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Abstract. Let M be a Kihler surface and X be a closed symplectic surface which is smoothly
immersed in M. Let o be the Kéhler angle of ¥ in M. We first deduce the Euler—Lagrange equa-

tion of the functional L = [ ﬁdﬂ in the class of symplectic surfaces. It is cossa H =

(J(JV cos ot)T)l, where H is the mean curvature vector of ¥ in M, and J is the complex struc-
ture compatible with the Kéhler form w in M it is an elliptic equation. We call a surface satisfying
this equation a symplectic critical surface. We show that, if M is a Kéhler—Einstein surface with
nonnegative scalar curvature, each symplectic critical surface is holomorphic. We also study the
topological properties of symplectic critical surfaces. By our formula and Webster’s formula, we
deduce that the Kéhler angle of a compact symplectic critical surface is constant, which is not true
for noncompact symplectic critical surfaces.

Keywords. Symplectic surface, holomorphic curve, Kéhler surface

1. Introduction

Suppose that M is a Kdhler surface. Let w be the Kidhler form on M and let J be a complex
structure compatible with @. The Riemannian metric (, ) on M is defined by

(U, V)y=w,JV).

For a compact oriented real surface ¥ which is smoothly immersed in M, one defines,
following [4], the Kdihler angle a of ¥ in M by

w|y =cosaduy (L.1)

where duy, is the area element of X of the metric induced from (, ). We say that ¥ is a
holomorphic curve if cosa = 1; X is a Lagrangian surface if cos o = 0, and a symplectic
surface if cosa > 0.
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It was conjectured by Tian [8] that every embedded orientable closed symplectic sur-
face in a compact Kéhler-Einstein surface is isotopic to a symplectic minimal surface in
a suitable sense.

If the Kihler—Einstein surface is of nonnegative scalar curvature, a symplectic mini-
mal surface is holomorphic. However, if the scalar curvature is negative, there are sym-
plectic minimal surfaces which are not holomorphic ([1]]). A symplectic minimal surface
is a critical point of the area of surfaces, which is symplectic. It may be more natural to
consider directly the critical point of the functional

in the class of symplectic surfaces in a Kéhler surface. It is clear that holomorphic curves
minimize the functional. A critical point of this functional is called a symplectic critical
surface.

In the paper, we first calculate the Euler—Lagrange equation of the functional L.

Theorem 1.1. Let M be a Kdhler surface. The Euler—Lagrange equation of the func-
tional L is

cos’a H — (J(JV cos oe)T)L =0,
where H is the mean curvature vector of ¥ in M, O7 is the tangential component of (),
and O is the normal components of ().

‘We will check that the above equation is elliptic. We also derive an equation for the Kéhler
angle of a symplectic critical surface in a Kidhler—Finstein surface.

Theorem 1.2. If M is a Kdihler—Einstein surface and X is a symplectic critical surface,
then
3sin?a — 2 2 3 .9
Acosa = —|Va|” — Kgcos’ o sin” «,
coso

where K is the scalar curvature of M.

As a corollary, we see that, if the scalar curvature K¢ of the Kéhler—Einstein surface M is
nonnegative, then a symplectic critical surface in M is holomorphic.

It is not difficult to see that a nonholomorphic symplectic critical surface in a Kéhler
surface has at most finitely many complex points. Moreover, we can show:

Theorem 1.3. Suppose that ¥ is a nonholomorphic symplectic critical surface in a
Kdhler surface M. Then
1 |Va|?
(D) +x0) =P = — [ —=—
7w Jy cosc
and
1 |V |?
aM(E)=—-P— = | —=—-du,
27w Jx cos’ o
where x (X) is the Euler characteristic of X, x (v) is the Euler characteristic of the normal
bundle of ¥ in M, c1(M) is the first Chern class of M, [X] € Ho(M, Z) is the homology
class of ¥ in M, and P is the number of complex tangent points.
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From Theorem |1.3] and Webster’s formula (]9, Proposition 1]), we have the following
theorem.

Theorem 1.4. Suppose that X is a symplectic critical surface in a Kdhler surface M.
Then

X (X) + x () = cit(M)([XZ]),

and X is a minimal surface with constant Kdhler angle.

If ¥ is not compact, the theorem is not true. The rotational symmetric surface z =
—% log(x% + y?) in C? is a symplectic critical surface which is not minimal.

Recall that a minimal surface with constant Kéhler angle is an infinitesimally holo-
morphic immersion introduced by Micallef—~Wolfson [6]. The theorem shows that we
may use the variation of the functional L to find infinitesimally holomorphic immersions
which are holomorphic in many cases.

Let g be the genus of X, Iy the self-intersection number of X, and Dy the number of
double points of X. Then

x(X)=2-2¢, x)=Isx—-2Ds.

Setting
ci(X) = (M (X)),

we have

Theorem 1.5. Suppose that ¥ is a symplectic critical surface in a Kdihler surface M.
Then
2-2g—ci1(Z)+1Ix —2Dx =0.

In forthcoming papers, we will use a variational approach and the flow method to study
the existence of symplectic critical surfaces in a Kéhler surface.

It is natural to conjecture that, in each homotopy class of symplectic surfaces in a
Kdhler surface, there is a symplectic critical surface.

As a starting point for the study of the gradient flow of the function L, we derive the
evolution equation of cos @ along the flow, which implies that the symplectic property is
preserved.

2. The Euler-Lagrange equation

Let {¢s}o<r<1 be a one-parameter family of immersions ¥ — M such that ¢9 = F
and ¥, = ¢,(X) are symplectic. Also, let X denote the initial velocity vector for ¢, i.e,
X = % } —o- We denote by V the covariant derivative and by K the Riemannian curva-
ture tensor on M. Furthermore, V, R denote the covariant derivative and the Riemannian
curvature tensor of the induced metric g on the surface X.

We start by computing the first variation of the area for this one-parameter family of
surfaces, which is in fact well-known.
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Proposition 2.1. The variation of the area of %, is

3
—dp| =@ivX' —X-H)du,.
ot 1=0

Proof. The proof is routine (cf. [7]). Fix p € . Let {x?} be a normal coordinate system
for ¥ at p. Around p we choose a local orthonormal frame {ey, €2, 03, U4} on M along
¥, such that {&; = 8¢, /0x’,é = d¢,/0x%} and {03, U4} are in the tangent bundle and
in the normal bundle of X, respectively. For simplicity, we denote &;(0) = 9F/dx’ by
e; and identify it with 9; = B/Bxi, i = 1,2. We also denote v,(0) by vy, @ = 3,4.
Furthermore, we assume that V,,e; = 0 at p. Suppose that in this frame X takes the form
X =X'e; + X%vy and (g;)ij = (0¢;/3x", d¢,/9x7). Then

d

0gij

o (0 /0x", dep; /3xT) = (Vo X, €j) + (ei, Ve, X)

=0
= (Ve (X ex + X*o), €j) + (ei, Ve, (X er + X¥va))
=Xj;— X(xh?j + Xij— Xa/’l?j.

t=0 ot

It is easy to see that

0

—duy

—lif(x~—x R+ X j — Xgh%)du, = (divX" — X - H)du. O
91 _Zg Jii alljj ij alljj) Aty = M.

t=0

Theorem 2.2. Let M be a Kdhler surface. The first variational formula of the func-
tional L is, for any smooth vector field X on X,

X-H X-(JUJV )+
BXL=—2/ du+2/ it josa) D~ . 2.1)
y CoSo b cos™ o

where H is the mean curvature vector of ¥ in M, ()| is the tangential component of (),
and () is the normal component of (). The Euler—Lagrange equation of the functional L
is

cos’a H— (J(JVcosa) )t =0. (2.2)

Proof. We use the frame that we have chosen in Proposition 2.1} From the definition of
Kihler angle (I.1)) we have

w(d¢;/3x", 3¢ /9x?)
Jdet(gr)

where det(g;) is the determinant of the metric (g;). So, the functional can be written as

cosa; =

dx' A dx?.

_ _ det(g/)
Le =Lig) = /2 w (3, /9x1, D¢y /3x2)
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Thus using Proposition 2.1 we have

d 9 giilicog  8,w(d¢;/0x!, ¢ /0x?)|,—
“ Lt =/< tgljlt—()g _ tCl)( ¢t/ ;C y ¢t/ X )lt_())det(g)dxl/\dxz
dt,_o s\ (e, e) w?(eq, €2)
2divX"T —2X - H ' 5
= det(g)dx" Adx
5 cos o
_/ Al +2w(61,V62X) dx' A dx?
5 Cos~ o
=1+1I.

Since ¥ is closed, applying the Stokes formula, we obtain

2X, e1)V 2(X, e2)V 2X-H
I — [ < (X, e1)Ve, COS“"; (X, €2)Ve, cosa ) det(g) dx' A dx?.
- cos? « cosa

The second term is

- _/ Ve (o (X, e2)) —2w(X, Ve, Ve, F) dil A dx?
5 cos?a
_/ Vez(a)(elax)) _Zw(V€2v€]F’ X) d)Cl /\dxz
5 cos?a
:_f Ve, (0(X, ez))JrZVez(w(el,X)) dx! A dx
> cos’a

_ _2/ (X, e2)V,, cosa—:w(el,X)Vez cosa i Adx2,
5 cos3 &

where we have used the fact that w is parallel. In the following, we compute pointwise so
we assume the frame is orthonormal. Note that

w(XT,e) = —(XT, Jez) = —(X, e1){e1, Jea) = (X, e1) cosa,
wler, X)) = (XT, Jer) = (X, e2)(e2, Je1) = (X, e2) cosa.

We separate the second term into two parts,

I = _2/ (X, e1)Ve, cosa N (X, €2) Ve, cosa in
b cos? a cos? o

(X, e2)V,, cosa + w(er, X))V, cosa
-2 du.
)

cosd «
Therefore, we obtain

X -H (X1, e2)V,, cosa
Li=-2 dp—2 3 du
=0 y CoSso b cos” o

d
dt

du.

_ 2/ wl(eq, XL)VE2 cos o
5 cos? o
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Because
(JV cos 01)T = (Je1Ve, cosa + Jer V,, cos a)T
= (Jey, e2)eaVe, cosa + (Jez, er)e1 Ve, cosa
= (e2V,, cosa — €1V, cosa) cos
we have
d X-H Xt (Jv T
4 L,:—2/ du—z/‘w( (4cm“))du
dt|,_o % cosua x cos*a
X-H X - (J(JVcosa) )t
=_2/ du+2/ it . DN
y CoSo b)) cos™ o
This completes the proof of the theorem. O

For a later purpose, and to understand the equation, we express (J(JV cosa) ')’ at a
fixed point p in a local frame. Let {e], e, v3, v4} be an orthonormal frame around p € ¥
that is normal at p and such that w, J take the forms (cf. [3]], [4])

w=Ccosau] AUy +cosauz Augq+sincu; Auz —sina uz A ug 2.3)

where {u1, uy, u3, ug} is the dual frame of {ey, e3, v3, v4}, and

0 cos o sin o 0
—cosa 0 0 —sina
J = . . 2.4
—sina 0 0 cos o
0 sineé  —cosa 0
Then
(J(JV cos oz)T))L = (J(cosa d; cosa ey — coS o 3 COS e1))L
= —cosa Sino d] COS® V4 — COS & SN 0 COS & V3
= cosa sin « 010 v4 + cos sin? & dra v3.
Furthermore,

dicosa = o(Vee1, ) + (e, Ve e2) = h(Jva, €2) + hS(Jer, vy)
= (h‘l‘l +h?2) sin .

Similarly, we can get
& cosa = (h3, + hi,) sina.

Set V = dra v3 + 01 v4. Then
V = —(h3, + hiy)vs — (b}, + hdyws. (2.5)
Consequently, the Euler—Lagrange equation of the functional L is

cosla H —sin2aV =0, (2.6)
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from which we see that H = sin« - g and g is a smooth vector field on N X, or equiva-
lently,
H —sin®a(H+V)=0.

It is not difficult to see that, roughly, the symbol of the equation is
oo (- sin? )2 + n? (sin® @)&n
'_ (sin® @)én 24+ (1 —sinfa)y? )’

which makes one believe that the equation (2.2)) is elliptic.
In the following, we give a detailed proof.

Theorem 2.3. The equation 2.2)) is elliptic.

Proof. Assume that X is immersed in M by F. Let {x, y} be a coordinate system around
p € X. Since X is smooth, by the implicit function theorem we can write X as the graph
of two functions f, g in a small neighborhood U of p,ie., F = (x,y, f(x,y), g(x,y))
in U. Suppose that the complex structure in the neighborhood of F(p) is standard, i.e.,

0 -1 0 0
1 0 0 0
T=1o o o -1
0 0 1 0

We choose e; = dF/dx = (1,0, fy,gx), e2 = 0F/dy = (0,1, fy,gy) and v3 =
(—=fxs —fy,1,0),v4 = (—gx, —gy, 0, 1). Then {e1, €2, v3, v4} is a basis of M. The metric
of X in this basis is

1+fo+g)% fxfy+gxgy)

(“””ﬁz@m+&&1+ﬁ+ﬁ

and the inverse matrix is

1 ( 1+fy2+g§ _fxfy_gxgy)'

(¢N1zijer = ———
== det(gij) _fxfy — 8x8y 1+ fxz + g)%

Moreover, the metric on the normal bundle T+ ¥ is

@mkﬂq:C+ﬁ+ﬁ ﬁ&+ﬁ&>
af)3<a,p< fxgx+fygy 1—}—g§+g§

and the inverse matrix is

(8P )3cupes = ( Ex T8y fx8x = fr8y ‘

det(gaﬂ) —fx&x — fygy 1+ fxz + f)2

By a direct computation, we have

det(gij) = 1+ f2+ f7 + &r + &5 + (fe8y — f18:)°
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and
det(gup) = 1+ f7+ f + 83 + &5 + (fegy — fygx)* = det(gi)).
From now on, we denote

det(g) = det(gi;) = det(gap)-
Using our choice of J and the basis, we have
Jer = (0,1, —g, f),  Jer= (1,0, gy, fy),
Jvs = (fy, = fx, 0, 1),  Jvs = (gy, —gx,—1,0).
It is easy to see that

w(eq, ep) (Jeq, e2) 1+ fxgy — fygx
Coso = = =

Jdet(g)  /det(g) Vdet(g)

and

sin2a = det(g) — (Jeq, €2>2 N (fx — gy)2 + (fy + gx)z
- det(g) - det(g) '

We now express the Euler-Lagrangian equation (2.2) of L explicitly. One checks that

Vcosa = gij(V cosa, e;)e;
dcosa dcosa dcosa dcosa
— gn +g12 e+ 812 +g22 ey
ax dy 0x dy
=: Aej + Bes.

Note that

(Jen)" =g (Jer, eie; = g% (Jer, ea)ej = (Jer, e2) (g er + g%%en),

(Je) =g (Jer, ei)e; = ' (Jer, e1)ej = —(Jer, e2)(g' e + g'%er).

We obtain
(JVcosa) = A(Je))T + B(Jex) "
= (Jer, e2)[A(g* e1 + gPer) — B(g'er + g'%en)]
= (Je1, e2)[(Ag*' — Bg'Dey + (Ag? — Bg'Den)].
Moreover,

(Jer)" = g*(Jer, va)vp

= (g (Jer, v3) + g% (Jer, va)vs + (g% (Jer, v3) + g™ (Jer, va))us,
(Jex)" = g (Jez, va)vp

= (g3 (Jea, v3) + g (Jea, va))v3 + (g% (T ez, v3) + g™ (T ea, va)) s
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It follows that

(J(JVcosa) )t = (Jey, e2)[(Ag* — Bg')(Jen) ™ + (Ag™ — Bg'H)(Jer)' ]

= (Jer, e2){(Ag*" — Bg'"H[(g* (Jer, v3) + g (Jer, va))vs
+ (g (Jer, v3) + g* (Jer, va))va]
+ (A% — Bg"H[(g3(Jea, v3) + g (J ez, va))vs3
+ (g (T e, v3) + g% (Jea, va))val)

= (Jer, e){[(Ag* — Bg'N) (g (Jer, v3) + 8P (Jer, va))
+(Ag* — Bg")(g¥ (Jea, v3) + g% (Jea, va))]vs
+[(Ag* — Bg') (g (Jer, v3) + g% (Jer, va))
+(Ag” — Bg'™) (g (Jer, v3) + g™ (Jea, va))lua},  (2.7)

and

| 82F | 9%F
— 33 iy 43 ij
(8 g <8x,-8xj’v3>+g g <8xi8xj’v4>>v3
| 92F | 9%F
34 ij 44 ij
+ Lv3) + :
<g 5 <8xi8xj v3> £ & <axi3x]' v4>>v4
9%F 3%F 3%F
33( 11 12 2
= PN 2 3 PN
[g (g < x? U3>+ § <3x3y v3>+g <3y2 U3>>
32F 9%F 92F
a3( 11 12 22
+ —> +2 —, —>
§ (g <ax2 ”“> § <ax8y ”“>+g <8y2 ”4>>]”3
9%F 9%F 92F
34 11 12 22
+ —> +2 , —
G e A )
Ry gt 9*F 12,12 9 F 4 g2 9 F 2.8)
— ) —, . )
g\ 8 \ Gz v $ \axay v T G ) [
By (27) and (2-8) we obtain

3°F 3?F 32
3 33( 11 12 22
cos” o |:g (g <_8x2 , v3> +2g <8x8y’ v3> +g <_8y2 , vg>>
3’F 9

— (Jer, e2)[(Ag'? — Bg") (g3 (Jer, v3) + g (Jer, va))
+(Ag” — B (gP(Jer, v3) + g® (Jer, va))] =0,  (2.9)
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3%F 92F 92F
3 34 11 12 22
costa| ({7 ) 20 )+ (5 3))
9%F 92F 92F
a4( 11 12 22
+ —,v4)+2¢ {——,v4)+ —,
(G 20y ) ()

— (Jer, e2)[(Ag'? — Bg') (g (Jer, v3) + g™ (Jer, )
+ (Ag* — Bg") (g (Jer, v3) + g™ (Jea, va)] = 0. (2.10)

Setc =1+ frgy — fygx = +/det(g)cosa, a = f, + gy, b = fr — gy. Recalling that

F=,y, f(x,9),8x,y),

we have

Moreover,

(Jer,v3) =—fy —gx = —a, (Jei,v4) = fx —gy =,
(Jez, v3) = fx — gy = b, (Jea, v4) = fy + gx = a,
(Jer, e2) = +/det(g) cosa = c.

Then equations (2.9) and (2:10) can be written as

C
( ’—det(g))3 [g33(gllfxx + Zglzfxy + gzzfyy) + g43(g“gx;c + 2g12gxy + gzzgyy)]
—{lg"(g**b—gPa)+8P (P p+g* )1 A-[g" (g3 b—gPa)+¢" (¢¥ b+ a)1B) = 0

and

c
( ’—det(g))3 [834(g11fxx + 2glzfxy + gzzfyy) + g44(g”gxx + 2g12gxy + gzzgyy)]
—{1g"%(g"*b—g*a)+e2 (¢ p+e a1 a—-1g" (e¥h—g*a)+¢"(g**b+g*a)1B) =0.

Recalling that

dcosa dcosa dcosa dcosa
A=gll + g2 . B=gh gL

ox Ay dx ay
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we have

[¢12(e%*h — ¢3a) + e2(e¥b + g¥a)A — [ (e3*b — g3a) + ¢2(e3b + ¢*a)|B
— (g'1g2 g12g12)(g33b+g34a)8(;¥ 4 (g% — g12g12)(g33q — g¥p) T2

and

[glz(g44b—g34a) +g22(g34b+g44a)]A _ [g“(g44b—g34a) +g12(g34b+g44a)]B
acosoz

(gn 2 12 12)(g34b+g )32050‘+(g11g22 12 12)(g34a 44b)
X

Therefore, equations (2.9) and (2.10) can be rewritten as

2
c
W[g33(g“fxx + Zglzfxy + 822fyy) + g8 ger + 2g128xy + gzzgyy)]
dcosa
[(gll 2 12 12)(833194‘8340) +(811 2 12 12)(8330 g34b) :|=0
(2.11)
and
c? 34, 11 12 22 44, 11 12 22
TEQE?B\@ Fex £28 7 fry + 87 fyy) +87(8 8xx +28 " 8xy + 877 8yy)]
d cos o
ﬁy1n lzuxf%+f%) +@”22gu§%@ﬂagﬂm ]:0
(2.12)
On the other hand, we have
acosazi 1+fxgy_fygx
ax ox Jdet(g)
1
= ————[fux(8y — [ + 388y + [ S8y + & Sy + 838 + &) — [283)

(V/det(g))?

F (=8 = [y + [38:8y — fefy8y — 8 T — 8x85 — &1 — [18Y)
+8ur(—8x — fy + fxfy8y — fe8x8y — [y fe — 80 — £ — & )
+ 8y (fx — 8y + fefy8e + fy8e8y + fegs + fuf + 11 — 8y fD]

1
= W[fxx(glza — gnb) + fiy(g12b — gna)

+ gxx(—g2na — g12b) + gxy(g11b + g12a)]. (2.13)
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Similarly, one checks that

dcosa

dy

1
= - + b) + _ b
(«/det(g_))3[fyy( gia +gib) + fiy(goa — gnb)
+ 8y (@b + 8120) + guy(—gna = g12b)]

By 11)-(2.14), we see that the system (2.2) is

FuxlgeBe? — (g'16% — g2 (g™a + g8b)(g12a — g2b)]
+ foyl28%212¢* — (g"¢* — g™ (g a + ¢Pb) (8120 — g110)

(2.14)

— (g% — g12512)(¢33q — ¢¥b)(g10a — g1b)]

+ frylgPeBe? — (8" ¢ — g2 (gFa — ¢¥b)(—g11a + g12b)]
+gulg' g — (g'1g? guglz)(gMa + ¢¥b)(—gna — gi2b)]
+ giy[287 8" c? — (g1 g% — "¢ (g™ a + g°b)(g11b + g12a)
(gll 22 12 ]2)(8330
+ gyy[e2g? — (g'1e% — ¢"%¢") (g% a — ¢¥*b)(g11b + g12a)1 = 0,

and

f[11342 1122

g'g*e? — (g — "¢ (g™a + ¢Mb)(g12a — g22b)]
+ foyl2g**g!c? (g“g22 — g2 (g"a + ¢b)(g12b — g110)

¢2*b) (—gma — g12b)]
(2.15)

— (g"1g% — ¢12612)(¢¥a — ¢%b)(g12a — g2ob)]

+ fiyl828%c® — (811622 — g1%612)(g%a — g™b)(—gna + giab)]
+ gulg'e*e? — (g% — g"2¢'"H(g™a + g¥*b)(—gna — g2b)]

+ gy[28™Mg"c? — (8" g% — ") (g™ a + g*b)(g11b + g12a)
(gll 22

+ gyylg2eMe? — (g11¢% — ¢"%¢")(g%a — g%b)(g11b + g12a)] = 0.

For simplicity, we write the system as

A1l frx + A12 fxy + A2 fyy + Bl18xx + B12gxy + B2gyy =0,
Citfax + C12fxy + C22fyy + Di1&xx + D128xy + D22gyy = 0,

— g2 (g% — g¥b)(—gna — g12b)]
(2.16)

where A;;, B;j, C;j and D;; are defined clearly (i, j = 1, 2). So the symbol of the system

is

:<A11$2+A12§H+A22772 Bll$2+312$77+322772>
Ci1E> + Cioén + Coon®  D11E + Di2én + Daon?.

A direct computation yields
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det(o) _c4(g33 44 8345’34)[(8“)2544-(822)2774 +4g11 125 n+4g12 22%-”
+2gll 22;;__ +4(g12)2%.2,72
4@ + ) (g g2 — ¢1212)(gB M — ¢ o) (g gt + ePg1 0
+2g"208%n — 2¢M ga&tn + 28 gniEn’ — 287 g1aEn’ + g gng?n?
+ g7 gt n” — 4g' g1t %)
= (g33 44 '34 34)(g11€: +2g125n+g n2)2

2
(a +b)
4L T (11022 12,12y (3344 _ 3434y (02 g4 4 o2 pd

det(g)
—4g1280E N — dg11g12EN° + 28118226707 + 4ghE™ )
= det? )(g“E +2¢"%En + g7 0P + (EIZTJF)f;)(gn% —2g1260 + g11n°)?
= %{;;C%(&zéz —2g12én + gun’)?
- (dectz )2 (8208 — 2g12€n + gun’)’ = detg % (9287 — 2g128 0 + g1,

Because (g;;) is positive definite and cos o > 0, we see that

det(o) >0 if (§,n) # (0,0),
which implies that equation (2.2)) is elliptic. This proves the theorem. ]

3. Equations of the Kihler angle of a symplectic critical surface

In the following, we always choose the orthonormal basis {e1, €2, v3, va} on M along X
such that {eq, e} is a basis of ¥ and w takes the form @]), and the complex structure J
on M takes the form (2.4).

Let T3, NX be the tangent and normal bundles of ¥ in M respectively. The second
fundamental form A : T¥ x T¥ — NZX is defined by A(X,Y) = (VxY)t for any
tangent vector fields X, Y. The operator B : T¥X x NX¥ — T X is defined by B(X, N) =
(VxN)T, N € NX.Here ()T denotes the projection from 7T M onto T ¥ and O~ denotes
the projection onto N X. Evidently,

(A(X,Y),N) = —(Y, B(X, N)).

Proposition 3.1. Let M be a Kdihler surface with Kdhler form w and J be the complex
structure compatible with w on M. If ¥ is a symplectic surface which is smoothly im-
mersed in M with Kdhler angle «, then

Acosa = cosa (—|hi, — hy|* — |h4 + 3%
2

+ sina (Hfﬁ ) - (sz + K1234). 3.1

where K is the curvature operator of M and H";‘ = (VQ’ H, vy).
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Proof. It is evident that

k] 1 7
Acosa = Aw(e]—ez) = Awl(ey, er) — Ecosa Agijg". 3.2)

Vdet(g)
Using the property that Ve = 0, we obtain
Aw (e, €2) = Vo Vyw(er, €2)

= 0 (Vg Veeer, €2) — (Ve V2, €1) 4 20(Ve e1, Ve e2)

= 0 (Ve (Veeer + Alex, €1)), €2) — o(Ve, (Ve e2 + Alex, €2)), €1)
+2w(A(ex, e1), Ae, €2))

= (Ve Veeer, €2) + w(Aler, Veger), €2) + (Ve Aler, e1), €2)
— 0 (Ve Verer, €1) + o(Alex, Verea), 1) — @(Ve Aler, €2), e1)
+2w(Alek, e1), Alex, e2))

= cosa (Vg Veeer, e1) +cosa (Vg Ve, e2, €2)
+ (Ve Aler, e1), €2) — 0(Ve, Ale, €2), €1)
+2w(Alex, 1), Alek, €2)).

It is not hard to check that

1 ij_ 1 ij ij
3 cosa Agijg’ = 3 cosa Afe;, ej)g’ =cosa(V, Ve, ei)g
=cosa (Vg Veeeq, e1) +cosa (Ve Ve e2, e2).
Putting the last two identities into (3.2) and using (2.3), we obtain
Acosa = 0 (Ve Alek, €1), €2) — 0 (Ve Alex, €2), €1)
+2w(Alek, e1), Alex, €2))
= w(vek (h(fkva)a ey) — a)(vek (hgkva), er) + Za)(h?kvav hgkvﬁ)
= w(hf) v = i higer e2) — o (b yva — hiphiger, en)
+ 20 (hS vy, B vp)
= cosa (—(h§)? — (h3)* + 2h3, hs, — 2T, h3y)
+ o (hiy Ve — KakkVa, €2) — @ (hg) 2Ve — Kakakva, €1)
= cosa (—(h§)? — (h3)* + 2h3, 1y, — 27, h3y)
+ sino (H41 + H,32) —sina (Kar1x + K3rkok)
= cosa (—(h%)? — (h%)? + 2h3 h3, — 2k h3,)
+ sina (Hfﬁ + H,Sz) —sina (K213 — K1224). (3.3)
Since J is integrable, we have
Kiz1o = K(e1,er, Jey, Jez) = K(ey, e, cosaer + sina v3, —Ccosa e] — Sino vg)

= cos’a K212 — sin? K234 +sinacosa (K13 — K1224).
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We therefore obtain
sina (K1212 + K1234) = cosa (K213 — K1224). 3.4
Then adding (3.4) into (3.3), we get
Acosa = cosa (—(h‘i‘k)2 — (hg‘k)2 + Zh?khék — Zh?kh%k)
. 4 3 sin? o
+ sina (H7] + H) — —— (K212 + K1234).
' : cosa
This proves the proposition. o

Lemma 3.2. Suppose that M is a Kahler surface. Then

. 1
Ric(Jey, o) = —— (K212 + K1234). (3.5)
cos o

Proof. From the Bianchi identity we see that

4 4
Ric(Jer,e2) = Y K(Jei, ea,ez,ea) = Y K(Jei, ea, Jes, Jen)
A=1 A=1

4 4
— Y K(Jer, Jey, Jea,ea) — Y K(Jer, Jea, ea, Jeo)
A=1 A=1

4 4
=Y K(er,ez.ea, Jea) — Y K(Jer, Jea, ez, Jen)
A=l A=l
4
=Y K(er.e2.ea. Jea) —Ric(Jey, e2),
A=l

where we have used the fact that {Je 4} is also an orthonormal basis of M. Using (3.4) we
get

) 1 i
Ric(Jey, e2) = EK(el, e2,ex, Jep) = sina (K213 — Ki224) + cosa (K212 + K1234)

1
= —— (K212 + K1234). o
CcCos

Theorem 3.3. Suppose that M is a Kdihler surface and ¥ is a symplectic critical surface
in M with Kahler angle «. Then cos o satisfies

3sina —2 2 .
Acosao = — |Va|” —cosasin” a (K212 + K1234)
coso
3sinfa —2
="~ Z|Va|® —cosasin’a Ric(Jey, e2). (3.6)

cos o
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. L in? .
Proof. If ¥ is a symplectic critical surface, then H = 2102—22 V. It is easy to check that

.4 )

3 42 4 332 2 2 _ (S« S o 2

(Wi — o)™ + (g +hyp)” = |HIP +2|VI"+2H - V = (Cos4a +2+2C052a)|v|
4

_ 1 4 cos 0[|Va|2

cost o

)

and

4 3 sin® sin® @ sin® @ sino 2
H7+H5 =0 diee | + 02 oo | = o Ao +2 |Va|
, , o

cosZ o cosZ o sZa cos3
sin o 5 sin & 5
= 5—(—Acosa —cosa|Val|?) +2——|Va|".
cos? o cos3 a
Putting these two equations into (3.1), we obtain
—1 — cos*a + 2sin* o — sin® a cos® « , sina
Acosa = 3 |Va|= — 5 Acosa
cos3 a cos?a
sin? o
- (K1212 + K1234).
cosa
Lemma [3.2]now yields (3.6). O

Corollary 3.4. If M is a Kahler-Einstein surface with scalar curvature Ko, and X is a
symplectic critical surface in M with Kdhler angle o, we have
3sina — 2 2 3 .9
Acosoe = —  |Va|” — Kgcos” o sin” a.
cos o
If, in addition, we assume that Ky > 0, then the symplectic critical surface X is a holo-
morphic curve.

Proof. Suppose that M is a Kihler—Einstein surface with scalar curvature Ko. Then we
have

Ric(Jeq, e2) = cosa K,

and the identity in the corollary follows. The second statement of the corollary follows
from the maximum principle. O

4. Topology of the symplectic critical surfaces

In this section we will analyze the topological properties of compact symplectic critical
surfaces. At a point p € ¥ with a(p) = 0 the tangent plane 7,,% of M at p is a com-
plex line in Tr(p)M. So such a point is called a complex tangent point. We recall some
equations obtained by Wolfson in [[L1] (see also [[10]). We write the metric of M as
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The induced metric on X can be written as
) _
dS Y = ¢ o ¢7

where ¢ is a complex valued 1-form defined up to a complex factor of norm one; further-
more, one can assume that

w1 = cos(a/2)¢p, w_1 =sin(a/2)¢,

where « is the Kéhler angle.
Suppose that the complex second fundamental form of ¥ in M is

11€ = a¢® + 2bdpp + cd>.
Relative to the coframe field w_1, w1, there is a unitary connection wg, which satisfies

dog = wpy ANy, wgy +wys =0.

We set
cos(ae/2)wi + sin(a/2)d—1 = 0) + v/ —165,
sin(a/2)w; — cos(a/2)d_1 = 03 + v/—1 64,
where 6, k = 1, ..., 4, is an orthonormal coframe of the Riemannian structure of M. So,

along ¥ we have
sin(/2)w; — cos(a/2)w—1 = 0.

It follows that ([[10} (1.6)], [111 (2.18)])
1 _
z(da—i—sinoz(w_ljl—i—wli)) =a¢ + bo. “.1)

The relation between the real second fundamental form and the complex second fun-
damental form is given in [11} Section 2],

( 1 1 ><a b) (1 V=1 )_ <h§1 h?2> JM/__l(h‘l‘l h‘1‘2>
/— —— = - 3 3 4 4 ’
! ! b e 1 ! hiy Ty, hiy  hy
We therefore have |
b= Z(H3 +/—1HY. 4.2)
Using (@.1)), 4.2) and (2.6)), we see that on the symplectic critical surface we have

d sin o .
— = (sina)h,
¢

where h is a smooth complex function, and ¢ is a local complex coordinate on X. By
Bers’ result [2], we have
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Proposition 4.1. A nonholomorphic symplectic critical surface in a Kdihler surface has
at most finitely many complex points.

Set
g(a) = In(sin® ).

Then using (3.6), we obtain

2 CoS C05205 2
Ag(a) = =2|Va|” —2— 7 —Acosa —4— 3 [Va|
SIn” o SIn~ o
= —4|Va|? +2cos’a (K212 + K1234). 4.3)

This equation is valid away from the complex tangent points of M. By the Gauss equation
and Ricci equation, we have

Rioia = Kio12 + kS h%y — (h%5)?,  Riaza = Kiosa + hi hs, — hihi,,

where R131 is the curvature of 7% and Rjp34 is the curvature of N X. Adding these two
equations, we get

_ T N P I 4 3.2
K212 + K1234 = Ri212 + Ri234 2|H| +2((h1k h3 )™ + (B + hy)?)

= Riip+ Risa + V> + H-V = Rizio + Rioaa + |Va|?.

cos2 «

Thus,

1 Ag@) | |Vaf®
Ripio+ Rigsa = 5 —— 5
2 cos*a  cosca

Integrating the above equality over ¥ we have

|Val|?
5, cosZ

2m(x(TE) + x(NX)) = —2nP — dus,

where x (T X) is the Euler characteristic of X, x (N X) is the Euler characteristic of the
normal bundle of ¥ in M, and P is the sum of the orders of the complex tangent points.
We have thus proved the following theorem.

Theorem 4.2. Let ¥ be a nonholomorphic symplectic critical surface in a Kdhler sur-
face M. Let P denote the sum of the orders of the complex tangent points. Then

1 |Val|?
x(TE)+ x(NX)=—P — — 5
27w Jx cos®a

dus

Similarly, we can show



Symplectic critical surfaces in Kéhler surfaces 523

Theorem 4.3. Let ¥ be a nonholomorphic symplectic critical surface in a Kdhler sur-
face M. Then
1 |Va|?

Ffei(M)[Z]=—-P — — —,;d/LE.
2w Jy, cos’ a

where c1(M) is the first Chern class of M and [X] is the fundamental homology class
of X.

Proof. By (4.3) we also get
Ag(a) = —4|Va|? + 2cos’ a Ric(Jey, e2).

Note that Ric(Je1, e2) duy is the pull back to X, by the immersion F, of the Ricci 2-form
of M,1ie.,
F*RicY) = Ric(Jey, e2) dpis.

Thus,
1A Val?
FrRicM) = (L28@ | HVelTy o
2 cos3 a cos3 o
Integrating it over X, we obtain
. |Va|?
2n Fciy(M)[2] = —2nP — 3 dus.
5 cos’ a
This proves the theorem. O

Corollary 4.4. Suppose that X is a symplectic critical surface in a Kihler surface M.
Then

X(TZ)+ x(NX) = F*ci(M)[N],
and X is a minimal surface with constant Kdhler angle.

Proof. By Proposition Webster’s formula (9} Proposition 1]), and Theorem |4.2} we
have

|Val®

5, cosZ o

That means |Va/| = 0, which implies that « = constant. By (2.2), weseethat H = 0. O

d/,LE =0.

Remark 4.5. If ¥ is not compact, the corollary above is not true. In fact, the rotational
symmetric surface z = —% log(x% 4+ y?) in R3 considered as a surface in C? is a sym-
plectic critical surface which is not minimal.

Remark 4.6. By Lemma 4.1 and Remark 4.1 in [5], one checks that a minimal surface
with constant Kihler angle is an infinitesimally holomorphic immersion ([6, p. 253, Def-
inition]). So we have a variational approach for infinitesimally holomorphic immersions
which are, in many cases, holomorphic.
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Let g be the genus of X, Iy, the self-intersection number of X, and Dy the number of
double points of X. Then

x(X)=2-2¢, xv)=Isx—-2Ds.
Setting ¢1(X) = c1(M)([Z]), we have

Corollary 4.7. Suppose that ¥ is a symplectic critical surface in a Kdhler surface M.
Then
2—-2g—c1(X)+ I — 2Dy =0.

Proof. This follows easily from Theorems [4.2)and [4.3] We omit the details. o

5. The gradient flow

In this section we consider the gradient flow of the function L, i. e,

dF 1
— =cos’a H— ——(J(JVcosa) ). (5.1)
dt cos o
We set
f= cos’a H — JUJV cosa)T)L.
cos o

It is clear that if f = 0, then X is a symplectic critical surface.
By the first variational formula of the functional L (Theorem[2.2)), we see that, along

the flow,
dL 1
aL _ _, f
dt 5, cos’ o

1
-2 f IfI?du. (5.2)

5, cos’ o

1 2
cos>aH — —(J(JVcosoz)T)l du
cos o

By Theorem 2.3] we know that (5.1) is a parabolic equation, and the short time exis-
tence can be shown by a standard argument. We set ¥, = F (X, ) with £y = X.
Using the same local frame as in Section 2, we can write (5.1)) as

dF
o cos’a H —sin®aV = f. 5.3

We compute the evolution of the area element of 3; along the flow.

Lemma 5.1. 4
o= (- cos>a |HI> +sin®a V- H)du,. (5.4)

Proof. 1tis easy to check that

9 d|dF OF af OF 9%F
_glj:_ —_—, — :2 -, — :—2 f, T T
at ot \dx! dxJ dxt 0x/ dxtox/

=2(— cos’a HY +sin®a V"‘)hf‘j,
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Here we have used the fact that V,,e; = 0 at the fixed point. Therefore,

d
Edu,=—f-Hdu,=(—cosza|H|2+sin2aV~H)d/L,. O

Now we derive the evolution equation of cos « along the flow (5.3), which can be seen as
a starting point for the study of the flow.

Theorem 5.2. Let M be a Kdihler surface. Assume that « is the Kdhler angle of ¥; which
evolves by the flow (5.3). Then cos « satisfies the equation

d
<E - A) cosa = cos® @ (|hyy, — h3, > + |h3; + hi?) + cos? a sin® « Ric(Jey, e2)
+ cosa sin2ot|H|2 —cos o sin2a|V+H|2, 5.5

where {e1, e2, v3, v4} is an orthonormal basis of T, M such that w, J take the form @),

Proof. Using the fact that V& = 0 and Lemma we have

9 cos 9 o, &) (Ve, f, e2) (Ve, f. e1) 1cos 9 i
— S = ——— " = Ler) —w Le]) — — COSo— gji
ot 3t /det(g) e/> €2 ey €1 T 5 COSH 8ij8

=V, f,e2) —0(Ve, f,e1) +cosa f - H.

By breaking 681 f and %2 f into the normal and tangent parts, we get

Ve, f.2) — 0(Ve, f €1)
=w(V) f.e) —w (V) fien) + w(V] fe2) — (V) f.e1)
= (V) f.e2) = (V) f.e1) + o(Bler, f), e2) — o(B(ea, f). e1)
=w(V) f.ex) —w(V) f.e1) +cosa ((Ber, f). e1) + (Blea, f). e2))
= (V) f.e2) — (V) f.e1) —cosa f - H.

Combining these two identities we obtain

a%cosoe = a)(?é\:f, e) — a)(ﬁgf, er)
= a)(ﬁé\l’(cosza H —sin*« V), ex) — a)(ﬁg(cosza H —sin®a V), er)
= cos’« (w(@ﬁ{H, er) — a)(?gH, e1))
+w(di cos’a H, e2) — w(drcos’ a H, ey)
— w (01 sina V, e) + w(d sina V, er)
—sin*a (@(VNV, e2) — (VN V. 1))

=I+1+1I+1V. (5.6)
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By Theorem [3.1] we have
I = cos’>asina (Hf‘1 - H’32)
= cos’a (Acosa + cosa |h?k — h§k|2 + cos« |h%k + h?k|2 + sin®« Ric(Jeq, €2)).
It is clear that

Il = H*sina 01 cos’a + Hsina 02 cos? o = —2sin® a cos (H431a + H382a)

= —2cosasin‘a H-V.
From the definition of V, we can see that

Il = —sina 9; sin? & dja — sinw 0 sin? & oo = -2 sin? & cos |Vot|2

= —2sin’« cosa|V|2.
Similarly, one obtains

IV = —sin®« a)(?g(aga v3 + 01 v4), €2) + sin? & a)(ﬁg(aga V3 + 01 v4), €1)
= —sina (w (9101 v, €2) — W (0202 V3, €1)) = — sin® o Aa

= sin®a A cosa + sin’ & cos o |Voz|2 = sin’a A cosa + sin’ « cos « |V|2.

Putting these equations into (5.6), we obtain

d
3 cosa = Acosa + cos’ o |h?k — h§k|2 +cos’ o |h§k + h?k|2

2

+ cos?a sin® a Ric(Jey, e2) —2cosa sinfa H -V — cosa sin |V|2.

This proves the theorem. O

Theorem 5.3. Let M be a Kdihler—Einstein surface with scalar curvature K. Assume
that o is the Kdhler angle of ¥, which evolves by the flow (5.3). Then cos « satisfies the
equation

d
<E — A) cosa = cos’ o (|h?k - h‘ztk|2 + |h%k + h‘ltk|2) + Ko cos® asin® o

+ cosozsin201|H|2 —cosa sin2a|V+H|2, 6.7

where {e1, e2, v3, v4} is an orthonormal basis of Ty M such that w, J take the form (@)
(24). Consequently, if T is symplectic, then along the flow (3.3), at each time t, T, is
symplectic.
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