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Abstract. We prove the “End Curve Theorem,” which states that a normal surface singularity
(X, o) with rational homology sphere link 6 is a splice quotient singularity if and only if it has
an end curve function for each leaf of a good resolution tree.

An “end curve function” is an analytic function (X, o) → (C, 0) whose zero set intersects 6
in the knot given by a meridian curve of the exceptional curve corresponding to the given leaf.

A “splice quotient singularity” (X, o) is described by giving an explicit set of equations describ-
ing its universal abelian cover as a complete intersection in Ct , where t is the number of leaves in
the resolution graph for (X, o), together with an explicit description of the covering transformation
group.

Among the immediate consequences of the End Curve Theorem are the previously known
results: (X, o) is a splice quotient if it is weighted homogeneous (Neumann 1981), or rational or
minimally elliptic (Okuma 2005).

Keywords. Surface singularity, splice quotient singularity, rational homology sphere, complete
intersection singularity, abelian cover, numerical semigroup, monomial curve, linking pairing

We consider normal surface singularities whose links are rational homology spheres
(QHS for short). The QHS condition is equivalent to the condition that the resolution
graph 0 of a minimal good resolution be a rational tree, i.e., 0 is a tree and all exceptional
curves are genus zero.

Among singularities with QHS links, splice quotient singularities are a broad gener-
alization of weighted homogeneous singularities. We recall their definition briefly here
and in more detail in Section 1. Full details can be found in [20].

Recall first that the topology of a normal complex surface singularity is determined
by and determines the minimal resolution graph 0. Let t be the number of leaves of 0.
For i = 1, . . . , t , we associate the coordinate function xi of Ct to the i-th leaf. This leads
to a natural action of the “discriminant group” D = H1(6) by diagonal matrices on Ct
(see Section 1).
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Under two (weak) conditions on 0, called the “semigroup” and “congruence” con-
ditions, one can write down an explicit set of t − 2 equations in the variables xi , which
defines an isolated complete intersection singularity (V , 0) and which is invariant un-
der the action of D. Moreover the resulting action of D on V is free away from 0, and
(X, o) = (V , 0)/D is a normal surface singularity whose minimal good resolution graph
is 0. This (X, o) is what we call a splice quotient singularity. Since the covering transfor-
mation group for the covering map V → X is D = H1(X − {o}) = π1(X − {o})

ab, the
covering (V , 0)→ (X, o) (branched only at the singular points) may be called the univer-
sal abelian cover of (X, o). In particular, for a splice quotient singularity, one can write
down explicit equations for the universal abelian cover just from the resolution graph, i.e.,
from the topology of the link.

The link 6 of the singularity (X, o) can be expressed as the boundary of a plumbed
regular neighborhood N of the exceptional divisor E = E1 ∪ · · · ∪ En in the minimal
good resolution X̃ of (X, o). Then each meridian curve of an Ei gives a knot Ki in 6.
A “meridian curve” means the boundary of a small transverse disk to the exceptional
divisor Ei . If Ei is the exceptional curve corresponding to a leaf of 0, we call Ki an end
knot. A (germ of a) smooth complex curve on X̃ which intersects E transversally on such
a leaf curve (and hence which cuts out an end knot on 6) is called an end curve; we also
use this name for the image curve in X.

If (X, o) is a splice quotient singularity as described above, then some power zi = xdi
of the coordinate function xi on V is well defined on X = V/D. The zero set in 6
resp. X of zi is the end knot resp. end curve corresponding to the i-th leaf of 0 (the
degree of vanishing may be > 1). We say that the end knot or end curve is cut out by the
function zi and that zi is an end curve function.

Our main result is

End Curve Theorem. Let (X, o) be a normal surface singularity with QHS link6. Sup-
pose that for each leaf of the resolution diagram 0 there exists a corresponding end curve
function zi : (V , 0)→ (C, 0) which cuts out an end knot Ki ⊂ 6 (or end curve) for that
leaf. Then (X, o) is a splice quotient singularity and a choice of a suitable root xi of zi
for each i gives coordinates for the splice quotient description.

An immediate corollary (conjectured in [20] and first proved by Okuma [23]) is that
rational singularities and most minimally elliptic singularities (the few with non-QHS link
must be excluded) are splice quotients. Another direct corollary is the result of [16], that a
weighted homogeneous singularity with QHS link has universal abelian cover a Brieskorn
complete intersection. The special case of the End Curve Theorem, when the link is an
integral homology sphere (so that D is trivial), was proved in our earlier paper [21].

We first proved the End Curve Theorem in summer of 2005, but it has taken a while
to write up. In the meantime, Okuma resp. Némethi and Okuma in [24, 13, 14] (see
also Braun and Némethi [2]) have used this to compute the geometric genus pg of any
splice quotient, and to prove for splice quotients the Casson invariant conjecture [17] for
singularities with ZHS links (in which caseD = {1} so V = X), as well as the Némethi–
Nicolaescu extension [12] of the Casson Invariant Conjecture to singularities with QHS
links.
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These results of Némethi and Okuma give topological interpretations of analytic in-
variants; this is analogous to the fact that for rational singularities some of the important
analytic invariants are topologically determined. As happens for rational singularities,
the set of resolution graphs that belong to splice quotient singularities is closed under
the operations of taking subgraphs and of decreasing the intersection weight at any ver-
tex [14]. It is worth noting, however, that rational singularities did not have explicit ana-
lytic descriptions before splice quotients were discovered; even the fact that their universal
abelian covers are complete intersections was unexpected until it was conjectured in [20]
(see also [22]).

Of course, unlike rationality, the property of being a splice quotient is not topologi-
cally determined—for example, splice quotients, as quotients of Gorenstein singularities,
are necessarily Q-Gorenstein, which is generally a very special property within a topolog-
ical type. Even more, “equisingular deformations” of very simple splice quotients need
not be of this type (see Example 10.4).

We once over-optimistically conjectured that Q-Gorenstein singularities with QHS
links would have complete intersection universal abelian covers, and although this is
false in general [11], we see it is true for a large class of singularities. There is a nat-
ural arithmetic analog. A standard “dictionary” that developed out of proposals of Mazur
and others pairs 3-manifolds with number fields, knots with primes, and so on. A natu-
ral analog of universal abelian covers of QHS links belonging to complete intersections
would be that the ring of integers of the Hilbert class field of a number field K be a com-
plete intersection over Z. This is in fact true, proved by de Smit and Lenstra [5]. The
analogy between splice singularities and Hilbert class fields is enticing, since it is a sig-
nificant open problem to compute Hilbert class fields, while the explicit splice singularity
description is easily computed from the resolution diagram.

We summarize the proof of the End Curve Theorem in Section 2 after first recalling
the theory of splice quotient singularities in Section 1. We complete the proof in Section 8.
Some applications and examples are discussed in the final Section 10.

Some of the ingredients in our proof could be of independent interest. We need an
extension to the equivariant reducible case of the theory of numerical semigroups and
monomial curves developed by Delorme, Herzog, Kunz, Watanabe and the authors [4,
9, 10, 21, 28]. The necessary parts of this theory are developed in Sections 3–7. Some
topological results about knots in Q-homology spheres and their linking numbers and
Milnor numbers are collated in Section 9.

1. Splice quotient singularities

We recall here the detailed construction of splice quotient singularities. For full details
see [20].

Let (X̄, 0) ⊂ (CN , 0) be a normal surface singularity whose link6 = X̄∩S2N−1
ε is a

QHS. Equivalently, the minimal good resolution resolves the singularity by a tree of ratio-
nal curves. Let 0 be the resolution graph. In some cases we can construct directly from 0

singularities which have the same link as X̄ (but might well be analytically distinct).
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We denote by A(0) the intersection matrix of the exceptional divisor (we say “inter-
section matrix of 0”); this is the negative definite matrix whose diagonal entries are the
weights of the vertices of 0 and whose off-diagonal entries are 1 or 0 according as corre-
sponding vertices of 0 are connected by an edge or not. The discriminant group D(0) is
the cokernel ofA(0) : Zn→ Zn. There is a canonical isomorphismD(0) ∼= H1(6;Z) (if
6 were not a QHS one would haveD(0) ∼= TorH1(6;Z)). The order |D| = det(−A(0))
of D(0) is called the discriminant of 0.

1.1. Splice diagram

We shall denote by1 the splice diagram corresponding to 0. We recall its construction. If
one removes from 0 a vertex v and its adjacent edges then 0 breaks into subgraphs 0vj ,
j = 1, . . . , δv , where δv is the valency of v. We weight each outgoing edge at v by the
discriminant of the corresponding subgraph; these are the “splice diagram weights” (the
reader may wish to refer to the illustrative example in Subsection 1.6). The graph 0 with
all splice diagram weights added and with the self-intersection weights deleted is called
the maximal splice diagram. One can still recover 0 from it. If one now drops the splice
diagram weights around vertices of valency≤ 2 and then suppresses all valency 2 vertices
to get a diagram with only leaves (valency 1) and nodes (valency ≥ 3) one gets the splice
diagram 1. The splice diagram 1 no longer determines 0 in general.

For the purpose of this paper it is convenient to have a version of the splice diagram
in which we do not discard the splice diagram weights at leaves. We call this the splice
diagram with leaf weights and denote it also by 1.

Definition 1.1. For two vertices v and w of 0 the linking number `vw is the product of
splice diagram weights adjacent to but not on the shortest path from v tow in 0. If v = w
this means the product of splice diagram weights at v. (The name comes from the fact
that `vw is |D| times the linking number of the knots in 6 corresponding to v and w, see
Proposition 9.1.)

The matrix (`vw) is the adjoint of −A(0) ([7, Lemma 20.2]):

(`vw) = Adj(−A(0)) = −|D|A(0)−1.

Note that for vertices v andw of1, `vw can be computed using only weights of1, except
that leaf weights are also needed if v = w is a leaf.

1.2. Action of the discriminant group on Ct

Let vi , i = 1, . . . , t , be the leaves of 0 or 1, and associate a coordinate Yi of Ct with
each leaf. Since D = Zn/A(0)Zn with Zn = Zvert(0), each vertex v of 0 determines an
element ev ∈ D. There is a non-degenerate Q/Z-valued bilinear form on D satisfying

ev · ew = −`vw/|D|,

the vw-entry of A(0)−1.
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We get an action of D on Ct by letting the element e ∈ D act via the diagonal matrix

diag(e2πi e·ev1 , . . . , e2πi e·evt ).

The elements evi , i = 1, . . . , t , generate D (in fact any t − 1 of them do, see [20, Propo-
sition 5.1]). We thus only need the splice diagram with leaf weights 1 to determine this
action.

1.3. Splice equations

In contrast to the action of D on Ct , only the splice diagram 1 and not leaf weights are
needed to discuss splice equations. We will write down t − 2 equations in the variables
Y1, . . . , Yt , grouped into δv − 2 equations for each node v of 1. These δv − 2 equations
are weighted homogeneous with respect to weights determined by v. We first describe
these weights.

Fix a node v of 1. The v-weight of Yi is `vvi . We will write down equations of total
weight `vv . Number the outgoing edges at v by j = 1, . . . , δv . For each j , a mono-
mial Mvj of total weight `vv , using only the variables Yj that are beyond the outgoing
edge j from v, is called an admissible monomial. The existence of admissible monomials
for every edge at every node is the semigroup condition of [20]. Assuming this condition,
choose one admissible monomial Mvj for each outgoing edge at v. Then splice diagram
equations for the node v consist of equations of the form

δv∑
j=1

avijMvj +Hvi = 0, i = 1, . . . , δv − 2,

where

• all maximal minors of the (δv − 2)× δv matrix (avij ) have full rank;
• Hvi is an optional extra summand in terms of monomials of v-weight > `vv (most

generally, a convergent power series in such monomials).

Choosing splice diagram equations for each node gives exactly t − 2 equations, called a
system of splice diagram equations. In Theorem 2.6 of [20], it is shown that they deter-
mine a 2-dimensional complete intersection V with isolated singularity at the origin.

Claim. The link of this singularity has the topology of the universal abelian cover of the
singularity link determined by 0. In particular, this topology is determined by the splice
diagram 1 alone.

For 0 that admit splice quotient singularities (i.e., the equations can be chosen D-equiv-
ariantly), this is in [20]. The second sentence has been proved in full generality by Helge
Pedersen [25], but a complete proof of the first sentence for general 0 has not yet been
written up, so it should be considered conjectural.
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1.4. Splice quotient singularities

Suppose now that we can choose a system of splice diagram equations as above, which are
additionally equivariant with respect to the action of D; this is a combinatorial condition
on 0, called the congruence condition ([18, 20]). Then

Theorem ([20]). D acts freely on V − {0} and the quotient (X, o) := (V , 0)/D is a
normal surface singularity whose resolution graph is 0; moreover, (V , 0) → (X, o) is
the universal abelian cover. We call (X, o) a splice quotient singularity.

Theorem 10.1 of [20] says that the class of splice quotient singularities is natural, in the
sense that it does not depend on the choice of which admissible monomials Mvj one
chooses to use (so long as they are chosen equivariantly for the action ofD). A change in
choice can be absorbed in the extra higher order summands of the splice equations.

1.5. Reduced weights

The v-weights of the Yi used to define splice equations may have a common factor, so in
practice one should use reduced v-weights that divide out this common factor. Precisely,
if v is a node the reduced v-weight of the variable Yj is the v-weight `vvj of Yj divided
by the GCD of the v-weights of all the Yi’s.

1.6. Example

Consider the resolution graph
−2
◦

−2
◦

PPPPPPPPP −2
◦

nnnnnnnnn

0 =
−2
◦

−3
◦

−2
◦

nnnnnnnnn

PPPPPPPPP

−3
◦

nnnnnnnnn −2
◦

Its maximal splice diagram is

◦

◦ 30
2

RRRRRRRRRR ◦

2
32 llllllllll

◦
9 7

◦
5 15

◦

3
31 llllllllll

2
39

RRRRRRRRRR

◦ 17
3

llllllllll ◦

and its splice diagram with leaf weights is

Y2 ◦ 30
2

QQQQQQQQQQ Y3◦

1 = ◦
9 15

◦

3
32 mmmmmmmmmm

2
39

QQQQQQQQQQ

Y1 ◦ 17
3

mmmmmmmmmm Y4◦

We have also shown the association of C4-coordinates Y1, . . . , Y4 with leaves of 1.
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The discriminant group D is cyclic of order 33. Its action on C4 can be read off
from the splice diagram and leaf weights, and is generated by the four diagonal matrices
corresponding to the four leaves (ζ = e−2πi/33):

e1 = 〈ζ
17, ζ 9, ζ 4, ζ 6

〉,

e2 = 〈ζ
9, ζ 30, ζ 6, ζ 9

〉,

e3 = 〈ζ
4, ζ 6, ζ 32, ζ 15

〉,

e4 = 〈ζ
6, ζ 9, ζ 15, ζ 39

〉.

In this case e1 clearly suffices to generate the group.
Calling the left node v, the v-weights of the variables Y1, Y2, Y3, Y4 are read off from

the splice diagram as 18, 27, 12, and 18. The GCD is 3, so the reduced weights are 6,
9, 4, 6. The total reduced weight for that node is 54/3 = 18, so admissible monomials
for the two edges departing from v to the left must be Y 3

1 and Y 2
2 . For the edge going

right there are two monomials of the desired weight: Y 3
3 Y4 and Y 3

4 . One checks that all
these monomials transform with the same character under the D-action (e1 acts on each
by ζ 18), so we can choose either one of Y 3

3 Y4 and Y 3
4 ; we choose Y 3

4 . The number of
equations to write down for this node is δv − 2 = 1. We choose “general coefficients”
1, 1, 1 and write down

Y 3
1 + Y

2
2 + Y

3
4 = 0.

For the right node v′ the reduced v′-weights of Y1, Y2, Y3, Y4 are 4, 6, 10, 15, and
the total reduced weight is 30. Hence admissible monomials are Y 3

3 and Y 2
4 for the edges

going right, and a choice of Y 5
2 , Y 3

1 Y
3
2 , or Y 6

1 Y2 for the leftward edge; again all choices are
D-equivariant (e1 acts by ζ 12 on all). We make our choices and write a second equation

Y 5
2 + Y

3
3 + Y

2
4 = 0.

The results of [20] tell us that the two equations define a normal complete intersection
singularity (V , 0), that the action of D = Z/33 on it is free off the singular point, and
the quotient is a normal singularity (X, o) with resolution graph 0. A mental calculation
shows that our coefficients are in fact general; any other choice can be reduced to these
by diagonal coordinate transformation of C4.

The End Curve Theorem tells us that if a singularity has this resolution graph and has
end curve functions for its four leaves, then it is a higher weight deformation of the above
example, i.e., (possibly) deformed by adding higher weight terms equivariantly in the two
equations.

2. Overview of the proof

The End Curve Theorem was proved in [21] when the link 6 is a ZHS (so there is no
group action). We first outline the proof in this case. We thus assume we have an end
curve function zi on X associated with each leaf of 0. By replacing zi by a suitable
root if necessary one can assume its zero set is not only irreducible but also reduced
(this uses that 6 is a ZHS—cf. Section 8). The claim is then that these functions zi
generate the maximal ideal of the local ring ofX at o and thatX is a complete intersection
given by splice equations in these generators. The main step is to show that each curve
Ci = {zi = 0} ⊂ X is a complete intersection curve.
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2.1. Consider the curve C1 given by z1 = 0. For j > 1 the function zj , restricted
to C1, has degree of vanishing `1j at o, so the numbers `1j , j = 2, . . . , t , generate a
numerical semigroup S ⊂ N which is a subsemigroup of the full value semigroup V (C1)

(the semigroup generated by all degrees of vanishing at o of functions on C1). The delta
invariant δ(S) and the delta invariant δ(C1) := δ(V (C1)) therefore satisfy

2δ(C1) ≤ 2δ(S) (1)

(the delta invariant counts the number of gaps in the semigroup, i.e., the size of N− S).

2.2. Classical theory of numerical semigroups, developed further in Theorem 3.1 of [21],
shows via an induction over subdiagrams of 0 that

2δ(S) ≤ 1+
∑
v 6=1

(δv − 2)`1v, (2)

with equality if and only if the semigroup condition holds for 1 at every vertex and edge
pointing away from 1. Moreover, if equality holds, the monomial curve for this semigroup
is a complete intersection, with maximal ideal generated by z2, . . . , zn.

2.3. The delta invariant of a curve is determined by Milnor’s µ invariant, which in our
case is a topological invariant, computable in terms of the splice diagram (Sect. 11 of [7],
see also Lemma 9.4) as

2δ(C1) = 1+
∑
v 6=1

(δv − 2)`1v. (3)

2.4. Comparing (1), (2), and (3), we must have equality in (1) and (2). It follows that
S = V (C1). Moreover, by step 2.2, the monomial curve for S is a complete intersection
with maximal ideal generated by z2, . . . , zt . Since C1 is a positive weight deformation of
this monomial curve, C1 is also a complete intersection, with maximal ideal generated by
z2, . . . , zt . It follows that (X, o) is a complete intersection with maximal ideal generated
by z1, . . . , zt .

2.5. Repeating the above for all leaves i = 1, . . . , t shows that the semigroup conditions
hold. One can thus choose admissible monomials for every node, and it is then not hard
to deduce that equations of splice type hold. Finally, one deduces that (X, o) is defined
by these equations, completing the proof.

2.6. General case. We must now describe how the above proof is modified when 6 is
not a ZHS, so D is non-trivial. It is not hard to show that the functions xi (appropriate
roots of the end curve functions zi) are defined on the universal abelian cover V of X.
But the curve C1 = {x1 = 0} is no longer an irreducible curve, so the theory of numerical
semigroups of 2.2 above cannot be used.

We extend the theory of value semigroups and the appropriate results concerning them
to reducible curves that have an action of a group D that is transitive on components; the
value semigroup is now a subsemigroup of N× D̂, where D̂ is the character group of D.
The inductive argument of step 2.2 must now deal with subsemigroups of a semigroup
N×D̂, where D̂ changes at each step of the induction. Moreover, we must show in the end
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that this extension allows us to deduce, as before, that V is a complete intersection with
maximal ideal generated by the xi , that the semigroup conditions hold, which guarantee
that admissible monomials exist, but also that the congruence conditions hold, allowing
us to choose the monomials D-equivariantly. Once this is done, one again deduces that
equations of splice type hold on V . Finally, using the main theorem of [20] one deduces
that V is defined by these equations and that X = V/D, thus completing the proof.

The necessary theory of reducible curves and their value semigroups is developed in
Sections 3–7 and the proof is completed in Section 8. Some needed topological computa-
tions are collected together in Section 9.

3. D-curves

A D-curve is a reduced curve germ (C, o) on which a finite abelian group D acts effec-
tively (i.e., D → Aut(C) is injective) and transitively on the set of branches. Denote the
branches (Ci, o), i = 1, . . . , r . If H ⊂ D is the subgroup stabilizing (any) one branch,
then F := D/H acts simply transitively on the set of branches of C (recall that any
effective transitive action of an abelian group is simply transitive). D also acts on the
normalization C̃ of C, a disjoint union of r smooth curves C̃i . On the level of analytic
local rings,D acts on (R,m) (the local ring of C), on the direct sum of its branches R/Pi ,
and on its normalization R̃ =

⊕r
i=1 R̃i , where each R̃i is a convergent power series ring

C{{yi}}. One may assume that the parameters yi form one D-orbit (up to multiplication
by scalars). H then acts on each yi via the same character, independent of i.

The natural valuation vi on R̃i induces one on R̃ by value on the R̃i-component;
the induced valuation on R is given by order of vanishing of a function f ∈ R along
the branch Ci . (Of course, define vi(0) = ∞.) D permutes the branches and hence the
valuations, with

vi(σ (f )) = vσ(i)(f ) for all σ ∈ D.

Thus, if f is an eigenfunction for the D-action, then vi(f ) = vj (f ) for all i, j ; we then
just write v(f ).

Definition 3.1. Denote the character group of D by D̂. The value semigroup S(C) of
the D-curve (C, o) is the subsemigroup of N × D̂ consisting of all pairs (v(f ), χ) with
χ ∈ D̂ and f ∈ R a D-eigenfunction with character χ .

R̃, and hence R, has a natural D-filtration given by the ideals

Jn = {f | vi(f ) ≥ n for all i}.

We denote by R̃′ and R′ the associated gradeds for this filtration. R′ is the graded ring of
a reduced weighted homogeneous curve C′ (thus a union of “monomial curves”), again
with an effective action of D acting transitively on the r branches. Each JnR̃/Jn+1R̃ is
for n ≥ 0 a vector space of dimension r and the associated graded ring R̃′ = GrJ R̃ is a
direct sum of r polynomial rings in one variable (of degree 1).

Recall that the delta invariant δ(C) = δ(R) is the length of theR-module R̃/R, which
in this case is its dimension as a C-vector space.
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Proposition 3.2. δ(R) = δ(R′) and S(C) = S(C′). The value semigroup S(C̃) of the
normalization has exactly r elements in each degree. The delta invariant of R (or C) is
equal to the size of the complement of S(C) in S(C̃).

Proof. The delta invariant δ(R) is finite, so for n sufficiently large, JnR = JnR̃. Comput-
ing δ(R) by summing over graded pieces of R and R̃, one sees that δ(R) = δ(R′) (this is
a general fact about reduced curves).

R̃ splits (as a vector space) as a sum R̃ =
⊕
R̃χ over the characters of D and this

splitting is compatible with the filtration {Jn} (in the sense that Jn R̃χ = (JnR̃)χ for any
D-character χ ). Thus S(R̃) = S(R̃′). The same argument applies to show S(R) = S(R′).

The lemma below shows that the splitting by characters splits each JnR̃/Jn+1R̃ into r
1-dimensional summands (and trivial summands for the remaining |D| − r characters),
and hence also splits the subspaces JnR/Jn+1R into 1-dimensional summands. Since we
can compute the delta invariant δ(R′) by counting these summands, the proposition then
follows. ut

Consider the natural exact sequence of character groups

0→ F̂ → D̂→ Ĥ → 0.

Lemma 3.3. TheD-eigenfunctions of JnR̃/Jn+1R̃ (n > 0) all have the sameH -charac-
ter. A collection of them are C-linearly independent if and only if their D-characters are
distinct. They form a basis of JnR̃/Jn+1R̃ if and only if their D-characters form exactly
one F̂ -coset of D̂.

Proof. Diagonalize the action of D on the r-dimensional space J1R̃/J2R̃. As mentioned
above, H acts via one character for this space, so the D-characters involved form one
fiber of the map D̂ → Ĥ . Choose any D-eigenfunction g ∈ J1/J2. Then multiplication
by gn−1 maps J1R̃/J2R̃ isomorphically onto JnR̃/Jn+1R̃, shifting the characters by n−1
times the character of g. So, r distinct D-characters appear in JnR̃/Jn+1R̃. ut

4. Weighted homogeneous D-curves

Continue the setup of the last section, but assume at the start that R = R′ is a positively
graded ring, so that C is a weighted homogeneous curve with a D-action. We can choose
a (not necessarily minimal) set of homogeneous generators xi , i = 1, . . . , m, of R, of
weights `i (necessarily with greatest common divisor 1), so that D acts on xi via a char-
acter χi . The value semigroup S(C) is then generated by the elements (`i, χi).

The xi embedC ⊂ Cm. By scaling the xi if necessary we may assume (1, . . . , 1) ∈ C.
Then one of the r branches of C is the monomial curve {(u`1 , . . . , u`m) : u ∈ C}.

There are two subgroups of (C∗)m which act on C via multiplication in the entries:
D, embedded via (χ1, . . . , χm); and C∗, via u 7→ (u`1 , . . . , u`m).

Definition 4.1. G ⊂ (C∗)m is the subgroup generated byD and C∗, embedded as above.
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D acts transitively on the branches of C, so G acts simply transitively on C − {0}. Thus,
we may view G = C − {0}, while C is the closure of G in Cm.

Consider next H := D ∩ C∗, the subgroup of D which stabilizes the branch given
by the monomial curve through (1, . . . , 1). As a subgroup of C∗, it is cyclic, and the
quotient group F := D/H has order r , the number of branches of C. Using the inclusion
map of H to D, and the negative of its inclusion map to C∗, we deduce exact sequences:

1→ H → C∗ ×D→ G→ 1, (4)
1→ C∗→ G→ F → 1. (5)

Since C∗ is a divisible group, the exact sequence (5) splits (but not canonically). This
means that there exists a subgroup of G (though not necessarily of D), isomorphic to F ,
which acts on the curve and acts simply transitively on the set of branches. Dualizing (5),
we get a natural exact sequence of groups of characters

0→ F̂ → Ĝ→ Z→ 0, (6)

which splits non-canonically to give an abstract isomorphism

Ĝ ∼= Z⊕ F̂ .

Dualizing (4) gives a natural inclusion

Ĝ ⊂ Z⊕ D̂.

The inclusion G ⊂ (C∗)m induces a surjection Zm→ Ĝ, giving m natural characters
χ̄k ∈ Ĝ, k = 1, . . . , m, which generate Ĝ. The image of χ̄k in Z⊕ D̂ is (`k, χk). So any
character of G may be written additively as1

Î :=
m∑
k=1

ikχ̄k,

where I = (i1, . . . , im) ∈ Zm, and I and I ′ represent equal characters Î = Î ′ ∈ Ĝ if and
only if their weights and D-characters are equal.

Definition 4.2. A character X ∈ Ĝ is called non-negative if it is a linear combination of
the χ̄k with non-negative coefficients. Thus, the set of non-negative characters forms the
value semigroup S(C) as a subsemigroup of Ĝ ⊂ Z × D̂. The value semigroup S(Ĉ) of
the normalization is π−1(N) ⊂ D̂. So δ(C) is the number of elements of π−1(N) that are
not non-negative characters.

The xi embed C ⊂ Cm. Let I = (i1, . . . , im) be an m-tuple, with all ik ≥ 0. Each
monomial xI := x

i1
1 · · · x

im
m is homogeneous of weight

∑
ikwt(xk) and transforms via

the character χI :=
∏
χ
ik
k ∈ D̂. Introducing weighted coordinates Y1, . . . , Ym in Cm, we

can summarize results of this and the previous section.

1 We write Ĝ additively in the following even though it is more natural to think of D̂ as a multi-
plicative group.
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Proposition 4.3. xI equals a constant times xI
′

if and only if their weights and D-
characters are equal. With the xi scaled so that (1, . . . , 1) ∈ C′ ⊂ Cm, the D-curve
C ⊂ Cm is the closure of the G-orbit of (1, . . . , 1). The ideal of C ⊂ Cm is generated by
all differences Y I − Y I

′

of monomials with equal G-characters: Î = Î ′.
The finite abelian “group of components” F = G/C∗ is dual (hence isomorphic) to

the torsion subgroup of Ĝ.
The delta invariant δ(R) = δ(R′) is computed by summing, over all n ≥ 0, r minus

the number of monomial elements xI of weight n and distinct D-characters. ut

We will need the following proposition.

Proposition 4.4. The inclusion map D ⊂ G gives a surjection Ĝ � D̂, whose kernel
is the cyclic group generated by a distinguished character Q̂, whose weight is the order
of H , i.e. |D|/|F |. Its image in Z⊕ D̂ is (|H |, 0).

Proof. This is immediate from the sequence of kernels of the surjection of short exact
sequences:

0 // Ĝ //

����

Z⊕ D̂ //

����

Ĥ //

����

0

0 // D̂ // D̂ // 0 // 0 ut

This proposition can be restated as follows: Suppose Î represents a character of G for
which the image in Z⊕D̂ is of the form (`′, 0); then `′ is a multiple of |D|/|F |, and more
precisely Î is a multiple of Q̂. It will be of special interest to us when Q̂ is a non-negative
character, i.e., Q̂ ∈ S. In this case we can represent Q̂ by a non-negative tupleQ, and the
monomial YQ will play a special rôle for us.

The following corollary of Proposition 4.3 clarifies the relationship between the value
semigroup and weighted homogeneous D-curve.

Corollary 4.5. A weighted homogeneous D-curve C is determined, up to isomorphism
of weighted homogeneous curves, by its value semigroup S(C). Its graded ring R is the
semigroup ring C[S(C)]. The D-action is determined by the surjection S � D̂.

A commutative semigroup S and surjection χ : S � D̂ determines a weighted homo-
geneous D-curve if and only if S satisfies the cancellation law and is not a group, and
the induced homomorphism of its group of quotients to D̂ has infinite cyclic kernel.

Proof. The first paragraph is just a reinterpretation of the first part of Proposition 4.3: The
isomorphism C[S(C)]→ R is given by Î 7→ Y I . The grading is determined by the map
S(C)→ N given by mapping S(C) into its group of quotients Ĝ and then factoring by the
torsion subgroup of Ĝ. D acts on elements X ∈ S(C)—i.e., generators of C[S(C)]—by
g ·X = χ(X)(g)X.

We will not use the second part of the corollary so we leave it to the reader. ut
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5. An instructive example

Let n1, . . . , nm ≥ 2 be integers, and consider the curve C ⊂ Cm defined by

Y
n1
1 = Y

ni
i , i = 2, . . . , m.

Write N = n1 · · · nm, Ni = N /ni , s = GCD(N1, . . . ,Nm).

Example 5.1. With the above notation

(1) C is a reduced weighted homogeneous curve with (relatively prime) weights N1/s,

. . . ,Nm/s; a particular branch C1 is the irreducible monomial curve (uN1/s, . . . ,

uNm/s).
(2) LetG := C−{0} ⊂ (C∗)m;G is a subgroup of (C∗)m, acting on C by coordinatewise

multiplication, and simply transitively on C − {0}.
(3) The connected component of the identity of G is C1 − {0}, a copy of C∗.
(4) G/C∗ is a finite abelian group whose order r (the number of components of C)

equals s (the GCD above).
(5) There is a (non-canonical) splitting G = C∗ × D′, so that C is a D′-curve, and D′

acts simply transitively on the set of branches.
(6) The Milnor number µ and the delta invariant δ of C satisfy

µ− 1 = 2δ − r = (m− 1)N −
m∑
i=1

Ni .

Proof. Statements (1)–(3) and (5) are obvious. We show (4). For any a, a′ 6= 0, one sees
that the cardinality |C ∩ {Y1 = a}| equals n2 · · · nm = N1, while |C1 ∩ {Y1 = a′}| is
the weight N1/s of Y1. Since G acts transitively on C − {0}, it follows that any branch
intersects {Y1 = a

′
} in N1/s points, so that there must be s branches.

An alternative proof of (4) that does slightly more is as follows. Since C∗ is a divisible
group, one has a splitting G = C∗ × D′, where D′ ⊂ G is a finite subgroup mapping
isomorphically onto G/C∗. Then C is a D′-curve, and D′ acts simply transitively on the
set of branches. As in Proposition 4.3, D′ is isomorphic to the torsion subgroup of the
group with generators e1, . . . , em, and relations n1e1 = niei , i = 2, . . . , m. This implies
again that s is the number of branches, and also allows calculation of the elementary
divisors of D′ via the ideals of minors of the matrix associated to the relations.

The familiar formula [3] relating Milnor number and delta invariant (µ = 2δ− r+1),
plus the calculation of µ in, e.g., [8] (or see Lemma 9.4), yields the last assertion. ut

6. D-curves from rooted resolution diagrams

Let 0 be a resolution diagram which is a tree, with distinguished leaf ∗, called the root; we
say (0, ∗) is a rooted tree. These data will give rise to C(0, ∗), a reduced and weighted
homogeneous D-curve, where D := D(0) is the discriminant group associated to 0
(i.e., the cokernel of the intersection matrix of 0). We derive key properties of C by its
inductive relationship with subtrees (with fewer nodes).
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For the moment, assume 0 is not a string, i.e., has at least one vertex of valency ≥ 3
(this is not strictly necessary). Order the non-root leaves w1, . . . , wm, and index them by
variables Y1, . . . , Ym. The m linking numbers (Definition 1.1) `i := `wi ,∗ from the non-
root leaves to ∗ give a set of (non-reduced) weights for the variables Yi ; one gets reduced
weights by dividing by

s := GCD(`1, . . . , `m). (7)

These weights give a copy of C∗ in the diagonal group (C∗)m. (The linking numbers, and
hence s, can be read off from the splice diagram 1 associated to 0.)

As described in Subsection 1.2, every vertex v of 0 gives an element ev ∈ D, andD is
generated by the elements ewi , i = 1, . . . , m. Moreover, D has a natural non-degenerate
Q/Z-valued bilinear form (e, e′) 7→ e · e′, induced by the intersection pairing for 0, and
one has an embedding of D into (C∗)m, where the image of e ∈ D is the m-tuple whose
j -th entry is the root of unity e2πi e·ewj . Recall from Subsection 1.2 that for vertices w,w′

of 0, one has

ew · ew′ = −`ww′/|D|, (8)

which for nodes and leaves can be read off from |D| and the splice diagram 1 with leaf
weights.

As before, define G ⊂ (C∗)m to be the subgroup generated by D and the C∗.

Definition 6.1. TheD-curve C := C(0, ∗) associated to the rooted diagram (0, ∗) is the
closure of G in Cm, or equivalently the closure in Cm of the G-orbit of (1, . . . , 1).

From the natural map Zm → Ĝ, any element of Ĝ may be represented as before by Î =∑m
j=1 ij χ̄j , where this character gives the weight

∑m
j=1 ij`wj /s, and sends an element

e ∈ D to
∏m
j=1 e

2πi ij e·ewj . If I = (i1, . . . , im) is non-negative, Î represents the weight
and D-character of the monomial Y I .

The ideal of C in C[Y1, . . . , Ym] is generated by Y I − Y I
′

for all non-negative m-
tuples I and I ′ with the same weight and D-character (i.e., giving the same image in Ĝ).
Denote by r the index in G of the stabilizer H = C∗ ∩ D of one branch of C. Thus
r = |G/C∗| is the number of branches of C. We shall prove later that r = s (s as in (7)),
hence also this number can be read off from the splice diagram.

The above applies also when 0 is a string, corresponding to a cyclic quotient singular-
ity of some order |D|. Suppose there are two leaves, ∗ and w. Then D is the cyclic group
generated by ew, acting on C by e2πi ew ·ew = e−2πi`ww/|D|. There is a single variable Y ,
with weight `w,∗ = 1; we have G = C∗, D ⊂ G the cyclic subgroup of order |D|. The
associated D-curve is simply a copy of C (and so the semigroup is N). When there is
only the one vertex ∗, it plays the role of both leaf w and root ∗, and all is the same, with
`w,∗ = 1 and D trivial.

For general (0, ∗) our goal is to do an inductive comparison between the data of (0, ∗)
and data from rooted subdiagrams. We start with the case of one node.
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Proposition 6.2. Consider a minimal resolution graph 0 with one node, given by the
diagram

n2/p2 ◦

SSSSSS ..
. . . . ... nm/pm◦

k k k k k k

◦ UUUUUU ◦
iiiiii

n1/p1 ◦ _____ ◦
−b
◦ ◦ _____ nm+1/pm+1◦

Strings of 0 are described by the continued fractions shown, starting from the node. Let
∗ denote the leaf on the lower right, C the associated D-curve, with discriminant group
D of order |D| = n1 · · · nm+1(b −

∑m+1
i=1 pi/ni). Then C and the group G are as in

Example 5.1, and depend only on n1, . . . , nm. In particular, r = s, i.e., the number of
branches is the GCD of the linking numbers to ∗.

Proof. It is shown in [16] that a weighted homogeneous surface singularity with resolu-
tion graph 0 is a splice quotient, with universal abelian cover defined by

Y
n1
1 − Y

n2
2 + a2Y

nm+1
m+1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . .

Y
n1
1 − Y

nm
m + amY

nm+1
m+1 = 0.

Here, the ai are distinct and non-zero, giving the analytic type of the m + 1 intersection
points on the central curve. D(0) acts on the coordinates Yi according to the usual char-
acters, and acts freely off the origin. The curve cut out by Ym+1 = 0 is the one in Example
5.1; its quotient byD is irreducible (see also [20, Theorem 7.2(6)]), soD acts transitively
on the branches. By definition, the curve C(0, ∗) in Cm consists of the monomial curve
with weights Ni/s (which is a component of {Ym+1 = 0}) and its translates by D. It
follows that C(0, ∗) is equal to {Ym+1 = 0}. ut

Remark 6.3. Note that in this example, the rooted splice diagram

◦ ◦

. . . . .

◦
n1hhhhhhhhhh

n2

IIIIIIIIIIII nm

uuuuuuuuuuuu
∗ VVVVVVVVVV

◦ ◦

uniquely determines both the curve C and the group G, but not the group D.

We return to the inductive comparison of the data of (0, ∗) and data from rooted
subdiagrams. Before starting, if any two nodes in 0 are adjacent, we blow up 0 once
in between these, so that 0 has at least one vertex between any two adjacent nodes (cf.
Definition 6.1 of [20]). Suppose ∗ is the leftmost leaf in the resolution diagram

01

0 =
∗

−b0
◦

−b1
◦ ____ ____

v∗

−bn+1
◦

ssssssss

KKK
KKK

KK
...

0k
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So, remove from 0 the leaf ∗, the adjacent node v∗, and all the vertices in between. This
produces k new rooted resolution diagrams (0i, ∗i). The new ∗i is the vertex of 0i closest
to v∗, and it is now a leaf. We shall use notations like Gi , mi , Di , 1i (associated splice
diagrams), ri (number of branches), si (GCD of weights), etc., when referring to the new
rooted diagrams. Note that the total number of non-root leaves is m1 + · · · +mk = m.

In what follows, “leaf” shall mean non-root leaf. As before, we use notation `ww′ and
`w := `w,∗ for linking numbers in 1 (as a splice diagram with leaf weights, so `ww′ is
also defined ifw = w′ is a leaf). When computing linking numbers in1i , we use notation
˜̀
ww′ and ˜̀w := ˜̀w,∗1 . The weights around the distinguished node v∗ are |D1|, . . . , |Dk|

(by definition of the splice diagram) and c, the weight in the direction of ∗.

Lemma 6.4. We have the following relations:

(1) For w a leaf in 11,

`w = ˜̀w · |D2| · · · |Dk| = ˜̀w · `v∗v∗/c|D1|.

(2) For w a leaf in 11, w′ a leaf in 1i , i > 1,

`v∗v∗`ww′ = c
2`w`w′ .

(3) For w, w′ leaves in 11,

`ww′/|D| = ˜̀ww′/|D1| + ˜̀w ˜̀w′`v∗v∗/|D||D1|
2.

Proof. The first two claims are straightforward. For the third, we first need some notation.
For any two vertices v and v′, recall `vv′ is the product of splice diagram weights adjacent
to the path from v to v′; we will denote by `′

vv′
the product of splice diagram weights

adjacent to the path from v to v′, but excluding weights at v and v′ (so `′
vv′
= 1 if v = v′).

Let now v be the vertex of 0 that is closest to v∗ on the path from w to w′ (this is w
itself if w = w′). Rewrite the equation to be proved first as

`ww′ |D1| − ˜̀ww′ |D| = ˜̀w ˜̀w′`v∗v∗/|D1|.

If a, dw, dw′ are the weights in 1 at v towards v∗, w, w′ respectively, R the product of
the remaining weights at v, and ã the weight in 11 at v towards v∗, then we can rewrite
our equation

`′wv`
′

w′vaR|D1| − `
′
wv`
′

w′v ãR|D| = (`
′
wvdw′R`

′
vv∗)(`

′

w′vdwR`
′
vv∗)`v∗v∗/|D1|.

Cancelling common factors from this equation simplifies it to

a|D1| − ã|D| = dwdw′c(`
′
vv∗)

2`v∗v∗/|D1|.

This equation is what was proved in Lemma 12.7 of [20] (there v was a node, but that
was not necessary to the proof). ut

We state the key results needed to do induction.
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Theorem 6.5. Enumerate the m non-root leaves of 0 so that the first m1 of them yield
exactly the non-root leaves of 01. Compose the inclusion G ⊂ (C∗)m with the projection
onto (C∗)m1 given by the first m1 entries. Then the image is exactly G1.

Proof. We show the image of the projection map π : G ⊂ (C∗)m → (C∗)m1 is ex-
actly G1. Now, an inclusion C∗ ⊂ C∗N is described by a projective N -tuple of rational
numbers:

[α1 : · · · : αN ]↔ {(ucα1 , . . . , ucαN ) | u ∈ C∗}

where c is any common denominator for the αi’s. Then Lemma 6.4(1) implies that the
image of the C∗ inG is exactly the C∗ inG1, since the weights differ by a fixed multiple.

One must still show that image of D is in G1, and (modulo C∗) all of D1 is in the
image. So, choose a leaf w in 01, and consider corresponding elements in the respective
discriminant groups, i.e., ew ∈ D and ẽw ∈ D1. The following result suffices to complete
the proof of Theorem 6.5. ut

Lemma 6.6. π(ew)ẽ−1
w ∈ C∗ ⊂ G1.

Proof. The left hand side is an element in (C∗)m1 , and we will show that the entry in the
slot corresponding to a leaf w′ in 11 is u ˜̀w′ with u = e−2πi( ˜̀w`v∗v∗/|D||D1|

2). This would
establish the claim.

To verify the assertion, use the calculation of the entries of ew and ẽw given by equa-
tion (8) (just before Definition 6.1). For a leaf w′, the w′-entry of π(ew)ẽ−1

w is

e2πi(−`ww′/|D|+ ˜̀ww′/|D1|).

By Lemma 6.4(3), this expression is as claimed. ut

From Theorem 6.5, it is clear we have an inclusion

G ⊂ G1 × · · · ×Gk,

whence a surjection on the level of characters

Ĝ1 ⊕ · · · ⊕ Ĝk � Ĝ.

Each of the character groups has its “reduced weight” map onto Z (see (6)). The map
Ĝ1 → Ĝ induces a map Z → Z which is multiplication by the ratio of the respective
reduced weights, i.e., (`w/s)/( ˜̀w/s1) for any leaf w in 11. Let us set D = |D1| · · · |Dk|,
Di = D/|Di |. Then the aforementioned ratio is s1D1/s. Moreover, it is easy to see that

s = GCD(s1D1, . . . , skDk). (9)

We thus have a commutative diagram of surjections

Ĝ1 ⊕ · · · ⊕ Ĝk
// //

����

Ĝ

����
Z⊕ · · · ⊕ Z // // Z
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where the bottom horizontal map is given by dotting with (s1D1/s, . . . , skDk/s). In par-
ticular, the kernel of this map is a direct summand.

Recall (Proposition 4.4) that the characters of Gj vanishing on the discriminant
group Dj form a cyclic group generated by a distinguished Q̂j ∈ Ĝj , whose reduced
weight is |Dj |/rj . For each j , 2 ≤ j ≤ k, consider the k-tuple

Aj := (Q̂1, 0, . . . , 0,−Q̂j , 0, . . . , 0) ∈ Ĝ1 ⊕ · · · ⊕ Ĝk.

Theorem 6.7. (1) The k−1 elements {Aj } form a free basis of the kernel of the surjection
Ĝ1 ⊕ · · · ⊕ Ĝk → Ĝ.

(2) r = s, i.e., the number of branches of the curveC(0, ∗) equals the GCD of the linking
numbers.

Proof. We proceed by induction on the number of nodes in 0, the case of one node being
easily checked using Proposition 6.2.

Thus, in the situation at hand, we may assume ri = si , i = 1, . . . , k. An element in Ĝi
(respectively Ĝ) is represented by an mi-tuple of integers Ii (respectively, m-tuple I ),
which are the coefficients of the basic characters corresponding to the non-root leaves in
(0i, ∗i) (resp. (0, ∗)). Recall that we denote the characters themselves by Îi and Î ; we
will denote the image of (Î1, . . . , Îk) in Ĝ by (I1, . . . , Ik)ˆ .

Lemma 6.8. Suppose (I1, . . . , Ik)ˆ ∈ Ĝ has weight 0. Then for w a leaf in 0i , one has
an equality in Q/Z:

(I1, . . . , Ik)ˆ (ew) = Îi(ẽw).

Proof. We may as well assume i = 1, and write I1 = I, (I2, . . . , Ik) = J, where I is a
tuple of integers indexed by the set S of non-root leaves of 01, and J is indexed by the
set S′ of all the other non-root leaves of 0. The non-reduced weight of (I1, . . . , Ik)ˆ is 0
and is computed via linking numbers, yielding∑

α∈S

iα`wα +
∑
β∈S′

jβ`w′β
= 0. (10)

The left hand side of the equation in the lemma is

(I1, . . . , Ik)ˆ (ew) = exp
(

2πi
(∑
α∈S

iα(ewα · ew) +
∑
β∈S′

jβ(ew′β
· ew)

))
. (11)

By 6.4 and (10), one has∑
β∈S′

jβ(ew′β
· ew) =

−1
|D|

∑
β∈S′

jβ`w′βw
=
−c2`w

|D|`v∗v∗

∑
β∈S′

jβ`w′β
=

c2`w

|D|`v∗v∗

∑
α∈S

iα`wα .

We can therefore rewrite equation (11) as

(I1, . . . , Ik)ˆ (ew) = exp
(

2πi
∑
α∈S

iα

(
(ewα · ew)+

c2`w`wα

|D|`v∗v∗

))
.
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The lemma claims that this expression is equal to Î1(ẽw), which is

exp
(

2πi
∑
α∈S

iα(ẽwα · ẽw)
)
.

We need to check for each α ∈ S equality of the coefficient of iα .
Using (8) one needs to check that

−`wαw/|D| + c
2`w`wα/|D|`v∗v∗ = −

˜̀
wαw/|D1|.

This is a simple computation using Lemma 6.4(1), (3). ut

Continue the proof of Theorem 6.7. Recall Q̂j ∈ Ĝj has reduced weight |Dj |/rj =
|Dj |/sj , so its non-reduced weight (using linking numbers in (0j , ∗j )) is |Dj |. Comput-
ing linking numbers in (0, ∗) multiplies this weight by the other |Dk′ | (Lemma 6.4(1)),
resulting in non-reduced weight |D1| · · · |Dk| = D (independent of j ). It follows that the
image ofAj in Ĝ has weight 0. Since Q̂j vanishes onDj , applying Lemma 6.8, the image
of Aj in Ĝ vanishes at all ew, hence is the trivial character.

Conversely, if (I1, . . . , Ik) represents the trivial character of G, then it certainly has
weight 0, hence by Lemma 6.8 each character Îj vanishes on the corresponding discrim-
inant group Dj . By Proposition 4.4, it follows that Îj is equivalent to a multiple nj Q̂j .
But now the condition of 0-weight equal to 0 means that

∑k
j=1 nj = 0. That the Aj form

a basis of this space is now easy. This completes the proof of the first assertion of the
theorem.

We now have a commutative diagram of short exact sequences:

0 // ⊕k
j=2 Z · Aj //

��

Ĝ1 ⊕ · · · ⊕ Ĝk
//

��

Ĝ //

��

0

0 // K // Z⊕ · · · ⊕ Z // Z // 0

The right two vertical maps are surjective, with kernels finite groups of order r1 · · · rk
and r , respectively. The left vertical map is injective, and the order of the cokernel is
(since K is a direct summand) the order of the torsion subgroup of the quotient of Zk by
the image of the Aj ’s. So, one considers a (k − 1) × k matrix whose non-0 entries are
of the form ±|Di |/si . The maximal minors are of the form sjDj/s1 · · · sk; so the order of
this group is the GCD of these minors, which is s/s1 · · · sk . The snake sequence for the
diagram then yields r = s. This completes the proof of the theorem. ut

We restate the key part of the theorem:

Corollary 6.9. Every element of Ĝ may be written in the form

X1 + · · · +Xk, Xi ∈ Ĝi,

and this representation is unique modulo the equations Q̂i = Q̂j for all i, j . ut
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Corollary 6.10. Consider as above the curves C = C(0, ∗) and Ci = C(0i, ∗i) com-
ing from 0 and its rooted subtrees 0i , i = 1, . . . , k. For each i, let Yi,j be variables
corresponding to the non-root leaves of 0i , and let Ji be the ideal in the variables Yi,j
defining Ci . Assume that each Q̂i ∈ Si , so we can choose a non-negative mi-tuple Qi

representing Q̂i , and hence a monomial YQii in the variables Yi,j .
Then the ideal defining C in all the variables Yi,j is generated by J1, . . . ,Jk and

Y
Q1
1 − Y

Qi
i , i = 2, . . . , k.

Proof. According to Proposition 4.3, the ideal of C (resp. Ci) is generated by all differ-
ences of pairs of monomials whose (non-negative) exponents have the same image in the
character group Ĝ (resp. Ĝi). Suppose I = (I1, . . . , Ik) and I ′ = (I ′1, . . . , I

′

k) are non-
negative exponent tuples giving the same element of Ĝ. We will first simplify the relation
Y I = Y I

′

modulo the ideals Ji .
According to Theorem 6.7, the images of I and I ′ in Ĝ1 ⊕ · · · ⊕ Ĝk differ by a sum∑k

j=2 pjAj of the Aj ’s. Putting −p1 =
∑k
j=2 pj , this means

Îi − Î
′

i = −piQ̂i in Ĝi, i = 1, . . . , k.

For each pi ≥ 0, the tuples Ii +piQi and I ′i are non-negative tuples giving the same ele-
ment in Ĝi . So, modulo relations coming from Ji , one can subtract Ii from each exponent
tuple I, I ′ in the i-slot, leaving 0 and piQi in the new i-slots. For pi < 0 one subtracts
instead I ′i modulo relations from Ji to get −piQi and 0 respectively in these slots. After
doing this for each i one has either 0 or a positive multiple of Qi in each slot of both
I and I ′, and the total coefficient sum is the same for each, namely p :=

∑
pi>0 pi . At

this point we have simplified our relation Y I = Y I
′

to the point where each side of it is
equivalent to YpQ1

1 using the relations YQ1
1 = Y

Qi
i . This proves the corollary. ut

7. Semigroups and delta invariants of D-curves from (0, ∗)

Let us maintain the same basic setup as in the last section: the rooted tree (0, ∗); the
discriminant group D = D(0), of order |D|; the group G and its character group Ĝ; the
D-curve C = C(0, ∗); the reduced weight |X| of an element X of Ĝ, giving a surjection
Ĝ → Z, with kernel of order r; a surjection Ĝ → D̂, with kernel the cyclic group
generated by a distinguished element Q of weight |D|/r . Here r is both the number of
components of the curve and the GCD of the non-reduced weights (i.e., linking numbers)
of the leaves. Non-negative characters of G give a semigroup S ⊂ Ĝ, which is the value
semigroup of the corresponding D-curve. We are interested in the delta invariant of the
curve (which is the number of gaps of the semigroup S), and in the question of whether
Q ∈ S. All elements of Ĝ of sufficiently high weight are in S, while there are r − 1 gaps
of weight 0.

As before, we compare data of (0, ∗) with those of the subtrees (0i, ∗i). Recall we
have defined

D := |D1| · · · |Dk|, Di := D/|Di |.
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Corollary 6.9 indicates that every element of Ĝ may be written X1 + · · · + Xk, where
Xi ∈ Ĝi , and this representation is unique modulo all the equations Q̂i = Q̂j . Using
|Xi |i to denote weight in Ĝi , one easily checks that

|Xi | = (ri/r)Di |Xi |i . (12)

(Recall every Q̂i has the same weight D/r in Ĝ.)

Theorem 7.1. Consider the data (0, ∗), Ĝ, Q̂, |D|, r , S, δ as before, with corresponding
notation for the subtrees. Then:

(1) The number of gaps of the semigroups satisfies

2δ − r ≤
k∑
i=1

Di(2δi − ri)+ (k − 1)D.

(2) If equality holds, then Q̂i ∈ Si for all i.

Proof. To show the inequality, we count the gaps in S. We write an element of Ĝ as
X = X1 + · · · + Xk , where Xi ∈ Ĝi , and the representation is unique up to repeated
alterations of the form: add Q̂i to Xi and subtract Q̂j from Xj for some i, j . Denote

qi := |Q̂i |i = |Di |/ri .

We claim that every X ∈ Ĝ of weight ≥ 0 has a representation X = X1 + · · · + Xk in
one of the following classes:

C0: |X1|1 < 0; 0 ≤ |Xi |i < qi for i ≥ 2 (and |X| ≥ 0 by assumption).
C1: 0 ≤ |X1|1 and X1 /∈ S1; 0 ≤ |Xi |i < qi for i ≥ 2.
C2: X1 ∈ S1 and X1 − sQ̂1 /∈ S1 for s ≥ 1; 0 ≤ |X2|2 and X2 /∈ S2; 0 ≤ |Xj |j < qj

for j ≥ 3.
. . . . . . . . .

Ci : For 1 ≤ j ≤ i− 1, Xj ∈ Sj and Xj − sQ̂j /∈ Sj for s ≥ 1; 0 ≤ |Xi |i and Xi /∈ Si ;
0 ≤ |Xj |j < qj for j ≥ i + 1.
. . . . . . . . .

Ck: For 1 ≤ j ≤ k − 1, Xj ∈ Sj and Xj − sQ̂j /∈ Sj for s ≥ 1; 0 ≤ |Xk|k and
Xk /∈ Sk .

Ck+1: For 1 ≤ j ≤ k − 1, Xj ∈ Sj and Xj − sQ̂j /∈ Sj for s ≥ 1; Xk ∈ Sk .

To see this, given X with |X| ≥ 0, start by arranging the weights of Xi , i ≥ 2, to be
less than the weight qi of the corresponding Q̂i . If the representation is then not in the
class C0 or C1, then X1 ∈ S1. So subtract Q̂1’s as necessary from X1 and simultaneously
add Q̂2’s to X2 until X1 ∈ S1 but X1 − Q̂1 /∈ S1. If now the representation is not in C2,
thenX2 ∈ S2, so subtract Q̂2’s as necessary fromX2 and add Q̂3’s toX3 to makeX2 ∈ S2
but X2 − Q̂2 /∈ S2. Repeat this procedure until the representation is in some Ci . If one
fails all the way to Ck , then the final representation is in Ck+1.
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Elements in Ck+1 are clearly not gaps, so adding up the sizes of the other classes
gives an upper bound for δ, the number of gaps. Recall that the number of elements
of Ĝi of a given weight is equal to ri . But qiri = |Di |, so the number of elements in
class C1 is δ1D1. Next, every (Q̂i)-coset in Ĝi contains a unique minimal representative
in Si , i.e., which is not in Si after subtracting any positive multiple of Q̂i . Thus, there
are [Ĝi : (Q̂i)] = |D̂i | = |Di | such elements. So, class Cj contains δjDj elements for
j = 2, . . . , k. Thus, δ is bounded above as follows:

δ ≤ |C0| +

k∑
i=1

δiDi .

To count elements of C0, we need to know the number N of allowed degrees xi :=
|Xi |i ; then the total count of these elements would be r1 · · · rkN, where (thanks to (12))

N = #
{
(x1, . . . , xk) ∈ Zk

∣∣∣ x1 < 0; 0 ≤ xi < qi for all i ≥ 2;
k∑
i=1

xi/qi ≥ 0
}
.

We use (but prove later) the following

Lemma 7.2. Let Q = q1 · · · qk, Qi = Q/qi . Then

2N = (k − 1)Q −
k∑
i=1

Qi + h,

where h = GCD(Q1, . . . ,Qk).

Using the lemma we conclude that

δ ≤

k∑
i=1

δiDi +
1
2
r1 · · · rk

(
(k − 1)Q −

k∑
i=1

Qi + h
)
.

But r = GCD(riDi), while r1 · · · rkQi = riDi , so

r = r1 · · · rk · GCD(Q1, . . . ,Qk) = r1 · · · rkh.

The inequality in the theorem follows from these.
If equality holds, then the classes C0, C1, . . . , Ck consist only of gaps, and there is no

overlap between them. Suppose Q̂i /∈ Si for some i. Then X = 0 + · · · + Q̂i + · · · + 0
is in Ci , hence a gap. It is equal to 0+ · · · + Q̂j + · · · + 0 for each j , so Q̂j /∈ Sj , so we
have a common element in all the classes C1, . . . , Ck . This contradicts that the Ci do not
overlap, which proves the second claim of the theorem. ut

Proof of Lemma 7.2. To prove the lemma, consider a one-node resolution diagram
with −b in the center, and k + 1 length 1 strings emanating, with weights −q1, . . . ,−qk
and −b′. Here b is any integer at least k + 1, and b′ > 0 is arbitrary. View the −b′ vertex
as the root. This gives a (0, ∗), and k subdiagrams (0i, ∗i), each of which consists of
only one vertex. So, each Gi = C∗, ri = 1, δi = qi , Si = N, Ĝi = Z. The gaps of Ĝ
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can be counted as above, but they are exactly those of the first type C0. Thus, the desired
quantity N is exactly the number of gaps δ (i.e., the delta invariant of the corresponding
curve). But the curve is the complete intersection defined by Xq1

1 = X
qi
i , i = 2, . . . , k,

as in Example 5.1 and Proposition 6.2. This curve has s = h branches, using the notation
above. Using Example 5.1 gives

2N = (k − 1)Q −
k∑
i=1

Qi + h.

This proves the lemma. ut

There is another invariant of (0, ∗)whose relationship to those of its subdiagrams (0i, ∗i)
is similar to the situation for 2δ − r , as revealed by Theorem 7.1. Namely, let

ν(0, ∗) :=
∑
v 6=∗

(dv − 2)`∗,v,

the sum being over all vertices of 0 except for ∗. The following statements are easy to
verify:

(1) ν depends only on the splice diagram (1, ∗).

(2) ν(0, ∗) =
∑k
i=1Diνi + (k − 1)D.

(3) If (0, ∗) has one node (Proposition 6.2), then ν = 2δ − r .

This brings us to our major result.

Theorem 7.3. Let C = C(0, ∗) be the D-curve constructed from a rooted resolution
diagram. Then 2δ(C)− r ≤ ν(0, ∗), and equality implies the following:

(1) C is a complete intersection curve.
(2) The splice diagram1 satisfies the semigroup and congruence conditions at any node

in the direction away from the leaf ∗.

We recall that the semigroup and congruence conditions at a node can be formulated by
saying that for all outgoing edges at the node, monomials of appropriate weight can be
found which transform equivariantly (i.e., with the same character) with respect to the
D-action.

Proof. We do induction on the number of nodes of 0. For one node, the inequality in
question is an equality, and the claims follow from Example 5.1(6) and Proposition 6.2.
The semigroup and congruence conditions are automatic.

In the general case, we as usual compare (0, ∗)with its subtrees (0i, ∗i), i = 1, . . . , k.
Theorem 7.1(1), the second statement about ν, and induction give the general inequality.
Also, equality for (0, ∗) implies equality for all the (0i, ∗i), and that each Qi is in Si .
The induction assumption says that the curves Ci are complete intersections; applying
Corollary 6.10, it follows that C is as well (compare the number of defining equations
with the number of variables). Further, the monomials involved in the added equations
Y
Q1
1 − Y

Qi
i , i = 2, . . . , k, are monomials whose characters in Ĝ are equal by Theorem
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6.7 and have the correct weight. This gives the semigroup and congruence condition at the
node closest to ∗ in the directions away from ∗. For nodes further from ∗ it was proved
during the induction, except that equivariance was proved in a subgraph 0i and hence
proved for Di rather than D. But D-equivariance follows from the fact that the D-action
induces the Di-action on the variables coming from the subgraph 0i (Theorem 6.5). ut

8. Proof of the End Curve Theorem

Let (X, o) be a normal surface singularity with QHS link 6. Recall that we say a knot or
link K ⊂ 6 is cut out by the analytic function z : (X, o) → (C, o) if the pair (6,K) is
topologically the link of the pair (X, {z = 0}) (i.e., the reduced germ (X, {z = 0}, o) is
homeomorphic, preserving orientations, to the cone on (6,K)). In [15] it is shown that
the link of a surface-curve germ pair (X,B, o) determines the minimal good resolution
of this pair.

Let vi , i = 1, . . . , t , be the leaves of the resolution graph 0. Suppose that for each i
we have an end curve function zi , vanishing di times along the end curve Bi ⊂ X. The
following lemma tells us that a di-th root xi of zi is a well defined analytic function on
the universal abelian cover (V , 0) of (X, o), and that xi vanishes to order 1 on its zero set.

Lemma 8.1. Let z : (X, o)→ (C, 0) be an analytic function that vanishes to order d on
its reduced zero set B ⊂ X. Then the multivalued function z1/d on X lifts to a single-
valued function x on the universal abelian cover (V , 0) of (X, o), and x vanishes to
order 1 on its zero set (there are d such lifts that differ by d-th roots of unity). If B is
irreducible then the zero set of x has |D|/d ′ components, where d ′ is the order of the
class of K (the link of B) in H1(6;Z).

Proof. Take the branched cover X′ → X given on the local ring level by adjoining t
satisfying td − z = 0, and then normalizing. At any point of B − {o}, choose local
analytic coordinates u, v, with B given by u = 0; we may further assume that locally
z = ud . Over such a point, X′ is given by normalizing td − ud = 0, yielding a smooth
and unramified d-fold cyclic cover. Thus, X′ → X is unramified away from the singular
point. Clearly, t is still a single-valued function z′ on this cover, and z′ vanishes to order 1
on its zero set. z′ is well defined up to the covering transformations of X′ → X, which
multiply z′ by d-th roots of unity.

We may assumeX′ is connected (ifX′ has k components then replaceX′ by one of its
components, z by (z′)d/k , which is then well defined onX, and d by d/k). SinceX′→ X

is a connected abelian cover, it is covered by the universal abelian cover V → X so we
get our desired lift x of z to V by composing z′ with the projection V → X′.

Now assume B is connected and K is its link. Let d ′ be the order of the class of K in
H1(6). Then each component of the inverse image K̃ ofK in 6̃ab is a d ′-fold cover ofK ,
so there are |D|/d ′ such components. Since K̃ is the link of {x = 0}, the final sentence
of the lemma follows. (Although we do not need it, it is not hard to see that k above is
d/d ′, so there is a d/d ′-th root of z that is defined on X. Hence, d ′ is the least order of
vanishing of any function z as in the lemma.) ut
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Denote the zero set of xi in V by Ci . This is a D-curve, where D = D(0) is the
discriminant group, and it has |D|/di branches, where di is the order of the class of the
end-knotK inH1(6). By [20, Corollary 12.11], |D|/di = ri . We will concentrate for the
moment on C1. By Lemma 9.4 below, its delta invariant is

δ(C1) =
1
2

(
r1 + ν(0, v1)

)
=

1
2

(
r1 +

∑
v 6=v1

(dv − 2)`v1,v

)
. (13)

Let Ĝ be the character group associated with C1 and its associated graded, as in Section 4,
and let S ⊂ Ĝ be the value semigroup. The characters in Ĝ associated with the functions
x2, . . . , xt generate a subsemigroup S0 of S, whence

δ(S0) ≥ δ(S) = δ(C1). (14)

Lemma 8.2. The subsemigroup S0 is equal to the value semigroup of the curve associ-
ated to the rooted resolution diagram (0, v1) as in Section 6. In particular, their delta
invariants are equal.

Proof. Since intersection number of curves in X is given by linking number of their
links in 6, the function xi (i > 1) has vanishing degree `v1vi on the curve C1, hence
`v1vi/r1 on each branch; this last quantity is thus the weight of xi in the associated graded
of C1 (alternatively, this can be seen by considering the intersection number of the proper
transform of C1 with the zero set of xi in the resolution). By Theorem 9.3 below, D acts
on xi via the character χi corresponding to the leaf vi ∈ 0. Thus, the Ĝ-character of xi is
the generator χ i of S(C(0, v1)) as described in Section 6. ut

From the lemma and Theorem 7.3, we have

δ(S0) ≤
1
2

(
r1 + ν(0, v1)

)
. (15)

Comparing (13), (14), (15) shows that the inequalities are actually equalities. Hence,
S0 = S and this is the semigroup both for the associated graded of C1 and the model
curve C(0, v1), so these are isomorphic as D-curves (Corollary 4.5). Again by Theorem
7.3, each curve is a complete intersection with maximal ideal generated by x2, . . . , xt .
Since this curve is the associated graded of C1, it follows that C1 is a complete intersec-
tion and x2, . . . , xt generates its maximal ideal. We conclude that (V , 0) is a complete
intersection with maximal ideal generated by x1, . . . , xt .

Moreover, Theorem 7.3 gives us the semigroup and congruence conditions at all nodes
in the directions away from the leaf v1. Repeating the argument at all leaves gives all
semigroup and congruence conditions.

It remains to show that V is defined by a system of D-equivariant splice equations
using the functions x1, . . . , xt . Pick a v of 0 of valency δ. Denote by Ev the exceptional
curve corresponding to v and by E1, . . . , Eδ the δ exceptional curves that intersect Ev .
Since the congruence and semigroup conditions are satisfied, we can find a system of
admissible monomials M1, . . . ,Mδ of (unreduced) weight `vv , corresponding to the out-
going edges at v, which transform the same way with respect to the action of D. For
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1 ≤ i < δ the ratio Mi/Mδ is thus D-invariant, hence defined on X = V/D. In the proof
of Theorem 10.1 of [20] (see also Theorem 4.1 of [21]) it is shown that this function is
meromorphic on the exceptional curve Ev corresponding to v, with a simple zero at the
pointEv∩Ei , a simple pole atEv∩Eδ and no other zeros or poles. It follows that there are
δ−2 linear relations among theMi/Mδ on Ev . If a1M1/Mδ+· · ·+aδMδ/Mδ = 0 is one
of these linear relations, write L := a1M1 + · · · + aδMδ . Then the order of vanishing of
Lδ on Ev is greater than that ofMd

δ . Since the v-weight of a function f on X is measured
by the order of vanishing of f d on Ev , we see that L has v-weight greater than `vv , so
that, as in the proof of Theorem 10.1 of [20], we can adjust L by something that vanishes
to higher v-weight to get an equation of splice type that holds identically on V . Doing this
for each of our linear relations and repeating at all nodes gives a system of splice equa-
tions that hold on V . As proved in [20], such a system defines a complete intersection
singularity (V ′, 0) whose D-quotient (X′, o) has resolution graph 0. Moreover since the
local rings are subrings of the local rings of V and X, we have finite maps V → V ′ and
X → X′. The degree of the map V → V ′ can be computed by restricting to the curve
C1 = {x1 = 0} and then taking the associated graded of this curve. By Corollary 6.10 we
see this way that the degree is 1, so the proof is complete. ut

9. Topological computations

9.1. Linking numbers

In this subsection we describe the interpretation of the numbers `ij as linking numbers.
Recall first that if K1 and K2 are disjoint oriented knots in a QHS 6 then their link-
ing number is defined as follows: Some multiple dK1 bounds a 2-chain A in 6 and
`(K1,K2) is defined as (1/d)A · K2 ∈ Q (intersection number). A (standard) easy cal-
culation shows that this is well defined. Now suppose 6 bounds an oriented 4-manifold
Y with H2(Y ;Q) = 0. Then multiples d1K1 and d2K2 bound 2-chains A1 and A2 in X,
and `(K1,K2) can be computed as (1/d1d2)A1 ·A2 (see, e.g., Durfee [6]; the point is that
it is again easy to see this is independent of choices, and if one chooses A1 to lie in 6
and A2 to be transverse to 6 one gets the previous definition). We can extend to the case
that H2(Y ) 6= 0 by requiring that A1 be chosen to have zero intersection with any 2-cycle
(i.e., closed 2-chain) in Y ; it clearly suffices to require this for 2-cycles representing a
generating set of H2(Y ). Again, the proof that this works only involves showing that it
gives a well defined invariant, which is as before.

Suppose now that 6 = ∂X is a QHS singularity link and Y → X is a resolution of
the singularity. Let Kv and Kw be knots in 6 represented by meridians of exceptional
curves Ev and Ew in Y .

Proposition 9.1. `(Kv,Kw) = 1
|D|
`vw.

Proof. Let Dv and Dw be transverse disks to Ev and Ew with boundaries Kv and Kw.
Recall that the matrix (`ij ) is −|D|(Ei · Ej )−1 (see Def. 1.1). It follows that a 2-chain A
whose boundary is |D|Kv and which dots to zero with each Ei is given by A = |D|Dv +∑
i `viEi . So `(Kv,Kw) = 1

|D|
A ·Dw =

1
|D|
`vw. ut
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9.2. Torsion linking form

The torsion linking form is a non-degenerate bilinear Q/Z-valued pairing on the torsion
of H1(M;Z) for any closed oriented 3-manifold M . We recall the definition. If α, β ∈
H1(6;Z) are torsion elements, we represent α and β by disjoint 1-cycles a and b. Since
some multiple da of a bounds, we can find a 2-chain A with ∂A = da. Then `(α, β) :=
1
d
A · b ∈ Q/Z where A.b is the algebraic intersection number.

For a QHS 6 the linking form is a non-degenerate symmetric bilinear pairing

` : H1(6;Z)×H1(6;Z)→ Q/Z

and hence gives an isomorphism of D = H1(6;Z) with its character group D̂ =
Hom(D,C∗) ∼= Hom(D,Q/Z). We take the negative of this isomorphism and for x ∈ D
we call the character e−2πi`(x,−)

∈ D̂ the character dual to x. By the above Proposition
9.1, we have:

Proposition 9.2. For a QHS link of a complex surface singularity, the torsion linking
form is the negative of the form ev · ew of Section 1.2. ut

We now want to return to the situation of Lemma 8.1, where we lift a root of an end
curve function on our singularity (X, o) to a function on the universal abelian cover. It is
convenient now to restrict just to the link of the singularity (and of the curve B ⊂ X).
The result we need, Theorem 9.3 below, is a general statement about rational homology
spheres.

So we assume we have a QHS 6 and a knot (or link) K ⊂ 6 and a smooth function
z : 6 → C which vanishes to order exactly d along K . The proof of Lemma 8.1 applies
to see that the multivalued function z1/d on 6 can be lifted to a single-valued function x
on the universal abelian cover 6̃ab which vanishes to order 1 on its zero set (i.e., 0 is
a regular value). The covering transformation group for the universal abelian covering
π : 6̃ab

→ 6 is D = H1(6;Z).

Theorem 9.3. Let K ⊂ 6 and x, as above, a lift to 6̃ab of the d-th root of a function z
that vanishes to order d along K . Then the action of D on 6̃ab transforms the function x
by the character dual to the homology class [K] ∈ D = H1(6;Z). That is,

x(hp) = e−2πi`([K],h)x(p) for p ∈ 6̃ab and h ∈ D.

Proof. The action of D = H1(6) on 6̃ab can be described as follows: If h ∈ D and
p ∈ 6̃ab and γ : [0, 1]→ 6 is any loop based at π(p) in 6 whose homology class is h,
then the lift γ̃ of γ that ends at p starts at hp.

For a regular value λ of the function x/|x| on 6 − K consider the set A :=
(x/|x|)−1(λ) ∪ K . This set can be considered as a smooth 2-chain in 6 with boundary
dK , so `(h, [K]) = (1/d)γ · A. Denote the inverse image of A in 6̃ab by Ã. So

Ã = {p ∈ 6̃ab
| d arg(x(p)) = arg(λ)}.

The intersection number A · γ equals the algebraic number of intersections of Ã with γ̃ .
But the function x changes continuously along γ̃ , with value at the point hp of γ̃ some
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power of e2πi/d times its value at p. The power in question is clearly, up to sign, the inter-
section number Ã · γ̃ , since, as one moves along γ̃ from p to hp the change in argument
of x(γ̃ (t)) can be followed by counting how this argument passes through values of the
form (arg(λ) + 2πk)/d . Since γ̃ is oriented from hp to p, the sign is as stated in the
theorem. ut

9.3. Milnor number and delta invariant

Let (X, o) be a normal surface singularity with QHS link 6 and z : (X, o) → (C, 0) a
holomorphic germ which vanishes with degree d on its zero set B. By Lemma 8.1, a d-th
root of z lifts to a well defined function x : (V , 0)→ (C, 0) on the universal abelian cover
(V , 0) of (X, o), which vanishes to degree 1 on its zero set C ⊂ V . We compute the delta
invariant of (C, o); this is a topological computation.

The link of the pair (V , C) is a fibered link whose “Milnor fiber” is diffeomorphic to
F = x−1(δ)∩D2N

ε for some sufficiently small 0 < δ << ε << 1, whereD2N
ε is the ε-ball

about the origin for some embedding (V , 0)→ (CN , 0). A standard formula

δ(C) =
1
2
(r − χ(F )) (16)

relates the delta invariant of C to the number of branches r and the Euler characteristic of
its smoothing F ([3]). We thus want to compute χ(F ).

Let 0 be the resolution graph for a simultaneous good resolution of (X,B, o) and
v1 the vertex corresponding to the exceptional curve Ev1 that the proper transform of C
meets. So B meets Ev1 transversally in one point and meets no other exceptional curve.

Lemma 9.4. With the above notation, χ(F ) = −ν(0, v1) where

ν(0, v) :=
∑
v

(δ′v − 2)`v1v,

the sum is over all vertices v of 0, and δ′v = δv if v 6= v1 and δ′v = δv + 1 if v = v1
(where δv is valency of v). In particular, if v1 is a leaf then the summand for v1 is zero
and, by (16),

δ(C) =
1
2
(r + ν(0, v1)) =

1
2

(
r +

∑
v 6=v1

(δv − 2)`v1v

)
.

Proof. If dC +
∑
avEv is the zero set of z on the resolution of X then the intersection

equations (dC+
∑
avEv) ·Ew = 0 show that the order of vanishing av of z on a curveEv

of the resolution is d(`v1v/|D|). It follows by a standard argument (originally due to
A’Campo [1]) that the Milnor fiber Fz of z has Euler characteristic

χ(Fz) =
d

|D|

∑
v

(2− δ′v)`v1v.

Let X′ and z′ be as in the proof of Lemma 8.1. As there, we may assume X′ is connected.
Then d is a divisor of |D|.
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We can think of the Milnor fibers F and Fz as the fibers of the fibered (multi-)links
(6̃ab, L) and (6, dK), which are the links of the pairs (V , C) and (X,B) respectively.
We have a diagram whose horizontal rows are Milnor fibrations and whose vertical arrows
are covering maps:

F //

��

6̃ab
− L //

��

S1

��
Fz // 6 −K // S1

The degrees of the second and third vertical arrows are |D| and d respectively, so the first
vertical arrow has degree |D|/d . Thus χ(F ) = |D|/d(χ(Fz)) and the lemma is proved.

ut

9.4. Topological meaning of Ĝ

This subsection is a digression, without proofs, about the topology underlying Section 6
(D-curves determined by rooted resolution diagrams). In that section, after selecting a
root leaf of the resolution diagram 0, the group Ĝ arose in terms of a C∗-action that is
not easily seen to be part of the topological data. But Ĝ has a very simple topological
meaning.

If 6 is the link of our singularity and K the knot corresponding to the root leaf,
then Ĝ = H1(60), where 60 is the knot exterior (complement of an open solid torus
neighborhood of K). The homology class of a meridian curve M of K in ∂60 represents
the element Q̂ of Proposition 4.4, while the end knots corresponding to the non-root
leaves of 0 represent the elements χj of Section 6.

In particular, the value semigroup is the subsemigroup of H1(60) generated by the
classes of the end knots, and the semigroup and congruence conditions together mean
that the homology class of the meridian of K is a positive linear combination of the
homology classes of the end knots.

Finally, in the induction of Section 6, the resolution subdiagrams 0i determine knot
exteriors 6i which embed disjointly into 60 (in an obvious way) with complement
Dk × S

1, where Dk is a k-holed disk. The meridian curves Mi for the 6i match fibers of
this Dk × S1, and Theorem 6.7 describes a part of the homology exact sequence for the
pair (60,

⋃k
j=16j ).

10. Corollaries and applications of the End Curve Theorem

As corollaries of the End Curve Theorem, one can explain systematically why all previ-
ously known examples of splice quotients are in fact of this type.

Corollary 10.1 ([16]). The universal abelian cover of a weighted homogeneous singu-
larity with QHS link is a Brieskorn complete intersection, and the covering group acts
diagonally on the coordinates.
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Proof. The minimal resolution graph 0 has one node, and the t leaves correspond to
the C∗-orbits with non-trivial isotropy. We will show that for every leaf of 0, there ex-
ists a weighted homogeneous end curve function. Via the End Curve Theorem, weighted
roots of these functions generate the maximal ideal of the universal abelian cover; also,
the defining equations begin with sums of admissible monomials, which are powers of
these root functions. Because of quasihomogeneity, there can be no higher terms in these
equations, so that the splice equations give a Brieskorn complete intersection.

LetX be the affine variety with C∗-action. The QHS condition is equivalent to the fact
thatX−{0}/C∗ is a rational curve. The C∗-action onX−{0} has finitely many orbits with
non-trivial isotropy, and the closures of these orbits are end curves. We shall show that
these orbits—in fact, every orbit—can be cut out by a weighted homogeneous function
on X. Consider a common multiple N of the orders of the isotropy groups and let µN be
the cyclic subgroup of C∗ of order N . Then every non-trivial C∗ orbit of X′ = X/µN is
isomorphic to C∗/µN , so X′ is a cone over a rational curve, thus a cyclic quotient singu-
larity. It is thus easy to see that any non-trivial C∗-orbit ofX′ is cut out by some weighted
homogeneous function f , and composing f : X′ → C with the projection X→ X′ then
gives the desired function on X. ut

Corollary 10.2 (Okuma [23]). Rational singularities, and minimally elliptic singulari-
ties with QHS link, are splice quotients. In particular, their universal abelian covers are
complete intersections.

Proof. It was explained in Theorem 13.2 of [20] why the End Curve Theorem would im-
ply this result. Specifically, standard results on rational singularities easily produce end
curve functions (or more generally, functions satisfying any topologically allowed van-
ishing). The existence of such functions in the minimally elliptic case is slightly harder,
but is proved by M. Reid in [26, Lemma, p. 122]. ut

We remark that Okuma’s proof is different from ours, with a key step the argument that
the root functions generate the maximal ideal of the universal abelian cover. It uses a
strong condition satisfied by the graphs of rational and minimally elliptic singularities,
but not by splice quotients in general. In [19], the first non-trivial case of this theorem was
proved, showing that the universal abelian cover of a quotient cusp (the simplest rational
singularity whose graph has two nodes) is a complete intersection cusp singularity.

Corollary 10.3 ([21, Theorem 4.1]). Let (X, o) be a normal surface singularity with
integral homology sphere link, for which all the knots associated to leaves are links of
hypersurface sections. Then the semigroup condition is fulfilled, and X is a complete
intersection of splice type.

“Equisingular” deformations of a splice quotient singularity whose link is an integral
homology sphere should remain splice quotients; this is definitely true for positive weight
deformations of weighted homogeneous singularities with ZHS links. On the other hand,
it is not true even for fairly simple splice quotients (cf. [11]), and this becomes clear via
the End Curve Theorem. The following example comes from E. Sell’s Ph.D. thesis.
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Example 10.4 ([27, 3.1.4]). The weighted homogeneous singularity X defined by z2
=

x4
+ y9 has resolution dual graph and (reduced) splice diagram

−2• ◦

−2

•

−5

•

−1

•

−5

•

−2

•

◦
9
◦

9

2
◦

Rewriting the equation as (z − x2)(z + x2) = y9, one sees that the functions z ± x2

vanish 9 times along their zero sets; they, together with x (whose zero set is reduced),
are end curve functions. The discriminant group is cyclic of order 9. So, one can form
the universal abelian cover by adjoining a U satisfying U9

= z − x2, and a V satisfying
V 9
= z + x2, along with x. Then (UV )9 = y9; but since the universal abelian cover is

a normal domain, one must have (perhaps changing V by a 9-th root of 1) that y = UV .
Thus, the universal abelian cover is the hypersurface V 9

= U9
+ 2x2, with discriminant

group action
(U, V, x) 7→ (ζU, ζ−1V, x),

where ζ is a primitive 9-th root of 1. The versal deformation of weight≥ 0 of the universal
abelian cover that is equivariant with respect to the group action is smooth of dimension 3,
and defined by

V 9
= U9

+ 2x2
+ t1(UV )

5
+ t2(UV )

6
+ t3(UV )

7.

Taking invariants to obtain the “versal splice quotient deformation” of X, and changing
coordinates, gives the family

y9
=

(
z− x2

−
1
2
(t1y

5
+ t2y

6
+ t3y

7)

)(
z+ x2

+
1
2
(t1y

5
+ t2y

6
+ t3y

7)

)
,

which can be written (to show the deformation of the curve x4
+ y9

= 0)

z2
= x4

+ y9
+ t1x

2y5
+ t2x

2y6
+ t3x

2y7
+ quadratic terms in ti’s.

One important point is that the first equation for the versal splice quotient deformation
shows explicitly how to lift the end curve functions z ± x2 under deformation so that
they remain end curve functions, i.e., continue to vanish to order 9 along their zero sets.
A second point is that the positive weight deformation z2

= x4
+y9
+ txy7 is not a splice

quotient deformation, even to first order.

Remark 10.5. More generally, in her thesis [27] E. Sell considers singularities zn =
f (x, y) with QHS link and f analytically irreducible. The splice and semigroup condi-
tions depend only on n and the topological type (i.e., Puiseux pairs) of f , and it turns out
that very rarely are they satisfied. However, in all cases where they are satisfied, there exist
special f so that the singularity is a splice quotient; and in these cases the defining equa-
tion can be rewritten (as in the example above) to highlight the end curve functions. As
above, only deformations which are both equisingular and preserve the order of vanishing
of these functions give splice quotient deformations.
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MR 1900786

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0333.14008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0371889
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05667750&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0458.32014&format=complete
http://www.ams.org/mathscinet-getitem?mr=0571575
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0325.20065&format=complete
http://www.ams.org/mathscinet-getitem?mr=0407038
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0906.13001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1475123
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0275.57007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0336750
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0628.57002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0817982
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0394.32006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0511096
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0211.33801&format=complete
http://www.ams.org/mathscinet-getitem?mr=0269762
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0212.06102&format=complete
http://www.ams.org/mathscinet-getitem?mr=0291149
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1084.32022&format=complete
http://www.ams.org/mathscinet-getitem?mr=2129010
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1031.32023&format=complete
http://www.ams.org/mathscinet-getitem?mr=1914570
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1154.14025&format=complete
http://www.ams.org/mathscinet-getitem?mr=2448281
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1149.14030&format=complete
http://www.ams.org/mathscinet-getitem?mr=2427056
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0546.57002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0632532
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0519.32010&format=complete
http://www.ams.org/mathscinet-getitem?mr=0713252
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0704.57007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1036128
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1072.14502&format=complete
http://www.ams.org/mathscinet-getitem?mr=1900786


The end curve theorem for normal complex surface singularities 503

[19] Neumann, W. D., Wahl, J.: Universal abelian covers of quotient-cusps. Math. Ann. 326, 75–93
(2003) Zbl 1032.14010 MR 1981612

[20] Neumann, W. D., Wahl, J.: Complete intersection singularities of splice type as universal
abelian covers. Geom. Topology 9, 699–755 (2005) Zbl 1087.32017 MR 2140991

[21] Neumann, W. D., Wahl, J.: Complex surface singularities with integral homology sphere links.
Geom. Topology 9, 757–811 (2005) Zbl 1087.32018 MR 2140992

[22] Okuma, T.: Universal abelian covers of rational surface singularities. J. London Math. Soc.
(2) 70, 307–324 (2004) Zbl 1066.14006 MR 2078895

[23] Okuma, T.: Universal abelian covers of certain surface singularities. Math. Ann. 334, 753–773
(2006) Zbl 1093.32013 MR 2209255

[24] Okuma, T.: The geometric genus of splice quotient singularities. Trans. Amer. Math. Soc. 360,
6643–6659 (2008) Zbl 1162.32017 MR 2434304

[25] Pedersen, H. M.: Splice diagrams, singularity links and universal abelian covers. PhD Disser-
tation, Columbia Univ. (2009)

[26] Reid, M.: Chapters on algebraic surfaces. In: Complex Algebraic Geometry (Park City,
UT, 1993), IAS/Park City Math. Ser. 3, Amer. Math. Soc., Providence, RI, 3–159 (1997)
Zbl 0910.14016 MR 1442522

[27] Sell, E.: Universal abelian covers for surface singularities {zn = f (x, y)}. PhD thesis, UNC
(2007)

[28] Watanabe, K.-I.: Some examples of one dimensional Gorenstein domains. Nagoya Math. J.
49, 101–109 (1973) Zbl 0257.13024 MR 0318140

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1032.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1981612
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1087.32017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2140991
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1087.32018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2140992
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1066.14006&format=complete
http://www.ams.org/mathscinet-getitem?mr=2078895
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.32013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2209255
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1162.32017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2434304
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0910.14016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1442522
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0257.13024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0318140

	Splice quotient singularities
	Overview of the proof
	D-curves
	Weighted homogeneous D-curves
	An instructive example
	D-curves from rooted resolution diagrams
	Semigroups and delta invariants of D-curves from (,*)
	Proof of the End Curve Theorem
	Topological computations
	Corollaries and applications of the End Curve Theorem

