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Abstract. Let R be a real closed field, Q ⊂ R[Y1, . . . , Y`, X1, . . . , Xk], with degY (Q) ≤ 2,
degX(Q) ≤ d , Q ∈ Q, #(Q) = m, and P ⊂ R[X1, . . . , Xk] with degX(P ) ≤ d, P ∈ P ,
#(P) = s, and S ⊂ R`+k a semi-algebraic set defined by a Boolean formula without negations,
with atoms P = 0, P ≥ 0, P ≤ 0, P ∈ P ∪Q. We prove that the sum of the Betti numbers of S is
bounded by

`2(O(s + `+m)`d)k+2m.

This is a common generalization of previous results in [4] and [3] on bounding the Betti numbers
of closed semi-algebraic sets defined by polynomials of degree d and 2, respectively.

We also describe an algorithm for computing the Euler–Poincaré characteristic of such sets,
generalizing similar algorithms described in [4, 9]. The complexity of the algorithm is bounded by
(`smd)O(m(m+k)).
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1. Introduction and main results

Let R be a real closed field and S ⊂ Rk a semi-algebraic set defined by a Boolean formula
with atoms of the form P > 0, P < 0, P = 0 for P ∈ P ⊂ R[X1, . . . , Xk]. We call S
a P-semi-algebraic set and the Boolean formula defining S a P-formula. If, instead, the
Boolean formula has atoms of the form P = 0, P ≥ 0, P ≤ 0, P ∈ P , and additionally
contains no negation, then we will call S a P-closed semi-algebraic set, and the formula
defining S a P-closed formula. Moreover, we call a P-closed semi-algebraic set S basic
if the P-closed formula defining S is a conjunction of atoms of the form P = 0, P ≥ 0,
P ≤ 0, P ∈ P .
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For any closed semi-algebraic set X ⊂ Rk , and any field of coefficients K, we denote
by bi(X,K) the dimension of the K-vector space, Hi(X,K), which is the i-th homology
group of X with coefficients in K. We refer to [12] for the definition of homology in the
case of R being an arbitrary real closed field, not necessarily the field of real numbers, and
K = Q. The definition for a more general K is similar. We denote by b(X,K) the sum∑
i≥0 bi(X,K). We write bi(X) for bi(X,Z/2Z) and b(X) for b(X,Z/2Z). Note that

the mod-2 Betti numbers bi(X) are an upper bound on the Betti numbers bi(X,Q) (as a
consequence of the Universal Coefficient Theorem for homology (see [20] for example)).

The following result appeared in [4].

Theorem 1.1 ([4]). For a P-closed semi-algebraic set S ⊂ Rk , b(S,K) is bounded by
(O(sd))k , where s = #(P) and d = maxP∈P deg(P ). ut

It is a generalization of the results due to Oleı̆nik and Petrovskiı̆ [22], Thom [24], and
Milnor [21] on bounding the Betti numbers of real varieties. It provides an upper bound
on the sum of the Betti numbers of P-closed semi-algebraic sets in terms of the number
and degrees of the polynomials in P (see also [14] for a slightly more precise bound, and
[17] for an extension of this result to arbitrary semi-algebraic sets with a slight worsening
of the bound). Notice that this upper bound has singly exponential dependence on k, and
this dependence is unavoidable (see Example 1.2 below).

In another direction, a restricted class of semi-algebraic sets—namely, semi-algebraic
sets defined by quadratic inequalities—has been considered by several researchers [2, 3,
19, 10]. As in the case of general semi-algebraic sets, the Betti numbers of such sets can
be exponentially large in the number of variables, as can be seen in the following example.

Example 1.2. The set S ⊂ R` defined by

Y1(Y1 − 1) ≥ 0, . . . , Y`(Y` − 1) ≥ 0

satisfies b0(S) = 2`.

However, it turns out that for a semi-algebraic set S ⊂ R` defined by m quadratic
inequalities, it is possible to obtain upper bounds on the Betti numbers of S which are
polynomial in ` and exponential only in m. The first such result is due to Barvinok [3],
who proved the following theorem.

Theorem 1.3 ([3]). Let S ⊂ R` be defined by Q1 ≥ 0, . . . ,Qm ≥ 0, deg(Qi) ≤ 2,
1 ≤ i ≤ m. Then b(S,K) ≤ `O(m).

A tighter bound appears in [10].
Even though Theorem 1.1 of [4] and Theorem 1.3 of [3] are stated and proved in the

case K = Q in the original papers, the proofs can be extended without any difficulty to a
general K.

Remark 1.4. Notice that the bound in Theorem 1.3 is polynomial in the dimension `
for fixed m, and this fact depends crucially on the assumption that the degrees of the
polynomials Q1, . . . ,Qm are at most two. For instance, the semi-algebraic set defined
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by a single polynomial of degree 4 can have Betti numbers exponentially large in `, as
exhibited by the semi-algebraic subset of R` defined by

∑̀
i=0

Y 2
i (Yi − 1)2 ≤ 0.

The above example illustrates the delicate nature of the bound in Theorem 1.3, since a
single inequality of degree 4 is enough to destroy the polynomial nature of the bound. In
contrast to this, we show in this paper (see Theorem 1.5 below) that a polynomial bound
on the Betti numbers of S continues to hold, even if we allow a few (meaning any constant
number) of the variables to occur with degrees larger than two in the polynomials used to
describe the set S.

We now state the main results of this paper.

1.1. Bounds on the Betti numbers

We consider semi-algebraic sets defined by polynomial inequalities, in which the depen-
dence of the polynomials on a subset of the variables is at most quadratic. As a result we
obtain common generalizations of the bounds stated in Theorems 1.1 and 1.3. Given any
polynomial P ∈ R[X1, . . . , Xk, Y1, . . . , Y`], we will denote by degX(P ) (resp. degY (P ))
the total degree of P with respect to the variables X1, . . . , Xk (resp. Y1, . . . , Y`).

Notation 1. Throughout the paper we fix a real closed field R, and denote by

• Q ⊂ R[Y1, . . . , Y`, X1, . . . , Xk] a family of polynomials with

degY (Q) ≤ 2, degX(Q) ≤ d, Q ∈ Q, #(Q) = m,

• P ⊂ R[X1, . . . , Xk] a family of polynomials with

degX(P ) ≤ d, P ∈ P, #(P) = s.

We prove the following theorem.

Theorem 1.5. Let S ⊂ R`+k be a P ∪Q-closed semi-algebraic set. Then

b(S) ≤ `2(O(s + `+m)`d)k+2m.

In particular, for m ≤ `, we have b(S) ≤ `2(O(s + `)`d)k+2m.

Notice that Theorem 1.5 can be seen as a common generalization of Theorems 1.1 and
1.3, in the sense that we recover similar bounds (that is, bounds having the same shape) as
in Theorem 1.1 (respectively, Theorem 1.3) by setting ` and m (respectively, s, d and k)
to O(1). Since we use Theorem 1.1 in the proof of Theorem 1.5 (more precisely in the
proof of Theorem 2.3 which is a key step in the proof of Theorem 1.5), our proof does
not give a new proof of Theorem 1.1. However, our methods do give a new proof of the
known bound on Betti numbers in the quadratic case (Theorem 1.3), and this new proof
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is quite different from those given in [3, 10, 18]. The techniques used in [3, 18, 10] do not
appear to generalize easily to the parametrized situation considered in this paper.

Note also that as a special case of Theorem 1.5 we obtain a bound on the sum of
the Betti numbers of a semi-algebraic set defined over a quadratic map. Such sets have
been considered from an algorithmic point of view in [19], where an efficient algorithm is
described for computing sample points in every connected component, as well as testing
emptiness, of such sets.

More precisely, we show the following.

Corollary 1.6. Let Q = (Q1, . . . ,Qk) : R` → Rk be a map where Qi ∈ R[Y1, . . . , Y`]
and deg(Qi) ≤ 2 for each i. Let V ⊂ Rk be a P-closed semi-algebraic set for some
family P ⊂ R[X1, . . . , Xk], with #(P) = s and deg(P ) ≤ d, P ∈ P . Let S = Q−1(V ).
Then

b(S) ≤ `2(O(s + `+ k)`d)3k.

Remark 1.7. Note that the Morse-theoretic techniques developed in [18] give a possible
alternative approach for proving Corollary 1.6.

1.2. Algorithmic implications

The algorithmic problem of computing topological invariants of semi-algebraic sets (such
as the Betti numbers and Euler–Poincaré characteristic) is very well studied. We refer
the reader to a recent survey [5] for a detailed account of the recent progress and open
problems in this field.

The techniques developed in this paper for obtaining tight bounds on the Betti num-
bers of semi-algebraic sets defined by partly quadratic systems of polynomials also pave
the way towards designing more efficient algorithms for computing the Euler–Poincaré
characteristic as well as the Betti numbers of such sets. These algorithms have better
complexity than the ones known before.

Definition 1.8. By complexity of an algorithm we will mean the number of arithmetic
operations (including comparisons) performed by the algorithm in R. We refer the reader
to [12, Chapter 8] for a discussion of various measures of complexity.

We prove the following theorem.

Theorem 1.9. There exists an algorithm that takes as input the description of a P ∪Q-
closed semi-algebraic set, S (following the same notation as in Theorem 1.5) and outputs
its Euler–Poincaré characteristic χ(S). The complexity of this algorithm is bounded by
(`smd)O(m(m+k)). In the case when S is a basic closed semi-algebraic set the complexity
of the algorithm is (`smd)O(m+k).

The algorithm for computing all the Betti numbers has complexity (`smd)2
O(m+k)

and
is much more technical. We omit its description in this paper. It appears in full detail
separately in [11].
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While the complexity of both the algorithms discussed above is polynomial for fixed
m and k, the complexity of the algorithm for computing the Euler–Poincaré characteristic
is significantly better than that of the algorithm for computing all the Betti numbers.

1.2.1. Significance from the computational complexity theory viewpoint . The problem
of computing the Betti numbers of semi-algebraic sets in general is a PSPACE-hard prob-
lem. We refer the reader to [6], and the references contained therein, for a detailed discus-
sion of those hardness results. In particular, the problem of computing the Betti numbers
of a real algebraic variety defined by a single quartic equation is also PSPACE-hard, and
the same is true for semi-algebraic sets defined by many quadratic inequalities. On the
other hand, as shown in [6] (see also [7]), the problem of computing the Betti numbers
of semi-algebraic sets defined by a constant number of quadratic inequalities is solvable
in polynomial time. The results mentioned above indicate that the problem of computing
the Betti numbers of semi-algebraic sets defined by a constant number of polynomial in-
equalities is solvable in polynomial time, even if we allow a small (constant-size) subset
of the variables to occur with degrees larger than two in the polynomials defining the
given set. Note that such a result is not obtainable directly from the results in [6] by the
naive method of replacing the monomials having degrees larger than two by a larger set
of quadratic ones (introducing new variables and equations in the process).

For general semi-algebraic sets, the algorithmic problem of computing all the Betti
numbers is notoriously difficult and only doubly exponential time algorithm is known for
this problem. Recently, singly exponential time algorithms [13, 8] have been found for
computing the first few Betti numbers of such sets, but the problem of designing singly
exponential time algorithm for computing all the Betti numbers remains open. Singly
exponential time algorithm is also known for computing the Euler–Poincaré characteristic
of general semi-algebraic sets [4].

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1.5. In
Section 3 we describe our algorithm for computing the Euler–Poincaré characteristic of
sets defined by partly quadratic systems of polynomials and prove Theorem 1.9.

2. Proof of Theorem 1.5

One of the main ideas behind our proof of Theorem 1.5 is to parametrize a construction
introduced by Agrachev in [1] while studying the topology of sets defined by (purely)
quadratic inequalities (that is, without the parameters X1, . . . , Xk in our notation). Agra-
chev constructs a spectral sequence converging to the cohomology of the set being stud-
ied. However, it is assumed that the initial quadratic polynomials are generic. In this
paper we do not make any genericity assumptions on our polynomials. In order to prove
our main theorem we follow another approach based on infinitesimal deformations which
avoids the construction of a spectral sequence as done in [1].

We first need to fix some notation and a few preliminary results needed later in the
proof.
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2.1. Mathematical preliminaries

2.1.1. Some notation . For all a ∈ R we define

sign(a) =


0 if a = 0,
1 if a > 0,
−1 if a < 0.

Let A be a finite subset of R[X1, . . . , Xk]. A sign condition on A is an element of
{0, 1,−1}A. The realization of the sign condition σ ,R(σ,Rk), is the basic semi-algebraic
set {

x ∈ Rk
∣∣∣ ∧
P∈A

sign(P (x)) = σ(P )
}
.

A weak sign condition on A is an element of {{0}, {0, 1}, {0,−1}}A. The realization
of the weak sign condition ρ, R(ρ,Rk), is the basic, closed semi-algebraic set{

x ∈ Rk
∣∣∣ ∧
P∈A

sign(P (x)) ∈ ρ(P )
}
.

We often abbreviateR(σ,Rk) toR(σ ), and we denote by Sign(A) the set of realizable
sign conditions Sign(A) = {σ ∈ {0, 1,−1}A | R(σ ) 6= ∅}.

More generally, for any A ⊂ R[X1, . . . , Xk] and a A-formula 8, we denote by
R(8,Rk), or simply R(8), the semi-algebraic set defined by 8 in Rk .

2.1.2. Use of infinitesimals . Later, we extend the ground field R by infinitesimal el-
ements. We denote by R〈ζ 〉 the real closed field of algebraic Puiseux series in ζ with
coefficients in R (see [12] for more details). The sign of a Puiseux series in R〈ζ 〉 agrees
with the sign of the coefficient of the lowest degree term in ζ . This induces a unique order
on R〈ζ 〉 which makes ζ infinitesimal: ζ is positive and smaller than any positive element
of R. When a ∈ R〈ζ 〉 is bounded from above and below by some elements of R, limζ (a)

is the constant term of a, obtained by substituting 0 for ζ in a. We denote by R〈ζ1, . . . , ζn〉

the field R〈ζ1〉 · · · 〈ζn〉 and in this case ζ1 is positive and infinitesimally small compared
to 1, and for 1 ≤ i ≤ n − 1, ζi+1 is positive and infinitesimally small compared to ζi ,
which we abbreviate by writing 0 < ζn � · · · � ζ1 � 1.

Let R′ be a real closed field containing R. Given a semi-algebraic set S in Rk , the
extension of S to R′, denoted Ext(S,R′), is the semi-algebraic subset of R′k defined by
the same quantifier free formula that defines S. The set Ext(S,R′) is well defined (i.e. it
only depends on the set S and not on the quantifier free formula chosen to describe it).
This is an easy consequence of the transfer principle (see for instance [12]).

We will need a few results from algebraic topology, which we state here without
proofs, referring the reader to papers where the proofs appear.

2.1.3. Mayer–Vietoris inequalities . The following inequalities are consequences of the
Mayer–Vietoris exact sequence.
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Proposition 2.1 (Mayer–Vietoris inequalities). Let the subsets W1, . . . ,Wt ⊂ Rn be all
closed. Then for each i ≥ 0 we have

bi

( ⋃
1≤j≤t

Wj

)
≤

∑
J⊂{1,...,t}

bi−#(J )+1

(⋂
j∈J

Wj

)
, (2.1)

bi

( ⋂
1≤j≤t

Wj

)
≤

∑
J⊂{1,...,t}

bi+#(J )−1

(⋃
j∈J

Wj

)
. (2.2)

Proof. See for instance [12]. ut

2.1.4. Topology of sphere bundles . Given a closed and bounded semi-algebraic set B,
a semi-algebraic `-sphere bundle over B is given by a continuous semi-algebraic map
π : E → B such that for each b ∈ B, π−1(b) is homeomorphic to S` (the `-dimensional
unit sphere in R`+1).

We need the following proposition that relates the Betti numbers of B to those of E.

Proposition 2.2. Let B ⊂ Rk be a closed and bounded semi-algebraic set and let π :
E→ B be a semi-algebraic `-sphere bundle with base B. Then

b(E) ≤ 2b(B). (2.3)

Proof. For ` > 0, the assertion follows from the inequality

PE(t) ≤ PS`(t)PB(t), (2.4)

proved in [16, p. 252, (4.1)], where PX(t) =
∑
i≥0 bi(X)t

i denotes the Poincaré poly-
nomial of a topological space X, and the inequality holds coefficientwise. The inequality
(2.3) holds for the Betti numbers with coefficients in Q as well.

For ` = 0, inequality (2.4) is no longer true for the ordinary Betti numbers, as can
be observed from the example of the two-dimensional torus, which is a double cover
of the Klein bottle. But inequality (2.3) holds for Betti numbers with Z/2Z-coefficients.
This follows from the Leray–Serre spectral sequence of the projection map π , since the
homology with coefficients in a local system in this case is the same as the ordinary
homology (an elementary proof is given in [10]). ut

We now return to the proof of Theorem 1.5.

2.2. Homogeneous case

Notation 2. We denote by

• Qh the family of polynomials obtained by homogenizing Q with respect to the vari-
ables Y , i.e.

Qh = {Qh
| Q ∈ Q} ⊂ R[Y0, . . . , Y`, X1, . . . , Xk],

where Qh
= Y 2

0Q(Y1/Y0, . . . , Y`/Y0, X1, . . . , Xk),
• 8 a formula defining a P-closed semi-algebraic set V ,
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• Ah the semi-algebraic set

Ah =
⋃
Q∈Qh

{(y, x) | |y| = 1 ∧Q(y, x) ≤ 0 ∧8(x)}, (2.5)

• Wh the semi-algebraic set

Wh
=

⋂
Q∈Qh

{(y, x) | |y| = 1 ∧Q(y, x) ≤ 0 ∧8(x)}. (2.6)

We are going to prove two theorems:

Theorem 2.3.
b(Ah) ≤ `2(O((s + `+m)`d))m+k. (2.7)

Theorem 2.4.
b(Wh) ≤ `2(O((s + `+m)`d))m+k. (2.8)

We need a few preliminary results. Let

� = {ω ∈ Rm | |ω| = 1, ωi ≤ 0, 1 ≤ i ≤ m}. (2.9)

Let Q = {Q1, . . . ,Qm} and Qh = {Qh
1, . . . ,Q

h
m}. For ω ∈ � we denote by 〈ω,Qh〉 ∈

R[Y0, . . . , Y`, X1, . . . , Xk] the polynomial defined by

〈ω,Qh〉 =
m∑
i=1

ωiQ
h
i . (2.10)

For (ω, x) ∈ �×V , we denote by 〈ω,Qh〉(·, x) the quadratic form in Y0, . . . , Y` obtained
from 〈ω,Qh〉 by specializing Xi = xi , 1 ≤ i ≤ k.

Let B ⊂ �× S` × V be the semi-algebraic set defined by

B = {(ω, y, x) | ω ∈ �, y ∈ S`, x ∈ V, 〈ω,Qh〉(y, x) ≥ 0}. (2.11)

We denote by ϕ1 : B → F and ϕ2 : B → S` × V the two projection maps in the
diagram below.

B

F = �× V S` × V

V

zzttt
ttt

ttϕ1

��

$$JJJJJJJ
ϕ2

$$JJJ
JJJ

JJ

zzttttttt

The following key proposition was proved by Agrachev [1] in the unparametrized
situation, but as we see below it works in the parametrized case as well. Note that the
proposition is quite general and does not require quadratic dependence on the variables Y
(i.e. the polynomials Qi need not be quadratic in Y ). Here and in the rest of the paper the
phrase ‘homotopy equivalence’ refers to semi-algebraic homotopy equivalence.
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Proposition 2.5. The semi-algebraic set B is homotopy equivalent to Ah.

Proof. We first prove that ϕ2(B) = A
h. If (y, x) ∈ Ah, then there exists some i, 1 ≤ i ≤

m, such that (Qh
i (y, x) ≤ 0) ∧8(x). Then for ω = (−δ1i, . . . ,−δmi) (where δij = 1 if

i = j , and 0 otherwise), we see that (ω, y, x) ∈ B. Conversely, if (y, x) ∈ ϕ2(B), then
there exists ω ∈ � such that 〈ω,Qh〉(y, x) ≥ 0. Since ω ≤ 0 and ω 6= 0, we see that
(Qh

i (y, x) ≤ 0) ∧8(x) for some i, 1 ≤ i ≤ m. This shows that (y, x) ∈ Ah.
For (y, x) ∈ ϕ2(B), the fibre

ϕ−1
2 (y, x) = {(ω, y, x) | ω ∈ �, 〈ω,Qh〉(y, x) ≥ 0},

is a non-empty subset of � defined by a single linear inequality. Thus, each fibre is an
intersection of a non-empty closed convex cone with Sm−1. The proposition now follows
from the well-known Vietoris–Smale theorem [23] since by the above observation each
fibre is a closed, bounded and contractible semi-algebraic set. ut

We will use the following notation.

Notation 3. For a quadratic formQ ∈ R[Y0, . . . , Y`], we denote by index(Q) the number
of negative eigenvalues of the symmetric matrix of the corresponding bilinear form, i.e.
of the matrix M such that Q(y) = 〈My, y〉 for all y ∈ R`+1 (here 〈·, ·〉 denotes the
usual inner product). We also denote by λi(Q), 0 ≤ i ≤ `, the eigenvalues of Q in
non-decreasing order, i.e.

λ0(Q) ≤ λ1(Q) ≤ · · · ≤ λ`(Q).

For F = �× V as above we denote

Fj = {(ω, x) ∈ F | index(〈ω,Qh〉(·, x)) ≤ j}.

It is clear that each Fj is a closed semi-algebraic subset of F and we get a filtration of
the space F given by

F0 ⊂ F1 ⊂ · · · ⊂ F`+1 = F.

Lemma 2.6. The fibre of the map ϕ1 over a point (ω, x) ∈ Fj \ Fj−1 has the homotopy
type of a sphere of dimension `− j .

Proof. Denote by λi(ω, x) = λi(〈ω,Qh〉(·, x)) the eigenvalues of 〈ω,Qh〉(·, x) in in-
creasing order. First notice that for (ω, x) ∈ Fj \ Fj−1,

λ0(ω, x) ≤ · · · ≤ λj−1(ω, x) < 0.

Moreover, letting W0(〈ω,Qh〉(·, x)), . . . ,W`(〈ω,Qh〉(·, x)) be the coordinates with re-
spect to an orthonormal basis consisting of eigenvectors of 〈ω,Qh〉(·, x), we see that
ϕ−1

1 (ω, x) is the subset of S` = {ω} × S` × {x} defined by

∑̀
i=0

λi(ω, x)Wi(〈ω,Qh〉(·, x))2 ≥ 0,
∑̀
i=0

Wi(〈ω,Qh〉(·, x))2 = 1.
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Since λi(ω, x) < 0 for all 0 ≤ i < j, it follows that for (ω, x) ∈ Fj \ Fj−1, the fibre
ϕ−1

1 (ω, x) is homotopy equivalent to the (k − j)-dimensional sphere defined by setting

W0(〈ω,Qh〉(·, x)) = · · · = Wj−1(〈ω,Qh〉(·, x)) = 0

on the sphere defined by ∑̀
i=0

Wi(〈ω,Qh〉(·, x))2 = 1. ut

For each (ω, x) ∈ Fj \ Fj−1, let L+j (ω, x) ⊂ R`+1 denote the sum of the non-negative
eigenspaces of 〈ω,Qh〉(·, x). Since index(〈ω,Qh〉(·, x)) = j stays invariant as (ω, x)
varies over Fj \ Fj−1, L+j (ω, x) varies continuously with (ω, x).

We denote by C the semi-algebraic set defined as follows. We first define, for 0 ≤
j ≤ `+ 1,

Cj = {(ω, y, x) | (ω, x) ∈ Fj \ Fj−1, y ∈ L
+

j (ω, x), |y| = 1}, (2.12)

and finally we define

C =

`+1⋃
j=0

Cj . (2.13)

The following proposition relates the homotopy type of B to that of C.

Proposition 2.7. The semi-algebraic setC defined by (2.13) is homotopy equivalent toB.

Before proving the proposition we give an illustrative example.

Example 2.8. In this example m = 2, ` = 3, k = 0, and Qh = {Qh
1,Q

h
2} with

Qh
1 = −Y

2
0 − Y

2
1 − Y

2
2 , Qh

2 = Y
2
0 + 2Y 2

1 + 3Y 2
2 .

The set� is the part of the unit circle in the third quadrant of the plane, and F = � in this
case (since k = 0). In Fig. 1, we display the fibres of the map ϕ−1

1 (ω) ⊂ B for a sequence
of values of ω starting from (−1, 0) and ending with (0,−1). We also show the spheres,
C ∩ ϕ−1

1 (ω), of dimensions 0, 1, and 2, that these fibres retract to. At ω = (−1, 0), it
is easy to verify that index(〈ω,Qh〉) = 3, and the fibre ϕ−1

1 (ω) ⊂ B is empty. Starting
from ω = (− cos(arctan(1)),− sin(arctan(1))) we have index(〈ω,Qh〉) = 2, and the
fibre ϕ−1

1 (ω) is the union of two spherical caps, homotopy equivalent to S0. Starting from

Fig. 1. Type change: ∅ → S0
→ S1

→ S2. ∅ is not shown.
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ω = (− cos(arctan(1/2)),− sin(arctan(1/2)))we have index(〈ω,Qh〉) = 1, and the fibre
ϕ−1

1 (ω) is homotopy equivalent to S1. Finally, starting from ω = (− cos(arctan(1/3)),
− sin(arctan(1/3))), index(〈ω,Qh〉) = 0, and the fibre ϕ−1

1 (ω) stays equal to S2.

Proof of Proposition 2.7. We construct a deformation retraction of B to C, as follows.
Let

Bj =

`+1⋃
i=j

Ci ∪ ϕ
−1
1 (Fj−1), (2.14)

and note that B`+1 = B, . . . , B0 = C.
We construct a sequence of homotopy equivalences from Bj+1 to Bj for every j =

`, . . . , 0 as follows.
Let 0 ≤ j ≤ `. For each (ω, x) ∈ Fj \ Fj−1, we retract the fibre ϕ−1

1 (ω, x) to the
(`− j)-dimensional sphere, L+j (ω, x) ∩ S` as follows. Let

W0(〈ω,Qh〉(·, x)), . . . ,W`(〈ω,Qh〉(·, x))

be the coordinates with respect to an orthonormal basis consisting of eigenvectors

e0(〈ω,Qh〉(·, x)), . . . , e`(〈ω,Qh〉(·, x))

of 〈ω,Qh〉(·, x) corresponding to the non-decreasing sequence of eigenvalues. Then
ϕ−1

1 (ω, x) is the subset of S` defined by

∑̀
i=0

λi(ω, x)Wi(〈ω,Qh〉(·, x))2 ≥ 0,
∑̀
i=0

Wi(〈ω,Qh〉(·, x))2 = 1,

and L+j (ω, x) is defined byW0(〈ω,Qh〉(·, x)) = · · · = Wj−1(〈ω,Qh〉(·, x)) = 0. We re-

tract ϕ−1
1 (ω, x) to the (`−j)-dimensional sphere L+j (ω, x)∩S` by sending (w0, . . . , w`)

∈ ϕ−1
1 (ω, x) at time t to (tw0, . . . , twj−1, t

′wj , . . . , t
′w`), where 0 ≤ t ≤ 1 and

t ′ =

(
1− t2

∑j−1
i=0 w

2
i∑`

i=j w
2
i

)1/2

.

Notice that even though the local coordinatesW0(〈ω,Qh〉(·, x)), . . . ,W`(〈ωQh〉(·, x)) in
R`+1 with respect to the orthonormal basis (e0(〈ω,Qh〉(·, x)), . . . , e`(〈ω,Qh〉(·, x))) of
eigenvectors may not be uniquely defined at the point (ω, x) (for instance, if the quadratic
form 〈ω,Qh〉(·, x) has multiple eigenvalues), the retraction is still well defined since it
only depends on the decomposition of R`+1 into orthogonal complementary subspaces
span(e0, . . . , ej−1) and span(ej , . . . , e`) which is well defined.

We can thus retract simultaneously all fibres over Fj \ Fj−1 continuously, to obtain
Bj ⊂ B, which is moreover homotopy equivalent to Bj+1. ut

Notice that the semi-algebraic set Cj is an S`−j -bundle over Fj \Fj−1 under the map ϕ1,
and C is the union of these sphere bundles. Since we have good bounds on the number
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as well as the degrees of polynomials used to define the bases, Fj \ Fj−1, we can bound
the Betti numbers of each Cj using Proposition 2.2. However, the Cj could be possibly
glued to each other in complicated ways, and thus knowing upper bounds on the Betti
numbers of each Cj does not immediately produce a bound on the Betti numbers of C.
In order to get around this difficulty, we consider certain closed subsets F ′j of F , where
each F ′j is an infinitesimal deformation of Fj \Fj−1, and form the base of an S`−j -bundle
C′j . Additionally, the C′j are glued to each other along sphere bundles over F ′j ∩ F

′

j−1,
and their union, C′, is homotopy equivalent to C. Since the C′j are closed and bounded
semi-algebraic sets, and we have good bounds on their Betti numbers as well as the Betti
numbers of their non-empty intersections, we can use the Mayer–Vietoris inequalities
(Proposition 2.1) to bound the Betti numbers of C′, which in turn are equal to the Betti
numbers of C.

We now make precise the argument outlined above.
Let 3 ∈ R[Z1, . . . , Zm, X1, . . . , Xk, T ] be the polynomial defined by

3 = det(T · Id`+1 −MZ·Qh) = T
`+1
+ C`T

`
+ · · · + C0,

where Z ·Qh =
∑m
i=1 ZiQ

h
i , and each Ci ∈ R[Z1, . . . , Zm, X1, . . . , Xk].

Note that for (ω, x) ∈ � × Rk , the polynomial 3(ω, x, T ), being the charac-
teristic polynomial of a real symmetric matrix, has all its roots real. It then follows
from Descartes’ rule of signs (see for instance [12]) that for each (ω, x) ∈ � × Rk ,
index(〈ω,Qh〉(·, x)) is determined by the sign vector

(sign(C`(ω, x)), . . . , sign(C0(ω, x))).

More precisely, the number of sign variations in the sequence

sign(C0(ω, x)), . . . , (−1)isign(Ci(ω, x)), . . . , (−1)`sign(C`(ω, x)),+1

is equal to index(〈ω,Qh〉(·, x)). Hence, denoting

C = {C0, . . . , C`} ⊂ R[Z1, . . . , Zm, X1, . . . , Xk], (2.15)

we have

Lemma 2.9. Fj is the intersection of F with a C-closed semi-algebraic set Dj ⊂ Rm+k ,
for each 0 ≤ j ≤ `+ 1. ut

Notation 4. Let
0 < ε0 � · · · � ε`+1 � 1

be infinitesimals. For 0 ≤ j ≤ `+ 1, we denote by Rj the field R〈ε`+1 . . . εj 〉.
Let

C′j = {P ± εj | P ∈ C}.

Given ρ ∈ Sign(C), and 0 ≤ j ≤ ` + 1, we denote by R(ρcj ) ⊂ Rm+kj the C′j -semi-
algebraic set defined by the formula ρcj obtained by taking the conjunction of
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• −εj ≤ P ≤ εj for each P ∈ C such that ρ(P ) = 0,
• P ≥ −εj for each P ∈ C such that ρ(P ) = 1,
• P ≤ εj for each P ∈ C such that ρ(P ) = −1.

Similarly, we denote by R(ρoj ) ⊂ Rm+kj the C′j -semi-algebraic set defined by the formula
ρo obtained by taking the conjunction of

• −εj < P < εj for each P ∈ C such that ρ(P ) = 0,
• P > −εj for each P ∈ C such that ρ(P ) = 1,
• P < εj for each P ∈ C such that ρ(P ) = −1.

Since the semi-algebraic sets Dj defined above in Lemma 2.9 are C-semi-algebraic,
each Dj is defined by a disjunction of sign conditions on C. More precisely, for each
0 ≤ j ≤ `+ 1 let

Dj =
⋃
ρ∈6j

R(ρ),

where 6j ⊂ Sign(C).
For each 0 ≤ j ≤ `+ 1, let

Doj =
⋃
ρ∈6j

R(ρoj ), D′j = Ext(Dcj ,Rj−1) \D
o
j−1,

Dcj =
⋃
ρ∈6j

R(ρcj ), F ′j = Ext(F,Rj−1) ∩D
′

j ,

where we set Do
−1 = ∅.

Lemma 2.10. For 0 ≤ j + 1 < i ≤ `+ 1,

Ext(D′i,Rj−1) ∩D
′

j = ∅.

Proof. The inclusions

Dj−1 ⊂ Dj ⊂ Di−1 ⊂ Di,

Doj−1 ⊂ Ext(Dcj ,Rj−1) ⊂ Ext(Doi−1,Rj−1) ⊂ Ext(Dci ,Rj−1)

follow directly from the definitions of the sets

Di,Dj ,Dj−1,D
c
i ,D

c
j ,D

o
i−1,D

o
j−1,

and the fact that
εi � εi−1 � εj � εj−1.

It follows immediately that

D′i = Ext(Dci ,Rj−1) \ Ext(Doi−1,Rj−1)

is disjoint from Ext(Dcj ,Rj−1), and hence also from D′j . ut

We now associate to each F ′j an S`−j -bundle as follows.
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For each (ω, x) ∈ F ′′j = Ext(Fj ,Rj−2)\F
′

j−1, letL+j (ω, x) ⊂ R`+1
j−2 denote the sum of

the non-negative eigenspaces of 〈ω,Qh〉(·, x) (i.e. L+j (ω, x) is the largest linear subspace

of R`+1
j−2 on which 〈ω,Qh〉(·, x) is positive semi-definite). Since index(〈ω,Qh〉(·, x)) = j

stays invariant as (ω, x) varies over F ′′j , L+j (ω, x) varies continuously with (ω, x).
Let

λ0(ω, x) ≤ · · · ≤ λj−1(ω, x) < 0 ≤ λj (ω, x) ≤ · · · ≤ λ`(ω, x)

be the eigenvalues of 〈ω,Qh〉(·, x) for (ω, x) ∈ F ′′j . There is a continuous extension of the
map sending (ω, x) 7→ L+j (ω, x) to (ω, x) ∈ Ext(F ′j ,Rj−2). To see this observe that for
(ω, x) ∈ F ′′j the block of the first j (negative) eigenvalues, λ0(ω, x) ≤ · · · ≤ λj−1(ω, x),
and hence the sum of the eigenspaces corresponding to them can be extended continu-
ously to any infinitesimal neighbourhood of F ′′j , and in particular to Ext(F ′j ,Rj−2). Now
L+j (ω, x) is the orthogonal complement of the sum of the eigenspaces corresponding to
the block of negative eigenvalues, λ0(ω, x) ≤ · · · ≤ λj−1(ω, x).

We denote by C′j ⊂ F
′

j × R`+1
j−1 the semi-algebraic set defined by

C′j = {(ω, y; x) | (ω, x) ∈ F
′

j , y ∈ L
+

j (ω, x), |y| = 1}.

Abusing notation, we denote by ϕ1 the projection C′j → F ′j , which makes C′j the total
space of an S`−j -bundle over F ′j .

The following proposition, expressing in precise terms the fact that C′j ∩ C
′

j−1 is an
S`−j -bundle over Fj ∩ F ′j−1 under the map ϕ1, follows directly from the definition of the
sets C′j and F ′j .

Proposition 2.11. For every j from ` to 1, C′j−1 ∩Ext(C′j ,Rj−2) is an S`−j -bundle over
Ext(F ′j ,Rj−2) ∩ F

′

j−1 under the map ϕ1. ut

We also have the following.

Proposition 2.12. The semi-algebraic set

C′ =

`+1⋃
j=0

Ext(C′j ,R0)

is homotopy equivalent to Ext(C,R0).

Proof. First observe that C = limε`+1 C
′ where C is the semi-algebraic set defined in

(2.13) above.
Now let

C0 = lim
ε0
C′, Ci = lim

εi
Ci−1, 1 ≤ i ≤ `+ 1.

Notice that eachCi is a closed and bounded semi-algebraic set. Also, letCi−1,t ⊂ R`+ki−1 be
the semi-algebraic set obtained by replacing εi in the definition of Ci−1 by the variable t .
Then there exists t0 > 0 such that Ci−1,t1 ⊂ Ci−1,t2 for all 0 < t1 < t2 ≤ t0.
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It follows (see [12, Lemma 16.17]) that for each i, 0 ≤ i ≤ ` + 1, Ext(Ci,Ri) is
homotopy equivalent to Ci−1 (where C−1 = C

′).
The proposition is now a consequence of Proposition 2.7. ut

Proof of Theorem 2.3. In light of Propositions 2.7 and 2.12, it suffices to bound the Betti
numbers of the semi-algebraic set C′. Now,

C′ =

`+1⋃
j=0

Ext(C′j ,R0).

By (2.1) it suffices to bound the Betti numbers of the various intersections amongst
the sets Ext(C′j ,R0)’s. However, by Lemma 2.10, the only non-empty intersections among
Ext(C′j ,R0)’s are of the form Ext(C′j ,R0) ∩ Ext(C′j+1,R0). Using Propositions 2.2 and
2.11 we find that b(C′j ) (resp. b(C′j∩C

′

j+1)) is bounded by 2b(F ′j ) (resp. 2b(Ext(F ′j ,R0)∩

Ext(F ′j+1,R0))).
Finally, each F ′j (resp. Ext(F ′j ,R0) ∩ Ext(F ′j+1,R0)) is a bounded P ′j -closed semi-

algebraic set, where P ′j = R[Z1, . . . , Zm, X1, . . . , Xk] is defined by

P ′j = P ∪ C
′

j ∪

m⋃
i=1

{Zi}.

Note that

deg(P ) ≤

{
d, P ∈ P,
d(`+ 1), P ∈ C′j ,

#(P) = s, #(C′j ) = 2(`+ 1).

Now applying Theorem 1.1 we obtain

b(F ′j ), b(Ext(F ′j ,R0) ∩ Ext(F ′j+1,R0)) ≤ (O((s + `+m)`d))
m+k. (2.16)

Applying Proposition 2.2 and (2.16) we immediately obtain

b(C′j ), b(Ext(C′j ,R0) ∩ Ext(C′j+1,R0)) ≤ (O((s + `+m)`d))
m+k. (2.17)

Finally, using inequality (2.1) and Lemma 2.10 we get

b(C′) = b
(⋃̀
j=0

C′j

)
≤ `2(O((s + `+m)`d))m+k. (2.18)

The theorem now follows from Propositions 2.12, 2.5 and 2.7. ut

Proof of Theorem 2.4. Apply (2.2) together with Theorem 2.3. ut
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2.3. General case

We now prove the general version of Theorem 2.3. We follow Notation 2.

Theorem 2.13. Let W ⊂ R` × Rk be a semi-algebraic set defined by

W =
⋂
Q∈Q
{(y, x) | Q(y, x) ≤ 0 ∧8(x)},

where 8(x) is a P-closed formula defining a bounded P-closed semi-algebraic set V
⊂ Rk . Then

b(W) ≤ `2(O((s + `+m)`d))m+k. (2.19)

Proof. Let 1 � ε > 0 be an infinitesimal and let B`(0, 1/ε) denote the closed ball in
R〈ε〉` centred at the origin and of radius 1/ε.

Let Wε ⊂ R`+k be the set defined by

Wε = W ∩ (B`(0, 1/ε)× Rk).

It follows from the local conical structure of semi-algebraic sets at infinity [15, Theo-
rem 9.3.6] that Wε has the same homotopy type as Ext(W,R〈ε〉). Let

Q0 = ε
2(Y 2

1 + · · · + Y
2
` )− 1,

and Wh
ε ⊂ S` × R〈ε〉k be the semi-algebraic set defined by

Wh
ε =

m⋂
i=0

{(y, x) | |y| = 1 ∧Qh
i (y, x) ≤ 0 ∧8(x)}.

It is clear thatWh
ε is a union of two disjoint, closed and bounded semi-algebraic sets, each

homeomorphic to Wε. Hence, for every i = 0, . . . , k + `− 1,

bi(W
h
ε ) = 2bi(Wε) = 2bi(W). (2.20)

The theorem is proved by applying Theorem 2.4 to Wh
ε . ut

2.4. Proof of Theorem 1.5

We are now in a position to prove Theorem 1.5. We first need a few preliminary results.
Given a list of polynomials A = {A1, . . . , At } with coefficients in R, we introduce t

infinitesimals, 1� δ1 � · · · � δt > 0.
We define A>i = {Ai+1, . . . , At } and

6i = {Ai = 0, Ai = δi, Ai = −δi, Ai ≥ 2δi, Ai ≤ −2δi},

6≤i =
{
9

∣∣∣ 9 = ∧
j=1,...,i

9i, 9i ∈ 6i

}
.

If now 8 is any A-closed formula, we denote by Ri(8) the extension of R(8) to
R〈δ1, . . . , δi〉

k . For 9 ∈ 6≤i , we denote by Ri(9) the realization of 9 and by b(9)
the sum of the Betti numbers of Ri(9) .
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Proposition 2.14. For every A-closed formula 8,

b(8) ≤
∑
9∈6≤t

b(9).

Proof. See [12, Proposition 7.39]. ut

Proof of Theorem 1.5. First note that we can assume (by adding to Q an extra quadratic
inequality if necessary) that the set S is bounded.

Denoting P = {P1, . . . , Ps}, define B = {B1, . . . , Bs+m}, where

Bi =

{
Qi, 1 ≤ i ≤ m,
Pi−m, m+ 1 ≤ i ≤ m+ s.

It follows from Proposition 2.14 that in order to bound b(S), it suffices to bound b(T ),
where T is defined by

s+m∧
i=1

B2
i (B

2
i − δ

2
i )

2(B2
i − 4δ2

i ) ≥ 0.

We now introduce m new variables, Z1, . . . , Zm and let

A = {A1, . . . , As+m} ⊂ R[Y1, . . . , Y`, X1, . . . , Xk, Z1, . . . , Zm]

be defined by

Ai =

{
Zi, 1 ≤ i ≤ m,
Pi−m, m+ 1 ≤ i ≤ m+ s.

Consider the semi-algebraic set T ′ ⊂ Rm+k+l defined by
s+m∧
i=1

A2
i (A

2
i − δ

2
i )

2(A2
i − 4δ2

i ) ≥ 0 ∧
m∧
i=1

(Zi −Qi = 0).

Clearly, T is homeomorphic to T ′. Notice that the number of polynomials in the definition
of T ′, which depend only on X and Z is s +m, and the degrees of these polynomials are
bounded by 6d . The number of polynomials depending on X, Y and Z is m and these are
of degree at most 2 in Y and at most d in the remaining variables. Thus, we can apply
Theorem 2.13 to obtain

b(S) ≤ b(T ′) ≤ `2(O(s + `+m)`d)k+2m.

This proves the theorem. ut

Proof of Corollary 1.6. Introduce k new variables, Z1, . . . , Zk , and let Q̃i = Zi −Qi for
1 ≤ i ≤ k. Define the semi-algebraic set S̃ ⊂ R`+k by

S̃ =
{
(y, x)

∣∣∣ k∧
i=1

Q̃i(y, x) = 0 ∧8(x)
}
.

It is clear that S̃ is semi-algebraically homeomorphic to S. Applying Theorem 1.5 to S̃,
we obtain the desired bound. ut
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3. Algorithm for computing the Euler–Poincaré characteristic

We first need a few preliminary definitions and results.

3.1. Some algorithmic and mathematical preliminaries

Recall that for a closed and bounded semi-algebraic set S ⊂ Rk , the Euler–Poincaré
characteristic of S, denoted by χ(S), is defined by

χ(S) =

k∑
i=0

(−1)ibi(S).

Moreover, we have the following additivity property which is classical.

Proposition 3.1. Let X1 and X2 be closed and bounded semi-algebraic sets. Then

χ(X1 ∩X2) = χ(X1)+ χ(X2)− χ(X1 ∪X2).

Recall also that for a locally closed semi-algebraic set S, the Borel–Moore Euler–Poincaré
characteristic of S, denoted by χBM(S), is defined by

χBM(S) =

k∑
i=0

(−1)i bBMi (S),

where bBMi (S) denotes the dimension of the i-th Borel–Moore homology group
HBMi (S,Z/2Z) of S. Note that χBM(S) = χ(S) for S closed and bounded.

Note that χBM(S) has the following classically known (see e.g. [12] for a proof)
additivity property.

Proposition 3.2. Let X1 and X2 be locally closed semi-algebraic sets such that X1 ∩X2
= ∅. Then

χBM(X1 ∪X2) = χ
BM(X1)+ χ

BM(X2),

provided that X1 ∪X2 is locally closed as well.

Let Z ⊂ Rk and Q ∈ R[X1, . . . , Xk]. We define

R(Q = 0, Z) = {x ∈ Z | Q(x) = 0},
R(Q > 0, Z) = {x ∈ Z | Q(x) > 0},
R(Q < 0, Z) = {x ∈ Z | Q(x) < 0}.

Corollary 3.3. Let Z ⊂ Rk be a locally closed semi-algebraic set. Then

χBM(Z) = χBM(R(Q = 0, Z))+ χBM(R(Q > 0, Z))+ χBM(R(Q < 0, Z)).
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Notation 5. Let Z ⊂ Rk be a locally closed semi-algebraic set and letA be a finite subset
of R[X1, . . . , Xk]. The realization of the sign condition ρ ∈ {0, 1,−1}A on Z is

R(ρ, Z) =
{
x ∈ Z

∣∣∣ ∧
A∈A

sign(A(x)) = ρ(A)
}
,

and its Borel–Moore Euler–Poincaré characteristic is denoted χBM(ρ, Z).
We denote by Sign(A, Z) the list of ρ ∈ {0, 1,−1}A such thatR(ρ, Z) is non-empty.

We denote by χBM(A, Z) the list of the Euler–Poincaré characteristics χBM(ρ, Z) =
χBM(R(ρ, Z)) for ρ ∈ Sign(A, Z).

Finally, given two finite families of polynomials, A ⊂ A′, and ρ ∈ {0, 1,−1}A,
ρ′ ∈ {0, 1,−1}A

′

, we define ρ ≺ ρ′ by: ρ(P ) = ρ′(P ) for all P ∈ A.

We will use the following algorithm for computing the list χBM(A, Z) described
in [12]. We recall here the input, output and complexity of the algorithm.

Algorithm 1 (Euler–Poincaré characteristic of sign conditions).

Input: A finite list A = {A1, . . . , At } of polynomials in R[X1, . . . , Xk].
Output: The list χBM(A).

Complexity analysis. Let d be a bound on the degrees of the polynomials in A, and
t = #(A). The number of arithmetic operations is bounded by

tk+1O(d)k + tk((k log2(s)+ k log2(d))d)
O(k).

The algorithm also involves the inversion of matrices of size tkO(d)k with integer coeffi-
cients.

3.2. Algorithms for the Euler–Poincaré characteristic

We first deal with the special case of polynomials which are homogeneous and of degree
two in the variables Y0, . . . , Y`, and in this case we describe algorithms (Algorithms 2
and 3 below) for computing the Euler–Poincaré characteristic of the sets Ah and Wh

respectively. We then use Algorithm 3 to derive algorithms for computing the Euler–
Poincaré characteristic in the general case (Algorithms 4 and 5 below).

3.2.1. Homogeneous quadratic polynomials .

Algorithm 2 (Euler–Poincaré characteristic, homogeneous union case).

Input:

• a family of polynomials, Qh ⊂ R[Y0, . . . , Y`, X1, . . . , Xk], with degY (Q) ≤ 2,
degX(Q) ≤ d, Q ∈ Qh, #(Qh) = m, homogeneous with respect to Y ,
• another family, P ⊂ R[X1, . . . , Xk], with degX(P ) ≤ d , P ∈ P , #(P) = s,
• a formula 8 defining a bounded P-closed semi-algebraic set V .
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Output: the Euler–Poincaré characteristic χ(Ah), where Ah is the semi-algebraic set
defined by

Ah =
⋃
Q∈Qh

{(y, x) | |y| = 1 ∧Q(y, x) ≤ 0 ∧8(x)}.

Procedure:

Step 1. Let Z = (Z1, . . . , Zm) be variables and let M be the symmetric matrix with
entries in R[Z1, . . . , Zm, X1, . . . , Xk] associated to the quadratic form 〈Z,Qh〉. Obtain
Ci ∈ R[Z1, . . . , Zm, X1, . . . , Xk] by computing the determinant

det(T · Id`+1 −M) = T
`+1
+ C`T

`
+ · · · + C0.

Step 2. Compute χBM(C, F ) as follows. Call Algorithm 1 with input C′ = C ∪ P . Com-
pute from the output the list χBM(C, F ), using the additivity property of the Borel–Moore
Euler–Poincaré characteristic (Proposition 3.2). For each ρ ∈ {0,+1,−1}C such that
there exists ρ′ ∈ Sign(C′, F ) with ρ ≺ ρ′ (see Notation 5) and ρ′(Zj ) ∈ {0,−1} for
1 ≤ j ≤ m, compute

χBM(ρ, F ) =
∑

ρ′,ρ≺ρ′,
ρ′(Zj )∈{0,−1}, 1≤j≤s

χBM(ρ′, F ).

Step 3. Output

χ(Ah) =
∑

ρ∈Sign(C,F )
χBM(R(ρ, F )) · (1+ (−1)k−n(ρ)),

where n(ρ) denotes the number of sign variations in the sequence

ρ(C0), . . . , (−1)iρ(Ci), . . . , (−1)`ρ(C`),+1.

Proof of correctness. It follows from Lemma 2.6 that for any ρ ∈ Sign(C, F ),

χBM(ϕ−1
1 (R(ρ))) = χBM(R(ρ)) · (1+ (−1)k−n(ρ)).

Also, by virtue of Proposition 2.5 we have

χBM(B) = χ(Ah), where B =
⋃

ρ∈Sign(C,F )
ϕ−1(R(ρ)).

The correctness of the algorithm is now a consequence of the additivity property of the
Borel–Moore Euler–Poincaré characteristic (Proposition 3.2) and the correctness of Al-
gorithm 1.

Complexity analysis. The complexity of the algorithm is (`smd)O(m+k) using the com-
plexity of Algorithm 1.

We are now in a position to describe the algorithm for computing the Euler–Poincaré
characteristic in the homogeneous intersection case.
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Algorithm 3 (Euler–Poincaré characteristic, homogeneous intersection case).

Input:
• a family of polynomials, Qh = {Qh

1, . . . ,Q
h
m} ⊂ R[Y0, . . . , Y`, X1, . . . , Xk], with

degY (Q) ≤ 2, degX(Q) ≤ d, Q ∈ Qh, homogeneous with respect to Y ,
• another family, P ⊂ R[X1, . . . , Xk], with degX(P ) ≤ d , P ∈ P , #(P) = s,
• a formula 8 defining a bounded P-closed semi-algebraic set V .

Output: the Euler–Poincaré characteristic χ(Wh), where Wh is the semi-algebraic set
defined by

Wh
=

⋂
Q∈Qh

{(y, x) | |y| = 1 ∧Q(y, x) ≤ 0 ∧8(x)}.

Procedure:

Step 1. For each subset J ⊂ [m] compute χ(AJ ) using Algorithm 2, where

AJ =
⋃
Q∈J

{(y, x) | |y| = 1 ∧Q(y, x) ≤ 0 ∧8(x)}.

Step 2. Output
χ(Wh) =

∑
J⊂Q

(−1)#(J )+1χ(AJ ). (3.1)

Proof of correctness. First note that (3.1) can be easily deduced from Proposition 3.1 by
induction. The correctness of the algorithm is now a consequence of the correctness of
Algorithm 2.

Complexity analysis. There are 2m calls to Algorithm 2. Using the complexity analysis
of Algorithm 2, the complexity of the algorithm is bounded by (`smd)O(m+k).

3.2.2. The case of intersections

Algorithm 4 (Euler–Poincaré characteristic, intersection case).

Input:
• a family of polynomials,Q⊂R[Y1, . . . , Y`, X1, . . . , Xk], with degY (Q)≤2, degX(Q)
≤ d , Q ∈ Q, #(Q) = m,
• another family of polynomials, P ⊂ R[X1, . . . , Xk], with degX(Q) ≤ d , P ∈ P ,

#(P) = s,
• a P-closed formula 8 defining a P-closed semi-algebraic set V ⊂ Rk .

Output: the Euler–Poincaré characteristic χ(W), where W is the semi-algebraic set de-
fined by

W =
⋂
Q∈Q
{(y, x) | Q(y, x) ≤ 0 ∧8(x)}.

Procedure:

Step 1. Replace Qh by Qh ∪ {Qh
0} with Q0 = ε

2(Y 2
1 + · · · + Y

2
` )− 1. Define

Wh
ε =

⋂
Qh∈Qh

{(y, x) | |y| = 1 ∧Qh(y, x) ≤ 0 ∧8(x)}.
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Step 2. Using Algorithm 3 compute χ(Wh
ε ).

Step 3. Output χ(W) = 1
2χ(W

h
ε ).

Proof of correctness. The correctness of Algorithm 4 follows from (2.20) and the cor-
rectness of Algorithm 3.

Complexity analysis. The complexity of the algorithm is clearly (`smd)O(m+k) arith-
metic operations in R〈ε〉 from the complexity analysis of Algorithm 3. Moreover the
maximum degree in ε is bounded by (`md)O(m+k). Finally, the complexity of the algo-
rithm is (`smd)O(m+k) arithmetic operations in R.

3.2.3. The case of a Q ∪ P-closed semi-algebraic set . Since we want to deal with a
general Q ∪ P-closed semi-algebraic set, we shall need a property similar to Corollary
3.3 in a context where all the sets considered are closed and bounded.

We need a few preliminary definitions and results. Let Q = {Q1, . . . ,Qm} and

0 < εm � · · · � ε1 � ε0 � 1

be infinitesimals. For every j ∈ [m] = {1, . . . , m}, denote Rj = R〈ε0, . . . , εj 〉. Let

90
i = (Qi = 0),

91
i = (Qi ≥ εi), 9−1

i = (Qi ≤ −εi),

92
i = (Qi = εi), 9−2

i = (Qi = −εi).

The following lemma plays a role similar to Corollary 3.3.

Lemma 3.4. Let S be a Q ∪ P-closed bounded semi-algebraic set. For every j ∈ [m],

χ(S) = χ(R(90
j , S))+χ(R(9

1
j , S))+χ(R(9

−1
j , S))−χ(R(92

j , S))−χ(R(9
−2
j , S)).

Proof. This follows from the additivity property of the Euler–Poincaré characteristic, and
the fact that

χ(R(90
j , S)) = χ({(x, y) ∈ S | −εj ≤ Qj (x, y) ≤ εj }),

since R(90
j , S) is a deformation retract of {(x, y) ∈ S | −εj ≤ Qj (x, y) ≤ εj }. ut

We define 6m = {−2,−1, 0, 1, 2}[m]. Given ρ ∈ 6m we define

R(ρ, S) =
{
(x, y) ∈ Ext(S,Rm)

∣∣∣ m∧
i=1

9
ρ(i)
i (x, y)

}
.

For any ρ ∈ 6m and σ a weak sign condition onQ∪P , we say that ρ ≺ σ if for each
i ∈ [m], sign(ρ(i)) ∈ σ(Qi) and R(σ ) ⊂ S.

Notice that an alternative description of R(ρ, S) is given by

R(ρ, S) =
{
(x, y) ∈ R`+km

∣∣∣ m∧
i=1

9
ρ(i)
i (x, y) ∧

(∨
ρ≺σ

∧
P∈P

(sign(P (x) ∈ σ(P ))
)}
. (3.2)
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Algorithm 5 (Euler–Poincaré, the general case).

Input:

• a family of polynomials, Q = {Q1, . . . ,Qm} ⊂ R[Y1, . . . , Y`, X1, . . . , Xk], with
degY (Q) ≤ 2, degX(Q) ≤ d,
• another family of polynomials, P ⊂ R[X1, . . . , Xk], with degX(P ) ≤ d, P ∈ P ,

#(P) = s,
• a Q ∪ P-closed formula defining a Q ∪ P-closed semi-algebraic set S.

Output: the Euler–Poincaré characteristic χ(S).

Procedure:

Step 1. Define Q0 = ε
2
0(Y

2
1 + · · · + Y

2
` ) − 1, P0 = ε

2
0(X

2
1 + · · · + X

2
k) − 1. Replace P

by P ∪ {P0} and S by R(S,R〈ε〉) ∩ (R(Q0 ≤ 0)×R(P0 ≤ 0)).

Step 2. For every generalized sign condition ρ ∈ 6m compute χ(R(ρ, S)) using 3.2 and
Algorithm 4.

Step 3. Denoting n(ρ) = #({i ∈ [m] | |ρ(i)| = 2}), output

χ(S) =
∑
ρ

(−1)n(ρ)χ(R(ρ, S)).

Proof of correctness. It follows from the local conic structure of semi-algebraic sets at
infinity [15, Theorem 9.3.6] that replacing S byR(S,R〈ε〉)∩ (R(Q0 ≤ 0)×R(P0 ≤ 0))
does not modify the Euler–Poincaré characteristic. The proof can now be reduced to the
following lemma.

Lemma 3.5. Let S be aQ∪P-closed and bounded semi-algebraic set. Denoting n(ρ) =
#({i ∈ [m] | |ρ(i)| = 2}) for ρ ∈ 6m, we have

χ(S) =
∑
ρ∈6m

(−1)n(ρ)χ(R(ρ, S)).

Proof. The proof is by induction on m. The induction hypothesis Hj states that denoting
n(ρ) = #({i ∈ [j ] | |ρ(i)| = 2}) for ρ ∈ 6j , we have

χ(S) =
∑
ρ∈6j

(−1)n(ρ)χ(R(ρ, S)).

The base case H1 is exactly Lemma 3.4 applied to S. Suppose now that Hj−1 holds for
some 1 < j ≤ m, i.e.

χ(S) =
∑

ρ∈6j−1

(−1)n(ρ)χ(R(ρ, S)) (3.3)

and let us prove Hj . Define Qj = Q ∪ {Qi ± εi | i = 1, . . . , j}.
For every ρ ∈ 6j−1, R(ρ, S) is a Qj−1 ∪ P-closed semi-algebraic set. Denoting by

ρi ∈ 6j , for ρ ∈ 6j−1, i ∈ {−2,−1, 0, 1, 2}, the generalized sign condition defined by
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ρi(u) = ρ(u), u = 1, . . . , j − 1, ρi(j) = i, notice that R(ρi, S) = R(9ij ,R(ρ, S)).
Applying Lemma 3.4 to R(ρ, S), we obtain

χ(R(ρ, S)) = χ(R(ρ0, S))+ χ(R(ρ1, S))+ χ(R(ρ−1, S))

− χ(R(ρ2, S))− χ(R(ρ−2, S)).

Substituting each χ(R(ρ, S)) by its value in (3.3) one getsHj , since every element of 6j
is of the form ρi for some ρ ∈ 6j−1, i ∈ {−2,−1, 0, 1, 2}. ut

Complexity analysis. There are 5m calls to Algorithm 4. The complexity of the algorithm
is clearly (`smd)O(m+k) arithmetic operations in Rm from the complexity analysis of
Algorithm 4. Moreover the maximum degree in ε0, . . . , εm is bounded by (`md)O(m+k).
Finally, the complexity of the algorithm is (`smd)O(m(m+k)) arithmetic operations in R.

Proof of Theorem 1.9. The proof of correctness and the complexity analysis of Algo-
rithm 5 also proves Theorem 1.9. ut
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