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Abstract. We deal with maximum principles for a class of linear, degenerate elliptic differential
operators of the second order. In particular the Weak and Strong Maximum Principles are shown to
hold for this class of operators in bounded domains, as well as a Hopf type lemma, under suitable
hypothesis on the degeneracy set of the operator. We derive, as consequences of these principles,
some generalized maximum principles and an a priori estimate on the solutions of the Dirichlet
problem for the linear equation. A good example of such an operator is the Grushin operator on
Rd+k , to which we devote particular attention. As an application of these tools in the degenerate
elliptic setting, we prove a partial symmetry result for classical solutions of semilinear problems
on bounded, symmetric and suitably convex domains, which is a generalization of the result of
Gidas–Ni–Nirenberg [12], [13], and a nonexistence result for classical solutions of semilinear equa-
tions with subcritical growth defined on the whole space, which is a generalization of the result of
Gidas–Spruck [14] and Chen–Li [6]. We use the method of moving planes, implemented just in the
directions parallel to the degeneracy set of the Grushin operator.

Keywords. Maximum principles, degenerate elliptic linear differential operators, Grushin opera-
tor, moving planes

1. Introduction

Maximum principles are a well known and useful tool in the study of partial differen-
tial equations, particularly for equations of elliptic type. In fact, the presence of suitable
maximum principles plays a key role in, for example, proving uniqueness theorems and
symmetry results for classical solutions of boundary value problems, in obtaining a priori
estimates for solutions of differential inequalities and in obtaining nonexistence results
for nontrivial, classical solutions of equations defined on the whole space.

The point of this paper is to extend some of these important results from the uniformly
elliptic setting to a wider class of linear differential operators of the second order, defined
on a bounded domain � ⊂ RN , focusing our attention on classical solutions.

Indeed, we will treat operators, which we will call degenerate elliptic, that may not be
elliptic on the whole of � but may degenerate on suitable subsets of the domain having
no interior points.
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The idea we follow is to apply classical arguments and techniques, usually employed
for uniformly elliptic operators as one can see in [16], to treat also the degenerate elliptic
setting. The main problem, then, is how to deal with the degeneracy set of the differential
operator. This is achieved following the idea of Agmon–Nirenberg–Protter [1], by requir-
ing a uniform ellipticity condition for the operator L throughout its domain in just one
fixed direction and assuming suitable hypothesis on the degeneracy set 6 of the operator,
rather then imposing conditions on the regularity of its coefficients in order to regard it
as a Hörmander operator, as done in Bony [5]. See conditions (Eξ ) and (6) in Section 2,
and also Remark 2.4.

Section 2 of this paper is devoted to the extension of classical forms of the maxi-
mum principles, such as the Weak and the Strong Maximum Principles and a Hopf type
lemma for noncharacteristic points of the boundary of the domain of the equation, from
the uniformly elliptic to the degenerate elliptic setting.

In Section 3 we derive some a priori estimates on the solutions of Dirichlet problems
for linear degenerate elliptic equations of the second order on bounded domains from
the results of Section 2, which in turn yield a uniqueness result for such problems. We
also study some generalized maximum principles, which are extensions of the analogous
results for uniformly elliptic linear operators. The techniques used here are, once again,
essentially the same as in the uniformly elliptic setting, possibly after the use of a suit-
able elliptic regularization of the operator (cf. Theorem 3.2). This classical idea has been
used with much success for second order linear differential operators having nonnegative
characteristic form, as can be seen in Oleı̆nik–Radkevich [24].

Our interest in maximum principles for degenerate elliptic linear operators of the sec-
ond order comes from our interest in the Grushin operator, defined on Rd+k by setting
Gγ u = |y|

2γ1xu + 1yu. Such an operator arises in problems of embedding manifolds
with nonnegative curvature. In addition, when d, k = 1, it is also connected with tran-
sonic fluid flow in the nonhyperbolic part of the domain (see Frankl’ [9]). Notice also
that, when γ ∈ N, the Grushin operator is also related to the sub-Laplacian on a group of
Heisenberg type (see also [3] and references therein).

We treat the case of the Grushin operator in more detail in Section 4. There we show
that any linear operator of the second order having Gγ as principal part satisfies both the
Weak and the Strong Maximum Principle on �, if the 0th order term is nonpositive on
the domain. We also prove a refined Hopf’s Lemma which, in the case of the Grushin
operator, covers some of the cases when the boundary of the domain is characteristic.

It is known that, in general, boundary value problems involving linear second order
differential operators having nonnegative characteristic form may not admit any classical
solution (see for instance §6.6 of [15]), while often one can find a suitably defined weak
solution, which belongs to an appropriate weighted Sobolev space.

We have addressed the problem of studying maximum principles for the class of op-
erators considered here in a setting compatible with a suitable notion of weak solution in
a work which will appear elsewhere (see [22]).

Several results are known about existence, uniqueness and regularity of suitably de-
fined weak solutions of Dirichlet and Neumann problems involving a second order lin-
ear differential operator L, having nonnegative characteristic form on a bounded domain
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� ⊂ RN . See for instance the work of Oleı̆nik–Radkevich [24] and references therein for
a comprehensive overview of such results until 1973.

We notice however that, by standard elliptic regularity theory, a (suitably defined)
weak solution of a degenerate elliptic linear differential equation is regular in each open
connected component of � \6, provided that the coefficients of the equation are regular
enough. Thus, if the degeneracy set of the operator L lies on the boundary of the domain,
any weak solution of the equation will be a classical one in the interior.

Finally, in Section 5 we use the results obtained in the previous sections to study two
semilinear problems for the Grushin operator. In both cases, we rely heavily on the tech-
nique of moving planes, with which one can exploit maximum principles and symmetries
and invariances of the operator to get symmetries for the solutions of semilinear problems
related to the operator itself.

The first of the two applications is concerned with the problem{
Gγ u+ f (u) = 0 in �
u > 0 in �, u ≡ 0 on ∂�.

(1)

It is known from the pioneering works of Gidas–Ni–Nirenberg [12] and [13] that the
analogous problem for the Laplace operator{

1u+ f (u) = 0 in BR(0),
u > 0 in BR(0), u ≡ 0 on ∂BR(0),

admits only radially symmetric solutions when f is a sufficiently regular function. The
proof of this fact is based upon the technique of moving planes, which was introduced
by Aleksandrov [2] and Serrin [27] and later perfected by these authors, and relies upon
some generalized maximum principles and upon the invariance of the Laplace operator
with respect to translations and reflections about hyperplanes in RN .

Later Berestycki–Nirenberg [4] presented a much simplified approach, yielding im-
proved results. Their approach relied on improved forms of the maximum principles for
uniformly elliptic operators in “narrow domains”, again in order to exploit the technique
of moving planes.

The Grushin operator Gγ is not invariant with respect to translations and reflections
about hyperplanes in all the directions of Rd+k , and hence, as remarked by Monti–
Morbidelli [20], it is not possible to apply the technique of moving planes to this operator.

It must be noticed, however, that Gγ is actually invariant with respect to translations
and reflections about hyperplanes at least in some directions of Rd+k , namely in Rd×{0},
i.e. in those directions which are parallel to the degeneracy set 6 of the operator.

Then, one can prove a similar symmetry result for the Grushin operator, exploiting
its invariances and suitable maximum principles and Hopf’s Lemma specially tailored
for this class of operators. Thus, following the “narrow domains” idea of Berestycki–
Nirenberg [4], one can show that every classical solution of problem (1) is radially sym-
metric in the x ∈ Rd variables about some point if the bounded domain � is strictly
convex and symmetric in the directions of Rd × {0} (see Theorem 5.1).
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The second application concerns the problem{
Gγ u+ u

p
= 0 in Rd+k,

u ≥ 0 in Rd+k, u ∈ C2(Rd+k).
(2)

The analogous problem for the Laplace operator{
1u+ up = 0 in RN ,
u ≥ 0 in RN , u ∈ C2(RN ),

was first studied by Gidas–Spruck [14], who proved that any solution of this problem
vanishes identically if N ≥ 3 and 1 < p < (N + 2)/(N − 2). In the same paper they
also showed that for p = (N + 2)/(N − 2) any solution must be radially symmetric
about some point in RN , and hence takes the form

u(x) = [N(N − 2)λ2](N−2)/4/(λ2
+ |x − x0|

2)(N−2)/2,

with λ ∈ R and x0 ∈ RN .
Note that (N + 2)/(N − 2) = 2∗−1, where 2∗ is the critical exponent in the Sobolev

embedding of H 1
0 (�) into Lp(�), which is compact for 1 ≤ p < 2∗, but it is only

continuous when p = 2∗.
The result of [14] is a consequence of nonlinear energy estimates, which are obtained

by applying the Divergence Theorem to a suitable vector field in RN , depending both on
the solution u and on a cutoff function.

Later the same result was proved also in the work of Chen–Li [6], exploiting the
invariance of the Laplace operator with respect to the Kelvin transform and then again
applying the technique of moving planes “from infinity”.

When N ≥ 3 and 1 < p ≤ N/(N − 2), a stronger result is also known from the work
of Gidas [11], who showed that in those cases the problem{

1u+ up ≤ 0 in RN ,
u ≥ 0 in RN , u ∈ C2(RN ),

has no nontrivial solution. We recall that p = N/(N − 2) is also known as the Serrin
critical exponent for the Laplace operator.

An analogous result for the Grushin operator has been proven by D’Ambrosio–
Lucente [7], who exploited a nonlinear capacity argument to show that any nonnegative
solution of

Gγ u+ u
p
≤ 0 in Rd+k

vanishes identically if d, k ∈ N and 1 < p ≤ Q/(Q− 2), where Q = (1 + γ )d + k
plays for the Grushin operator the same role as the Euclidean dimensionN of the ambient
space does for the Laplace operator.

On the other hand, explicit solutions of problem (2) are known for some values of
γ > 0 when p = (Q+ 2)/(Q− 2), which for any d, k ∈ N and γ > 0 is a critical



Maximum principles and the method of moving planes 615

Sobolev exponent in the embedding of a suitably weighted version of H 1
0 (�) into Lp(�)

(see also Franchi–Lanconelli [8]).
In the paper of Monti–Morbidelli [20] it is also shown that any solution of prob-

lem (2) with p = (Q+ 2)/(Q− 2) must exhibit a kind of ”spherical symmetry”, by
exploiting the invariance of the equation with respect to a suitable conformal inversion,
i.e. the Kelvin transform for the Grushin operator (see also Lupo–Payne [18] for further
details).

The question then arises if there are nontrivial solutions to problem (2) for p ∈
(Q/(Q− 2), (Q+ 2)/(Q− 2)), i.e. for p between the Serrin critical exponent and the
Sobolev critical exponent for the Grushin operator, minus 1.

We address this problem in Theorem 5.2, following the ideas of Chen–Li [6], and
thus exploiting the invariance of the equation with respect to the Kelvin transform and
then implementing the technique of moving planes, with respect to directions which are
parallel to the degeneracy set of the operator.

This technique makes use of maximum principles and Hopf’s Lemma for the Grushin
operator and once again of the invariance of the operator with respect to translations and
reflections in suitable directions of Rd+k . In this way we can “move the hyperplanes from
infinity”, and thus prove the symmetry of the solutions only in directions of Rd × {0}, as
noted before.

For this approach to work, however, in the course of the proof we need to rely on an
auxiliary function g, satisfying suitable conditions (see (24) for further details). We are
able to produce such a function only if d, k ∈ N and 0 < γ < 1 or if d ∈ N, k ∈ N\{1, 2}
and γ > 0.

In this way, it is possible to show that any solution u of problem (2) for p ∈
(Q/(Q− 2), (Q+ 2)/(Q− 2)) must be radially symmetric in the x ∈ Rd variables
about every point of Rd . Thus the solution u is actually independent of the x ∈ Rd
variables. Then we can reduce problem (2) to the classical one for the Laplace operator in
Rk , and thus we conclude that any solution must vanish identically on the whole space.

We also note that if p = (Q+ 2)/(Q− 2), our result states that any solution of
problem (2) must be radially symmetric in the x ∈ Rd variables about some point.

Finally notice that the analogue of problem (2) when p = (Q+ 2)/(Q− 2) for the
sub-Laplacian on groups of Heisenberg type has been studied by Garofalo–Vassilev (see
[10] and references therein), following the ideas of Chen–Li [6] and exploiting the tech-
nique of moving planes.

2. Weak and strong maximum principles

Let � ⊂ RN be a bounded and connected domain, let n(x) be the outward normal unit
vector at each sufficiently regular boundary point x ∈ ∂� and consider the linear differ-
ential operator L in �

Lu ≡ aij (x)Diju+ bi(x)Diu+ c(x)u
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for u ∈ C2(�) ∩ C(�). We assume bi, c ∈ L∞(�), aij ∈ C(�) and aij = aji for every
i, j = 1, . . . , N and that L has nonnegative characteristic form in �, i.e.

aij (x)ξiξj ≥ 0 ∀x ∈ �, ∀ξ ∈ RN . (3)

Here and throughout it is assumed that expressions with repeated indices are summed
from 1 to N .

Our principal interest will be in cases where L is degenerate elliptic, and condition (3)
will be suitably strengthened.

Lemma 2.1. Let u ∈ C2(�) ∩ C(�) be such that Lu > 0 in � and let c ≤ 0 in �. Then
if u has a nonnegative maximum in �, it cannot attain this maximum in �.

Proof. Let x0 ∈ � be such that u(x0) = maxx∈� u(x) ≥ 0. Then ∇u(x0) = 0 and B :=
[Diju(x0)] is a nonpositive definite matrix. By condition (3) the matrix A := [aij (x0)] is
nonnegative definite, hence AB has nonpositive trace. Then

Lu(x0) = aij (x0)Diju(x0)+ bi(x0)Diu(x0)+ c(x0)u(x0)

≤ aij (x0)Diju(x0) = trace(AB) ≤ 0,

which contradicts the hypothesis. ut

Remark 2.1. If c(x) ≡ 0 in� then u cannot have local maxima in�, i.e. we can remove
the nonnegativity hypothesis on maxx∈� u(x) in Lemma 2.1.

Remark 2.2. Lemma 2.1 implies that sup� u ≤ sup∂� u
+.

Before proceeding, we need to make a further assumption on the operator L,

∃β > 0, ξ ∈ RN with |ξ | = 1 such that
〈ξ, A(x)ξ〉RN := aij (x)ξiξj ≥ β > 0 ∀x ∈ �,

(Eξ )

which states that, even if L is not uniformly elliptic on its domain, it is in fact uniformly
elliptic at least in a given direction ξ on the whole of �. In this case we will call ξ a
noncharacteristic direction for the operator L in �.

Theorem 2.1 (Weak Maximum Principle). Let u ∈ C2(�) ∩ C(�) be such that Lu ≥ 0
with c(x) ≤ 0 in � and let condition (Eξ ) hold. Then u attains on ∂� its nonnegative
maximum, i.e. sup� u ≤ sup∂� u

+.

Proof. Let h(x) := eα(
∑N
k=1 ξkxk) with α > 0 to be chosen later. Then h is strictly positive

and bounded on �, and we have

Lh(x) = h(x)[α2aij (x)ξiξj + αbi(x)ξi + c(x)] ≥ h(x)[βα2
−M1α −M2] > 0

if we choose α > 0 large enough, where M1, M2 are suitable positive constants which
bound the L∞-norm of bi and c in � respectively. Now let w(x) := u(x) + εh(x) with
ε > 0. Then we haveLw = Lu+εLh > 0 in�. By Lemma 2.1,w attains its nonnegative
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maximum only on ∂� and hence

sup
x∈�

u(x) ≤ sup
x∈�

w(x) ≤ sup
x∈∂�

w+(x) ≤ sup
x∈∂�

u+(x)+ ε sup
x∈∂�

h(x)

for every ε > 0. The conclusion follows by letting ε→ 0. ut

Remark 2.3. If c(x) ≡ 0 in � then we find sup� u ≤ sup∂� u.

Remark 2.4. Theorem 2.1 also holds if instead of condition (Eξ ) we assume that there
exists β > 0 and a conservative vector field ξ ∈ C1

b(�) with potential U ∈ C2
b(�)∩ C(�)

such that aij (x)ξi(x)ξj (x) ≥ β > 0 for all x ∈ �, where for any k ∈ N, Ckb(�) is the
space of functions with continuous and bounded derivatives up to order k in the domain�.

In this case, in fact, we can repeat the above argument exploiting the auxiliary function
h(x) = eαU(x) to get the weak maximum principle on �.

Notice that this possible generalization of condition (Eξ ) is invariant under the action
of diffeomorphisms of class C2(�) having the property that they transform conservative
vector fields into conservative vector fields.

Remark 2.5. Notice that if we suppose that A(x) = [aij (x)] ≥ 0 is a nonnegative defi-
nite matrix which is not 0 for every x ∈ �, then condition (Eξ ) is automatically satisfied
by L in � for a suitable direction ξ ∈ RN , if d := diam(�) is small enough.

In fact, for every x ∈ � the matrix A(x) is real, symmetric and nonnegative definite,
hence it is diagonalizable with nonnegative eigenvalues. Let λN (x) := sup|ξ |=1 aij (x)ξiξj

≥ 0 be the largest one. Since A(x) is non-null, λN (x) > 0 for every x ∈ �. By the
regularity assumptions on [aij (x)], the function λN (x) is continuous on � and thus there
exists a maximum point x0 ∈ �. Next we can find ξ0 ∈ RN with |ξ0| = 1 and A(x0)ξ0 =

λN (x0)ξ0. Then 〈ξ0, A(x0)ξ0〉RN = λN (x0) > 0.
Exploiting again the continuity of [aij (x)] on �, we can find δ > 0 such that for all

x ∈ � satisfying |x − x0| < δ we have ‖A(x)−A(x0)‖ <
1
2λN (x0). It is easy to see that

for those x,

|〈ξ0, A(x)ξ0〉RN − 〈ξ0, A(x0)ξ0〉RN | ≤ ‖A(x)− A(x0)‖ <
1
2
λN (x0)

and hence
aij (x)ξ0,iξ0,j = 〈ξ0, A(x)ξ0〉RN >

1
2
λN (x0) > 0.

Condition (Eξ ) is now satisfied by L in� with β = 1
2λN (x0) in the direction ξ0, if d < δ.

Lemma 2.2 (Hopf’s Lemma). Let B := BR(P ) ⊂ RN be the open ball centered at P
and with radiusR > 0 and let x0 ∈ ∂B. LetL be a second order linear operator satisfying
the nonnegative characteristic form assumption (3) and such that c ≤ 0 in B. Let u ∈
C2(B)∩C(B) be such that Lu ≥ 0 in B. Finally suppose that u(x) < u(x0) for all x ∈ B,
u(x0) ≥ 0 and

〈(x0 − P),A(x0)(x0 − P)〉RN > 0.
Then for every outward direction ν at x0, i.e. such that 〈ν, n(x0)〉RN > 0, one has

lim inf
t→0+

u(x0)− u(x0 − tν)

t
> 0.
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Remark 2.6. The condition 〈(x0 − P),A(x0)(x0 − P)〉RN > 0 is the requirement that
∂B is noncharacteristic for L in x0.

Remark 2.7. If u ∈ C1(B ∪ {x0}) then Lemma 2.2 implies that Dνu(x0) > 0.

Proof of Lemma 2.2. We can assume that u ∈ C(B) and u(x) < u(x0) for every x ∈
B \ {x0}, otherwise we can pick a smaller ball contained in B and tangent to ∂B in x0.

Since 〈(x − P),A(x)(x − P)〉RN is a nonnegative continuous function on B which
is not zero at x0, we find that for a suitable δ > 0,

〈(x − P),A(x)(x − P)〉RN ≥ δ > 0 (4)

if x ∈ B and |x − x0| is small enough. Then we can also assume that (4) holds on B,
otherwise we can construct a smaller ball contained in B and tangent to ∂B at x0 with
radius small enough so that our assumptions are satisfied.

Now let h(x) := e−α|x−P |
2
− e−αR

2
and � := BR(P ) ∩ Br(x0) ⊂ B, with α > 0 to

be chosen later and 0 < r < R/2. Then h ≥ 0 in � and h ≡ 0 on ∂BR(P ). Hence in �
we have

Lh = e−α|x−P |
2
[

4α2aij (x − P)i(x − P)j − 2α
( N∑
i=1

aii + bi(x − P)i

)
+ c

]
− ce−αR

2

≥ e−α|x−P |
2
[ 4δα2

− 2M1α −M2] > 0

if α > 0 is large enough, with M1, M2 suitable positive constants.
For any ε > 0, we can now apply Lemma 2.1 to the function w := u+ εh in �, since

we have Lw = Lu+ εLh > 0.
On ∂� ∩ B one has u(x) < u(x0) by hypothesis, hence by compactness one has

u(x) < u(x0) − η for a suitable η > 0. Since h is bounded on � by continuity, we can
choose ε > 0 small enough such that εh ≤ η in �. Then

w(x) = u(x)+ εh(x) ≤ u(x)+ η < u(x0) = w(x0)

for every x ∈ ∂� ∩ B.
On ∂� ∩ ∂B one has h(x) ≡ 0 and so w(x) = u(x) < u(x0) = w(x0), with

w(x0) = u(x0) ≥ 0 by hypothesis. Hence it follows from Lemma 2.1 that w(x) < w(x0)

for every x ∈ � \ {x0}, and thus

w(x0)− w(x0 − tν)

t
≥ 0 ∀t > 0 small enough.

Then lim inft→0+ (w(x0)− w(x0 − tν))/t ≥ 0, and hence

lim inf
t→0+

u(x0)− u(x0 − tν)

t
≥ −εDνh(x0) = 2εα|x0 − P | e

−α|x0−P |
2
〈ν, n(x0)〉RN > 0.

Thus we get the conclusion. ut
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Corollary 2.1. Let L be a second order degenerate elliptic linear operator in a bounded
domain� ⊂ RN such that c ≤ 0 in�. Let u ∈ C2(�)∩ C1(�) be such that Lu ≥ 0 in�.
Suppose further that there exists a point x0 ∈ ∂� such that u(x) < u(x0) for all x ∈ �
and that u(x0) ≥ 0. Finally assume that � satisfies at x0 the interior ball condition and
that the boundary of the interior ball is not characteristic for the operator L at x0. Then
Dνu(x0) > 0.

Proof. This result is an immediate consequence of the Hopf Lemma 2.2. ut

Our next aim is to prove a strong maximum principle for second order linear degenerate
elliptic operators. In order to be able to proceed, following the idea of [1], we need to
assume another condition on the degeneracy set of the operator L in the domain �. See
also comments in Remarks 2.9 and 2.12.

For every x ∈ � let λ(x) := min1≤j≤N λj (x), where λ1(x), . . . , λN (x) ∈ R are the
eigenvalues of the real symmetric matrix A(x) = [aij (x)]. Then λ ∈ C(�), λ(x) ≥ 0
in � and aij (x)vivj ≥ λ(x)|v|2 ≥ 0 for every v ∈ RN , x ∈ �.

Let 6 := {x ∈ � : λ(x) = 0} ⊂ � be the degeneracy set of the operator L. Then also
6 = {x ∈ � : detA(x) = 0} and 6 is closed and bounded. We will assume that

(6) • 6 has no interior points. We let �1, �2, . . . denote the connected components of
� \6, which are at most countably many.
• 6 ∩ � = 61 ∪ 62, where for all x0 ∈ 61 and �m such that x0 ∈ ∂�m there is
Br(x1) ⊂ �m such that x0 ∈ ∂Br(x1), 〈(x0 − x1), A(x0)(x0 − x1)〉RN > 0 and
Br(x1) ∩ 6 = {x0}, while for all x0 ∈ 62 there exists Br(x1) ⊂ � such that
x0 ∈ ∂Br(x1), 〈(x0 − x1), A(x0)(x0 − x1)〉RN > 0 and Br(x1) ∩62 = {x0}.
• For every i ∈ N there exists a bijective map σ : N→ N with σ(1) = i such that

for every h ∈ N, h ≥ 2, there exists l ∈ N with 1 ≤ l ≤ h− 1 and 61 ∩ ∂�σ(h) ∩

∂�σ(l) 6= ∅.

We explicitly remark that condition (6) prevents the operator L from degenerating on
any open subset of the domain �.

Remark 2.8. If � \ 6 has a finite number m ∈ N of connected components, we require
σ to be a permutation of the set {1, . . . , m}. If � \ 6 has only one component, the third
part of condition (6) is not necessary.

Remark 2.9. Notice that:

(i) The set 61 is made up of those points x0 ∈ 6 ∩ � such that every connected com-
ponent of � \6 having x0 on its boundary satisfies the interior ball condition at that
point. Moreover the boundary of the interior ball must not be characteristic for the
operator L at x0.

(ii) The condition on 62 is satisfied if that set has dimension small enough, for instance
if it is a C2,α manifold with α > 0 and with dimension less than or equal to N − 2.
The set62 represents a sort of singular set for the manifold6, and it contains all the
points of 6 where there is no unique tangent hyperplane to the manifold.



620 Dario Daniele Monticelli

(iii) The third part of condition (6) states that whichever connected component is chosen
as the first, it is then possible to order all the remaining ones in such a way that for
each h ∈ N it is possible to pass from the union of the first h connected components
to the (h+ 1)th through a point of 61.

Remark 2.10. Condition (6) is invariant under the action of diffeomorphisms of class
C2,α(�).

Theorem 2.2 (Strong Maximum Principle). Let u ∈ C2(�)∩ C(�) be such that Lu ≥ 0
with c ≤ 0 in � and assume conditions (Eξ ) and (6) hold. Then the nonnegative maxi-
mum of u in � can be attained only on ∂�, unless u is constant.

Proof. Let x0 ∈ � be such that u(x0) = max� u =: M ≥ 0. Then ∇u(x0) = 0. We
divide the proof into three steps.

Step 1. Suppose x0 /∈ 6. Then there exists a connected component �1 ⊂ � \ 6 such
that x0 ∈ �1 and λ(x0) > 0. Since λ ∈ C(�), we can find an open ball Br(x0) such
that Br(x0) ⊂ �1 where the operator L is uniformly elliptic. Since Lu ≥ 0, c ≤ 0 and
u attains its maximum at an interior point of Br(x0), the strong maximum principle for
uniformly elliptic linear operators implies that u(x) ≡ M on Br(x0).

Then the set {x ∈ �1 : u(x) = M} is open, closed and nonempty in �1, which is
connected. Hence u(x) ≡ M in �1, and by continuity u is constantly equal to M on �1.

The proof ends here if 6 ⊂ ∂�, since in this case x0 /∈ 6 for every x0 ∈ � and
�1 = � \6 = �.

Step 2. Suppose � \ 6 = �1 has only one connected component. Then �1 = � since
by condition (6) the degeneracy set of L in � has no interior points.

Now if there exists a point x0 ∈ �1 such that u(x0) = M , by Step 1 we get u(x) ≡ M
on �1 = �.

If there is a point x0 ∈ 61 such that u(x0) = M , then x0 ∈ �1 and by condi-
tion (6) we can find a ball Br(x1) ⊂ �1 such that x0 ∈ ∂Br(x1), Br(x1) ∩6 = {x0} and
〈(x0 − x1), A(x0)(x0 − x1)〉RN > 0. It follows that Br(x1) ⊂ �1.

Now there are two possibilities: either there exists x2 ∈ Br(x1) such that u(x2) = M

or else u(x) < M = u(x0) for every x ∈ Br(x1).
In the first case we have x2 ∈ �1, and by the preceding argument we get u(x) ≡ M

on �1 = �. In the latter case we can apply Hopf’s Lemma 2.2 to conclude that there
exists a direction ν such that Dνu(x0) > 0, which is impossible because x0 is an interior
maximum point for the function u in �.

Finally if x0 ∈ 62 and u(x0) = M , by condition (6) we can find a ball Br(x1) ⊂ �

such that x0 ∈ ∂Br(x1), Br(x1) ∩ 62 = {x0} and 〈(x0 − x1), A(x0)(x0 − x1)〉RN > 0.
Thus we have Br(x1) ⊂ �1 ∪61. Then by the Hopf Lemma 2.2 we can find x2 ∈ Br(x1)

such that u(x2) = M , and the result now follows again from the preceding argument,
since we have either x2 ∈ �1 or x2 ∈ 61.

Hence if u(x0) = M for a point x0 ∈ �, then the function u is constant.
The proof ends here if � \6 has only one connected component.
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Step 3. Since � \6 has at most countably many connected components �1, �2, . . . , if
u(x0) = M for a point x0 ∈ � \ 6, then there exists σ(1) ∈ N such that x0 ∈ �σ(1),
and from Step 1 it follows that u(x) ≡ M on �σ(1). By condition (6) there is another
component, which we call �σ(2), such that 61 ∩ ∂�σ(1) ∩ ∂�σ(2) 6= ∅.

Now let x1 be a point in this set, so that x1 ∈ �σ(1) and u(x1) = M . Since x1 ∈

61∩∂�σ(2), there exists a ballBr(x2) ⊂ �σ(2) such that x1 ∈ ∂Br(x2),Br(x2)∩6 = {x1}

and 〈(x1 − x2), A(x1)(x1 − x2)〉RN > 0. If u(x) < u(x1) = M for every x ∈ Br(x2),
by the Hopf Lemma 2.2 there is a direction ν such that Dνu(x1) > 0, which is not
possible since x1 is an interior maximum point for u in �. Thus we can find a point in
Br(x2) ⊂ �σ(2) where u attains its nonnegative maximum valueM , and hence u(x) ≡ M
in �σ(2), by Step 1. Thus we have u ≡ M in �σ(1) ∪�σ(2).

Exploiting condition (6) and the Hopf Lemma 2.2, if � \ 6 has m ∈ N connected
components, after m steps one finds that u ≡ M in �σ(1) ∪ · · · ∪ �σ(m), where σ is a
permutation of {1, . . . , m}.

On the other hand, if � \ 6 has countably many connected components, following
the preceding argument and exploiting condition (6), one can prove that u ≡ M in
�σ(1) ∪ · · · ∪�σ(h) for every h ∈ N, where σ : N→ N is a suitable bijective map.

Thus in every case, by the continuity of u, we finally get u(x) ≡ M in
⋃
h�σ(h) = �.

Now suppose x0 ∈ 61 is such that u(x0) = M . Then there is h ∈ N such that
x0 ∈ ∂�h. Since x0 ∈ 61, by condition (6) we can find Br(x1) ⊂ �h satisfying
x0 ∈ ∂Br(x1), Br(x1) ∩ 6 = {x0} and 〈(x0 − x1), A(x0)(x0 − x1)〉RN > 0. By the
Hopf Lemma 2.2, it cannot happen that u(x) < u(x0) for every x ∈ Br(x1), since we
must have ∇u(x0) = 0. Hence there exists a point in Br(x1) ⊂ �h where u attains its
nonnegative maximum value M , and by Step 1 we get u(x) ≡ M on �h. Then, by the
preceding argument, we find again that u(x) ≡ M on �.

Finally, if there is a point x0 ∈ 62 such that u(x0) = M , by condition (6) we can
find a ball Br(x1) ⊂ � satisfying x0 ∈ ∂Br(x1), 〈(x0 − x1), A(x0)(x0 − x1)〉RN > 0 and
Br(x1) ∩ 62 = {x0}. By the Hopf Lemma 2.2, there is a point x2 ∈ Br(x1) ⊂ � \ 62
with u(x2) = M . Then either x2 ∈ � \ 6 or x2 ∈ 61, and in both cases, following the
preceding arguments, we find that u is constant and equal to M on �.

Thus, if u(x0) = M for a point x0 ∈ �, we get u(x) ≡ M on �. ut

Remark 2.11. The hypothesis sup� u = M ≥ 0 can be dropped if c(x) ≡ 0 on �.

Remark 2.12. If � \ 6 has countably many connected components {�j }j∈N, one can
easily prove the following results:

• ∂�j ∩� 6= ∅ for every j ∈ N,
• ∂�j ∩� ⊂ 6 for every j ∈ N,
• for every j ∈ N there exists a point x ∈ ∂�j ∩� and k ∈ N \ {j} such that x ∈ 6′ :=
∂�j ∩ ∂�k ∩� 6= ∅.

Thus, as proved in Theorem 2.2, if there is x0 ∈ �j such that u(x0) = M we have
u(x) ≡ M on �j . One has to show now that 6′ ∩ 61 6= ∅ in order to proceed with the
above argument and conclude that u(x) ≡ M on �j ∪�k . Granting this property is the
aim of the third part of condition (6).
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3. Generalized maximum principles

Throughout the first part of this section we will assume that Lu ≡ aij (x)Diju+bi(x)Diu
+ c(x)u is a degenerate elliptic linear operator satisfying conditions (Eξ ) and (6) on a
bounded domain � ⊂ RN , unless otherwise stated.

We will also write b(x) := (b1(x), . . . , bN (x)), A(x) = [aij (x)] and D(x) =
detA(x) for any x ∈ �, omitting the dependence of the functions on the points of the
domain when there is no ambiguity.

Proposition 3.1 (Comparison Principle 1). Let u ∈ C2(�) ∩ C(�) be such that Lu ≥ 0
with c ≤ 0 in �. Then, if u ≤ 0 on ∂�, one has u ≤ 0 on �. Moreover either u < 0 in �
or u ≡ 0 in �.

Proof. This proposition is an easy consequence of the weak maximum principle, Theo-
rem 2.1, and of the strong maximum principle, Theorem 2.2. ut

The next result is an extension of Serrin’s maximum principle for uniformly elliptic linear
operators.

Proposition 3.2 (Comparison Principle 2). Let u ∈ C2(�) ∩ C(�) be such that Lu ≥ 0
and u ≤ 0 in �. Then either u < 0 in � or u ≡ 0 in �.

Proof. Suppose there is a point x0 ∈ � such that u(x0) = 0. Then we want to prove that
u ≡ 0 in �. Write c(x) = c+(x)− c−(x), with c±(x) ≥ 0 in �. Then

L̃u := aij (x)Diju+ bi(x)Diu− c−(x)u ≥ −c+(x)u ≥ 0 in �,

with L̃ satisfying conditions (Eξ ) and (6). Hence, by the strong maximum principle,
Theorem 2.2, we get u ≡ 0 on �. ut

Theorem 3.1 (Generalized Maximum Principle). Suppose there exists a function w ∈
C2(�) ∩ C(�) such that w > 0 on � and Lw ≤ 0 on �. Then, if u ∈ C2(�) ∩ C(�)
satisfies Lu ≥ 0 in �, the function u/w cannot attain in � its nonnegative maximum
on �, unless it is constant.

Proof. Let v = u/w in �. Then the function v satisfies

L̃v := aij (x)Dijv + Bi(x)Div +
Lw(x)

w(x)
v ≥ 0 in �,

with Bi := bi + 2
w
aijDjw and Lw

w
≤ 0 in �. Hence by the strong maximum principle,

Theorem 2.2, v can attain its nonnegative maximum only on ∂�, unless it is constant. ut

The following maximum principle is a generalization of a result for uniformly elliptic
linear operators due to Varadhan.

Theorem 3.2 (Maximum Principle for Narrow Domains). Let r > 0 and x0 ∈ RN be
such that |〈x − x0, ξ〉RN | < r for every x ∈ �, where ξ is a noncharacteristic direction
for the operatorL in�. Then there exists r0 > 0 such that the assumptions of Theorem 3.1
are satisfied for 0 < r ≤ r0.
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Proof. Let us consider the function w(x) := eαr − eα〈x−x0,ξ〉 in �, with α > 0 to be
chosen later. Write c(x) = c+(x)− c−(x), with c±(x) ≥ 0 in �. Then w > 0 in � and

Lw = −(α2aij (x)ξiξj + αbi(x)ξi)e
α〈x−x0,ξ〉 + c(x)(eαr − eα〈x−x0,ξ〉)

≤ −(βα2
+ αbi(x)ξi − c

−(x))eα〈x−x0,ξ〉 + c+(x)eαr .

Since by hypothesis bi, c ∈ L∞(�), we can find M > 0 such that c±, |bi | ≤ M in � and
thus

βα2
+ αbiξi − c

−
≥ βα2

−NMα −M ≥ 2M

if α > 0 is large enough. Hence

Lw ≤ −2Meα〈x−x0,ξ〉 +Meαr ≤ −2Me−αr +Meαr = Me−αr(e2αr
− 2) ≤ 0

in �, provided that e2αr
− 2 ≤ 0, i.e. 0 < r ≤ r0 := ln 2

2α . ut

Remark 3.1. No assumptions were made on the sign of the function c, the 0th order term
of the operator L, in Proposition 3.2 and in Theorems 3.1 and 3.2.

Remark 3.2. The hypotheses of Theorem 3.2 are satisfied if the bounded domain � is
narrow enough in a direction ξ ∈ RN such that 〈ξ, A(x)ξ〉RN ≥ β > 0 for every x ∈ �,
i.e. if lξ (�) := supx, y∈� |〈x − y, ξ〉RN | < r0, where lξ (�) is the width of the domain in
the given direction ξ which is noncharacteristic for the operator L.

Remark 3.3. If the bounded domain� is narrow in a given direction ζ1, then it is narrow
also in any direction not too far from ζ1. In fact, if ζ2 ∈ RN with |ζ2| = 1, we have

|〈x − y, ζ2〉RN | ≤ lζ1(�)+ diam(�)|ζ1 − ζ2| < (1+ ε)lζ1(�)

for any direction ζ2 ∈ RN such that |ζ1 − ζ2| < εlζ1(�)/diam(�). Hence for such
directions we have lζ2(�) < (1+ ε)lζ1(�).

From now till the end of the section we will assume that the degenerate elliptic linear
operatorL satisfies just condition (Eξ ) on the bounded domain� ⊂ RN , unless otherwise
stated.

Theorem 3.3. Let u ∈ C2(�) ∩ C(�), ϕ ∈ L∞(∂�) and f ∈ L∞(�) be such that
Lu ≥ f with c ≤ 0 in � and u ≤ ϕ on ∂�. Let d > 0 and x0 ∈ � be such that
� ⊂ {x ∈ RN : |〈x − x0, ξ〉RN | ≤ d}. Then

sup
�

u ≤ ‖ϕ+‖L∞(∂�) + η‖f
−
‖L∞(�)

with η a positive constant depending only on d , ‖bi‖L∞(�), ξ and ‖aij‖L∞(�).

Remark 3.4. The hypothesis � ⊂ {x ∈ RN : |〈x − x0, ξ〉RN | ≤ d} for suitable d > 0
and x0 ∈ � is always satisfied by a bounded domain � ⊂ RN .
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Proof of Theorem 3.3. Let F := ‖f−‖L∞(�), φ := ‖ϕ+‖L∞(∂�), pick α > 0 to be
specified later and define w(x) := φ + [e2αd

− eα(〈ξ,x−x0〉+d)]F for every x ∈ �. Since
0 ≤ e2αd

− eα(〈ξ,x−x0〉+d) ≤ e2αd
− 1 in �, we have

0 ≤ φ ≤ w(x) ≤ φ + (e2αd
− 1)F in �.

Hence, if we assume ‖bi‖L∞(�) ≤ M , we get

−Lw = Feα(〈ξ,x−x0〉+d)(α2aij (x)ξiξj + αξibi(x))− c(x)w

≥ Feα(〈ξ,x−x0〉+d)(βα2
−NMα) ≥ F(βα2

−NMα) ≥ F

if α > 0 is large enough. Then{
L(u− w) ≥ f + F ≥ 0 in �,
(u− w) ≤ ϕ − φ ≤ 0 on ∂�,

and by the weak maximum principle, Theorem 2.1, we conclude that sup�(u − w) ≤
sup∂�(u− w)

+
= 0, i.e. u ≤ w in �. But then

sup
�

u ≤ sup
�

w ≤ φ + (e2αd
− 1)F = ‖ϕ+‖L∞(∂�) + η‖f−‖L∞(�)

with η = η(d, ‖bi‖L∞(�), ξ, ‖aij‖L∞(�)) := e2αd
− 1 > 0. ut

Proposition 3.3. Let u ∈ C2(�) ∩ C(�), ϕ ∈ L∞(∂�) and f ∈ L∞(�) be such that
Lu ≤ f with c ≤ 0 in � and u ≥ ϕ on ∂�. Let d > 0 and x0 ∈ � be such that
� ⊂ {x ∈ RN : |〈x − x0, ξ〉RN | ≤ d}. Then

inf
�
u ≥ −‖ϕ−‖L∞(∂�) − η‖f

+
‖L∞(�)

where η is the same positive constant depending only on d , ‖bi‖L∞(�), ξ and ‖aij‖L∞(�)
which appears in Theorem 3.3.

Proof. This result can be easily obtained by applying the preceding Theorem 3.3 to the
function v := −u in �. ut

Proposition 3.4. Let u ∈ C2(�) ∩ C(�), ϕ ∈ L∞(∂�) and f ∈ L∞(�) be such that
Lu = f with c ≤ 0 in � and u = ϕ on ∂�. Let d > 0 and x0 ∈ � be such that
� ⊂ {x ∈ RN : |〈x − x0, ξ〉RN | ≤ d}. Then

sup
�

|u| ≤ ‖ϕ‖L∞(∂�) + η‖f ‖L∞(�) (5)

where η is the same positive constant depending only on d , ‖bi‖L∞(�), ξ and ‖aij‖L∞(�)
which appears in Theorem 3.3.

Proof. Applying Theorem 3.3 and Proposition 3.3 to the functions u, ϕ and f yields
inequality (5) immediately. ut
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Remark 3.5. The a priori estimate (5) given by Proposition 3.4 yields as a consequence
a uniqueness result for C(�) ∩ C2(�) solutions of the Dirichlet problem{

Lu = f in �,
u = ϕ on ∂�,

for a second order linear degenerate elliptic operator L satisfying condition (Eξ ) and with
0th order coefficient c ≤ 0 on a bounded domain � ⊂ RN , for functions ϕ ∈ C(∂�) and
f ∈ L∞(�).

Proposition 3.5. Let u ∈ C2(�)∩C(�) be such that Lu ≥ 0 in�. Let d > 0 and x0 ∈ �

be such that � ⊂ {x ∈ RN : |〈x − x0, ξ〉RN | ≤ d}. Then for every ε ∈ (0, 1) there exists
a δ > 0 such that if d ≤ δ,

(1− ε) sup
�

u ≤ max
∂�

u+.

Remark 3.6. This proposition is a kind of weak maximum principle for domains which
are narrow in noncharacteristic directions for the operator, when no assumptions are made
on the sign of c, the 0th order coefficient of L in �.

Proof of Proposition 3.5. Write c(x) = c+(x)− c−(x) with c±(x) ≥ 0 in �. Then

L̃u := aij (x)Diju+ bi(x)Diu− c−(x)u ≥ −c+(x)u := f in �,

with L̃ satisfying the assumptions of Theorem 3.3. Hence, if we assume c+(x) ≤ M in�,
from Theorem 3.3 we obtain

sup
�

u ≤ max
∂�

u+ + η sup
�

[−c+u]− = max
∂�

u+ + η sup
�

[c+u+]

≤ max
∂�

u+ +Mηmax
�

u+. (6)

Now if u ≤ 0 in �, we obtain from (6) the trivial inequality sup� u ≤ 0, and the proof is
complete. Otherwise we have max� u

+
= sup� u. Recalling from Theorem 3.3 that we

can choose η = e2αd
− 1 for a suitable α > 0, inequality (6) yields

sup
�

u ≤ max
∂�

u+ +M(e2αd
− 1) sup

�

u.

Thus, given any ε ∈ (0, 1), it is sufficient to choose 0 < d ≤ δ := ln(1+ε/M)
2α to conclude.

ut

Before stating the next theorem, we need to recall some classical results (see for in-
stance [16]). For any function u ∈ C(�) let

0+ := {x ∈ � : u(z) ≤ u(x)+ 〈p, (z− x)〉RN ∀z ∈ � and for some p = p(x) ∈ RN }

be the upper contact set of u. Then u is concave if and only if 0+ = �. If u ∈ C1(�) and
x ∈ 0+, then p(x) = ∇u(x) and any support hyperplane must be tangent to the graph
of the function u in RN+1. If u ∈ C2(�), then its Hessian matrix is nonpositive definite
on 0+.

The following is a well known result due to Aleksandrov.
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Theorem 3.4. Let L be a second order linear elliptic operator with c ≤ 0 on a bounded
domain� ⊂ RN and let u ∈ C2(�)∩C(�) be such that Lu ≥ f in�. Let diam(�) = d,
ωN be the volume of the unit ball in RN and suppose that

|b|/D1/N , f−/D1/N
∈ LN (�),

where D(x) := detA(x) is the determinant of the matrix of the coefficients of the second
order derivatives in the operator L. Then

sup
�

u ≤ sup
∂�

u+ + C‖f−/D1/N
‖LN (0+),

where 0+ is the upper contact set of the function u and where

C = C

(
N, d,

∥∥∥∥ b

D1/N

∥∥∥∥
LN (0+)

)
= d

(
exp

{
2N−2

ωNNN−1

(∥∥∥∥ b

D1/N

∥∥∥∥N
LN (0+)

+ 1
)}
−1
)1/N

.

Remark 3.7. The operator L in Theorem 3.4 is assumed to satisfy neither a uniform
ellipticity condition nor condition (Eξ ) on �.

We are now ready to state and prove a maximum principle for domains with small
volume, via Aleksandrov’s maximum principle and via elliptic regularization of the de-
generate elliptic linear operator L, which satisfies condition (Eξ ).

Theorem 3.5 (Maximum Principle for Domains with Small Volume). Suppose that u ∈
C2
b(�) ∩ C(�) satisfies Lu ≥ 0 in �, u ≤ 0 on ∂� and let diam(�) ≤ d . Then there

exists δ > 0, depending only on N , d , on the coefficients of the operator L and on the
function u, such that if |�| < δ then u ≤ 0 in �.

Remark 3.8. We remark that the positive constant δ of Theorem 3.5 depends also on the
function u. Hence the requirement on the measure of the domain � is not uniform with
respect to u, but it is sufficient to get the result only for any fixed function in C2

b(�)∩C(�).

Proof. If c ≤ 0 in �, then the weak maximum principle, Theorem 2.1, holds on the
domain. Hence sup� u ≤ sup∂� u

+
= 0 and the conclusion follows immediately, for any

u ∈ C(�) ∩ C2(�) and for any bounded domain �. If c is a generic bounded function
in �, for any α > 0 we have

(aij (x)+ δij )Diju+

(
bi(x)+α

Diu

|∇u|

)
Diu+ [c(x)+α sign(u)]u ≥ 1u+α(|∇u|+ |u|)

where δij is the Kronecker symbol. Hence

L̃u := (aij (x)+ δij )Diju+
(
bi(x)+ α

Diu

|∇u|

)
Diu− [c(x)+ α sign(u)]−u

≥ 1u+ α(|∇u| + |u|)− [c(x)+ α sign(u)]+u in �
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and L̃ is a uniformly elliptic linear operator on � with nonpositive 0th order coefficient.
Notice that L̃u is well defined in �, also in the set where ∇u = 0. With a slight abuse of
notation, for every i = 1, . . . , N we will denote by Diu/|∇u| the function

gi(x) :=

{
Diu(x)/|∇u(x)| if |∇u(x)| 6= 0,
0 otherwise,

which is bounded by 1 on the domain �.
Notice that on the upper contact set 0+ of the function u, the Hessian of u is nonpos-

itive definite and hence on that set we have 1u ≤ 0.
Notice also that if inf0+(|∇u| + |u|) = 0, then one easily has u ≤ 0 in � and hence

the conclusion follows, no matter how large |�| is. In fact, in this case we could find a
sequence {xn}n∈N ⊂ 0+ ⊂ � such that

u(xn)→ 0, ∇u(xn)→ 0 as n→+∞,
u(y) ≤ u(xn)+ 〈∇u(xn), (y − xn)〉RN ∀y ∈ �.

Then passing to the limit as n → +∞ in the last inequality easily yields the conclusion
u ≤ 0 in �, given the boundedness of the domain �.

On the other hand, if inf0+(|∇u| + |u|) = η > 0, we can choose α > 0 large enough
so that 1u + α(|∇u| + |u|) ≥ 0 in 0+, namely we need α ≥ (1/η) sup0+ |1u|. Thus
α = (1/η) sup� |1u| would do. Then it follows that

[1u+ α(|∇u| + |u|)− (c(x)+ α sign(u))+u]− ≤ [−(c(x)+ α sign(u))+u]−

= [c(x)+ α sign(u)]+u+ in 0+.

We also remark that, since the matrix A(x) = [aij (x)] is nonnegative definite for
every x ∈ �, each of the eigenvalues of A(x) + I is greater than or equal to 1, thus
D(x) := det[A(x)+ I ] ≥ 1 for every x ∈ �.

If we set b := (b1, . . . , bN ) and suppose that |c|, |b| ≤ M in �, then we have

1
D

∣∣∣∣b + α ∇u|∇u|
∣∣∣∣N ≤ (M + α)N in �,

1
D
|[1u+ α(|∇u| + |u|)− (c(x)+ α sign(u))+u]−|N ≤ ([c(x)+ α sign(u)]+u+)N

≤ (M + α)N‖u+‖N
L∞(0+)

in 0+.

HenceD−1/N
∣∣b+α∇u/|∇u|∣∣,D−1/N [1u+ α(|∇u| + |u|)− (c(x)+α sign(u))+u]− ∈

LN (0+) and thus we can apply Aleksandrov’s maximum principle 3.4 to the operator L̃
to obtain

sup
�

u ≤ sup
∂�

u+ + C

∥∥∥∥ [1u+ α(|∇u| + |u|)− (c(x)+ α sign(u))+u]−

D1/N

∥∥∥∥
LN (0+)
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where

C := d
(

exp
{

2N−2

ωNNN−1

(∥∥∥∥ 1
D1/N

(
b + α

∇u

|∇u|

)∥∥∥∥N
LN (0+)

+ 1
)}
− 1

)1/N

.

But then, since u ≤ 0 on ∂� by hypothesis, we get

sup
�

u ≤ C‖[1u+ α(|∇u| + |u|)− (c(x)+ α sign(u))+u]−‖LN (0+)

≤ C‖[c(x)+ α sign(u)]+u+‖LN (0+) ≤ C(M + α)|�|
1/N sup

�

u+,

and this clearly implies sup� u≤0 if |�| is small enough, i.e. if |�|<1/(CN (M + α)N ).
Hence u ≤ 0 in � if

|�| < δ :=

+∞ if η = inf0+(|∇u| + |u|) = 0,
1

CN (M + α)N
if η = inf0+(|∇u| + |u|) > 0. ut

4. The case of the Grushin operator

The Grushin operator is the following linear partial differential operator:

Gγ u(z) = |y|
2γ1xu(z)+1yu(z) (Gγ )

where γ > 0, z := (x, y) ∈ Rd × Rk with d, k ∈ N and 1xu(z) =
∑d
l=1Dxlxlu(x, y),

1yu(z) =
∑k
m=1Dymymu(x, y).

Notice that in this case aii(z) = |y|2γ if i = 1, . . . , d , aii(z) = 1 if i = d + 1, . . . ,
d + k and aij (z) = 0 if i 6= j . Then for every z = (x, y) ∈ Rd+k and ξ ∈ Rd+k ,

〈ξ, A(z)ξ〉Rd+k = aij (z)ξiξj ≥ min{|y|2γ , 1} |ξ |2 ≥ 0.

According to the definition we gave in Section 2, the linear operator

Lu := Gγ u+ bl(z)Dxlu+ b̃m(z)Dymu+ c(z)u (7)

is degenerate elliptic on its domain � ⊂ Rd+k , with

λ(z) = {minimum eigenvalue of the real symmetric matrix [aij (z)]} = min{|y|2γ , 1}

and with degeneracy set 6 = λ−1
{0} = � ∩ (Rd × {0}), which is closed and with no

interior points.

Remark 4.1. The operator L defined above satisfies condition (Eξ ) with constant β = 1
in the direction ξ = (0, ξy) ∈ Rd+k , for any ξy ∈ Rk with |ξy | = 1.
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We are now interested in studying when a Hopf type lemma holds for the opera-
tor L defined in (7). Given a domain � ⊂ Rd+k satisfying the interior ball condition,
Lemma 2.2 holds at each noncharacteristic boundary point. The only case when a point
z0 = (x0, y0) on its boundary can possibly be characteristic for the principal part of L
is when z0 belongs to the degeneracy set 6, i.e. when y0 = 0. Even in this case, ∂� is
actually not characteristic forGγ in z0 if the normal versor to the boundary of the domain
in z0 is not parallel to 6. Thus the only case when ∂� is characteristic for the principal
part of L at a point z0 is when ∂� and 6 have orthogonal intersection in z0. Even in this
case, anyway, if a suitable “convexity condition” on ∂� is satisfied, one can still recover
a Hopf type lemma for the operator at z0.

To make the statement more precise, we start by noticing that the Hopf Lemma 2.2
holds for the operator L on the ball Br(z1) ⊂ Rd+k with respect to the point z0 ∈ ∂Br(z1)

if
|y0|

2γ
|x0 − x1|

2
+ |y0 − y1|

2
= 〈(z0 − z1), A(z0)(z0 − z1)〉RN > 0, (8)

where we set z0 = (x0, y0), z1 = (x1, y1). Condition (8) is clearly satisfied if

• y0 6= 0, or
• y0 = 0 and y1 6= 0.

We cannot directly apply Lemma 2.2 only in the case when z0, z1 ∈ 6.
Now define the following distance on Rd+k:

d(z, z1) :=
(
|x − x1|

2
+

1
(1+ γ )2

|y − y1|
2+2γ

) 1
2+2γ

(9)

for z = (x, y), z1 = (x1, y1) ∈ Rd+k , and set

B̃r(z1) := {z = (x, y) ∈ Rd+k : d(z, z1) < r}.

Using these balls, we can recover a Hopf lemma for the operator L defined in (7) also in
some cases when z0, z1 ∈ 6.

Lemma 4.1. Let B := B̃r(z1) and let u ∈ C2(B)∩ C(B ∪ {z0}), where z0, z1 ∈ Rd × {0}
and z0 ∈ ∂B. Let also u(z) < u(z0) for every z ∈ B, u(z0) ≥ 0 and Lu ≥ 0 in B, with
c ≤ 0 in B and with b̃m, bl/|y|2γ , c/|y|2γ ∈ L∞(B).

Then for every outward direction ν at z0, i.e. such that 〈ν, n(z0)〉Rd+k > 0, one has

lim inf
t→0+

u(z0)− u(z0 − tν)

t
> 0.

Remark 4.2. If u ∈ C1(B ∪ {z0}) then we have Dνu(z0) > 0.

Proof of Lemma 4.1. We may suppose u ∈ C2(B)∩C(B) and that u(z) < u(z0) for every
z ∈ B \ {z0}, as we did in the proof of the Hopf Lemma 2.2. Otherwise we can pick a
smaller set B̃ř(ž1) contained in B, with ž1 ∈ Rd × {0}, and tangent to its boundary in z0,
where our assumptions are satisfied .
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Now let α > 0, d(z) := d(z, z1) and h(z) := e−α[d(z)]2+2γ
− e−αr

2+2γ
. Notice that

h(z) ≥ 0 in B.
To simplify the notation write z1 = (a, 0), z0 = (b, 0), z = (x, y) with a, b, x ∈ Rd

and with y ∈ Rk . Then one has

Lh(z) = |y|2γ e−α[d(z)]2+2γ
[

4α2[d(z)]2+2γ
− 2α

(
Q+ 2γ
γ + 1

+ (xl − al)
bl

|y|2γ

+ ym
b̃m

1+ γ

)
+

c

|y|2γ

]
− e−αr

2+2γ
c

≥ |y|2γ e−α[d(z)]2+2γ
[

4α2[d(z)]2+2γ
− 2α

(
Q+ 2γ
γ + 1

+M1 +M2

)
−M3

]
,

where we set Q := (1 + γ )d + k and M1, M2, M3 are suitable positive constants, since
by our hypothesis b̃m, bl/|y|2γ , c/|y|2γ ∈ L∞(B).

Now let � = B ∩ Br ′(z0), with r ′ = rγ+1/4. Then h is nonnegative and bounded
in �, h(z) ≡ 0 on ∂� ∩ ∂B and d(z) ≥ δ > 0 in �, since z1 /∈ Br ′(z0). Thus we have

Lh(z) ≥ |y|2γ e−α[d(z)]2+2γ
[

4α2δ2+2γ
− 2α

(
Q+ 2γ
γ + 1

+M1 +M2

)
−M3

]
≥ 0

in �, if we choose α > 0 large enough.
Now, following the lines of the proof of the Hopf Lemma 2.2, one can use Theorem

2.1 and choose ε > 0 small enough so that

(u+ εh)(z0) = max
�

(u+ εh).

Thus for any outward direction ν = (νx, νy) ∈ Rd+k at z0 with 〈ν, n(z0)〉Rd+k > 0, where
we recall that n(z0) is the outward normal unit vector at the boundary point z0 ∈ ∂�, and
for every t > 0 small enough we have

(u+ εh)(z0)− (u+ εh)(z0 − tν)

t
≥ 0.

Hence passing to the lim inf as t tends to 0+ and noting that, by our choice of the points
z0 and z1, we have n(z0) =

1
|b−a|

((b − a), 0) we get

lim inf
t→0+

u(z0)− u(z0 − tν)

t
≥ −εDνh(z0)

= 2αε
[
e−α[d(z)]2+2γ

(
〈x − a, νx〉Rd +

|y|2γ

1+ γ
〈y, νy〉Rk

)]
z=z0

= 2αεe−αr
2+2γ
〈b − a, νx〉Rd

= 2αε|b − a|e−αr
2+2γ
〈n(z0), ν〉Rd+k > 0. ut
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Remark 4.3. The distance (9) on Rd+k , which defines the ball B̃r(z1), is strictly related
to the Grushin operator Gγ and satisfies the quasi homogeneity property

d((λ1+γ x, λy), 0) = λd((x, y), 0) ∀z = (x, y) ∈ Rd+k, ∀λ > 0.

As proven in [7], this distance is also related to the fundamental solution of Gγ ,(
|x − x̌|2 +

1
(γ + 1)2

|y|2γ+2
)− Q−2

2γ+2
with Q = (γ + 1)d + k, (10)

at any point ž = (x̌, 0) in 6 = Rd × {0}, where the operator degenerates, and also to the
Kelvin transform for the Grushin operator (see [18] and also Section 5).

Notice also that the operator Gγ is the principal and nonsingular part of the Laplace–
Beltrami operator on Rd+k endowed with the metric

{gij (z)} =



|y|−2γ

. . . 0
|y|−2γ

1

0
. . .

1


(11)

which degenerates on 6, as studied in [25].

Remark 4.4. The classical interior ball condition, which is usually required for the do-
main of a generic uniformly elliptic linear operator, can be substituted, in the case of a
degenerate elliptic linear operatorL havingGγ as principal part, satisfying the hypothesis
of Lemma 4.1 and defined on � ⊂ Rd+k , with the following condition:

(B ′) • for every z ∈ ∂�, z /∈ 6 there exists a Euclidean ball Br(z1) ⊂ � such that
∂Br(z1) ∩ ∂� = {z},
• for every z ∈ ∂� ∩6 either

(i) there exists a Euclidean ball Br(z1) ⊂ � with z1 /∈ 6 such that ∂Br(z1) ∩

∂� = {z}, or
(ii) there exists a ball B̃r(z1) ⊂ � in the topology defined by the distance (9) with

z1 ∈ 6 such that ∂B̃r(z1) ∩ ∂� = {z}.

Notice that (B ′) is more restrictive than the classical interior ball condition, since the sets
B̃r(z1) with z1 ∈ Rd × {0} satisfy themselves the interior Euclidean ball condition at the
points of ∂B̃r(z1) ∩ (Rd × {0}). On the other hand any Euclidean ball centered at a point
in Rd × {0} does not admit any interior ball of the topology defined by (9) tangent to its
boundary at a point of ∂Br(z1) ∩ (Rd × {0}).

Lemma 4.2. The degenerate elliptic operator

Lu := Gγ u+ bl(z)Dxlu+ b̃m(z)Dymu+ c(z)u

defined on the bounded domain � ⊂ Rd+k satisfies condition (6).
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Proof. We begin by recalling that 6 = � ∩ (Rd × {0}), and thus 6 is closed, with no
interior points. We also note that 61 = 6 ∩ �. In fact, if z0 = (x0, 0) ∈ 6 ∩ �, we
see that r := dist(z0, ∂�) > 0. Hence, for every y ∈ Rk with 0 < |y| < r/3, we have
B|y|((x0, y)) ⊂ �, z0 ∈ ∂B|y|((x0, y)), 6 ∩ B|y|((x0, y)) = {z0} and

〈(x0, 0)− (x0, y), A((x0, 0))((x0, 0)− (x0, y))〉Rd+k = |y|
2 > 0.

Now suppose �m is a connected component of � \ 6 such that z0 ∈ ∂�m. Then we can
choose y ∈ Rk with |y| small enough so that B|y|((x0, y)) ⊂ �m, and thus z0 ∈ 61.

The third part of condition (6) is not required if � \ 6 has just one connected com-
ponent, and thus in particular if k ≥ 2.

So let k = 1 and let � \ 6 have at most countably many connected components
�1, �2, . . . . We conclude the proof of this lemma with the following claim: L satisfies
the third part of condition (6) on �.

Let�i be a connected component of�\6 and define σ̃ (1) = i. If there are countably
many connected components, by induction it is now possible to construct a bijective map
σ̃ : N→ N such that for every h ∈ N with h ≥ 2 there exists l ∈ {1, . . . , h−1} satisfying

61 ∩ ∂�σ̃ (h) ∩ ∂�σ̃ (l) 6= ∅. (12)

Notice that if there are only m ∈ N connected components, our construction will yield a
permutation σ̃ of {1, . . . , m} with the required property.

First we want to prove that if �σ̃ (1), . . . , �σ̃ (j) are distinct connected components
satisfying (12) for every 1 ≤ h ≤ j and such that

⋃j

h=1�σ̃ (h) ( � \ 6, then we can
find another connected component �σ̃ (j+1) such that condition (12) is satisfied for every
1 ≤ h ≤ j + 1.

So define �̃ := int(
⋃j

h=1�σ̃ (h)) ∩ �. Then �̃ is a nonempty open set with �̃ ⊂ �.
Moreover

(i) ∂�̃∩� 6= ∅, otherwise �̃ would be both open and closed in�, which is a connected
set, and hence �̃ ≡ �, which is not possible;

(ii) ∂�̃ ∩� ⊂ 61, since ∂�l ∩� ⊂ 6 ∩� = 61 for each connected component �l of
� \6 and ∂�̃ ⊂

⋃j

h=1 ∂�σ̃ (h);
(iii) for each z ∈ 6 ∩ � there exists a ball Br(z) ⊂ � which intersects only a finite

number of connected components of�\6 (just two due to the form of 6, actually);
(iv) there exists a connected component, which we will call �σ̃ (j+1), distinct from

�σ̃ (1), . . . , �σ̃ (j) and such that ∂�σ̃ (j+1) ∩ ∂�̃ ∩ � 6= ∅. In fact, otherwise one
can easily prove that (�̃ ∪ ∂�̃) ∩ � is both open and closed in �, which is not
possible since � is connected and

⋃j

h=1�σ̃ (h) ( �.

Thus there exists h ∈ {1, . . . , j} such that ∂�σ̃ (h) ∩ ∂�σ̃ (j+1) ∩� ∩61 6= ∅.
Now if � \ 6 has a finite number m of connected components, we find the desired

permutation of the set {1, . . . , m} afterm steps. On the other hand, if�\6 has countably
many connected components, the map σ̃ : N → N we constructed is injective but may
not be surjective.
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Now define

3 :=

A ⊂ N :
∃ σ : N→ N an injective map satisfying σ(1) = i,
σ (N) = A and ∀h ∈ N, h ≥ 2 ∃ l ∈ {1, . . . , h− 1}
such that ∂�σ(h) ∩ ∂�σ(l) ∩61 6= ∅

 . (13)

Then the set 3 ⊂ P(N), where P(N) is the power set of N, is partially ordered by
inclusion and it is not empty, since it contains the set σ̃ (N) obtained above. Now we
prove that every totally ordered subset {Ar}r∈I ⊂ 3, where I is a set of indices, admits a
maximal element in 3. Indeed, let Â :=

⋃
r∈I Ar . Clearly Ar ⊂ Â ⊂ N for every r ∈ I

and we will construct an injective map ̂̂σ : N→ N with the properties described above to
prove that Â ∈ 3.

Since i ∈ Ar for every r ∈ I , we have i ∈ Â and we can define σ̂ (1) := i. Now if
a1 := min{Â \ {i}}, we have a1 ∈ Â and thus a1 ∈ Ar1 for a suitable r1 ∈ I . Then we
can find σr1 : N→ N with the properties described in (13) such that σr1(N) = Ar1 , and
a1 = σr1(k1) for a k1 ∈ N. Hence define σ̂ (j) = σr1(j) for 2 ≤ j ≤ k1.

Now let a2 := min{Â \ {̂σ(1), . . . , σ̂ (k1)}}. Then a2 ∈ Â and there exist r2 ∈ I such
that a2 ∈ Ar2 and a map σr2 : N → N satisfying (13) such that σr2(N) = Ar2 . Then
σr2(k2) = a2 for a k2 ∈ N. Hence define σ̂ (j + k1) = σr2(j + 1) for 1 ≤ j ≤ k2 − 1.

Now by induction suppose we have defined σ̂ (j) for 1 ≤ j ≤ k1+· · ·+km− (m−1)
and let am+1 := min{Â \ {̂σ(1), . . . , σ̂ (k1 + · · · + km − m + 1)}}. Since am+1 ∈ Â,
we have am+1 ∈ Arm+1 for a suitable rm+1 ∈ I and we can find a map σrm+1 : N → N
satisfying (13) such that σrm+1(km+1) = am+1 for a km+1 ∈ N. Thus we can define

σ̂ (j + k1 + · · · + km −m+ 1) = σrm+1(j + 1) for 1 ≤ j ≤ km+1 − 1.

The map σ̂ : N → N we obtain in this way may not be injective, thus we define ̂̂σ :
N→ N by setting ̂̂σ(1) := i and by induction ̂̂σ(h+ 1) := σ̂ (jh) where

jh := min{j ∈ N : σ̂ (j) /∈ {̂̂σ(1), . . . , ̂̂σ(h)}}
for each h ∈ N. Then by construction ̂̂σ is injective, ̂̂σ(1) = i, ̂̂σ(N) = σ̂ (N) = Â and
for each h ∈ N there exists 1 ≤ l ≤ h − 1 satisfying ∂�̂̂σ(h)⋂ ∂�̂̂σ(l) ∩ � ∩ 61 6= ∅.
Hence Â ∈ 3 is a maximal element for {Ar}r∈I ⊂ 3.

By Zorn’s lemma, the set 3 contains at least one maximal element, which we will
call Ǎ. We claim that Ǎ = N. Indeed, if Ǎ ( N, we can construct a set B ∈ 3 such that
Ǎ ( B in the following way.

Since Ǎ ∈ 3 we can find an injective map σ̌ : N → N satisfying conditions (13).
Now let �̃ := int(

⋃
m∈Ǎ

�m) ∩�. Then �̃ ( �, since Ǎ ( N, and hence ∂�̃ ∩� 6= ∅.
Moreover ∂�̃ ∩ � ⊂ 6 ∩ � = 61, and one can easily also prove that there exists a
connected component�j0 of� \6 with j0 ∈ N \ Ǎ such that ∂�j0 ∩ ∂�̃∩� 6= ∅. Hence
∂�j0 ∩ ∂�j1 ∩61 6= ∅ for a suitable j1 ∈ Ǎ.

Now let B := Ǎ ∪ {j0} and define an injective map σB : N→ N by setting

σB(j) =


σ̌ (j) if 1 ≤ j ≤ j1,

j0 if j = j1 + 1,
σ̌ (j − 1) if j ≥ j1 + 2.
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Then σB(N) = B and σB satisfies the conditions in (13). Hence B ∈ 3 and Ǎ ( B,
which contradicts the maximality of Ǎ ∈ 3.

It follows that Ǎ = N, thus N ∈ 3 and we can find a bijective map σ : N→ N such
that σ(1) = i and for each h ∈ N with h ≥ 2 there exists 1 ≤ l ≤ h − 1 satisfying
∂�σ(h) ∩ ∂�σ(l) ∩61 6= ∅.

Hence the domain � ⊂ Rd+k satisfies condition (6). ut

Remark 4.5. The strong maximum principle thus holds for a linear degenerate elliptic
operator Lu := Gγ u+bl(z)Dxlu+ b̃m(z)Dymu+c(z)u on a bounded domain� ⊂ Rd+k .

5. Two applications of the moving planes to the Grushin operator

We recall the definition of the Grushin operator given in (Gγ ) in Section 4:

Gγ u(z) = |y|
2γ1xu(z)+1yu(z), z ∈ �,

where γ > 0, z := (x, y) = (x1, . . . , xd , y1, . . . , yk) ∈ � ⊂ Rd+k with d, k ∈ N and
u : � ⊂ Rd+k → R.

Theorem 5.1. Let � ⊂ Rd+k be a bounded domain and let Gγ be the Grushin operator.
Suppose that if z ∈ ∂�, then its symmetric point with respect to the hyperplane T0 :=
{z = (x, y) ∈ Rd+k : x1 = 0} also belongs to ∂� and that the segment having the two
points as extremes lies in �. If u ∈ C2(�) ∩ C(�) is a solution of

Gγ u+ f (u) = 0 in �,
u > 0 in �,
u = 0 on ∂�

(14)

with f a locally Lipschitz function in R, then u is symmetric with respect to direction x1
and Dx1u(z) < 0 for every z ∈ � with x1 > 0 and with y 6= 0. If f is nondecreasing,
then also Dx1u(z) < 0 for every z ∈ � with x1 > 0 and with y = 0.

Remark 5.1. With the hypothesis we made,� is convex in the direction x1 and symmet-
ric with respect to the hyperplane T0 := {z = (x, y) ∈ Rd+k : x1 = 0}. Moreover ∂�
does not have “flat portions” in the direction x1.

Proof of Theorem 5.1. We will denote by z = (x, y) = (x1, . . . , xd , y1, . . . , yk) =

(x1, x̃, y) any point of Rd+k . Let a := supz∈� x1 and for 0 ≤ λ < a define

�λ = {z ∈ � : x1 > λ}, Tλ = {z ∈ Rd+k : x1 = λ},

�′λ = {the reflection of �λ with respect to the hyperplane Tλ},
zλ = (2λ− x1, x̃, y) for any point z = (x1, x̃, y) ∈ �λ.

Hence zλ is the symmetric point of z ∈ �λ with respect to the hyperplane Tλ.
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Now for any λ ∈ (0, a) define in �λ the function wλ(z) := u(z) − u(zλ). Then
wλ ∈ C2(�λ) ∩ C(�λ) and one can easily prove that

Gγwλ(z)+ c(λ, z)wλ(z) = 0 in �λ,
wλ ≤ 0 and wλ 6≡ 0 on ∂�λ,

(15)

by the mean value theorem, where c(λ, z) is a bounded function of z on �λ, since u is
bounded on � and f is locally Lipschitz.

Notice also that if λ > 0 we havewλ < 0 on ∂�λ∩∂�. Indeed, by hypothesis we have
u(z) = 0 for every z ∈ ∂�, and if λ > 0, by our assumptions on the domain �, zλ ∈ �
for every z ∈ ∂�. Hence on ∂�λ ∩ ∂� we have wλ(z) = u(z) − u(zλ) = −u(zλ) < 0,
by the positivity of u in �.

Now we want to prove that wλ < 0 in �λ for every λ ∈ (0, a).
For any λ close enough to a, we have wλ < 0 in �λ by the maximum principle for

narrow domains, Theorem 3.2, and the generalized maximum principle, Theorem 3.1.
In fact, �λ is narrow in direction x1, provided that λ is sufficiently close to a. Since
�λ ⊂ � is bounded, it is also narrow in any direction not too far from the direction x1
(see Remarks 3.2 and 3.3). In particular we can choose a noncharacteristic direction ξ for
the operator Gγ , i.e. a direction such that for every z in �λ,

〈ξ, A(z)ξ〉Rd+k = |y|
2γ
|ξx |

2
+ |ξy |

2 > 0,

and then apply the maximum principle for narrow domains, Theorem 3.2, and the gener-
alized maximum principle, Theorem 3.1.

Let λ0 := inf{µ ∈ (0, a) : wλ < 0 in �λ ∀λ ∈ (µ, a)}, so that (λ0, a) is the largest
interval in (0, a) satisfying wλ < 0 in �λ for every λ ∈ (λ0, a). We claim that λ0 = 0.

If λ0 > 0, by continuity we get wλ0 ≤ 0 in �λ0 and also wλ0 6≡ 0 on ∂�λ0 . Then
wλ0 < 0 in�λ0 , by the comparison principle, Proposition 3.2. Moreover recall thatwλ0 <

0 also on ∂�λ0 ∩ ∂�, since we assumed λ0 > 0.
Now our aim is to prove that wλ0−ε < 0 in �λ0−ε, if ε > 0 is sufficiently small.
Let δ > 0 be a constant to be chosen later. Then since wλ0 < 0 in �λ0 ∩ {x1 > λ0}

and since it is continuous, by compactness we have

wλ0 ≤ −η < 0 in K := �λ0 ∩ {x1 ≥ λ0 + δ},

for a suitable η > 0. Notice that K = �λ0+δ .
By continuity, we also have wλ0−ε ≤ −η/2 < 0 in K for any ε > 0 small enough.

Then we can choose 0 < ε < δ so that�λ0−ε ⊂ �λ0−δ , and then we fix δ small enough in
such a way that we may apply the maximum principle for narrow domains, Theorem 3.2,
and the generalized maximum principle, Theorem 3.1, in �λ0−ε \ �λ0+δ , with respect
to a suitable noncharacteristic direction for the operator Gγ . Notice that this domain is
bounded and that its width in the x1-direction is less than 2δ, hence it is also narrow in
noncharacteristic directions not too far from direction x1, provided that δ > 0 is chosen
small enough. Thus we obtain

wλ0−ε ≤ 0 in �λ0−ε \K.
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Now notice that wλ0−ε 6≡ 0 on ∂(�λ0−ε \K)∩∂�, since wλ0−ε < 0 on ∂�λ0−ε ∩∂�

if ε > 0 is small enough. But then from the comparison principle, Proposition 3.2, it
follows that wλ0−ε < 0 in �λ0−ε \ K . Hence wλ0−ε < 0 in �λ0−ε if ε > 0 is small
enough, and this contradicts the definition of λ0.

Thus we have λ0 = 0 and wλ < 0 in �λ for every λ ∈ (0, a), i.e.

u(x1, x̃, y) = u(z) < u(zλ) = u(2λ− x1, x̃, y) ∀z = (x1, x̃, y) ∈ �λ.

By continuity, passing to the limit as λ tends to 0+, we have u(x1, x̃, y) ≤ u(−x1, x̃, y)

for every point (x1, x̃, y) ∈ �0.
Repeating the same argument for the opposite direction −x1, namely moving the

planes Tλ from −a toward the origin along the x1-axis, we get the opposite inequality
u(−x1, x̃, y) ≤ u(x1, x̃, y) for every point z = (x1, x̃, y) ∈ �0, and hence we have the
desired symmetry in the x1-direction,

u(−x1, x̃, y) = u(x1, x̃, y) ∀z = (x1, x̃, y) ∈ �.

Now notice also that, since wλ < 0 in �λ for every λ ∈ (0, a), the function wλ attains
its maximum value of 0 on �λ at each point of ∂�λ ∩� = Tλ ∩�. It is easy to see that
the set �λ also satisfies condition (B ′) of Remark 4.4 at every point of ∂�λ ∩�. Hence,
from (15) and from the Hopf Lemma 2.2, we get, for any such λ,

Dx1u(λ, x̃, y) =
1
2
Dx1wλ(λ, x̃, y) < 0,

if y 6= 0, i.e. Dx1u(z) < 0 for every z ∈ � with x1 > 0 and y 6= 0.
If f is nondecreasing, then for any λ ∈ (0, a) one also has c(λ, z) ≥ 0 for every z ∈

�λ. Thus for any such λ we have [c(λ, z)]− ≡ 0 on �λ, and hence [c(λ, z)]−/|y|2γ ∈
L∞(�λ). From (15) and from the Hopf Lemma 4.1, we get as before Dx1u(z) < 0 also
for every z ∈ � with x1 > 0 and y = 0. The proof is now complete. ut

Corollary 5.1. If u ∈ C2(B1(0)) ∩ C(B1(0)) is a solution of
Gγ u+ f (u) = 0 in B1(0),
u > 0 in B1(0),
u = 0 on ∂B1(0)

(16)

with B1(0) ⊂ Rd+k and f is a locally Lipschitz, nondecreasing function in R, then u is
radially symmetric with respect to the x ∈ Rd variables about the origin. Moreover u is
radially decreasing with respect to the x ∈ Rd variables.

Proof. This result is a straightforward application of Theorem 5.1. ut

Our next aim is to prove a nonexistence result for the following problem on the whole
space Rd+k . Let the function u be a solution of{

Gγ u+ u
p
= 0 in Rd+k,

u ≥ 0 in Rd+k, u ∈ C2(Rd+k),
(17)

with Q := (γ + 1)d + k and 1 < p < (Q+ 2)/(Q− 2).
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Theorem 5.2. If 0 < γ < 1 and d, k ∈ N or if γ > 0, d ∈ N and k ∈ N \ {1, 2}, then
any solution u ∈ C2(Rd+k) of problem (17) vanishes identically on Rd+k .

Before starting with the proof, we make a few remarks.

Remark 5.2. The corresponding problem for the Laplace operator{
1u+ up = 0 in RN ,
u ≥ 0 in RN , u ∈ C2(RN ),

(18)

for N ≥ 3 admits no nontrivial solutions for 1 < p < (N + 2)/(N − 2) = 2∗− 1, where
2∗ is the Sobolev critical exponent. This has been proven first in [14], exploiting nonlinear
energy estimates obtained by applying the Divergence Theorem to a suitable vector field,
depending both on the solution u and on a cutoff function. This result has also been proven
by the method of moving planes “from infinity” (see [6]), which exploits the invariances
of the Laplace operator and maximum principles.

Remark 5.3. The numberQ is the homogeneous dimension of the space Rd+k endowed
with the distance (9), as it is related to the rate of growth of the Euclidean volume of the
metric ball B̃R with radius R > 0 as R tends to infinity. In fact

|B̃R| ∼ cR
Q as R→+∞

for a suitable constant c = c(d, k, γ ) > 0.
We introduce the weighted gradient of a function u ∈ C1(Rd+k) by setting

∇̃u(z) := (|y|γ∇xu(z),∇yu(z))
= (|y|γDx1u(z), . . . , |y|

γDxdu(z),Dy1u(z), . . . ,Dyku(z)) (19)

for any point z = (x, y) ∈ Rd+k .
We also introduce the weighted Sobolev spaces for any bounded domain � ⊂ Rd+k ,

by defining W̃ 1,p(�) as the completion of Lip(�), the space of all Lipschitz-continuous
functions on �, with respect to the norm

‖u‖W̃ 1,p(�) := ‖u‖Lp(�) +
∥∥|∇̃u|∥∥

Lp(�)
.

Then W̃ 1,p(�) is a separable Banach space for any 1 ≤ p < ∞ and it is a separable
Hilbert space for p = 2 with the scalar product and the equivalent norm

〈u, v〉W̃ 1,2(�) := 〈u, v〉L2(�) + 〈∇̃u, ∇̃v〉L2(�), ‖u‖2
W̃ 1,2(�)

:= 〈u, u〉.

Then for any 1 ≤ p < ∞ one can also prove that if Q > p there are continuous
embeddings

W̃ 1,p(�) ↪→ Lq(�)

for every 1 ≤ q ≤ pQ/(Q− p) and that those embeddings are compact if 1 ≤
q < pQ/(Q− p) (see [8] and Proposition 2.4 of [17]). Hence the number p∗(Q) :=
pQ/(Q− p) plays the role of the usual Sobolev critical exponent p∗, with the homoge-
neous dimension Q replacing the actual dimension of the Euclidean ambient space RN .
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Remark 5.4. The problem{
Gγ u+ u

p
≤ 0 in Rd+k,

u ≥ 0 in Rd+k, u ∈ C2(Rd+k)
(20)

admits no solution if 1 < p ≤ Q/(Q− 2) (see [7]). Hence p∗(Q) := Q/(Q− 2) plays
for the Grushin operator the same role as the Serrin critical exponent for the Laplace
operator, once again with the homogeneous dimension Q replacing the actual dimension
of the Euclidean ambient space RN .

Remark 5.5. The homogeneous dimension Q appears also in the critical growth phe-
nomenon exhibited by the Dirichlet problem{

Gγ u+ u|u|
p−1
= 0 in �,

u = 0 on ∂�,
(21)

where � ⊂ Rd+k is a bounded, sufficiently regular domain. In fact, using standard argu-
ments of calculus of variations, it is easy to see that this problem admits a suitably defined
weak solution whenever 1 < p < (Q+ 2)/(Q− 2). On the other hand, problem (21)
does not admit nontrivial weak, and hence strong, solutions when p > (Q+ 2)/(Q− 2)
and the domain � is starshaped with respect to the flow of a certain vector field, which
is the infinitesimal generator of an anisotropic dilation with respect to which the Grushin
operator Gγ is invariant. The key ingredient for this nonexistence result is a Pohožaev
type identity for the operator Gγ in the domain �. For further details see for instance
[21], [23] and [19].

Proof of Theorem 5.2. Suppose u ∈ C2(Rd+k) is a solution of problem (17). We divide
the proof into five steps.

Step 1 (Reduction to the case of u strictly positive). Notice that, by the strong maximum
principle, Theorem 2.2, we have either u ≡ 0 or u > 0 in Rd+k . In fact, if we can find a
point z0 ∈ Rd+k such that u(z0) = 0, then we can apply the strong maximum principle
to the function −u in BR(z0) for any R > 0. Thus we conclude that u ≡ 0 on that ball,
since −u ≤ 0 and Gγ (−u) = up ≥ 0 on Rd+k . Since R > 0 is arbitrary, we get u ≡ 0
on the whole space.

From now on, we will suppose that u is a strictly positive solution of problem (17).

Step 2 (Introduction of v, the Kelvin transform for Gγ of the function u). For z1, z2 ∈

Rd+k , let d(z1, z2) denote the distance on Rd+k defined in (9) in Section 4. Then for any
z = (x, y) ∈ Rd+k define

ρ(z) = ρ(x, y) := [d(z, 0)]2+2γ
= |x|2 +

1
(1+ γ )2

|y|2γ+2.

Now let

v(z) = v(x, y) :=
1

[ρ(x, y)]
Q−2
2γ+2

u

(
x

ρ(x, y)
,

y

[ρ(x, y)]
1

1+γ

)
(22)
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be the Kelvin transform of the solution u with respect to the origin, which is defined for
z = (x, y) ∈ Rd+k \ {0}. We recall that the Kelvin transform (22) is an element of the
symmetry group of the Grushin operator (see [18]). Then the function v satisfies

Gγ v +
1

[ρ(z)]
Q+2
2γ+2−p

Q−2
2γ+2

vp = 0 in Rd+k \ {0},

v > 0 in Rd+k \ {0}, v ∈ C2(Rd+k \ {0}).
(23)

Step 3 (Symmetry of v in the x1-direction: Introduction of the auxiliary function wλ).
Now denote by z = (x, y) = (x1, . . . , xd , y1, . . . , yk) any point of Rd+k and define, for
any λ ≤ 0,

�λ := {z = (x, y) ∈ Rd+k : x1 < λ}, Tλ := ∂�λ = {z = (x, y) ∈ Rd+k : x1 = λ}.

Let zλ := (2λ − x1, . . . , xd , y1, . . . , yk) be the reflection of any point z = (x, y) ∈ �λ
with respect to the hyperplane Tλ. Then define, in �λ,

vλ(z) := v(zλ), wλ(z) := vλ(z)− v(z), wλ(z) :=
wλ(z)

g(z)

where g is any function satisfying the following conditions:

• g ∈ C2(�0) and g > 0 on �0.

• Dx1g ≤ 0 in �0, i.e. g is nonincreasing in the x1-direction.
• For every C > 0 there exists R > 0, depending only on C and γ,

such that Gγ g(z)
g(z)

+
C

[ρ(z)]4/(2+2γ ) < 0 for every z ∈ �0 with |z| > R.

• For every fixed λ < 0 we have wλ(z) = wλ(z)/g(z)→ 0 in �λ as |z| → +∞.

(24)

We remark that, since v is singular in the origin, neither wλ nor wλ is well defined at
the points z = 0 ∈ Rd+k and z = zλ := (2λ, . . . , 0, 0, . . . , 0). We note however that
zλ ∈ �λ, while 0 /∈ �λ for every λ < 0. Hence wλ, wλ ∈ C2(�λ \ {zλ}) ∩ C1(�λ \ {zλ})

for any λ < 0.

Step 4 (Symmetry of v in the x1-direction). This is the most difficult part of the proof
of Theorem 5.2, and is based upon the technique of moving planes. Namely we want to
prove that wλ0 ≡ 0 in �λ0 \ {zλ0} for a suitable λ0, by moving the hyperplane Tλ along
the x1-axis from ∞ towards the origin of Rd+k . By the definition of wλ0 , this yields
v(zλ0) = v(z) for every z ∈ �λ0 \ {zλ0}, i.e. the function v is symmetric with respect to
the hyperplane Tλ0 = {z ∈ Rd+k : x1 = λ0}. We will go through the details of the proof
of Step 4 later in this section.

Step 5 (Reduction to the case of u independent of the x ∈ Rd variables, and conclu-
sion). By Step 4 of the proof, the function v defined in (22) is symmetric in the x1-
direction about a suitable hyperplane Tλ0 of Rd+k . Since the direction x1 can be chosen
arbitrarily in Rd × {0},1 we conclude that v must be radially symmetric in the x ∈ Rd
variables about some point.

1 Or equivalently exploiting the invariance of problem (17) with respect to rotations in Rd × {0}.
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Considering that 1 < p < (Q+ 2)/(Q− 2), from (23) it follows that v can only be
symmetric in the x variables with respect to the origin, if it is not identically zero. Hence,
by its very definition, also the function u must be radially symmetric in the x variables
about the origin.

Since the origin of the coordinate system can be chosen arbitrarily in Rd × {0} when
performing the Kelvin transform which defines the function v starting from u,2 we find
that the function umust be radially symmetric in the x variables with respect to any point
of Rd , and thus it is constant with respect to those variables.

Hence we have u(x, y) = u(y) for every z = (x, y) ∈ Rd+k . Problem (17) then
becomes {

1u+ up = 0 in Rk,
u > 0 in Rk, u ∈ C2(Rk),

with 1 < p < (Q+ 2)/(Q− 2).
Since (Q+ 2)/(Q− 2) < (k + 2)/(k − 2), the nonexistence result for this kind of

problem, which has been proved in [14] and later via maximum principles in [6], shows
that u ≡ 0 if k ≥ 3.

If k = 2, then from (17) we have{
1u = −up ≤ 0 in R2,

u > 0 in R2, u ∈ C2(R2),

and hence u is constant in R2 by the Liouville theorem. From the equation it then follows
that u ≡ 0.

Finally, if k = 1, from (17) we get{
u′′ = −up ≤ 0 in R,
u > 0 in R, u ∈ C2(R),

and thus u is concave and bounded from below on R. Hence it is constant, and once again
from the equation it follows that u ≡ 0.

Thus, in every case, we find a contradiction with our assumptions on the function u,
which we supposed in Step 1 of the proof to be strictly positive on the whole of Rd+k .

Hence any solution u of problem (17) must vanish identically on Rd+k , provided that
Step 4 holds. ut

Before proceeding with the proof of Step 4 of Theorem 5.2 we need to state and prove
three lemmas. The first states that if wλ is negative somewhere in its domain and if λ is
negative enough, then the negative minimum of the function wλ on �λ \ {zλ} is finite and
is achieved. This lemma also states that, for any fixed λ0 < 0, there is an a priori bound,
which is uniform with respect to λ ≤ λ0, on the value of the Rd+k-norm of the points of
negative minimum of wλ.

2 Or equivalently exploiting the invariance of problem (17) with respect to translations in the
directions of Rd × {0}.
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Lemma 5.1. (i) If λ is negative enough and if inf�λ\{zλ}wλ < 0, then the infimum is
achieved.

(ii) For every λ0 < 0 there exists R0 > 0, depending only on p, λ0, γ and the function u,
such that if z0 is a minimum point for wλ on �λ \ {zλ} with wλ(z0) < 0 and λ ≤ λ0,
then |z0

| ≤ R0.

Proof. (i) The operatorGγ and suitable lower order perturbations satisfy the strong max-
imum principle, Theorem 2.2, on3m := B1(0) \B1/m(0), where we recall that BR(P ) is
the open Euclidean ball in Rd+k centered at P and with radius R > 0. We also note that
for every m ∈ N one has

∂3m = ∂B1(0) ∪ ∂B1/m(0), 3m ⊂ B1(0) \ {0},

and that for every z ∈ B1(0) \ {0} there exists N = N(z) ∈ N such that z ∈ 3m for every
m > N(z).

Now let ϕ(z) := [ρ(z)]−(Q−2)/(2γ+2). Then ϕ ∈ C∞(3m), ϕ is strictly positive in3m
and Gγ ϕ ≡ 0 in 3m for every m ∈ N. We recall that, in fact, ϕ is the fundamental
solution of Gγ at the origin (see formula (10)). Let ε0 := inf∂B1(0) v. Then ε0 > 0 since
v is strictly positive on Rd+k \ {0}. Now, recalling definition (19), for every m ∈ N one
has in 3m

Gγ

(
ε0 − v

ϕ

)
+

2
ϕ

〈
∇̃ϕ, ∇̃

(
ε0 − v

ϕ

)〉
Rd+k
= −

Gγ v

ϕ
≥ 0. (25)

By the strong maximum principle, Theorem 2.2, the function (ε0 − v)/ϕ cannot attain its
nonnegative maximum in 3m unless it is constant, in particular

sup
3m

(
ε0 − v

ϕ

)
≤ sup
∂3m

(
ε0 − v

ϕ

)+
= sup
∂B1/m(0)

(
ε0 − v

ϕ

)+
.

If z ∈ ∂B1/m(0) one has

ε0 − v(z)

ϕ(z)
≤

ε0

ϕ(z)
= ε0[ρ(z)]

Q−2
2γ+2 ≤ ε0

(
1
m

)Q−2
γ+1
.

Then we get

sup
∂B1/m(0)

(
ε0 − v

ϕ

)+
≤ ε0

(
1
m

)Q−2
γ+1

and for any δ > 0 there existsM1 :=(δ/ε0)
−(γ+1)/(Q−2) such that sup∂B1/m(0) (ε0−v/ϕ)

+

< δ for every m > M1. Now let z ∈ B1(0) \ {0}. Then there exists M2 such that z ∈ 3m
for every m > M2 and

ε0 − v(z)

ϕ(z)
≤ sup

3m

(
ε0 − v

ϕ

)
≤ sup
∂B1/m(0)

(
ε0 − v

ϕ

)+
< δ
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for m ∈ N large enough, i.e. m > max{M1, M2}. Hence v(z) > ε0 − δϕ(z). Since δ > 0
is arbitrary, we get v(z) ≥ ε0, and thus

inf
B1(0)\{0}

v ≥ ε0 > 0.

We remark that this kind of result is a maximum principle of Phragmén–Lindelöf type
for the operator Gγ (see Theorem 19 of Section 9 in [26]).

Now observe that v(z) tends to 0 as |z| tends to +∞. In fact, since

ρ(z) ≥ max
{
|x|2,

1
(γ + 1)2

|y|2γ+2
}
→+∞ as |z| → +∞,

one has (
x

ρ(x, y)
,

y

[ρ(x, y)]
1

1+γ

)
→ 0 as |z| → +∞.

Hence, by the continuity of u, as |z| → +∞ we have

v(z) =
1

[ρ(z)]
Q−2
2γ+2

u

(
x

ρ(z)
,

y

[ρ(z)]
1

1+γ

)
∼ u(0)[ρ(z)]−

Q−2
2γ+2 → 0. (26)

Then we can find M > 0 such that 0 < v(z) ≤ ε0 for every z satisfying |z| > M .
If −λ > (M + 1)/2 is fixed, we have |z| > M for every z ∈ B1(zλ), and hence for

any z ∈ B1(zλ) \ {zλ} we get

wλ(z) =
vλ(z)− v(z)

g(z)
≥

infB1(zλ)\{zλ} vλ − supB1(zλ)\{zλ}
v

g(z)

=
infB1(0)\{0} v − supB1(zλ)\{zλ}

v

g(z)
≥ 0

Moreover lim|z|→+∞wλ(z) = 0 by condition (24). Finally notice that, by definition, we
have wλ ≡ 0 on ∂�λ for every fixed λ < 0.

Thus, if inf�λ\{zλ}wλ < 0 and λ < −(M + 1)/2, the infimum must be achieved at
some point of �λ \ B1(zλ) by the continuity of the function wλ.

(ii) Exploiting equation (23), it is easy to see that for any λ < 0 we have

Gγ vλ(z)+
[vλ(z)]p

[ρ(z)]
Q+2
2γ+2−p

Q−2
2γ+2

≤ 0 for every z ∈ �λ \ {zλ},

since 1 < p < (Q+ 2)/(Q− 2) and ρ(zλ) = ρ(z)−4λx1+4λ2
≤ ρ(z) for any z ∈ �λ.

Then, by the mean value theorem, it follows that

Gγwλ(z)+ c(z)wλ(z) ≤ 0 for every z ∈ �λ \ {zλ}, (27)

where c(z) = p

[ρ(z)](Q+2)/(2γ+2)−p(Q−2)/(2γ+2)ψ(z)
p−1 and ψ(z) is a real number between

v(z) and v(zλ). Thus c(z) is positive for every z ∈ �λ \ {zλ}.
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By an easy calculation, one sees that

Gγwλ +
2
g
〈∇̃g, ∇̃wλ〉Rd+k + wλ

Gγ g

g
−
Gγwλ

g
= 0 in �λ \ {zλ},

and hence, from (27), one has

Gγwλ +
2
g
〈∇̃g, ∇̃wλ〉Rd+k + wλ

(
Gγ g

g
+ c

)
≤ 0 in �λ \ {zλ}. (28)

Now notice that u ∈ C2(Rd+k), u is positive and thus u(x/ρ(z), y/[ρ(z)]1/(γ+1))→

u(0) > 0 as |z| tends to +∞. Then for every M > 0 we can find positive constants
c1 = c1(M) and c2 = c2(M) such that

0 < c1 ≤ u

(
x

ρ(z)
,

y

[ρ(z)]
1

γ+1

)
≤ c2 for every |z| ≥ M. (29)

Note that c1 is nondecreasing and c2 is nonincreasing in M , and it may happen that
c1 → 0, c2 →+∞ as M tends to 0+, depending on the function u.

In particular, for every M > 0 there exist c1, c2 > 0 such that

0 <
c1

[ρ(z)]
Q−2
2γ+2

≤ v(z) ≤
c2

[ρ(z)]
Q−2
2γ+2

for every |z| ≥ M.

Now if λ ≤ λ0 < 0 and if z0 is a negative minimum point for wλ in �λ \ {zλ}, that is,
if wλ(z0) = inf�λ\{zλ}wλ < 0, then it is easy to see that

• |z0
| ≥ −λ ≥ −λ0, since z0

∈ �λ ⊂ �λ0 ,
• ∇̃wλ(z

0) = 0, since wλ(z0) < 0 and hence z0 must be an interior point of �λ \ {zλ},
• Gγwλ(z0) ≥ 0, since z0 is a minimum point for wλ lying in the interior of �λ \ {zλ},
• 0 < v((z0)λ) < v(z0), since wλ(z0) < 0.

Thus
0 < v((z0)λ) ≤ ψ(z0) ≤ v(z0) ≤

α

[ρ(z0)]
Q−2
2γ+2

,

where α > 0 is a suitable constant depending only on the function u and on λ0, using the
idea of (29). Hence

0 < c(z0) =
p

[ρ(z0)]
Q+2
2γ+2−p

Q−2
2γ+2

(ψ(z0))p−1
≤

pαp−1

[ρ(z0)]
4

2γ+2
. (30)

From (28), it now follows that

0 ≥ Gγwλ(z0)+
2

g(z0)
〈∇̃g(z0), ∇̃wλ(z

0)〉Rd+k + wλ(z
0)

(
Gγ g(z

0)

g(z0)
+ c(z0)

)
≥ wλ(z

0)

(
Gγ g(z

0)

g(z0)
+ c(z0)

)
,
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and this last term is strictly positive if |z0
| is large enough, by the hypotheses we made

on the function g. In fact we have established that wλ(z0) < 0, and by (30) and the
assumptions on g it follows that

Gγ g(z
0)

g(z0)
+ c(z0) ≤

Gγ g(z
0)

g(z0)
+

pαp−1

[ρ(z0)]
4

2γ+2
< 0

if |z0
| > R0, where R0 > 0 is a suitable constant depending only on α, p and γ , and

hence depending only on the function u, on λ0, on p and on γ , which is provided by
condition (24).

Thus it follows that |z0
| ≤ R0, with R0 = R0(λ0, p, u, γ ) > 0. ut

The second lemma, which we are about to prove, states that for suitable values of the
constants γ , d and k there exists a function g satisfying condition (24).

Lemma 5.2. (i) If 0 < γ < 1 and d, k ∈ N, then there exists a function g which
satisfies condition (24).

(ii) If γ > 0, d ∈ N and k ∈ N \ {1, 2}, then there exists a function g satisfying condi-
tion (24).

Proof. (i) For every y ∈ Rk , x̃ ∈ Rd−1 and x1 ≤ 0, define x = (x1, x̃) and

g(z) = g(x, y) :=
1− x1(

(1− x1)2 + |̃x|2 +
1

(γ+1)2 (|y|
2 + 1)γ+1

)β ,
with 0 < β < γ/(2(γ + 1)) to be chosen later. Then g is strictly positive on �0 =

R− × Rd−1
× Rk and g ∈ C∞(�0). Moreover for every z = (x1, x̃, y) ∈ �0 we have

Dx1g(z) =
(2β − 1)(1− x1)

2
− |̃x|2 − 1

(γ+1)2 (|y|
2
+ 1)γ+1(

(1− x1)2 + |̃x|2 +
1

(γ+1)2 (|y|
2 + 1)γ+1

)β+1 < 0,

since by our assumptions β < 1/2. Hence g is decreasing in the x1-direction on �0.

Claim 1. For every λ < 0 we have

wλ(z) =
v(zλ)− v(z)

g(z)
→ 0 as |z| → +∞ in �λ.

We begin by noticing that, for |z| large enough, we have

(1− x1)
2
+ |̃x|2 +

1
(γ + 1)2

(|y|2 + 1)γ+1

≤ 2γ+1
(
(1− x1)

2
+ |̃x|2 +

1
(γ + 1)2

|y|2γ+2
)

≤ 2γ+2
(
|x|2 +

1
(γ + 1)2

|y|2γ+2
)
= 2γ+2ρ(z). (31)
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Now recall that by (26) we have

v(z) ∼ u(0)[ρ(z)]−
Q−2
2γ+2 as |z| → +∞.

Hence, exploiting (31), we have, as |z| tends to +∞ in �0,

0 <
v(z)

g(z)
∼
u(0)[ρ(z)]−

Q−2
2γ+2

g(z)

=
u(0)

1− x1
[ρ(z)]−

Q−2
2γ+2

(
(1− x1)

2
+ |̃x|2 +

1
(γ + 1)2

(|y|2 + 1)γ+1
)β

≤ 2β(γ+2) u(0)
1− x1

[ρ(z)]−
Q−2
2γ+2+β

≤ 2β(γ+2)u(0)[ρ(z)]−
Q−2
2γ+2+β → 0 as |z| → +∞,

since x1 ≤ 0 in�0, since ρ(z) tends to+∞ as |z| tends to+∞, and since, by our bounds
on the choice of β, we have

−
Q− 2
2γ + 2

+ β ≤
−γ

2γ + 2
+ β < 0.

Now notice that, for any fixed λ < 0, we have |zλ|2 = |z|2 − 4λx1 + 4λ2 and that
ρ(zλ) = ρ(z)− 4λx1 + 4λ2, hence |zλ| ∼ |z| and ρ(zλ) ∼ ρ(z) as |z| → +∞. Then

0 <
v(zλ)

g(z)
∼
u(0)[ρ(zλ)]−

Q−2
2γ+2

g(z)
∼
u(0)[ρ(z)]−

Q−2
2γ+2

g(z)
→ 0

as |z| tends to +∞ in �λ. Hence

wλ(z) =
v(zλ)

g(z)
−
v(z)

g(z)
→ 0 as |z| → +∞ in �λ,

as stated in Claim 1.

Claim 2. For every C > 0 there exists R > 0, which depends only on γ and C, such that
if z ∈ �0 and |z| > R then

Gγ g(z)

g(z)
+

C

[ρ(z)]
4

2γ+2
< 0.

To simplify the notation define ρ̃(z) := ((1−x1)
2
+|̃x|2+ 1

(γ+1)2 (|y|
2
+1)γ+1) for every

z = (x1, x̃, y) ∈ �0. Then ρ̃(z) > 0 and

Gγ g(z)

g(z)
=

4β(β + 1)
(γ + 1)2

(|y|2 + 1)2γ |y|2γ [ρ̃(z)]−2[(|y|2)1−γ − (|y|2 + 1)1−γ ]

−
2β
γ + 1

(|y|2 + 1)γ [ρ̃(z)]−1
[
(d − 2β)(γ + 1)

(
|y|2

|y|2 + 1

)γ
+ k + 2γ

|y|2

|y|2 + 1

]
. (32)
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Now notice that for every y ∈ Rk we have

(|y|2)1−γ − (|y|2 + 1)1−γ < 0 (33)

since 0 < γ < 1. On the other hand

(d − 2β)(γ + 1)
(
|y|2

|y|2 + 1

)γ
+ k + 2γ

|y|2

|y|2 + 1
≥ 1 (34)

since d, k ≥ 1, β < 1/2 and γ > 0.
Exploiting inequalities (33) and (34), from (32) it follows that

Gγ g(z)

g(z)
≤ −

2β
γ + 1

[ρ̃(z)]−1. (35)

Thus if 0 < γ < 1 and C > 0, by (35), we have

Gγ g(z)

g(z)
+

C

[ρ(z)]
4

2γ+2
≤ −

2β
1+ γ

1
[ρ̃(z)]

+
C

[ρ(z)]
4

2γ+2
,

and this last term is strictly negative if |z| is large enough, i.e. if |z| > R for a suitable
R > 0 depending only on C and on γ . Indeed, ρ̃(z) ∼ ρ(z)→ +∞ as |z| tends to +∞,
and 4/(2γ + 2) > 1 by our assumptions on γ . Hence we get Claim 2.

(ii) In this case define

g(z) = g(x, y) := (|y|2 + 1)−α

for any fixed α with 0 < α < (k − 2)/2. Then g is strictly positive in Rd+k , it is bounded
and g ∈ C∞(Rd+k). Notice also that Dx1g ≡ 0 in Rd+k .

Claim 3. For every λ < 0 we have

wλ(z) =
v(zλ)− v(z)

g(z)
→ 0 as |z| → +∞ in �λ.

Indeed, as |z| → +∞ we have v(z) ∼ u(0)[ρ(z)]−(Q−2)/(2γ+2), as was shown in (26),
and hence

0 <
v(z)

g(z)
∼

u(0)(|y|2 + 1)α(
|x|2 + 1

(γ+1)2 |y|
2γ+2

) Q−2
2γ+2

≤ Cmin
{
(|y|2 + 1)α

|y|Q−2 ,
(|y|2 + 1)α

|x|
Q−2
γ+1

}
→ 0 as |z| → +∞,

where C > 0 is a suitable constant, since 2α −Q + 2 < 2α − k + 2 < 0 by our choice
of α.
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Now recall that as |z| → +∞ one has |zλ| ∼ |z| and also ρ(zλ) ∼ ρ(z) for any fixed
λ < 0. Hence |zλ| → +∞ as |z| → +∞, and by (26) we get

0 <
v(zλ)

g(z)
∼
u(0)[ρ(zλ)]−

Q−2
2γ+2

g(z)
∼
u(0)[ρ(z)]−

Q−2
2γ+2

g(z)

=
u(0)(|y|2 + 1)α(

|x|2 + 1
(γ+1)2 |y|

2γ+2
) Q−2

2γ+2

→ 0 as |z| → +∞ in �λ,

as was shown before. But then

wλ(z) =
v(zλ)

g(z)
−
v(z)

g(z)
→ 0 as |z| → +∞ in �λ,

and we get Claim 3.

Claim 4. For every C > 0 there exists R > 0, depending only on γ , k and C, such that

Gγ g(z)

g(z)
+

C

[ρ(z)]
4

2γ+2
< 0 (36)

whenever z ∈ �0 and |z| > R.

Since 0 < α < (k − 2)/2, we have

Gγ g(z)

g(z)
=

−2α
(|y|2 + 1)2

[k + (k − 2α − 2)|y|2] ≤
−2α(k − 2− 2α)
|y|2 + 1

< 0.

Then, recalling also that k ≥ 3, for any C > 0 we have

Gγ g(z)

g(z)
+

C

[ρ(z)]
4

2γ+2
≤
−2α(k − 2− 2α)
|y|2 + 1

+
C

[ρ(z)]
4

2γ+2

≤
−2α(k − 2− 2α)
|y|2 + 1

+
C(γ + 1)

4
γ+1

|y|4
(37)

and thus we can find R1 > 0, depending only on γ , k and C, such that the right hand side
of inequality (37) is strictly negative if |y| > R1.

On the other hand, if |y| ≤ R1, we have

Gγ g(z)

g(z)
+

C

[ρ(z)]
4

2γ+2
≤
−2α(k − 2− 2α)
|y|2 + 1

+
C

[ρ(z)]
4

2γ+2

≤
−2α(k − 2− 2α)

R2
1 + 1

+
C

|x|
4

γ+1
(38)

and so we can find R2 > 0, depending only on γ , k and C, such that the right hand side
of (38) is strictly negative if |x| > R2.

Hence property (36) holds if |z| > R :=
√
R2

1 + R
2
2 , since in this case |y| > R1 or

|y| ≤ R1 and |x| > R2, and thus we get Claim 4. ut
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Lemma 5.3. Let γ > 0 and λ < 0. If wλ > 0 in �λ \ {zλ}, then Dx1v(z) > 0 for every
z ∈ Tλ.

Proof. Let λ < 0 and ž = (x̌, y̌) = (λ, x̌2, . . . , x̌d , y̌1, . . . , y̌k) ∈ Tλ = ∂�λ. Then define
ẑ := (x̂, y̌) = ( 9

8λ, x̌2, . . . , x̌d , y̌1, . . . , y̌k) and r := |λ|/8.
Now, if y̌ 6= 0, we consider the Euclidean ball Br(ẑ) ⊂ Rd+k centered at ẑ and with

radius r . Then

• Br(ẑ) ⊂ �λ \ {zλ} and ž ∈ ∂Br(ẑ),
• by (27) we haveGγ (−wλ) ≥ c(z)wλ ≥ 0 in Br(ẑ), since both c(z) andwλ are positive,
• wλ(z) > 0 for every z ∈ Br(ẑ) and wλ(ž) = 0, since ž ∈ Tλ,
• 〈(ž− ẑ), A(ž)(ž− ẑ)〉Rd+k =

λ2

64 |y̌|
2γ > 0, where A(z) is the matrix of the coefficients

of the second order derivatives in the operator Gγ (see Section 4).

Hence we can apply the Hopf Lemma 2.2 to the function −wλ in Br(ẑ) with respect to
the point ž, and we conclude that −Dx1wλ(ž) > 0. Thus

Dx1v(ž) = −
1
2
Dx1wλ(ž) > 0.

If y̌ = 0, then ž, ẑ ∈ Rd × {0}, which is the degeneracy set of the operator Gγ .
Thus, instead of a Euclidean ball, we consider the set B̃r̂(ẑ) defined in Section 4, with
r̂ = (|λ|/8)1/(1+γ ). Then again we find

• B̃r̂(ẑ) ⊂ �λ \ {zλ} and ž ∈ ∂B̃r̂(ẑ),
• Gγ (−wλ) ≥ c(z)wλ ≥ 0 in B̃r̂(ẑ) by (27),
• wλ(z) > 0 for every z ∈ B̃r̂(ẑ) and wλ(ž) = 0, since ž ∈ Tλ.

Thus, by the Hopf Lemma for the Grushin operator, Lemma 4.1, also in this case we have

Dx1v(ž) = −
1
2
Dx1wλ(ž) > 0. ut

We are now ready to prove Step 4 of the proof of Theorem 5.2.

Proof of Step 4. We want to prove that v is symmetric with respect to a suitable hyper-
plane Tλ0 in Rd+k . This will be achieved by showing that wλ0 ≡ 0 on �λ0 \ {zλ0} for a
suitable λ0.

We begin by noticing that Lemmas 5.1 and 5.2 together imply that for λ negative
enough we have wλ ≥ 0 in �λ \ {zλ}.

Indeed, we first note that by Lemma 5.1(i) we can find λ1 < 0 with the property that,
if λ < λ1 and inf�λ\{zλ}wλ < 0, then the infimum is achieved.

From Lemma 5.1(ii) it follows that there exists R1 > 0, depending only on γ and λ1,
with the property that, if wλ(ž) = inf�λ\{zλ}wλ < 0 and if λ < λ1, then |ž| ≤ R1.

Now if λ ≤ min {λ1 − 1,−R1 − 1} and if inf�λ\{zλ}wλ ≥ 0 does not hold, we get a
contradiction. In fact, we could then find ž ∈ �λ \ {zλ} such that wλ(ž) = inf�λ\{zλ}wλ
< 0. Since ž ∈ �λ \ {zλ} we must have |ž| ≥ |λ| > R1, and this contradicts the assump-
tions on R1.
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Now define

λ0 := sup {λ ≤ 0 : wµ ≥ 0 in �µ \ {zµ} for every µ ≤ λ}.

By the continuity of v we have wλ0 ≥ 0 in �λ0 \ {zλ0}, and we remark that wλ(z) and
wλ(z) have the same sign for any z ∈ �λ \ {zλ} and for any λ ≤ 0.

Claim 1. If λ0 < 0 then wλ0 ≡ 0 in �λ0 \ {zλ0}.

In fact suppose by contradiction that wλ0 6≡ 0 in �λ0 \ {zλ0}. Then wλ0 ≥ 0 and wλ0 6≡ 0
in�λ0 \{zλ0}, hence applying the strong maximum principle, Theorem 2.2, to (27) shows
that both wλ0 and wλ0 are strictly positive in�λ0 \{zλ0}. Now let {λh}h∈N be a decreasing
sequence with 0 > λh ↘ λ0 as h tends to ∞ and such that for every h ∈ N we have
wλh(z) < 0 for some z ∈ �λh \ {zλh}. Such a sequence exists by the very definition of λ0
and since we assumed λ0 < 0.

It follows that inf�λh\{zλh }wλh < 0 for every h ∈ N.
We want to prove that for each h ∈ N large enough the infimum is achieved at some

point zh ∈ �λh \ {zλh}, the sequence {zh}h∈N is bounded, and zh stays uniformly away
from zλh for every h ∈ N large enough. To this end we will show that

∃ ε > 0, δ > 0 such that wλ0(z) ≥ ε for every z ∈ Bδ(zλ0) \ {zλ0}, (39)

inf
Bδ(zλ)\{zλ}

wλ ≥ inf
Bδ(zλ0 )\{zλ0 }

wλ0 − ε/2 ≥ ε/2 if 0 > λ ≥ λ0 and

λ is close enough to λ0. (40)

Proof of (39). Since λ0 < λh ≤ λ1 for every h ∈ N, we have B|λ1|/2(zλh) ⊂ �λh for
every h ∈ N ∪ {0}. Then we choose

δ := min {1/2, |λ1|/2}, ε :=
inf∂Bδ(zλ0 )

wλ0

supBδ(zλ0 )
g
. (41)

Since by our assumptions wλ0 ≥ 0, by (27) we have Gγwλ0 ≤ 0 in �λ0 \ {zλ0}. Then, by
a maximum principle of Phragmén–Lindelöf type as we showed in Lemma 5.1, we can
prove that wλ0(z) ≥ inf∂Bδ(zλ0 )

wλ0 > 0 for every z ∈ Bδ(zλ0) \ {zλ0}. Hence for every
z ∈ Bδ(zλ0) \ {zλ0} we will have

wλ0(z) =
wλ0(z)

g(z)
≥

inf∂Bδ(zλ0 )
wλ0

supBδ(zλ0 )
g
= ε > 0, (42)

exploiting the continuity and positivity of g.
Indeed, let 3m := Bδ(zλ0) \Bδ/m(zλ0) and let ϕ(z) := [ρ(zλ0)]−(Q−2)/(2+2γ ), which

is the fundamental solution ofGγ centered at zλ0 . Then ϕ ∈ C∞(3m), ϕ is strictly positive
on 3m and Gγ ϕ ≡ 0 in 3m. Moreover 3m ⊂ Bδ(zλ0) \ {zλ0} for every m ∈ N, and for
each z ∈ Bδ(zλ0) \ {zλ0} there exists N = N(z) ∈ N such that z ∈ 3m for every m ≥ N .

If we set η := inf∂Bδ(zλ0 )
wλ0 , then η > 0 and for every m ∈ N we have, as in (25),

Gγ

(
η − wλ0

ϕ

)
+

2
ϕ

〈
∇̃ϕ, ∇̃

(
η − wλ0

ϕ

)〉
Rd+k
= −

Gγwλ0

ϕ
≥ 0
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in 3m. Thus by the strong maximum principle, Theorem 2.2, we have

sup
3m

η − wλ0

ϕ
≤ sup
∂3m

(
η − wλ0

ϕ

)+
= sup
∂Bδ/m(zλ0 )

(
η − wλ0

ϕ

)+
.

Since v is strictly positive and continuous in its domain and since Bδ(zλ0) ⊂ Rd+k \ {0},
for every z ∈ ∂Bδ/m(zλ0) we have z ∈ Bδ(zλ0), and thus

η − wλ0(z)

ϕ(z)
= [η − (v(zλ0)− v(z))][ρ(zλ0)]

Q−2
2γ+2

≤ (η + v(z))[ρ(zλ0)]
Q−2
2γ+2 ≤ (η + C)[ρ(zλ0)]

Q−2
2γ+2

≤ (η + C)|z− zλ0 |
Q−2
γ+1 ≤ (η + C)

(
δ

m

)Q−2
γ+1
,

where C = maxBδ(zλ0 )
v > 0 and δ < 1 is defined by (41). Then

sup
∂Bδ/m(zλ0 )

(
η − wλ0

ϕ

)+
≤ (η + C)

(
δ

m

)Q−2
γ+1

and for any µ > 0 we can find

M1 := δ
(

µ

η + C

)− γ+1
Q−2

such that sup
∂Bδ/m(zλ0 )

(
η − wλ0

ϕ

)+
< µ for m > M1.

Now if z ∈ Bδ(zλ0) \ {zλ0} we can pick an m > M1 large enough so that z ∈ 3m, and
hence

η − wλ0(z)

ϕ(z)
≤ sup

3m

η − wλ0

ϕ
≤ sup
∂Bδ/m(zλ0 )

(
η − wλ0

ϕ

)+
< µ.

It follows that wλ0(z) > η−µϕ(z), and since µ > 0 is arbitrary we find finally wλ0(z) ≥

η = inf∂Bδ(zλ0 )
wλ0 > 0 for every z ∈ Bδ(zλ0) \ {zλ0}. Thus (39) holds.

Proof of (40). We exploit the uniform continuity of g and v on compact sets contained
in their domains. Let z ∈ Bδ(zλ) \ {zλ} with λ < 0. Then we can write z = zλ + ẑ with
ẑ ∈ Bδ(0) \ {0} and

wλ(z) = wλ(zλ + ẑ) =
v(ẑ0)− v(zλ + ẑ)

g(zλ + ẑ)
, (43)

where the point ẑ0
=(−x̂1, . . . , x̂d , ŷ1, . . . , ŷk) is symmetric to the point ẑ=(x̂1, . . . , x̂d ,

ŷ1, . . . , ŷk) with respect to the hyperplane T0.
If λ0 ≤ λ <

4
5λ0, by our definition of δ we have, for every ẑ ∈ Bδ(0) \ {0},

2λ0 − δ ≤ 2λ0 + x̂1 ≤ 2λ+ x̂1 ≤ 2λ+ δ ≤
11
10
λ0 < λ0 < 0 (44)
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and −δ ≤ x̂i ≤ δ, −δ ≤ ŷj ≤ δ for every i = 2, . . . , d and every j = 1, . . . , k.
Hence for each ẑ ∈ Bδ(0) \ {0} and λ ∈ [λ0,

4
5λ0) we have zλ + ẑ, zλ0 + ẑ ∈ K , with

K := [2λ0 − δ, λ0]× [−δ, δ]d−1
× [−δ, δ]k ⊂ �0 compact.

Since v and g are continuous on K and since g is strictly positive, the function −v/g
is uniformly continuous on that set, thus we can find β > 0 such that if a, b ∈ K and
|a − b| < β then ∣∣∣∣−v(a)g(a)

−
−v(b)

g(b)

∣∣∣∣ < ε

2

with the same ε > 0 defined in (41). Hence if

λ0 ≤ λ < min
{
λ0 +

β

2
,

4
5
λ0

}
:= λ̃0 (45)

and if ẑ ∈ Bδ(0)\{0}, we have zλ+ ẑ, zλ0+ ẑ ∈ K and |zλ+ ẑ−zλ0− ẑ| = 2|λ−λ0| < β.
Thus

−v(zλ + ẑ)

g(zλ + ẑ)
> −

ε

2
+
−v(zλ0 + ẑ)

g(zλ0 + ẑ)
. (46)

Now notice that, by condition (24), for any fixed ẑ ∈ Bδ(0) \ {0} the function of λ

g(zλ + ẑ) = g(2λ+ x̂1, x̂2, . . . , x̂d , ŷ1, . . . , ŷk)

is nonincreasing for λ0 ≤ λ < λ̃0, since in this case zλ + ẑ ∈ �0 by (44). Hence for
λ ∈ [λ0, λ̃0) and ẑ ∈ Bδ(0) \ {0} we have

1
g(zλ + ẑ)

≥
1

g(zλ0 + ẑ)
. (47)

Finally, recalling that v is positive, from (43) exploiting inequalities (46) and (47) we
get, for every ẑ ∈ Bδ(0) \ {0},

wλ(zλ+ẑ) =
v(ẑ0)

g(zλ + ẑ)
−
v(zλ + ẑ)

g(zλ + ẑ)
≥

v(ẑ0)

g(zλ0 + ẑ)
−
v(zλ0 + ẑ)

g(zλ0 + ẑ)
−
ε

2
= wλ0(zλ0+ẑ)−

ε

2

and by (39) we have

inf
Bδ(zλ)\{zλ}

wλ ≥ inf
Bδ(zλ0 )\{zλ0 }

wλ0 −
ε

2
≥
ε

2

for any λ satisfying λ0 ≤ λ < λ̃0, i.e. condition (40).
Now we want to prove that, if h ∈ N is large enough, we can find zh ∈ �λh \ {zλh}

such that wλh(zh) = inf�λh\{zλh }wλh < 0.
For any fixed h ∈ N, by condition (24) on g we know that wλh → 0 as |z| tends

to +∞ in �λh . Hence for |z| large enough one has wλh(z) >
1
2 inf�λh\{zλh }wλh . On the

other hand, for h ∈ N large enough we have λ0 ≤ λh < λ̃0, where λ̃0 is defined by (45).
Thus, by (40), for such h one haswλh(z) ≥ ε/2 > 0 for every z ∈ Bδ(zλh)\{zλh}. Finally
notice that wλh ≡ 0 on Tλh .
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Thus, since by our assumptions inf�λh\{zλh }wλh < 0, if h ∈ N is large enough the
infimum must be achieved at some point zh of �λh \ Bδ(zλh) by the continuity of the
function wλh .

Now recall that {λh}h∈N is decreasing, and hence λh ≤ λ1 < 0 for every h ∈ N.
Hence, by Lemma 5.1, we can find a suitable R > 0 independent of h such that |zh| < R

for every h ∈ N large enough. Thus, up to a subsequence, the sequence zh converges to a
z0 ∈ Rd+k as h→+∞.

Since zh ∈ �λh and since by construction |zh−zλh | ≥ δ for every h, letting h→+∞
we get z0 ∈ �λ0 and |z0 − zλ0 | ≥ δ. Hence z0 ∈ �λ0 \ Bδ(zλ0).

By our assumptions wλh(zh) < 0 for every h, so by the continuity of v and g, letting
h→+∞ yields wλ0(z0) = limh→+∞wλh(zh) ≤ 0.

Since wλ0 is nonnegative in its domain, we have wλ0(z0) = 0. Thus z0 ∈ Tλ0 , since
by our assumptions wλ0 is strictly positive in �λ0 \ {zλ0}. Then by Lemma 5.3, recalling
that wλ0 and wλ0 have the same sign, we get

Dx1v(z0) > 0. (48)

On the other hand, since for every h the function wλh achieves its negative minimum
zh ∈ �λh \ Bδ(zλh), we have ∇wλh(zh) = 0. Taking the first entry of this gradient and
letting h tend to +∞, by the regularity of the functions considered we get

0 = Dx1wλh(zh) =
−Dx1v(z

λh
h )−Dx1v(zh)

g(zh)
−
v(z

λh
h )− v(zh)

g2(zh)
Dx1g(zh)

→
−Dx1v(z

λ0
0 )−Dx1v(z0)

g(z0)
−
v(z

λ0
0 )− v(z0)

g2(z0)
Dx1g(z0)

= −2
Dx1v(z0)

g(z0)
,

since zλ0
0 = z0, and this clearly contradicts condition (48). Thus we finally get the claim,

i.e. if λ0 < 0 then wλ0 ≡ 0 in �λ0 \ {zλ0}.
This in turn implies that v(zλ0) = v(z) for every z ∈ �λ0 \{zλ0}, hence v is symmetric

with respect to the hyperplane Tλ0 in Rd+k .
On the other hand, if λ0 = 0 we can repeat the preceding argument from the opposite

direction, namely moving the hyperplane Tλ in direction x1 from +∞ toward the origin.
If Tλ stops before reaching 0, we have once again the symmetry of v in the x1-direction
about some hyperplane.

If the hyperplane Tλ reaches 0 again, we can recover the symmetry result for v com-
bining the two opposite inequalities on w0 obtained by moving the hyperplanes from the
two opposite directions, and thus in this case v is symmetric with respect to the hyper-
plane T0.

Hence v is symmetric in the x1-direction about some hyperplane in Rd+k .
The proof of Step 4, and hence of Theorem 5.2, is now complete. ut
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Remark 5.6. We remark that the gap in the set of γ > 0, d, k ∈ N left in the statement
of Theorem 5.2 is due to the lack of a suitable function g satisfying condition (24) (see
Lemma 5.2). If one could show the existence of g with those properties also when γ ≥ 1,
d ∈ N and k ∈ {1, 2}, then the nonexistence result for nontrivial solutions of problem
(17) would also hold in those cases.

Remark 5.7. An explicit, nontrivial solution of problem (17) is known for some values
of γ when p = (Q+ 2)/(Q− 2) (see for instance [7]). Our result in this case states that
any solution of this problem must be radially symmetric in the x variables about some
point in Rd . A symmetry result for such solutions in the critical case with respect to a
suitable inversion of Rd+k has been proven in [20].
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