
when σ = κ/b with b close to, but above the value 1. In the terminology of supercon-
ductivity, this means that we study the parameter region close to but below the second
critical field. In this region the so-called Abrikosov lattices of vortices are supposed to
appear, but their description depends on a finer analysis than what will be carried out in
the present paper (see [AS, Alm, SS] for results in this direction).

Our main result, Theorem 2.1 below, gives for any δ > 0 the existence of a constant
C > 0 such that if b > 1, κ is large enough and (ψ,A) is a minimizer of G then

‖ψ‖L∞({x∈� : dist(x,∂�)≥δ}) ≤ C
√
b − 1. (1.2)

This implies that in the interior of the sample, superconductivity is weak in the uniform
norm as b approaches 1. Theorem 2.1 thereby answers a question posed in [SS, p. 944
just below (1.20)] and more explicitly in [AS, List of open problems, p. 7].

Notice that |ψ | is not expected to become small at the boundary when b approaches
the value 1 [Pan, AlHe].

We end this introduction by discussing the optimality of the estimate in (1.2). Accord-
ing to [SS, Theorem 1.4] (notice that the symbol b in [SS] denotes a different quantity than
in the present paper) there exists a continuous, decreasing function g : [0, 1] → [0, 1]
such that if b ≥ 1, if (ψκ ,Aκ)κ≥1 denotes a family of minimizers of G with σ = κ/b and
if {Bκ}κ≥1 is a family of balls such that

(1) κ radius(Bκ)→∞,
(2) Bκ ∩ ∂� = 0,

then
1
|Bκ |

∫
Bκ

|ψκ |
4 dx → g(b−1). (1.3)

Furthermore, the function g satisfies the double bound

α(1− b−1)2 ≤ g(b−1) ≤ (1− b−1)2 (1.4)

for some α with 0 < α < 1.
Combining (1.3) and (1.4) we see that |ψκ | is of order

√
b − 1 for b near and above 1

and in the L4-average sense given by (1.3). More precisely, (by assuming the balls Bκ to
be contained in {x ∈ � : dist(x, ∂�) ≥ δ}) we get the lower bound

lim inf
κ→∞

‖ψκ‖
4
L∞({x∈� : dist(x,∂�)≥δ}) ≥ lim inf

κ→∞
‖ψκ‖

4
L∞(Bκ )

≥ g(b−1) ≥ α
(b − 1)2

b2 ,

complementary to (1.2), thereby yielding the optimality of the inequality.
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2. Uniform estimates on the Ginzburg–Landau system

We will study solutions to the Ginzburg–Landau equations, i.e. the stationary points of the
GL-functional. For concreteness, let us assume that � ⊂ R2 is a bounded, smooth and
simply connected domain. These assumptions are likely to be unnecessarily restrictive,
but they cover the most interesting cases and allow us to work without worrying about
topological problems and regularity questions.

The Ginzburg–Landau equations are

p2
κσAψ = κ

2(1− |ψ |2)ψ

curl 2A = −
1
κσ
<(ψ pκσAψ)

 in �; (2.1a)

ν · pκσAψ = 0
curl A = 1

}
on ∂�. (2.1b)

Here, ν is the interior unit normal vector to the boundary and for A = (A1, A2), curl A =
∂x1A2 − ∂x2A1, and

curl 2A = (∂x2(curl A),−∂x1(curl A)).
Using gauge invariance it is no loss of generality to consider only (weak) solutions (ψ,A)
of (2.1) such that (ψ,A) ∈ H 1(�,C)×H 1

div(�), where

H 1
div(�) = {V = (V1, V2) ∈ H

1(�)2 : divV = 0 in �, V · ν = 0 on ∂�}. (2.2)

The space H 1
div(�) inherits the topology (norm) from H 1(�;R2). We denote by F the

unique vector potential in H 1
div(�) with curl F = 1.

When we want to stress for which values of the parameters κ, σ the system (2.1) is
considered we will place these as indices. For instance, we will say that (ψ,A)κ,σ is a
solution to (2.1).

Recall (see for instance [DGP] for a proof) that by the maximum principle we have
the estimate

‖ψ‖∞ ≤ 1 (2.3)

for all solutions to (2.1).
We will write |t |+ for the ‘positive part’, i.e. the function

R 3 t 7→ |t |+ := max(t, 0).

Our main result, the precise version of (1.2), is as follows.

Theorem 2.1. There exists a constant C(2)max > 0 such that if g1 : R+ → R+ with
g1(κ)→+∞ and g1(κ)/κ → 0 as κ →∞, and

ωκ := {x ∈ � : dist(x, ∂�) ≥ g1(κ)/κ}, (2.4)

then there exists a function g2 : R+→ R+ with g2(κ)→ 0 as κ →∞ such that

‖ψ‖L∞(ωκ ) ≤ C
(2)
max|κ/σ − 1|1/2+ + g2(κ) (2.5)

for all solutions (ψ,A)κ,σ to (2.1) with κ ≥ 1.
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In the proof of Theorem 2.1 we will use the a priori estimates

‖A− F‖W 2,p(�) ≤ Cp
1+ κσ + κ2

κσ
‖ψ‖2‖ψ‖∞, (2.6)

valid for all κ, σ > 0 and all solutions of (2.1), established in [FoHe2, (3.9)], and (see
[FoHe2, (3.15)])

‖curl A− 1‖2 ≤
C

σ
‖ψ‖∞‖ψ‖2. (2.7)

Proof of Theorem 2.1. By (2.3) the statement for κ > 2σ is obvious. On the other hand,
by Giorgi–Phillips [GiPh] (see also [FHBk]), if

σ ≥ CGP max{κ, 1}, (2.8)

then all solutions to (2.1) have ψ = 0. Thus it suffices to consider the case

C−1κ ≤ σ ≤ Cκ, κ ≥ 1. (2.9)

Suppose for contradiction that (2.5) is false. Then, for all N > 0 sufficiently large, there
exists a sequence {(ψn,An, κn, σn)}n∈N with (ψn,An)κn,σn a solution to (2.1) such that
κn→∞ and

‖ψn‖L∞(ωκn ) ≥ N |κn/σn − 1|1/2+ +N
−1. (2.10)

Due to (2.9) we may assume, by possibly taking a subsequence, that

κn/σn→ b ∈ [C−1, C]. (2.11)

Using (2.6) and the compactness of the imbedding W 2,p(�)→ C1,1/2(�) for p > 2 we
may assume—by possibly taking a further subsequence—that

An→ Ã in C1,1/2(�). (2.12)

By (2.7) we have
curl Ã = 1. (2.13)

Let Pn ∈ ωκn be a point with |ψn(Pn)| = ‖ψn‖L∞(ωκn ). By (2.10) and (2.3) we therefore
have

N−1
≤ |ψn(Pn)| ≤ 1. (2.14)

After passing to a subsequence we assume that

Pn→ P ∈ �. (2.15)

We consider the scaled functions

an(y) :=
An(Pn + y/

√
κnσn)− An(Pn)

1/
√
κnσn

,

ϕn(y) := e−i
√
κnσnAn(Pn)·yψn(Pn + y/

√
κnσn).
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Let R > 0. Since g1(κ) → +∞, an and ϕn are defined on B(0, R) for all n sufficiently
large. The equation for ψ in (2.1a) implies, since div an = 0, that

−1ϕn − 2ian · ∇ϕn + |an|2ϕn =
κn

σn
(1− |ϕn|2)ϕn. (2.16)

The convergences (2.12) and (2.15) imply that

an(y)→ F̃(y) := DÃ(P )y, (2.17)

with convergence in C1/2(B(0, R)) for all R > 0. By (2.13) we find

curl F̃ = 1. (2.18)

The uniform (in n) boundedness of the coefficients of the equation (2.16) for ϕn implies
boundedness of {ϕn} ⊂ W 2,p(B(0, R/2)) for all p <∞ and all R > 1. The compactness
of the imbedding W 2,p

→ C1 (for p > 2) implies that we can find a subsequence
convergent in C1(B(0, R/2)). A diagonal sequence argument now gives the existence of
a limiting function ϕ ∈ L∞(R2) with

N−1
+N |b − 1|1/2+ ≤ ‖ϕ‖L∞(R2) ≤ 1 (2.19)

and

(−i∇ + F̃)2ϕ = b(1− |ϕ|2)ϕ. (2.20)

Since curl F̃ = 1, this contradicts Theorem 3.1 below if N ≥ Cmax. ut

3. Estimates for the global problem

We will consider the following equation of Ginzburg–Landau type:

p2
Fu = b(1− |u|

2)u on R2, (GLb)

where b ∈ R is a parameter and F satisfies curl F = 1 in R2. For concreteness we use the
gauge freedom of the problem to fix the choice

F = (−x2/2, x1/2).

Theorem 3.1. (i) If u ∈ L∞(R2) is a solution to (GLb) with b ≤ 1, then u = 0.
(ii) There exists a universal constant Cmax > 0 such that if u ∈ L∞(R2) is a solution to

(GLb) with b > 1, then

‖u‖∞ ≤ min{1, Cmax
√
b − 1}. (3.1)
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It is well-known [LuPa, FoHe2, FHBk] that the equation (GLb) only admits trivial L∞-
solutions1 if b ≤ 1. Also, it is a standard consequence of the maximum principle that
bounded solutions satisfy

‖u‖∞ ≤ 1. (3.2)

Thus only the second half of (3.1) needs to be proved.
Define

S(b) := {u ∈ L∞(R2) : u solves (GLb)}. (3.3)

and
M(b) := sup

u∈S(b)

‖u‖∞. (3.4)

The starting point is the following lemma.

Lemma 3.2. As ε ↘ 0, we have the estimate

M(1+ ε) = o(1). (3.5)

Proof. The proof is by contraposition in the spirit of [FoHe2, LuPa]. Suppose that Lem-
ma 3.2 is wrong. Then there exists a sequence {εn}n∈N ⊂ R+ with εn → 0 and an
associated sequence φn of solutions to (GL1+εn) with

‖φn‖∞ ≥ δ > 0. (3.6)

Clearly, there will then exist a point xn ∈ R2 with |φn(xn)| ≥ δ/2. By magnetic translation
invariance of (GLb) we may assume that xn = 0 for all n.

By elliptic regularity and (3.2), {φn} is bounded in W 2,p(B(N)) for all N ∈ N and
all p < ∞. By compactness we can—for any given s < 2, p < ∞ and N ∈ N—find a
convergent subsequence in W s,p(B(N)).

By a diagonal sequence argument we get a φ ∈ W s,p

loc (R
2) and a subsequence, still

denoted by {φn}, such that

‖φn − φ‖W s,p(B(N))→ 0

for all N . In particular, we see that ‖φ‖∞ ≤ 1,

|φ(0)| ≥ δ/2, (3.7)

and φ solves (GL1). But we know from [FoHe2, Proposition 4.1] (or part (i) of The-
orem 3.1) that the only bounded solution to (GL1) is φ = 0, contradicting (3.7). This
finishes the proof of Lemma 3.2. ut

Proof of Theorem 3.1. Suppose for contradiction that there exists a sequence of solutions
{φn} to (GL1+εn) with

‖φn‖∞/
√
εn→∞. (3.8)

1 The case b < 1 can be considered as a magnetic special case of a theorem by Shnol’ [Sh,
CFKS] (see also [Gl]).
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Define3n := ‖φn‖∞. By magnetic translation invariance, we may assume that |φn(0)| ≥
3n/2. Consider the function fn := 3−1

n φn. This function satisfies ‖fn‖∞ ≤ 1 and

p2
Ffn = bn(1−3

2
n|fn|

2)fn (3.9)

with bn := 1+ εn. After possibly passing to a subsequence, we find

fn→ f ∈ W
3/2,2
loc (R2) ↪→ L∞loc(R

2), (3.10)

where f satisfies the lower bound

1/2 ≤ |f (0)| ≤ ‖f ‖∞ ≤ 1. (3.11)

Using Lemma 3.2 we get the limiting equation for f :

p2
Ff = f. (3.12)

Thus f lies in the lowest Landau band.
Let 50 be the projection on the lowest Landau band. This operator is given explicitly

by the integral kernel (see for example [LSY, (2.10)])

50(x, y) =
1

2π
e
i
2 (x1y2−x2y1)e−

1
2 (x−y)

2
; (3.13)

in particular, we see that 50 is a bounded operator on L2(R2) and on L∞(R2). By inter-
polation, 50 is continuous on Lp(R2) for all p ∈ [2,∞].

The boundedness of fn and elliptic regularity applied to (3.9) imply that the conditions
of Proposition 3.3 below are satisfied. Therefore, an application of50 to (3.9) shows that

0 = 50{εn/3
2
n − |fn|

2)fn}(x) for all x ∈ R2. (3.14)

Using (3.8) and passing to the limit in (3.14) using (3.13) and dominated convergence,
we obtain

50{|f |
2f } = 0. (3.15)

By Proposition 3.4 below we therefore conclude that f = 0, which contradicts (3.11). ut

Proposition 3.3. Suppose that f, p2
Ff ∈ L

∞(R2) ∩ C(R2). Then

(50(p
2
F − 1)f )(x) = 0 for all x ∈ R2.

Proof. By continuity of f , boundedness of f and Gaussian decay of the kernel of 50
we find that 50f is continuous. The same argument applies to 50(p

2
Ff ) and therefore

50(p
2
F − 1)f is also continuous. Hence, it suffices to prove that∫

ϕ(x)(50(p
2
F − 1)f )(x) dx = 0

for all ϕ ∈ C∞0 (R
2), which is immediate. ut
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Proposition 3.4. Suppose that f ∈ L∞(R2) satisfies

p2
Ff = f and 50(|f |

2f ) = 0. (3.16)

Then f = 0.

Below we will use the localization functions χR defined as follows. Let χ ∈ C∞(R) be
even, non-increasing on R+ and satisfy

χ(t) = 1 for |t | ≤ 1, χ(t) = 0 for |t | ≥ 3/2. (3.17)

Define, for R > 0 and x ∈ R2,

χR(x) := χ(|x|/R). (3.18)

Proof of Proposition 3.4. Since f ∈ L∞(R2), we clearly have∫
{|x|≤R}

|f (x)|4 dx ≤ CR2 (3.19)

for all R > 0. We will prove that one can recursively improve the power of R in (3.19),
i.e. if the estimate ∫

{|x|≤R}

|f (x)|4 dx ≤ CRs (3.20)

holds for all R > 1 and some constant C, then there exists a new constant C′ such that∫
{|x|≤R}

|f (x)|4 dx ≤ C′Rs−1/2 (3.21)

for all R > 1.
Since we get a negative power of R after a finite number of steps, that will imply that

f = 0. Thus we only need to prove that (3.21) follows from (3.20).
We calculate, using (p2

F − 1)f = 0,

〈(p2
F − 1)χRf |χRf 〉 = ‖(∇χR)f ‖22 ≤

C

R2

∫
{|x|≤2R}

|f |2 dx

≤
C′

R

√∫
{|x|≤2R}

|f |4 dx ≤ C′′Rs/2−1. (3.22)

This gives, by L2-projection, and dropping the primes on the constant,

‖5⊥0 (χRf )‖
2
2 ≤ CR

s/2−1, (3.23)

where we have introduced the notation 5⊥0 := 1−50. Since 50 is bounded from L∞ to
L∞ we get ‖5⊥0 (χRf )‖∞ ≤ C, and by interpolation,

‖5⊥0 (χRf )‖4 ≤ ‖5
⊥

0 (χRf )‖
1/2
2 ‖5

⊥

0 (χRf )‖
1/2
∞ ≤ C

′Rs/4−1/2. (3.24)
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We now write∫
χR|f |

4 dx =

∫
χRf 5

⊥

0 (|f |
2f ) dx

=

∫
χRf 5

⊥

0 χ2R(|f |
2f ) dx +

∫
χRf 5

⊥

0 (1− χ2R)(|f |
2f ) dx

= 〈5⊥0 (χRf ) | χ2R(|f |
2f )〉 −

∫
χRf 50(1− χ2R)(|f |

2f ) dx.

Here we use the fact that5⊥0 = 1−50 and that χR(1− χ2R) = 0 to get the last identity.
By Hölder’s inequality combined with (3.24) and Lemma 3.5 below, we can therefore

estimate ∫
χR|f |

4 dx ≤ ‖5⊥0 (χRf )‖4‖χ2R|f |
2f ‖4/3 + Ce

−R2/16

≤ CRs/4−1/2R3s/4
+ Ce−R

2/16. (3.25)

Therefore, for some new constant C > 0,∫
{|x|≤R}

|f |4 dx ≤ CRs−1/2, (3.26)

which is (3.21). This finishes the proof. ut

Lemma 3.5. There exists a constant C > 0 such that∫
R2
{(1− χ2R)50χRu}v dx ≤ Ce

−R2/16

for all u, v ∈ L∞(R2) with ‖u‖∞, ‖v‖∞ ≤ 1 and all R > 1.

Proof. Upon inserting the explicit integral kernel of 50, we get∣∣∣∣∫ {(1− χ2R)50χRu}v dx

∣∣∣∣ ≤ C ∫
{|x|≤3R/2}

∫
{|y|≥2R}

e−|x−y|
2/2 dx dy

≤ C′R2
∫
{|y|≥2R}

e−(|y|−3R/2)2/2 dy,

from which the estimate is immediate. ut
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