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Abstract. We prove that, up to scalar multiples, there exists only one local regular Dirichlet form
on a generalized Sierpiński carpet that is invariant with respect to the local symmetries of the carpet.
Consequently, for each such fractal the law of Brownian motion is uniquely determined and the
Laplacian is well defined.
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1. Introduction

The standard Sierpiński carpet FSC is the fractal that is formed by taking the unit square,
dividing it into 9 equal subsquares, removing the central square, dividing each of the 8
remaining subsquares into 9 equal smaller pieces, and continuing. In [3] two of the authors
of this paper gave a construction of a Brownian motion on FSC. This is a diffusion (that
is, a continuous strong Markov process) which takes its values in FSC, and which is non-
degenerate and invariant under all the local isometries of FSC.

Subsequently, Kusuoka and Zhou in [27] gave a different construction of a diffusion
on FSC, which yielded a process that, as well as having the invariance properties of the
Brownian motion constructed in [3], was also scale invariant. The proofs in [3, 27] also
work for fractals that are formed in a similar manner to the standard Sierpiński carpet: we
call these generalized Sierpiński carpets (GSCs). In [5] the results of [3] were extended
to GSCs embedded in Rd for d ≥ 3. While [3, 5] and [27] both obtained their diffusions
as limits of approximating processes, the type of approximation was different: [3, 5] used
a sequence of time changed reflecting Brownian motions, while [27] used a sequence of
Markov chains.
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Fig. 1. The standard Sierpiński carpet.

These papers left open the question of uniqueness of this Brownian motion—in fact
it was not even clear whether or not the processes obtained in [3, 5] or [27] were the
same. This uniqueness question can also be expressed in analytic terms: one can define a
Laplacian on a GSC as the infinitesimal generator of a Brownian motion, and one wants
to know if there is only one such Laplacian. The main result of this paper is that, up
to scalar multiples of the time parameter, there exists only one such Brownian motion;
hence, up to scalar multiples, the Laplacian is uniquely defined.

GSCs are examples of spaces with anomalous diffusion. For Brownian motion on Rd
one has E|Xt −X0| = ct

1/2. Anomalous diffusion in a space F occurs when instead one
has E|Xt −X0| = o(t

1/2), or (in regular enough situations), E|Xt −X0| ≈ t
1/dw , where

dw (called the walk dimension) satisfies dw > 2. This phenomenon was first observed by
mathematical physicists working in the transport properties of disordered media, such as
(critical) percolation clusters—see [1, 34]. Since these sets are subsets of the lattice Zd ,
they are not true fractals, but their large scale structure still exhibits fractal properties, and
the simple random walk is expected to have anomalous diffusion.

For critical percolation clusters (or, more precisely for the incipient infinite cluster) on
trees and Z2, Kesten [20] proved that anomalous diffusion occurs. After this work, little
progress was made on critical percolation clusters until the recent papers [8, 7, 24].

As random sets are hard to study, it was natural to begin the study of anomalous
diffusion in the more tractable context of regular deterministic fractals. The simplest of
these is the Sierpiński gasket. The papers [1, 34] studied discrete random walks on graph
approximations to the Sierpiński gasket, and soon after [16, 26, 9] constructed Brown-
ian motions on the limiting set. The special structure of the Sierpiński gasket makes the
uniqueness problem quite simple, and uniqueness of this Brownian motion was proved
in [9]. These early papers used a probabilistic approach, first constructing the Brownian
motion X on the space, and then, having defined the Laplacian LX as the infinitesimal
generator of the semigroup of X, used the processX to study LX. Soon after Kigami [21]
and Fukushima–Shima [15] introduced more analytical approaches, and in particular [15]
gave a very simple construction of X and LX using the theory of Dirichlet forms.

It was natural to ask whether these results were special to the Sierpiński gasket. Lind-
strøm [28] and Kigami [22] introduced wider families of fractals (called nested frac-
tals, and p.c.f. self-similar sets respectively), and gave constructions of diffusions on
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Fig. 2. The Sierpiński gasket (left), and a typical nested fractal, the Lindstrøm snowflake (right).

these spaces. Nested fractals are, like the Sierpiński carpet, highly symmetric, and the
uniqueness problem can be formulated in a similar fashion to that for GSCs. Unique-
ness for nested fractals was not treated in [28], and for some years remained a signifi-
cant challenge, before being solved by Sabot [38] (see also [31, 33] for shorter proofs).
For p.c.f. self-similar sets, while some sufficient conditions for uniqueness are given in
[38, 18], the general problem is still open.

The study of these various families of fractals (nested fractals, p.c.f. self-similar sets,
and GSCs) revealed a number of common themes, and showed that analysis on these
spaces differs from that in standard Euclidean space in several ways, all ultimately con-
nected with the fact that dw > 2:

• The energy measure ν and the Hausdorff measure µ are mutually singular.
• The domain of the Laplacian is not an algebra.
• If d(x, y) is the shortest path metric, then d(x, ·) is not in the domain of the Dirichlet

form.

See [2, 23, 40] for further information and references.
The uniqueness proofs in [18, 31, 33, 38] all used in an essential way the fact that

nested fractals and p.c.f. self-similar sets are finitely ramified—that is, they can be dis-
connected by removing a finite number of points. For these sets there is a natural defini-
tion of a set Vn of ‘boundary points at level n’—for the Sierpiński gasket Vn is the set
of vertices of triangles of side 2−n. If one just looks at the process X at the times when
it passes through the points in Vn, one sees a finite state Markov chain X(n), which is
called the trace of X on Vn. If m > n then Vn ⊂ Vm and the trace of X(m) on Vn is also
X(n). Using this, and the fact that the limiting processes are known to be scale invariant,
the uniqueness problem for X can be reduced to the uniqueness of the fixed point of a
non-linear map on a space of finite matrices.

While the boundaries of the squares (or cubes) have an analogous role to the sets Vn
in the geometrical construction of a GSC, attempts to follow the same strategy of proof
encounter numerous difficulties and have not been successful. We use a different idea in
this paper, and rather than studying the restriction of the process X to boundaries, our
argument treats the Dirichlet form of the process on the whole space. (This also sug-
gests a new approach to uniqueness on finitely ramified fractals, which will be explored
elsewhere.)
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Let F be a GSC and µ the usual Hausdorff measure on F . Let E be the set of non-zero
local regular conservative Dirichlet forms (E,F) on L2(F, µ) which are invariant with
respect to all the local symmetries of F . (See Definition 2.15 for a precise definition.) We
remark that elements of E are not required to be scale invariant—see Definition 2.17. Our
first result is that E is non-empty.

Proposition 1.1. The Dirichlet forms associated with the processes constructed in [3, 5]
and [27] are in E.

Our main result is the following theorem, which is proved in Section 5.

Theorem 1.2. Let F ⊂ Rd be a GSC. Then, up to scalar multiples, E consists of at most
one element. Further, this one element of E satisfies scale invariance.

An immediate corollary of Proposition 1.1 and Theorem 1.2 is the following.

Corollary 1.3. (a) The Dirichlet forms constructed in [3, 5] and [27] are (up to a con-
stant) the same.

(b) The Dirichlet forms constructed in [3, 5] satisfy scale invariance.

A Feller process is one where the semigroup Tt maps continuous functions that vanish
at infinity to continuous functions that vanish at infinity, and limt→0 Ttf (x) = f (x) for
each x ∈ F if f is continuous and vanishes at infinity. Our main theorem can be stated in
terms of processes as follows.

Corollary 1.4. If X is a continuous non-degenerate symmetric strong Markov process
which is a Feller process, whose state space is F , and whose Dirichlet form is invariant
with respect to the local symmetries of F , then the law of X under Px is uniquely defined,
up to scalar multiples of the time parameter, for each x ∈ F .

Remark 1.5. Osada [32] constructed diffusion processes on GSCs which are different
from the ones considered here. While his processes are invariant with respect to some of
the local isometries of the GSC, they are not invariant with respect to the full set of local
isometries.

In Section 2 we give precise definitions, introduce the notation we use, and prove some
preliminary lemmas. In Section 3 we prove Proposition 1.1. In Section 4 we develop the
properties of Dirichlet forms E ∈ E, and in Section 5 we prove Theorem 1.2.

The idea of our proof is the following. The main work is showing that ifA,B are any
two Dirichlet forms in E, then they are comparable. (This means that A and B have the
same domain F , and that there exists a constant c = c(A,B) > 0 such that cA(f, f ) ≤
B(f, f ) ≤ c−1A(f, f ) for f ∈ F .) We then let λ be the largest positive real such that
C = A − λB ≥ 0. If C were also in E, then C would be comparable to B, and so there
would exist ε > 0 such that C − εB ≥ 0, contradicting the definition of λ. In fact we
cannot be sure that C is closed, so instead we consider Cδ = (1 + δ)A − λB, which is
easily seen to be in E. We then need uniform estimates in δ to obtain a contradiction.
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To show A,B ∈ E are comparable requires heat kernel estimates for an arbitrary
element of E. Using symmetry arguments as in [5], we show that the estimates for corner
moves and slides and the coupling argument of [5, Section 3] can be modified so as to
apply to any element E ∈ E. It follows that the elliptic Harnack inequality holds for any
such E . Resistance arguments, as in [4, 30], combined with results in [17] then lead to the
desired heat kernel bounds. (Note that the results of [17] that we use are also available
in [6].)

A key point here is that the constants in the Harnack inequality, and consequently
also the heat kernel bounds, only depend on the GSC F , and not on the particular element
of E. This means that we need to be careful about the dependencies of the constants.

The symmetry arguments are harder than in [5, Section 3]. In [5] the approximating
processes were time changed reflecting Brownian motions, and the proofs used the con-
venient fact that a reflecting Brownian motion in a Lipschitz domain in Rd does not hit
sets of dimension d − 2. Since we do not have such approximations for the processes
corresponding to an arbitrary element E ∈ E, we have to work with the diffusion X as-
sociated with E , and this process might hit sets of dimension d − 2. (See [5, Section 9]
for examples of GSCs in dimension 3 for which the process X hits not just lines but also
points.)

We use Ci to denote finite positive constants which depend only on the GSC, but
which may change between each appearance. Other finite positive constants will be writ-
ten as ci .

2. Preliminaries

2.1. Some general properties of Dirichlet forms

We begin with a general result on local Dirichlet forms. For definitions of local and other
terms related to Dirichlet forms, see [14]. Let F be a compact metric space andm a Radon
(i.e. finite) measure on F . For any Dirichlet form (E,F) on L2(F,m) we define

E1(u, u) = E(u, u)+ ‖u‖22. (2.1)

Functions in F are only defined up to quasi-everywhere equivalence (see [14, p. 67]);
we use a quasi-continuous modification of elements of F throughout the paper. We write
〈·, ·〉 for the inner product in L2(F,m) and 〈·, ·〉S for the inner product in a subset S ⊂ F .

Theorem 2.1. Suppose that (A,F), (B,F) are local regular conservative irreducible
Dirichlet forms on L2(F,m) and that

A(u, u) ≤ B(u, u) for all u ∈ F . (2.2)

Let δ > 0, and E = (1+δ)B−A. Then (E,F) is a regular local conservative irreducible
Dirichlet form on L2(F,m).
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Proof. It is clear that E is a non-negative symmetric form, and is local.
To show that E is closed, let {un} be a Cauchy sequence with respect to E1. Since

E1(f, f ) ≥ (δ ∧ 1)B1(f, f ), {un} is a Cauchy sequence with respect to B1. Since B is a
Dirichlet form and so closed, there exists u ∈ F such that B1(un − u, un − u)→ 0. As
A ≤ B we have A(un − u, un − u)→ 0 also, and so E1(un − u, un − u)→ 0, proving
that (E,F) is closed.

Since A and B are conservative and F is compact, 1 ∈ F and E(1, h) = 0 for all
h ∈ F , which shows that E is conservative by [14, Theorem 1.6.3 and Lemma 1.6.5].

We now show that E is Markov. By [14, Theorem 1.4.1] it is enough to prove that
E(ū, ū) ≤ E(u, u) for u ∈ F , where we let ū = 0 ∨ (u ∧ 1). Since A is local and
u+u− = 0, we have A(u+, u−) = 0 ([39, Proposition 1.4]). Similarly B(u+, u−) = 0,
giving E(u+, u−) = 0. Using this, we have

E(u, u) = E(u+, u+)− 2E(u+, u−)+ E(u−, u−) ≥ E(u+, u+) (2.3)

for u ∈ F . Now let v = 1− u. Then ū = (1− v+)+ , so

E(u, u) = E(v, v) ≥ E(v+, v+) = E(1− v+, 1− v+)
≥ E((1− v+)+, (1− v+)+) = E(ū, ū),

and hence E is Markov.
As B is regular, it has a core C ⊂ F . Let u ∈ F . As C is a core for B, there exist

un ∈ C such that B1(u− un, u− un)→ 0. Since A ≤ B, A1(un − u, un − u)→ 0 also,
and so E1(un − u, un − u)→ 0. Thus C is dense in F in the E1 norm (and it is dense in
C(F) in the supremum norm since it is a core for B), so E is regular.

Let A ⊂ F be invariant for the semigroup corresponding to E . By [14, Theorem
1.6.1], this is equivalent to the following: 1Au ∈ F for all u ∈ F and

E(u, v) = E(1Au, 1Av)+ E(1F−Au, 1F−Av) ∀u, v ∈ F . (2.4)

Once we have 1Au ∈ F , since (1Au)(1F−Au) = 0 we haveA(1Au, 1F−Au) = 0, and we
obtain (2.4) forA also. Using [14, Theorem 1.6.1] again, we see thatA is invariant for the
semigroup corresponding toA. SinceA is irreducible, we conclude that either m(A) = 0
or m(X − A) = 0 holds and hence that (E,F) is irreducible. ut

Remark 2.2. This should be compared with the situation for Dirichlet forms on finite
sets, which is the context of the uniqueness results in [31, 38]. In that case the Dirichlet
forms are not local, and given A, B satisfying (2.2) there may exist δ0 > 0 such that
(1+ δ)B −A fails to be a Dirichlet form for δ ∈ (0, δ0).

For the remainder of this section we assume that (E,F) is a local regular Dirichlet
form on L2(F,m), that 1 ∈ F and E(1, 1) = 0. We write Tt for the semigroup associated
with E , and X for the associated diffusion.

Lemma 2.3. Tt is recurrent and conservative.
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Proof. Tt is recurrent by [14, Theorem 1.6.3]. Hence by [14, Lemma 1.6.5], Tt is conser-
vative. ut

Let D be a Borel subset of F . We write TD for the hitting time of D, and τD for the exit
time of D:

TD = T
X
D = inf{t ≥ 0 : Xt ∈ D}, τD = τ

X
D = inf{t ≥ 0 : Xt 6∈ D}. (2.5)

Let T t be the semigroup of X killed on exiting D, and X be the killed process. Set

q(x) = Px(τD = ∞),

and
ED = {x : q(x) = 0}, ZD = {x : q(x) = 1}. (2.6)

Lemma 2.4. Let D be a Borel subset of F . Then m(D − (ED ∪ZD)) = 0. Further, ED
and ZD are invariant sets for the killed process X, and ZD is invariant for X.

Proof. If f ≥ 0,

〈T t (f 1ED ), 1D−EDq〉 = 〈f 1ED , T t (1D−EDq)〉 ≤ 〈f 1ED , T tq〉 = 0.

So T t (f 1ED ) = 0 on D − ED and hence (see [14, Lemma 1.6.1(ii)]) ED is invariant
for X.

Let A = {x : P x(τD <∞) > 0} = ZcD . The set A is an invariant set of the processX
by [14, Lemma 4.6.4]. Using the fact that X = X Px-a.s. for x ∈ ZD and [14, Lemma
1.6.1(ii)], we see that A is an invariant set of the process X as well. So we see that ZD is
invariant both for X and X. In order to prove m(D− (ED ∪ZD)) = 0, it suffices to show
that Ex[τD] < ∞ for a.e. x ∈ A ∩ D. Let UD be the resolvent of the killed process X.
Since A∩D is of finite measure, the proof of Lemma 1.6.5 or Lemma 1.6.6 of [14] gives
UD1(x) <∞ for a.e. x ∈ A ∩D, so we obtain Ex[τD] <∞. ut

Note that in the above proof we do not use the boundedness of D, but only the fact that
m(D) <∞.

Next, we give some general facts on harmonic and caloric functions. Let D be a
Borel subset in F and let h : F → R. There are two possible definitions of h being
harmonic inD. The probabilistic one is that h is harmonic inD if h(Xt∧τD′ ) is a uniformly
integrable martingale under Px for q.e. x whenever D′ is a relatively open subset of D.
The Dirichlet form definition is that h is harmonic with respect to E in D if h ∈ F and
E(h, u) = 0 whenever u ∈ F is continuous and the support of u is contained in D.

The following is well known to experts. We will use it in the proofs of Lemma 4.9 and
Lemma 4.24. (See [12] for the equivalence of the two notions of harmonicity in a very
general framework.) Recall that Px(τD <∞) = 1 for x ∈ ED .

Proposition 2.5. (a) Let (E,F) and D satisfy the above conditions, and let h ∈ F be
bounded. Then h is harmonic in a domain D in the probabilistic sense if and only if
it is harmonic in the Dirichlet form sense.
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(b) If h is a bounded Borel measurable function in D, and D′ is a relatively open subset
of D, then h(Xt∧τD′ ) is a martingale under Px for q.e. x ∈ ED if and only if h(x) =
Ex[h(XτD′ )] for q.e. x ∈ ED .

Proof. (a) By [14, Theorem 5.2.2], we have the Fukushima decomposition h(Xt ) −
h(X0) = M

[h]
t + N

[h]
t , where M [h] is a square integrable martingale additive functional

of finite energy and N [h] is a continuous additive functional having zero energy (see [14,
Section 5.2]). We need to consider the Dirichlet form (E,FD) where FD = {f ∈ F :
supp(f ) ⊂ D}, and denote the corresponding semigroup as PDt .

If h is harmonic in the Dirichlet form sense, then by the discussion in [14, p. 218]
and [14, Theorem 5.4.1], we have Px(N [h]

t = 0, ∀t < τD) = 1 q.e. x ∈ F . Thus, h is
harmonic in the probabilistic sense. Here the notion of the spectrum from [14, Sect. 2.3]
and especially [14, Theorem 2.3.3] are used.

To show that being harmonic in the probabilistic sense implies being harmonic in the
Dirichlet form sense is the delicate part of this proposition. Since ZD is PDt -invariant (by
Lemma 2.4) and h(Xt ) is a bounded martingale under Px for x ∈ ZD , we have

PDt (h1ZD )(x) = 1ZD (x)P
D
t h(x) = 1ZD (x)E

x[h(Xt )] = h1ZD (x).

Thus by [14, Lemma 1.3.4], we have h1ZD ∈ F and E(h1ZD , v) = 0 for all v ∈ F . Next,
note that on ZcD we haveHBh = h, according to the definition ofHB on page 150 of [14]
and Lemma 2.4, which implies HB(h1ZcD ) = h1ZcD . Then from [14, Theorem 4.6.5],
applied with ũ = h1ZcD = h − h1ZD ∈ F and Bc = D, we conclude that h1ZcD is
harmonic in the Dirichlet form sense. Thus h = h1ZcD+h1ZD is harmonic in the Dirichlet
form sense in D.

(b) If h(Xt∧τD′ ) is a martingale under Px for q.e. x ∈ ED , then Ex[h(Xs∧τD′ )] =
Ex[h(Xt∧τD′ )] for q.e. x ∈ ED and for all s, t ≥ 0, where we can take s ↓ 0 and
t ↑ ∞ and interchange the limit and the expectation since h is bounded. Conversely, if
h(x) = Ex[h(XτD′ )] for q.e. x ∈ ED , then by the strong Markov property, h(Xt∧τD′ ) =
Ex[h(XτD′ )|Ft∧τD′ ] under Px for q.e. x ∈ ED , so h(Xt∧τD′ ) is a martingale under Px for
q.e. x ∈ ED . ut

We call a function u : R+ × F → R caloric in D in the probabilistic sense if u(t, x) =
Ex[f (Xt∧τD )] for some bounded Borel f : F → R. It is natural to view u(t, x) as the
solution to the heat equation with boundary data defined by f (x) outside of D and the
initial data defined by f (x) inside ofD. We call a function u : R+×F → R caloric inD
in the Dirichlet form sense if there is a function h which is harmonic in D and a bounded
Borel fD : F → R which vanishes outside of D such that u(t, x) = h(x) + T tfD .
Note that T t is the semigroup of X killed on exiting D, which can be either defined
probabilistically as above or, equivalently, in the Dirichlet form sense by Theorems 4.4.3
and A.2.10 in [14].

Proposition 2.6. Let (E,F) and D satisfy the above conditions, and let f ∈ F be
bounded and t ≥ 0. Then

Ex[f (Xt∧τD )] = h(x)+ T tfD
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q.e., where h(x) = Ex[f (XτD )] is the harmonic function that coincides with f on Dc,
and fD(x) = f (x)− h(x).

Proof. By Proposition 2.5, h is uniquely defined in the probabilistic and Dirichlet form
senses, and h(x) = Ex[h(Xt∧τD )]. Note that fD(x) vanishes q.e. outside of D. Then we
have Ex[fD(Xt∧τD )] = T tfD by Theorems 4.4.3 and A.2.10 in [14]. ut

Note that the condition f ∈ F can be relaxed (see the proof of Lemma 4.9).
We show a general property of local Dirichlet forms which will be used in the proof

of Proposition 2.21. Note that it is not assumed that E admits a carré du champ. Since
E is regular, E(f, f ) can be written in terms of a measure 0(f, f ), the energy measure
of f , as follows. Let Fb be the elements of F that are essentially bounded. If f ∈ Fb,
then 0(f, f ) is defined to be the unique smooth Borel measure on F satisfying∫

F

g d0(f, f ) = 2E(f, fg)− E(f 2, g), g ∈ Fb.

Lemma 2.7. If E is a local regular Dirichlet form with domain F , then for any f ∈
F ∩ L∞(F ) we have 0(f, f )(A) = 0, where A = {x ∈ F : f (x) = 0}.

Proof. Let σ f be the measure on R which is the image of the measure 0(f, f ) on F
under the function f : F → R. By [10, Theorems 5.2.1 and 5.2.3] and the chain rule, σ f

is absolutely continuous with respect to one-dimensional Lebesgue measure on R. Hence
0(f, f )(A) = σ f ({0}) = 0. ut

Lemma 2.8. Given an m-symmetric Feller process on F , the corresponding Dirichlet
form (E,F) is regular.

Proof. First, we note the following: ifH is dense in L2(F,m), thenU1(H) is dense inF ,
where U1 is the 1-resolvent operator. This is because U1 : L2

→ D(L) is an isometry
where the norm of g ∈ D(L) is given by ‖g‖D(L) := ‖(I − L)g‖2, and D(L) ⊂ F is
a continuous dense embedding (see, for example, [14, Lemma 1.3.3(iii)]). Here L is the
generator corresponding to E . Since C(F) is dense in L2 and U1(C(F )) ⊂ F ∩ C(F) as
the process is Feller, we see that F ∩ C(F) is dense in F in the E1 norm.

Next we need to show that u ∈ C(F) can be approximated with respect to the supre-
mum norm by functions inF∩C(F). This is easy, since Ttu ∈ F for each t , is continuous
since we have a Feller process, and Ttu→ u uniformly by [36, Lemma III.6.7]. ut

Remark 2.9. The proof above uses the fact that F is compact. However, it can be easily
generalized to a Feller process on a locally compact separable metric space by a standard
truncation argument—for example by using [14, Lemma 1.4.2(i)].

2.2. Generalized Sierpiński carpets

Let d ≥ 2, F0 = [0, 1]d , and let LF ∈ N, LF ≥ 3, be fixed. For n ∈ Z let Qn be the
collection of closed cubes of side L−nF with vertices in L−nF Zd . For A ⊆ Rd , set

Qn(A) = {Q ∈ Qn : int(Q) ∩ A 6= ∅}.
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For Q ∈ Qn, let 9Q be the orientation preserving affine map (i.e. similitude with no
rotation part) which maps F0 onto Q. We now define a decreasing sequence (Fn) of
closed subsets of F0. Let 1 ≤ mF ≤ LdF be an integer, and let F1 be the union of mF
distinct elements of Q1(F0). We impose the following conditions on F1.

(H1) (Symmetry) F1 is preserved by all the isometries of the unit cube F0.
(H2) (Connectedness) Int(F1) is connected.
(H3) (Non-diagonality) Let m ≥ 1 and B ⊂ F0 be a cube of side length 2L−mF , which

is the union of 2d distinct elements of Qm. Then if int(F1 ∩ B) is non-empty, it is
connected.

(H4) (Borders included) F1 contains the line segment {x : 0 ≤ x1 ≤ 1, x2 = · · · =

xd = 0}.

We may think of F1 as being derived from F0 by removing the interiors of LdF −mF
cubes in Q1(F0). Given F1, F2 is obtained by removing the same pattern from each of
the cubes in Q1(F1). Iterating, we obtain a sequence {Fn}, where Fn is the union of mnF
cubes in Qn(F0). Formally, we define

Fn+1 =
⋃

Q∈Qn(Fn)

9Q(F1) =
⋃

Q∈Q1(F1)

9Q(Fn), n ≥ 1.

We call the set F =
⋂
∞

n=0 Fn a generalized Sierpiński carpet (GSC). The Hausdorff
dimension of F is df = df (F ) = logmF /logLF . Later on we will also discuss the
unbounded GSC F̃ =

⋃
∞

k=0 L
k
FF , where rA = {rx : x ∈ A}.

Let

µn(dx) = (L
d
F /mF )

n1Fn(x)dx,

and let µ be the weak limit of the µn; µ is a constant multiple of the Hausdorff xdf -
measure on F . For x, y ∈ F we write d(x, y) for the length of the shortest path in F
connecting x and y. Using (H1)–(H4) we see that d(x, y) is comparable with the Eu-
clidean distance |x − y|.

Remark 2.10. 1. There is an error in [5], where it was only assumed that (H3) above
holds when m = 1. However, that assumption is not strong enough to imply the connect-
edness of the set Jk in [5, Theorem 3.19]. To correct this error, we replace the (H3) in [5]
by the (H3) in the current paper.

2. The standard SC in dimension d is the GSC with LF = 3, mF = 3d − 1, and
with F1 obtained from F0 by removing the middle cube. We have allowed mF = LdF , so
that our GSCs do include the ‘trivial’ case F = [0, 1]d . The ‘Menger sponge’ (see the
picture in [29, p. 145]) is one example of a GSC, and has d = 3, LF = 3, mF = 20.

Definition 2.11. Define

Sn = Sn(F ) = {Q ∩ F : Q ∈ Qn(F )}.
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Fig. 3. Illustration for Definition 2.11 in the case of the standard Sierpiński carpet and n = 1. Let
A be the shaded set. The thick dotted lines give intF (A) on the left, and intr (A) on the right.

We will need to consider two different types of interior and boundary for subsets of F
which consist of unions of elements of Sn. First, for any A ⊂ F we write intF (A) for the
interior ofAwith respect to the metric space (F, d), and ∂F (A) = A−intF (A). Given any
U ⊂ Rd we write Uo for the interior of U in with respect to the usual topology on Rd ,
and ∂U = U − Uo for the usual boundary of U . Let A be a finite union of elements
of Sn, so that A =

⋃k
i=1 Si , where Si = F ∩ Qi and Qi ∈ Qn(F ). Then we define

intr(A) = F∩(
⋃k
i=1Qi)

o, and ∂r(A) = A−intr(A). We have intr(A) = A−∂(
⋃k
i=1Qi)

(see Figure 3).

Definition 2.12. We define the folding map ϕS : F → S for S ∈ Sn(F ) as follows. Let
ϕ0 : [−1, 1] → R be defined by ϕ0(x) = |x| for |x| ≤ 1, and then extend the domain
of ϕ0 to all of R by periodicity, so that ϕ0(x + 2n) = ϕ0(x) for all x ∈ R, n ∈ Z. If y
is the point of S closest to the origin, define ϕS(x) for x ∈ F to be the point whose ith

coordinate is yi + L−nF ϕ0(L
n
F (xi − yi)).

It is straightforward to check the following

Lemma 2.13. (a) ϕS is the identity on S and for each S′ ∈ Sn, ϕS : S′ → S is an
isometry.

(b) If S1, S2 ∈ Sn then
ϕS1 ◦ ϕS2 = ϕS1 . (2.7)

(c) Let x, y ∈ F . If there exists S1 ∈ Sn such that ϕS1(x) = ϕS1(y), then ϕS(x) = ϕS(y)
for every S ∈ Sn.

(d) Let S ∈ Sn and S′ ∈ Sn+1. If x, y ∈ F and ϕS(x) = ϕS(y) then ϕS′(x) = ϕS′(y).

Given S ∈ Sn, f : S → R and g : F → R we define the unfolding and restriction
operators by

USf = f ◦ ϕS, RSg = g|S .

Using (2.7), we check that if S1, S2 ∈ Sn then

US2RS2US1RS1 = US1RS1 . (2.8)
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Definition 2.14. We define the length and mass scale factors of F to be LF and mF
respectively.

Let Dn be the network of diagonal crosswires obtained by joining each vertex of a
cube Q ∈ Qn to the vertex at the center of the cube by a wire of unit resistance—see
[4, 30]. Write RDn for the resistance across two opposite faces of Dn. Then it is proved
in [4, 30] that there exists ρF such that there exist constants Ci , depending only on the
dimension d, such that

C1ρ
n
F ≤ R

D
n ≤ C2ρ

n
F . (2.9)

We remark that ρF ≤ L2
F /mF—see [5, Proposition 5.1].

2.3. F -invariant Dirichlet forms

Let (E,F) be a local regular Dirichlet form on L2(F, µ). Let S ∈ Sn. We set

ES(g, g) =
1
mnF

E(USg,USg) (2.10)

and define the domain of ES to be FS = {g : g maps S to R, USg ∈ F}. We write
µS = µ|S .

Definition 2.15. Let (E,F) be a Dirichlet form on L2(F, µ). We say that E is an F -
invariant Dirichlet form or that E is invariant with respect to all the local symmetries
of F if the following items (1)–(3) hold:

(1) If S ∈ Sn(F ), then USRSf ∈ F (i.e. RSf ∈ FS) for any f ∈ F .
(2) Let n ≥ 0 and S1, S2 be any two elements of Sn, and let 8 be any isometry of Rd

which maps S1 onto S2. (We allow S1 = S2.) If f ∈ FS2 , then f ◦8 ∈ FS1 and

ES1(f ◦8, f ◦8) = ES2(f, f ). (2.11)

(3) For all f ∈ F ,

E(f, f ) =
∑

S∈Sn(F )
ES(RSf,RSf ). (2.12)

We write E for the set of F -invariant, non-zero, local, regular, conservative Dirichlet
forms.

Remark 2.16. We cannot exclude at this point the possibility that the energy measure of
E ∈ E may charge the boundaries of cubes in Sn. See Remark 5.3.

We will not need the following definition of scale invariance until we come to the
proof of Corollary 1.3 in Section 5.
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Definition 2.17. Recall that 9Q, Q ∈ Q1(F1), are the similitudes which define F1. Let
(E,F) be a Dirichlet form on L2(F, µ) and suppose that

f ◦9Q ∈ F for all Q ∈ Q1(F1), f ∈ F . (2.13)

Then we can define the replication of E by

RE(f, f ) =
∑

Q∈Q1(F1)

E(f ◦9Q, f ◦9Q). (2.14)

We say that (E,F) is scale invariant if (2.13) holds, and there exists λ > 0 such that
RE = λE .

Remark 2.18. We do not have any direct proof that if E ∈ E then (2.13) holds. Ulti-
mately, however, this will follow from Theorem 1.2.

Lemma 2.19. Let (A,F1), (B,F2) ∈ E with F1 = F2 and A ≥ B. Then C = (1+ δ)A
− B ∈ E for any δ > 0.

Proof. It is easy to see that the conditions of Definition 2.15 hold. Together with Theo-
rem 2.1 this proves the lemma. ut

Proposition 2.20. If E ∈ E and S ∈ Sn(F ), then (ES,FS) is a local regular Dirichlet
form on L2(S, µS).

Proof. (Local): If u, v are in FS with compact support and v is constant in a neighbor-
hood of the support of u, then USu,USv will be in F , and by the local property of E , we
have E(USu,USv) = 0. Then by (2.10) we have ES(u, v) = 0.

(Markov): Given that ES is local, we have the Markov property by the same proof as that
in Theorem 2.1.

(Conservative): Since 1 ∈ F , ES(1, 1) = 0 by (2.10).

(Regular): If h ∈ F then by (2.12), ES(RSh,RSh) ≤ E(h, h). Let f ∈ FS , so that
USf ∈ F . As E is regular, given ε > 0 there exists a continuous g ∈ F such that
E1(USf − g,USf − g) < ε. Then RSUSf − RSg = f − RSg on S, so

ES1 (f − RSg, f − RSg) = E
S
1 (RSUSf − RSg,RSUSf − RSg)

≤ E1(USf − g,USf − g) < ε.

As RSg is continuous, we see that FS ∩ C(S) is dense in FS in the ES1 norm. One can
similarly prove that FS ∩C(S) is dense in C(S) in the supremum norm, so the regularity
of ES is proved.

(Closed): If fm is Cauchy with respect to ES1 , then USfm will be Cauchy with respect
to E1. Hence USfm converges with respect to E1, and it follows that RS(USfm) = fm
converges with respect to ES1 . ut
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Fix n and define, for functions f on F ,

2f =
1
mnF

∑
S∈Sn(F )

USRSf. (2.15)

Using (2.8) we have22
= 2, and so2 is a projection operator. It is bounded onC(F) and

L2(F, µ), and moreover by [37, Theorem 12.14] is an orthogonal projection onL2(F, µ).
Definition 2.15(1) implies that 2 : F → F .

Proposition 2.21. Assume that E is a local regular Dirichlet form on F , Tt is its semi-
group, and USRSf ∈ F whenever S ∈ Sn(F ) and f ∈ F . Then the following are
equivalent:

(a) For all f ∈ F , we have E(f, f ) =
∑
S∈Sn(F ) E

S(RSf,RSf ).
(b) for all f, g ∈ F ,

E(2f, g) = E(f,2g). (2.16)

(c) Tt2f = 2Ttf a.e. for any f ∈ L2(F, µ) and t ≥ 0.

Remark 2.22. Note that this proposition and the following corollary do not use all the
symmetries that are assumed in Definition 2.15(2). Although these symmetries are not
needed here, they will be essential later in the paper.

Proof of Proposition 2.21. To prove that (a)⇒(b), note that (a) implies that

E(f, g) =
∑

T ∈Sn(F )
ET (RT f,RT g) =

1
mnF

∑
T ∈Sn(F )

E(UTRT f,UTRT g). (2.17)

Then using (2.15), (2.17) and (2.8), we have

E(2f, g) =
1
mnF

∑
S∈Sn(F )

E(USRSf, g) =
1

m2n
F

∑
S∈Sn(F )

∑
T ∈Sn(F )

E(UTRTUSRSf,UTRT g)

=
1

m2n
F

∑
S∈Sn(F )

∑
T ∈Sn(F )

E(USRSf,UTRT g).

Essentially the same calculation shows that E(f,2g) is equal to the last line of the above
with the summations reversed.

Next we show that (b)⇒(c). If L is the generator corresponding to E , f ∈ D(L) and
g ∈ F then, writing 〈f, g〉 for

∫
F
fg dµ, we have

〈2Lf, g〉 = 〈Lf,2g〉 = −E(f,2g) = −E(2f, g)

by (2.16) and the fact that 2 is self-adjoint in the L2 sense. By the definition of the
generator corresponding to a Dirichlet form, this is equivalent to

2f ∈ D(L) and 2Lf = L2f.
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By [37, Theorem 13.33], this implies that any bounded Borel function of L commutes
with 2. (Another good source on the spectral theory of unbounded self-adjoint operators
is [35, Section VIII.5].) In particular, the L2-semigroup Tt of L commutes with 2 in
the L2 sense. This implies (c).

In order to see that (c)⇒(b), note that if f, g ∈ F , then

E(2f, g) = lim
t→0

t−1
〈(I − Tt )2f, g〉 = lim t−1

〈2(I − Tt )f, g〉

= lim t−1
〈(I − Tt )f,2g〉 = lim t−1

〈f, (I − Tt )2g〉 = E(f,2g).

It remains to prove that (b)⇒(a). This is the only implication that uses the assumption
that E is local. It suffices to assume f and g are bounded.

First, note the obvious relation

∑
S∈Sn(F )

1S(x)
Nn(x)

= 1 (2.18)

for any x ∈ F , where

Nn(x) =
∑

S∈Sn(F )
1S(x) (2.19)

is the number of cubes Sn whose interiors intersect F and which contain the point x. We
break the remainder of the proof into a number of steps.

Step 1. We show that if 2f = f , then 2(hf ) = f (2h). To show this, we start with the
relationship UTRTUSRSf = USRSf . Summing over S ∈ Sn(F ) and dividing by mnF
yields

UTRT f = UTRT2(f ) = 2f = f.

Since RS(f1f2) = RS(f1)RS(f2) and US(g1g2) = US(g1)US(g2), we have

2(hf ) =
1
mnF

∑
S∈Sn

(USRSf )(USRSh) =
1
mnF

∑
S∈Sn

f (USRSh) = f (2h).

In particular, 2(f 2) = f2f = f 2.

Step 2. We compute the adjoints of RS and US . As RS maps C(F), the continuous func-
tions on F , to C(S), it follows that R∗S maps finite measures on S to finite measures on F .
We have ∫

f d(R∗Sν) =

∫
RSf dν =

∫
1S(x)f (x) ν(dx),

and hence

R∗Sν(dx) = 1S(x) ν(dx). (2.20)



670 Martin T. Barlow et al.

US maps C(S) to C(F), so U∗S maps finite measures on F to finite measures on S. If
ν is a finite measure on F , then using (2.18) we obtain∫

S

f d(U∗S ν) =

∫
F

USf dν =

∫
F

f ◦ ϕS(x) ν(dx)

=

∫
F

(∑
T ∈Sn

1T (x)
Nn(x)

)
f ◦ ϕS(x) ν(dx) =

∑
T

∫
T

f ◦ ϕS(x)

Nn(x)
ν(dx). (2.21)

Let ϕT ,S : T → S be defined to be the restriction of ϕS to T ; this is one-to-one and onto.
If κ is a measure on T , define its pull-back ϕ∗T ,Sκ to be the measure on S given by∫

S

f d(ϕ∗T ,Sκ) =

∫
T

(f ◦ ϕT ,S) dκ.

Write
νT (dx) =

1T (x)
Nn(x)

ν(dx).

Then (2.21) translates to∫
S

f d(U∗S ν) =
∑
T

∫
T

f ϕ∗T ,S(νT )(dx),

and thus
U∗S ν =

∑
T ∈Sn

ϕ∗T ,S(νT ). (2.22)

Step 3. We prove that if ν is a finite measure on F such that 2∗ν = ν and S ∈ Sn, then

ν(F ) = mnF

∫
S

1
Nn(x)

ν(dx). (2.23)

To see this, recall that ϕ∗T ,V (νT ) is a measure on V , and then by (2.20) and (2.22),

2∗ν =
1
mnF

∑
V∈Sn

R∗VU
∗

V ν =
1
mnF

∑
V∈Sn

∑
T ∈Sn

∫
1V (x) ϕ∗T ,V (νT )(dx)

=
1
mnF

∑
V

∑
T

∫
ϕ∗T ,V (νT )(dx).

On the other hand, using (2.18) we deduce

ν(dx) =
∑
V

1V (x)
Nn(x)

ν(dx) =
∑
V

νV (dx).

Note that νV and m−nF
∑
T ϕ
∗

T ,V (νT ) are both supported on V , and the only way 2∗ν can
equal ν is if

νV = m
−n
F

∑
T ∈Sn

ϕ∗T ,V (νT ) (2.24)
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for each V . Therefore∫
S

1
Nn(x)

ν(dx) = νS(F ) = m
−n
F

∑
T

∫
1F (x) ϕ∗T ,S(νT )(dx)

= m−nF

∑
T

∫
1F ◦ ϕT ,S(x) νT (dx) = m−nF

∑
T

∫
νT (dx)

= m−nF

∑
T

∫
1T (x)
Nn(x)

ν(dx) = m−nF

∫
ν(dx) = m−nF ν(F ).

Multiplying both sides by mnF gives (2.23).

Step 4. We show that if 2f = f , then

2∗(0(f, f )) = 0(f, f ). (2.25)

Using Step 1, we have, for h ∈ C(F) ∩ F ,∫
F

h2∗(0(f, f ))(dx) =

∫
F

2h(x) 0(f, f )(dx) = 2E(f, f2h)− E(f 2,2h)

= 2E(f,2(f h))− E(2f 2, h) = 2E(2f, f h)− E(f 2, h)

= 2E(f, f h)− E(f 2, h) =

∫
F

h0(f, f )(dx).

This is the step where we used (b).

Step 5. We now prove (a). Note that if g ∈ F ∩ L∞(F ) and A = {x ∈ F : g(x) = 0},
then 0(g, g)(A) = 0 by Lemma 2.7. By applying this to the function g = f − USRSf ,
which vanishes on S, and using the inequality

|0(f, f )(B)1/2 − 0(USRSf,USRSf )(B)
1/2
| ≤ 0(g, g)(B)1/2

≤ 0(g, g)(S)1/2 = 0, ∀B ⊂ S,

(see page 111 in [14]), we see that

1S(x)0(f, f )(dx) = 1S(x)0(USRSf,USRSf )(dx) (2.26)

for any f ∈ F and S ∈ Sn(F ).
Starting from UTRTUSRSf = USRSf , summing over T ∈ Sn and dividing by mnF

shows that 2(USRSf ) = USRSf . Applying Step 4 with f replaced by USRSf yields

2∗(0(USRSf,USRSf ))(dx) = 0(USRSf,USRSf )(dx).

Applying Step 3 with ν = 0(USRSf,USRSf ), we see

E(USRSf,USRSf ) = 0(USRSf,USRSf )(F )

= mnF

∫
S

1
Nn(x)

0(USRSf,USRSf )(dx).



672 Martin T. Barlow et al.

Dividing both sides by mnF , using the definition of ES , and (2.26), we find

ES(RSf,RSf ) =
∫
S

1
Nn(x)

0(f, f )(dx). (2.27)

Summing over S ∈ Sn and using (2.18) we obtain∑
S

ES(RSf,RSf ) =
∫
0(f, f )(dx) = E(f, f ),

which is (a). ut

Corollary 2.23. If E ∈ E, f ∈ F , S ∈ Sn(F ), and 0S(RSf,RSf ) is the energy measure
of ES , then

0S(RSf,RSf )(dx) =
1

Nn(x)
0(f, f )(dx), x ∈ S.

We finish this section with properties of sets of capacity zero for F -invariant Dirichlet
forms. Let A ⊂ F and S ∈ Sn. We define

2(A) = ϕ−1
S (ϕS(A)). (2.28)

Thus 2(A) is the union of all the sets that can be obtained from A by local reflections.
We can check that 2(A) does not depend on S, and that

2(A) = {x : 2(1A)(x) > 0}.

Lemma 2.24. If E ∈ E then

Cap(A) ≤ Cap(2(A)) ≤ m2n
F Cap(A) for all Borel sets A ⊂ F .

Proof. The first inequality holds because we always haveA ⊂ 2(A). To prove the second
inequality it is enough to assume thatA is open since the definition of the capacity uses an
infimum over open covers of A, and 2 transforms an open cover of A into an open cover
of 2(A). If u ∈ F and u ≥ 1 on A, then mnF2u ≥ 1 on 2(A). This implies the second
inequality because E(2u,2u) ≤ E(u, u), using that 2 is an orthogonal projection with
respect to E , that is, E(2f, g) = E(f,2g). ut

Corollary 2.25. If E ∈ E, then Cap(A) = 0 if and only if Cap(2(A)) = 0. Moreover, if
f is quasi-continuous, then 2f is quasi-continuous.

Proof. The first fact follows from Lemma 2.24. Then the second fact holds because 2
preserves continuity of functions on 2-invariant sets. ut

3. The Barlow–Bass and Kusuoka–Zhou Dirichlet forms

In this section we prove that the Dirichlet forms associated with the diffusions on F
constructed in [3, 5, 27] are F -invariant; in particular this shows that E is non-empty and
proves Proposition 1.1. A reader who is only interested in the uniqueness statement in
Theorem 1.2 can skip this section.
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3.1. The Barlow–Bass processes

The constructions in [3, 5] were probabilistic and almost no mention was made of Dirich-
let forms. Further, in [5] the diffusion was constructed on the unbounded fractal F̃ . So
before we can assert that the Dirichlet forms are F -invariant, we need to discuss the cor-
responding forms on F . Recall the way the processes in [3, 5] were constructed was to let
W n
t be normally reflecting Brownian motion on Fn, and to let Xnt = W

n
ant

for a suitable
sequence (an). This sequence satisfied

c1(mFρF /L
2
F )
n
≤ an ≤ c2(mFρF /L

2
F )
n, (3.1)

where ρF is the resistance scale factor for F . It was then shown that the laws of the Xn

were tight and that resolvent tightness held. Let Uλn be the λ-resolvent operator for Xn

on Fn. The two types of tightness were used to show there exist subsequences nj such that
Uλnj f converges uniformly on F if f is continuous on F0 and that the Px law of Xnj con-
verges weakly for each x. Any such subsequential limit point was then called a Brownian
motion on the GSC. The Dirichlet form for W n is

∫
Fn
|∇f |2 dµn and that for Xn is

En(f, f ) = an
∫
Fn

|∇f (x)|2 µn(dx),

both on L2(F, µn).
Fix any subsequence nj such that the laws of the Xnj ’s converge, and the resolvents

converge. If X is the limit process and Tt the semigroup for X, define

EBB(f, f ) = sup
t>0

1
t
〈f − Ttf, f 〉

with the domain FBB being those f ∈ L2(F, µ) for which the supremum is finite.
We will need the fact that if Uλn is the λ-resolvent operator for Xn and f is bounded

on F0, then Uλn f is equicontinuous on F . This is already known for the Brownian motion
constructed in [5] on the unbounded fractal F̃ , but now we need it for the process on F
with reflection on the boundaries of F0. However, the proof is very similar to proofs in
[3, 5], so we will be brief. Fix x0 and suppose x, y are in B(x0, r) ∩ Fn. Then

Uλn f (x) = Ex
∫
∞

0
e−λtf (Xnt ) dt

= Ex
∫ Snr

0
e−λtf (Xnt ) dt + Ex(e−λS

n
r − 1)Uλn f (X

n
Snr
)+ ExUλn f (X

n
Snr
), (3.2)

where Snr is the time of first exit from B(x0, r)∩Fn. The first term in (3.2) is bounded by
‖f ‖∞ExSnr . The second term in (3.2) is bounded by

λ‖Uλn f ‖∞ExSnr ≤ ‖f ‖∞ExSnr .

We have the same estimates in the case when x is replaced by y, so

|Uλn f (x)− U
λ
n f (y)| ≤ |E

xUλn f (X
n
Snr
)− EyUλn f (X

n
Snr
)| + δn(r),
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where δn(r)→ 0 as r → 0 uniformly in n by [5, Proposition 5.5]. But z→ EzUλn f (XnSnr )
is harmonic in the ball of radius r/2 about x0. Using the uniform elliptic Harnack inequal-
ity for Xnt and the corresponding uniform modulus of continuity for harmonic functions
([5, Section 4]), taking r = |x−y|1/2, and using the estimate for δn(r) gives the equicon-
tinuity.

It is easy to derive from this that the limiting resolvent Uλ has the property that Uλf
is continuous on f whenever f is bounded.

Theorem 3.1. Each EBB is in E.

Proof. We suppose a suitable subsequence nj is fixed, and we write E for the correspond-
ing Dirichlet form EBB . First of all, each Xn is clearly conservative, so T nt 1 = 1. Since
T
nj
t f → Ttf uniformly for each f continuous, we have Tt1 = 1. This shows X is

conservative, and E(1, 1) = supt 〈1− Tt1, 1〉 = 0.
The regularity of E follows from Lemma 2.8 and the fact that the processes con-

structed in [5] are µ-symmetric Feller (see the above discussion, [5, Theorem 5.7] and
[3, Section 6]). Since the process is a diffusion, the locality of E follows from [14, Theo-
rem 4.5.1].

The construction in [3, 5] gives a non-degenerate process, so E is non-zero. Fix `
and let S ∈ S`(F ). It is easy to see from the above discussion that USRSf ∈ F for
any f ∈ F . Before establishing the remaining properties of F -invariance, we show that
2` and Tt commute, where 2` is defined in (2.15), but with Sn(F ) replaced by S`(F ).
Let 〈f, g〉n denote

∫
Fn
f (x)g(x) µn(dx). The infinitesimal generator for Xn is a constant

times the Laplacian, and it is clear that this commutes with2`. Hence Uλn commutes with
2`, or

〈2`U
λ
n f, g〉n = 〈U

λ
n2`f, g〉n. (3.3)

Suppose f and g are continuous and f is non-negative. The left hand side is 〈Uλn f,2`g〉n,
and if n converges to infinity along the subsequence nj , this converges to

〈Uλf,2`g〉 = 〈2`U
λf, g〉.

The right hand side of (3.3) converges to 〈Uλ2`f, g〉 since 2`f is continuous if f is.
Since Xt has continuous paths, t 7→ Ttf is continuous, and so by the uniqueness of the
Laplace transform, 〈2`Ttf, g〉 = 〈Tt2`f, g〉. Linearity and a limit argument allow us
to extend this equality to all f ∈ L2(F ). The implication (c)⇒(a) in Proposition 2.21
implies that E ∈ E. ut

3.2. The Kusuoka–Zhou Dirichlet form

Write EKZ for the Dirichlet form constructed in [27]. Note that this form is self-similar.

Theorem 3.2. EKZ ∈ E.
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Proof. One can see that EKZ satisfies the conditions of Definition 2.15 because of self-
similarity. The argument goes as follows. Initially we consider n = 1, and suppose f ∈
F = D(EKZ). Then [27, Theorem 5.4] implies USRSf ∈ F for any S ∈ S1(F ). This
gives us Definition 2.15(1).

Let S ∈ S1(F ) and S = 9i(F ) where 9i is one of the contractions that define the
self-similar structure on F , as in [27]. Then

f ◦9i = (USRSf ) ◦9i = (USRSf ) ◦9j

for any i, j . Hence by [27, Theorem 6.9], we have

EKZ(USRSf,USRSf ) = ρFm−1
F

∑
j

EKZ((USRSf ) ◦9j , (USRSf ) ◦9j )

= ρFEKZ(f ◦9i, f ◦9i).

By [27, Theorem 6.9] this gives Definition 2.15(3), and moreover

ES(f, f ) = ρFm−1
F EKZ(f ◦9i, f ◦9i).

Definition 2.15(2) and the rest of the conditions for EKZ to be in E follow from (1),
(3) and the results of [27]. The case n > 1 can be dealt with by using self-similarity. ut

Proof of Proposition 1.1. This is immediate from Theorems 3.1 and 3.2. ut

4. Diffusions associated with F -invariant Dirichlet forms

In this section we extensively use notation and definitions introduced in Section 2, es-
pecially Subsections 2.2 and 2.3. We fix a Dirichlet form E ∈ E. Let X = X(E) be the
associated diffusion, Tt = T

(E)
t be the semigroup of X and Px = Px,(E), x ∈ F −N0, the

associated probability laws. Here N0 is a properly exceptional set for X. Ultimately (see
Corollary 1.4) we will be able to define Px for all x ∈ F , so that N0 = ∅.

4.1. Reflected processes and the Markov property

Theorem 4.1. Let S ∈ Sn(F ) and Z = ϕS(X). Then Z is a µS-symmetric Markov
process with Dirichlet form (ES,FS), and semigroup T Zt f = RSTtUSf . Write P̃y for
the laws of Z; these are defined for y ∈ S −NZ

2 , whereNZ
2 is a properly exceptional set

for Z. There exists a properly exceptional setN2 forX such that for any Borel setA ⊂ F ,

P̃ϕS (x)(Zt ∈ A) = Px(Xt ∈ ϕ−1
S (A)), x ∈ F −N2. (4.1)

Proof. Denote ϕ = ϕS . We begin by proving that there exists a properly exceptional set
N2 for X such that

Px(Xt ∈ ϕ−1(A)) = Tt1ϕ−1(A)(x) = Tt1ϕ−1(A)(y) = Py(Xt ∈ ϕ−1(A)) (4.2)
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whenever A ⊂ S is Borel, ϕ(x) = ϕ(y), and x, y ∈ F −N2. It is sufficient to prove (4.2)
for a countable base (Am) of the Borel σ -field on F . Let fm = 1Am . Since Tt1ϕ−1(Am)

=

TtUSfm, it is enough to prove that there exists a properly exceptional setN2 such that for
m ∈ N,

TtUSfm(x) = TtUSfm(y) if x, y ∈ F −N2 and ϕ(x) = ϕ(y). (4.3)

By (2.8), 2(USf ) = USf . Using Proposition 2.21,we obtain

2TtUSf = Tt2USfm = TtUSf

for f ∈ L2, where the equality holds in the L2 sense.
Recall that we always consider quasi-continuous modifications of functions in F . By

Corollary 2.25,2TtUSfm is quasi-continuous. Since [14, Lemma 2.1.4] tells us that if two
quasi-continuous functions coincide µ-a.e., then they coincide q.e., we have 2(TtUSfm)
= TtUSfm q.e. The definition of2 implies that2(TtUSfm)(x) = 2(TtUSfm)(y) when-
ever ϕ(x) = ϕ(y), so there exists a properly exceptional set N2,m such that (4.3) holds.
Taking N2 =

⋃
mN2,m gives (4.2). Using Theorem 10.13 of [13], Z is Markov and has

semigroup T Zt f = RSTt (USf ). We take NZ
2 = ϕ(N2).

Using (4.3) gives USRSTtUSf = TtUSf , and then

〈T Zt f, g〉S = 〈RSTtUSf, g〉S = m
−n
F 〈USRSTtUSf,USg〉 = m

−n
F 〈TtUSf,USg〉.

This equals m−nF 〈USf, TtUSg〉, and reversing the above calculation, we deduce that
〈f, T Zt g〉 = m

−n
F 〈USf, TtUSg〉, proving that Z is µS-symmetric.

To identify the Dirichlet form of Z we note that

t−1
〈T Zt f − f, f 〉S = m

−n
F t−1

〈TtUSf − USf,USf 〉.

Taking the limit as t → 0, and using [14, Lemma 1.3.4], it follows that Z has Dirichlet
form

EZ(f, f ) = m−nF E(USf,USf ) = ES(f, f ). ut

Lemma 4.2. Let S, S′ ∈ Sn, Z = ϕS(X), and 8 be an isometry of S onto S′. Then if
x ∈ S −N ,

Px(8(Z) ∈ ·) = P8(x)(Z ∈ ·).

Proof. By Theorem 4.1 and Definition 2.15(2), Z and 8(Z) have the same Dirichlet
form. The result is then immediate from [14, Theorem 4.2.7], which states that two Hunt
processes are equivalent if they have the same Dirichlet forms, provided we exclude an
F -invariant set of capacity zero. ut

We say S, S′ ∈ Sn(F ) are adjacent if there exist Q,Q′ ∈ Qn(F ) such that Q ∩ Q′ is
a (d − 1)-dimensional set and S = Q ∩ F , S′ = Q′ ∩ F . In this situation, let H be
the hyperplane separating S, S′. For any hyperplane H ⊂ Rd , let gH : Rd → Rd be
reflection in H . Recall the definition of ∂rD, where D is a finite union of elements of Sn.
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Lemma 4.3. Let S1, S2 ∈ Sn(F ) be adjacent, letD = S1∪S2, letB = ∂r(S1∪S2), and let
H be the hyperplane separating S1 and S2. Then there exists a properly exceptional setN
such that if x ∈ H ∩D −N , the processes (Xt , 0 ≤ t ≤ TB) and (gH (Xt ), 0 ≤ t ≤ TB)
have the same law under Px .

Proof. Let f ∈ F with support in the interior ofD. Then Definition 2.15(3) and Proposi-
tion 2.20 imply that E(f, f ) = ES1(RS1f,RS1f )+ ES2(RS2f,RS2f ). Definition 2.15(2)
implies that E(f, f ) = E(f ◦ gH , f ◦ gH ). Hence (gH (Xt ), 0 ≤ t ≤ TB) has the same
Dirichlet form as (Xt , 0 ≤ t ≤ TB), and so they have the same law by [14, Theorem
4.2.7] if we exclude an F -invariant set of capacity zero. ut

4.2. Moves by Z and X

At this point we have proved that the Markov process X associated with the Dirichlet
form E ∈ E has strong symmetry properties. We now use these to obtain various global
properties of X. The key idea, as in [5], is to prove that certain ‘moves’ of the process
in F have probabilities which can be bounded below by constants depending only on the
dimension d .

We need a considerable amount of extra technical notation, based on that in [5], which
will only be used in this subsection.

We begin by looking at the process Z = ϕS(X) for some S ∈ Sn, where n ≥ 0. Since
our initial arguments are scale invariant, we can simplify our notation by taking n = 0
and S = F in the next definition.

Definition 4.4. Let 1 ≤ i, j ≤ d, with i 6= j , and set

Hi(t) = {x = (x1, . . . , xd) : xi = t}, t ∈ R;

Li = Hi(0) ∩ [0, 1/2]d;

Mij = {x ∈ [0, 1]d : xi = 0, 1/2 ≤ xj ≤ 1, and 0 ≤ xk ≤ 1/2 for k 6= j}.

Let

∂eS = S ∩

d⋃
i=1

Hi(1), D = S − ∂eS.

We now define, for the process Z, the sets ED and ZD as in (2.6). The next proposition
says that the corners and slides of [5] hold for Z, provided that Z0 ∈ ED .

Proposition 4.5. There exists a constant q0, depending only on the dimension d, such
that

P̃x(T ZLj < τZD ) ≥ q0, x ∈ Li ∩ ED, (4.4)

P̃x(T ZMij
< τZD ) ≥ q0, x ∈ Li ∩ ED. (4.5)

These inequalities hold for any n ≥ 0 provided we modify Definition 4.4 appropriately.
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A0

A1

A′1 s
v∗

Fig. 4. Illustration for Definition 4.6 in the case of the standard Sierpiński carpet and n = 1. The
complement of D is shaded. The half-face A1 corresponds to a slide move, and the half-face A′1
corresponds to a corner move. In this case Q∗ is the lower left cube in S1.

Proof. Using Lemma 4.2 this follows by the same reflection arguments as those used
in the proofs of Proposition 3.5 to Lemma 3.10 of [5]. We remark that, inspecting these
proofs, we can take q0 = 2−2d2

. ut

We now fix n ≥ 0. We call a set A ⊂ Rd a (level n) half-face if there exist i ∈ {1, . . . , d}
and a = (a1, . . . , ad) ∈

1
2Zd with ai ∈ Z such that

A = {x : xi = aiL−nF , ajL
−n
F ≤ xj ≤ (aj + 1/2)L−nF for j 6= i}.

(Note that a level n half-face need not be a subset of F .) For A as above set ι(A) = i. Let
A(n) be the collection of level n half-faces, and

A(n)F = {A ∈ A
(n) : A ⊂ Fn}.

We define a graph structure on A(n)F by taking {A,B} to be an edge if

dim(A ∩ B) = d − 2 and A ∪ B ⊂ Q for some Q ∈ Qn.

Let E(A(n)F ) be the set of edges in A(n)F . As in [5, Lemma 3.12], the graph A(n)F is con-
nected. We call an edge {A,B} an i-j corner if ι(A) = i, ι(B) = j , and i 6= j , and call
{A,B} an i-j slide if ι(A) = ι(B) = i and the line joining the centers of A and B is
parallel to the xj axis. Any edge is either a corner or a slide; note that the move (Li, Lj )
is an i-j corner, while (Li,Mij ) is an i-j slide.

For the next few results we need some further notation.

Definition 4.6. Let (A0, A1) be an edge in E(A(n)F ), and Q∗ be a cube in Qn(F ) such
that A0∪A1 ⊂ Q∗. Let v∗ be the unique vertex ofQ∗ such that v∗ ∈ A0, and let R be the
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union of the 2d cubes in Qn containing v∗. Then there exist distinct Si ∈ Sn, 1 ≤ i ≤ m,
such that F ∩ R =

⋃m
i=1 Si . Let D = F ∩ Ro; thus

D = F ∩ R =

m⋃
i=1

Si .

Let S∗ be any one of the Si , and set Z = ϕS∗(X). Write

τ = τXD = inf{t ≥ 0 : Xt 6∈ D} = inf{t : Zt ∈ ∂rR}. (4.6)

Let
ED = {x ∈ D : Px(τ <∞) = 1}. (4.7)

We wish to obtain a lower bound for

inf
x∈A0∩ED

Px(T XA1
≤ τ). (4.8)

By Proposition 4.5 we have

inf
y∈A0∩ED

P̃y(T ZA1
≤ τ) ≥ q0. (4.9)

Z hits A1 if and only if X hits 2(A1), and one wishes to use symmetry to prove that if
x ∈ A0 ∩ ED then for some q1 > 0,

Px(T XA1
≤ τ) ≥ q1P̃x(T ZA1

≤ τ) ≥ q1q0. (4.10)

This was proved in [5] in the context of reflecting Brownian motion on Fn+k , but the proof
used the fact that sets of dimension d − 2 were polar for this process. Here we need to
handle the possibility that there may be times t such that Xt is in more than two of the Si .
We therefore need to consider the way that X leaves points y which are in several Si .

Definition 4.7. Let y ∈ ED be in exactly k of the Si , where 1 ≤ k ≤ m. Let S′1, . . . , S
′

k

be the elements of Sn containing y. (It is not necessarily the case that S1 is one of the S′j .)

Let D(y) = intr(
⋃k
i=1 S

′

i), so that D(y) =
⋃k
i=1 S

′

i . Let D1, D2 be open sets in F such
that y ∈ D2 ⊂ D2 ⊂ D1 ⊂ D1 ⊂ D(y). Assume further that 2(Di) ∩ D(y) = Di for
i = 1, 2, and note that we always have 2(Di) ⊃ Di . For f ∈ F define

2D1f = k−1mnF 1D12f ; (4.11)

the normalization factor is chosen so that 2D11D1 = 1D1 .

As before we define FD1 ⊂ F as the closure of the set of functions {f ∈ F :
supp(f ) ⊂ D1}. We denote by ED1 the associated Dirichlet form and by T D1

t the associ-
ated semigroup, which are the Dirichlet form and the semigroup of the process X killed
on exiting D1, by Theorems 4.4.3 and A.2.10 in [14]. For convenience, we state the next
lemma in the situation of Definition 4.7, although it holds under somewhat more general
conditions.
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sy s
v∗

D(y)

D1

D2

Fig. 5. Illustration for Definition 4.7 in the case of the standard Sierpiński carpet and n = 1. The
complement of D is shaded, and the dotted lines outline D(y) ⊃ D1 ⊃ D2.

Lemma 4.8. Let D1, D2 be as in Definition 4.7.

(a) Let f ∈ FD1 . Then 2D1f ∈ FD1 . Moreover, for all f, g ∈ FD1 we have

ED1(2
D1f, g) = ED1(f,2

D1g) and T
D1
t 2D1f = 2D1T

D1
t f.

(b) If h ∈ FD1 is harmonic (in the Dirichlet form sense) in D2 then 2D1h is harmonic
(in the Dirichlet form sense) in D2.

(c) If u is caloric in D2 in the sense of Proposition 2.6, then 2D1u is also caloric in D2.

Proof. (a) By Definition 2.15, 2f ∈ F . Let ψ be a function in F which has sup-
port in D(y) and is 1 on D1; such a function exists because E is regular and Markov.
Then ψ2f ∈ F , and ψ2f = km−nF 2D1f . The rest of the proof follows from Proposi-
tion 2.21(b,c) because E(2D1f, g) = k−1mnFE(2f, g).

(b) Let g ∈ F with supp(g) ⊂ D2. Then

E(2D1h, g) = k−1mnFE(2h, g) = k
−1mnFE(h,2g) = E(h,2

D1g) = 0. (4.12)

The final equality holds because h is harmonic on D2, and 2D1g has support in D2.
Relation (4.12) implies that 2D1h is harmonic in D2 by Proposition 2.5.

(c) We denote by T t the semigroup of the processXt , which isXt killed on exitingD2.
The same reasoning as in (a) implies that T t2D1 = 2D1T t . Hence (c) follows from (a),
(b) and Proposition 2.6. ut

Recall from (2.19) the definition of the ‘cube counting’ functionNn(z). Define the related
‘weight’ function

rS(z) = 1S(z)Nn(z)−1

for each S ∈ Sn(F ). If no confusion can arise, we will denote ri(z) = rS′i (z).
Let (FZt ) be the filtration generated by Z. Since FZ0 contains all Px null sets, under

the law Px we see that X0 = x is FZ0 measurable.
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Lemma 4.9. Let y ∈ ED , D1, D2 be as in Definition 4.7. Write V = τXD2
.

(a) If U ⊂ ∂F (D2) satisfies 2(U) ∩D(y) = U , then

Ey(ri(XV )1(XV ∈U)) = k
−1P̃ϕS (y)(ZV ∈ ϕS(U)) for i = 1, . . . , k = Nn(y).

(4.13)
(b) For any bounded Borel function f : D1 → R and all 0 ≤ t ≤ ∞,

Ey(f (Xt∧V )|FZt∧V ) = (2
D1f )(Zt∧V ). (4.14)

In particular
Ey(ri(Xt∧V )|FZt∧V ) = k

−1. (4.15)

Proof. Note that, by the symmetry of D2, V is an (FZt ) stopping time.
(a) Let f ∈ FD1 be bounded, and h be the function with support in D1 which

equals f in D1 − D2, and is harmonic (in the Dirichlet form sense) inside D2. Then
since ϕS′i (y) = y for 1 ≤ i ≤ k,

2D1h(y) = k−1
k∑
i=1

h(ϕS′i
(y)) = h(y).

Since 2D1h is harmonic (in the Dirichlet form sense) in D2 and since y ∈ ED , we have,
using Proposition 2.5,

h(y) = 2D1h(y) = Ey(2D1h)(XV ) = k
−1Ey

k∑
i=1

h(ϕS′i
(XV )).

Since f = h on ∂F (D2),

Ey(f (XV )) = h(y) = k−1Ey
k∑
i=1

f (ϕS′i
(XV )).

Write δx for the unit measure at x, and define measures νi(ω, dx) by

ν1(dx) = δXV (dx), ν2(dx) = k
−1

k∑
i=1

δϕS′
i
(XV )(dx) = k

−1
k∑
i=1

δϕS′
i
(ZV )(dx).

Then we have

Ey
∫
f (x) ν1(dx) = Ey

∫
f (x) ν2(dx)

for f ∈ FD1 , and hence for all bounded Borel f defined on ∂F (D2). Taking f =
ri(x)1U (x) then gives (4.13).

(b) We can take the cube S∗ in Definition 4.6 to be S′1. If g is defined on S∗ then
USg is the unique extension of g to D(y) such that 2D1USg = USg on D(y). Thus
any function on S is the restriction of a function which is invariant with respect to 2D1 .
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We will repeatedly use the fact that if 2D1g = g then g(Xt ) = g(Zt ), and so also
g(Xt∧V ) = g(Zt∧V ).

We break the proof into several steps.

Step 1. Let T D2
t denote the semigroup of X stopped on exiting D2, that is,

T
D2
t f (x) = Exf (Xt∧V ).

If f ∈ FD1 is bounded, then Proposition 2.6 and Lemma 4.8 imply that q.e. in D2,

T
D2
t 2D1f = 2D1T

D2
t f. (4.16)

Note that by Proposition 2.6 and [14, Theorem 4.4.3(ii)], the notion ‘q.e.’ inD2 coincides
for the semigroups T , T D2 and T , where T is defined in Lemma 4.8.

Step 2. If f, g ∈ FD1 are bounded and 2D1g = g, then we have 2D1(gf ) = g2D1f .
Hence

T
D2
t (g2D1f ) = T

D2
t 2D1(gf ) = 2D1T

D2
t (gf ). (4.17)

Step 3. Let ν be a Borel probability measure on D2. Set ν∗ = (2D1)∗ν. Suppose that
ν(N2) = 0, whereN2 is defined in Theorem 4.1. If f, g are as in the preceding paragraph,
then we have

Eν
∗

g(Zt∧V )f (Xt∧V ) =

∫
D2

T
D2
t (gf )(x)(2D1)∗ ν(dx)

=

∫
D2

2D1(T
D2
t (gf ))(x) ν(dx) =

∫
D2

T
D2
t (g2D1f )(x) ν(dx)

= Eνg(Zt∧V )2D1f (Xt∧V ) = Eνg(Zt∧V )2D1f (Zt∧V ), (4.18)

where we use the definition of adjoint, (4.17) to interchange T D2 and 2D1 , and that
g(Xt∧V ) = g(Zt∧V ).

Step 4. We prove by induction that if ν(N2) = 0, m ≥ 0, 0 < t1 < · · · < tm < t ,
g1, . . . , gm are bounded Borel functions satisfying 2D1gi = gi , and f is bounded and
Borel, then

Eν
∗
( m∏
i=1

gi(Zti∧V )
)
f (Xt∧V ) = Eν

( m∏
i=1

gi(Zti∧V )
)
2D1f (Zt∧V ). (4.19)

The case m = 0 is (4.18). Suppose (4.19) holds for m− 1. Then set

h(x) = Ex
( m∏
i=2

gi(Z(ti−t1)∧V )
)
f (X(t−t1)∧V ). (4.20)



Uniqueness of Brownian motion on Sierpiński carpets 683

Write δ∗x = (δx)
∗. By (4.19) for m− 1, provided x is such that δ∗x(N2) = 0,

2D1h(x) = Eδ
∗
x

( m∏
i=2

gi(Z(ti−t1)∧V )
)
f (X(t−t1)∧V )

= Ex
( m∏
i=2

gi(Z(ti−t1)∧V )
)
2D1f (Z(t−t1)∧V ). (4.21)

So, using the Markov property, (4.18) and (4.21) we obtain

Eν
∗
( m∏
i=1

gi(Zti∧V )
)
f (Xt∧V ) = Eν

∗

g1(Zt1∧V )h(Xt1∧V ) = Eνg1(Zt1∧V )2
D1h(Xt1∧V )

= Eνg1(Zt1∧V )E
Xt1∧V

(( m∏
i=2

gi(Z(ti−t1)∧V )
)
2D1f (Z(t−t1)∧V )

)
= Eν

( m∏
i=1

gi(Zti∧V )
)
2D1f (Zt∧V ),

which proves (4.19). Therefore since (δ∗x)
∗
= δ∗x ,

Eδ
∗
x

( m∏
i=1

gi(Zti∧V )
)
f (Xt∧V ) = Eδ

∗
x

( m∏
i=1

gi(Zti∧V )
)
2D1f (Zt∧V ),

and so
Eδ
∗
x (f (Xt∧V )|FZt∧V ) = (2

D1f )(Zt∧V ).

To obtain (4.14), observe that δ∗y = δy . Equation (4.15) follows since 2D1ri(x) = k−1

for all x ∈ D1. ut

Corollary 4.10. Let f : D(y)→ R be bounded Borel, and t ≥ 0. Then

Ey(f (Xt∧τ )|FZt∧τ ) = (2D(y)f )(Zt∧τ ). (4.22)

Proof. This follows from Lemma 4.9 by letting the regions Di in Definition 4.7 increase
to D(y). ut

Let (A0, A1) and Z be as in Definition 4.6. We now look at X conditional on FZ . Write
Wi(t) = ϕSi (Zt ) ∈ Si . For any t , Xt∧τ is at one of the points Wi(t ∧ τ). Let

Ji(t) = {j : Wj (t ∧ τ) = Wi(t ∧ τ)},

Mi(t) =

m∑
j=1

1(Wj (t∧τ)=Wi (t∧τ)) = #Ji(t),

pi(t) = Px(Xt∧τ = Wi(t ∧ τ) |FZt∧τ )Mi(t)
−1
= Ex(ri(Xt∧τ )|FZt∧τ ).
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Thus the conditional distribution of Xt given FZt∧τ is

k∑
i=1

pi(t)δWi (t∧τ). (4.23)

Note that by the definitions given above, we have Mi(t) = Nn(Wi(t)) for 0 ≤ t < τ ,
which is the number of elements of Sn that contain Wi(t).

To describe the intuitive picture, we call theWi particles. EachWi(t) is a single point,
and for each t we consider the collection of points {Wi(t) : 1 ≤ i ≤ m}. This is a finite
set, but the number of distinct points depends on t . In fact, we have {Wi(t) : 1 ≤ i ≤ m}
= 2{Xt }∩D. For each given t , Xt is equal to some of theWi(t). If Xt is in the r-interior
of an element of Sn, then all the Wi(t) are distinct, and so there are m of them. In this
case there is a single i such that Xt = Wi(t). If Zt is in a lower dimensional face, then
there can be fewer than m distinct points Wi(t), because some of them coincide and we
can have Xt = Wi(t) = Wj (t) for i 6= j . We call such a situation a collision. There may
be many kinds of collisions because there may be many different lower dimensional faces
that can be hit.

Lemma 4.11. The processes pi(t) satisfy the following:

(a) If T is any (FZt ) stopping time satisfying T ≤ τ on {T < ∞} then there exists
δ(ω) > 0 such that

pi(T + h) = pi(T ) for 0 ≤ h < δ.

(b) Let T be any (FZt ) stopping time satisfying T ≤ τ on {T < ∞}. Then for each
i = 1, . . . , k,

pi(T ) = lim
s→T−

Mi(T )
−1

∑
j∈Ji (T )

pj (s).

Proof. (a) Let D(y) be as in Definition 4.7, and D′ = ϕS(D(XT )). Let

T0 = inf{s ≥ 0 : Zs 6∈ D′}, T1 = inf{s ≥ T : Zs 6∈ D′};

note that T1 > T a.s. Let s > 0, ξ0 be a bounded FZT measurable r.v., and ξ1 =∏m
j=1 fj (Z(T+tj )∧T1), where fj are bounded and measurable, and 0 ≤ t1 < · · · < tm ≤ s.

Write ξ ′1 =
∏m
j=1 fj (Z(tj )∧T0). To prove that pi((T + s) ∧ T1) = pi(T ) it is enough to

prove that
Exξ0ξ1ri(X(T+s)∧T1) = Exξ0ξ1pi(T ). (4.24)

However,

Exξ0ξ1ri(X(T+s)∧T1) = Ex
(
ξ0E(ξ1ri(X(T+s)∧T1)|F

X
T )
)
= Ex

(
ξ0EXT (ξ ′1ri(Xs∧T0))

)
= Ex

(
ξ0
∑
j

pj (T )EWj (T )(ξ ′1ri(Xs∧T0))
)
. (4.25)

If Wj (T ) 6∈ Si then
EWj (T )(ξ ′1ri(Xs∧T0)) = 0.
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Otherwise, by (4.15) we have

EWj (T )(ξ ′1ri(Xs∧T0)) = Mi(T )
−1ẼZT ξ ′1. (4.26)

So, ∑
j

pj (T )EWj (T )(ξ ′1ri(Xs∧T0)) =
∑
j

pj (T )1(j∈Ji (T ))Mi(T )
−1ẼZT ξ ′1

= pi(T )ẼZT ξ ′1. (4.27)

Here we used the fact that pj (T ) = pi(T ) if j ∈ Ji(T ). Combining (4.25) and (4.27) we
obtain (4.24).

(b) Note that
∑
j∈Ji (T )

rj (x) is constant in a neighborhood of XT . Hence

lim
s→T−

∑
j∈Ji (T )

rj (Xs) =
∑

j∈Ji (T )

rj (XT ),

and therefore
lim
s→T−

∑
j∈Ji (T )

pj (s) =
∑

j∈Ji (T )

pj (T ) = Mi(T )pi(T ),

where the final equality holds since pi(T ) = pj (T ) if Wi(T ) = Wj (T ). ut

Proposition 4.12. Let (A0, A1) and Z be as in Definition 4.6. There exists a constant
q1 > 0, depending only on d , such that if x ∈ A0 ∩ ED and T0 ≤ τ is a finite (FZt )
stopping time, then

Px(XT0 ∈ S |F
Z
T0
) ≥ q1. (4.28)

Hence
Px(T XA1

≤ τ) ≥ q0q1. (4.29)

Proof. In this proof we restrict t to [0, τ ]. Lemma 4.11 implies that each process pi(·) is
a ‘pure jump’ process, that is, it is constant except at the jump times. (The lemma does
not exclude the possibility that these jump times might accumulate.)

Let

K(t) = {i : pi(t) > 0}, k(t) = |K(t)|,

pmin(t) = min{pi(t) : i ∈ K(t)} = min{pi(t) : pi(t) > 0}.

Note that Lemma 4.11 implies that if pi(t) > 0 then pi(s) > 0 for all s > t . Thus K
and k are non-decreasing processes. Choose I (t) to be the smallest i such that pI (t)(t) =
pmin(t).

To prove (4.28) it is sufficient to prove that

pmin(t) ≥ 2−dk(t) ≥ 2−d2d , 0 ≤ t ≤ τ. (4.30)

This clearly holds for t = 0, since k(0) ≥ 1 and pi(0) = ri(X0), which is for each i
either zero or at least 2−d .
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Now let
T = inf{t ≤ τ : pmin(t) < 2−dk(t)}.

Since pi(T + h) = pi(T ) and k(T + h) = k(T ) for all sufficiently small h > 0, we must
have

pmin(T ) < 2−dk(T ) on {T <∞}. (4.31)

Since Z is a diffusion, T is a predictable stopping time so there exists an increasing
sequence of stopping times Tn with Tn < T for all n, and T = limn Tn. By the definition
of T , (4.30) holds for each Tn. Let A = {ω : k(Tn) < k(T ) for all n}. On A we have,
writing I = I (T ), and using Lemma 4.11(b) and the fact that k(Tn) ≤ k(T )− 1 for all n,

pmin(T ) = pI (T ) = MI (T )
−1

∑
j∈JI (T )

pj (T ) = lim
n→∞

MI (T )
−1

∑
j∈JI (T )

pj (Tn)

≥ 2−d lim
n→∞

pmin(Tn) ≥ 2−d lim
n→∞

2−dk(Tn) ≥ 2−d2−d(k(T )−1)
= 2−dk(T ).

On Ac we have

pmin(T ) = lim
n→∞

MI (T )
−1

∑
j∈JI (T )

pj (Tn) ≥ lim
n→∞

pmin(Tn) ≥ lim
n→∞

2−dk(Tn) = 2−dk(T ).

So in both cases we deduce that pmin(T ) ≥ 2−dk(T ), contradicting (4.31). It follows that
P(T <∞) = 0, and so (4.30) holds.

This gives (4.28), and using Proposition 4.5 we then obtain (4.29). ut

4.3. Properties of X

Remark 4.13. µ is a doubling measure, so for each Borel subset H of F , almost every
point of H is a point of density for H ; see [41, Corollary IX.1.3].

Let I be a face of F0 and let F ′ = F − I .

Proposition 4.14. There exists a set N of capacity 0 such that if x /∈ N , then
Px(τF ′ <∞) = 1.

Proof. Let A be the set of x such that when the process starts at x, it never leaves x. Our
first step is to show F − A has positive measure. If not, then Ttf (x) = f (x) for almost
every x, so

1
t
〈f − Ttf, f 〉 = 0.

Taking the supremum over t > 0, we have E(f, f ) = 0. This is true for every f ∈ L2,
which contradicts E being non-zero.

Recall the definition of ES in (2.6). If µ(ES ∩ S) = 0 for every S ∈ Sn(F ) and n ≥ 1
then µ(F−A) = 0. Therefore there must exist n and S ∈ Sn(F ) such that µ(ES∩S) > 0.
Let ε > 0. By Remark 4.13 we can find k ≥ 1 so that there exists S′ ∈ Sn+k(F ) such that

µ(ES ∩ S
′)

µ(S′)
> 1− ε.
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Let S′′ ∈ Sn+k be adjacent to S′ and contained in S, and let g be the map that reflects
S′ ∪ S′′ across S′ ∩ S′′. Define

Ji(S
′) =

⋃
{T : T ∈ Sn+k+i, T ⊂ intr(S′)},

and define Ji(S′′) analogously. We can choose i large enough so that

µ(ES ∩ Ji(S
′)) > (1− 2ε)µ(S′). (4.32)

Let x ∈ ES ∩ Ji(S′). Since x ∈ ES , the process started from x will leave S′ with
probability one. We can find a finite sequence of moves (that is, corners or slides) at level
n + k + i so that X started at x will exit S′ by hitting S′ ∩ S′′. By Proposition 4.12 the
probability of X following this sequence of moves is strictly positive, so we have

Px(X(τS′) ∈ S′ ∩ S′′) > 0.

Starting from x ∈ ES , the process can never leave ES , soX will leave S′ through B =
ES ∩ S

′
∩ S′′ with positive probability. By symmetry, Xt started from g(x) will leave S′′

in B with positive probability. So by the strong Markov property, starting from g(x), the
process will leave S with positive probability. We conclude g(x) ∈ ES as well. Thus
g(ES ∩ Ji(S

′)) ⊂ ES ∩ Ji(S
′′), and so by (4.32) we have

µ(ES ∩ Ji(S
′′)) > (1− 2ε)µ(S′′).

Iterating this argument, we find that for every Sj ∈ Sn+k(F ) with Sj ⊂ S,

µ(ES ∩ Sj ) ≥ µ(ES ∩ Ji(Sj )) ≥ (1− 2ε)µ(Sj ).

Summing over the Si’s, we obtain

µ(ES ∩ S) ≥ (1− 2ε)µ(S).

Since ε was arbitrary, it follows that µ(ES ∩ S) = µ(S). In other words, starting from
almost every point of S, the process will leave S.

By symmetry, this is also true for every element of Sn(F ) isomorphic to S. Then
using corners and slides (Proposition 4.12), starting at almost any x ∈ F , there is positive
probability of exiting F ′. We conclude that EF ′ has full measure.

The function 1EF ′ is invariant, so Tt1EF ′ = 1 a.e. By [14, Lemma 2.1.4], Tt (1−1EF ′ )
= 0 q.e. Let N be the set of x where Tt1EF ′ (x) 6= 1 for some rational t . If x /∈ N , then
Px(Xt ∈ EF ′) = 1 if t is rational. By the Markov property, x ∈ EF ′ . ut

Lemma 4.15. Let U ⊂ F be open and non-empty. Then Px(TU <∞) = 1 q.e.

Proof. This follows by Propositions 4.12 and 4.14. ut
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4.4. Coupling

Lemma 4.16. Let (�,F ,P) be a probability space. Let X and Z be random variables
taking values in separable metric spaces E1 and E2, respectively, each furnished with the
Borel σ -field. Then there exists F : E2× [0, 1]→ E1 that is jointly measurable such that
if U is a random variable whose distribution is uniform on [0, 1] which is independent of
Z and X̃ = F(Z,U), then (X,Z) and (X̃, Z) have the same law.

Proof. First let us supposeE1 = E2 = [0, 1]. We will extend to the general case later. Let
Q denote the rationals. For each r ∈ [0, 1] ∩Q, P(X ≤ r |Z) is a σ(Z)-measurable ran-
dom variable, hence there exists a Borel measurable function hr such that P(X ≤ r |Z) =
hr(Z), a.s. For r < s let Ars = {z : hr(z) > hs(z)}. If C =

⋃
r<s; r,s∈QArs , then

P(Z ∈ C) = 0. For z /∈ C, hr(z) is non-decreasing in r for r rational. For x ∈ [0, 1],
define gx(z) to be equal to x if z ∈ C and equal to infs>x,s→x; s∈Q hs(z) otherwise. For
each z, let fx(z) be the right continuous inverse to gx(z). Finally let F(z, x) = fx(z).

We need to check that (X,Z) and (X̃, Z) have the same distributions. We have

P(X ≤ x, Z ≤ z) = E[P(X ≤ x |Z);Z ≤ z] = lim
s>x, s∈Q, s→x

E[P(X ≤ s |Z);Z ≤ z]

= lim E[hs(Z);Z ≤ z] = E[gx(Z);Z ≤ z].

On the other hand,

P(X̃ ≤ x, Z ≤ r) = E[P(F (Z,U) ≤ x |Z);Z ≤ z] = E[P(fU (Z) ≤ x |Z);Z ≤ z]
= E[P(U ≤ gx(Z) |Z);Z ≤ z] = E[gx(Z);Z ≤ z].

For generalE1,E2, letψi be bimeasurable one-to-one maps fromEi to [0, 1], i=1, 2.
Apply the above to X = ψ1(X) and Z = ψ2(Z) to obtain a function F . Then F(z, u) =
ψ−1

1 ◦ F(ψ2(z), u) will be the required function. ut

We say that x, y ∈ F are m-associated, and write x ∼m y, if ϕS(x) = ϕS(y) for some
(and hence all) S ∈ Sm. Note that by Lemma 2.13 if x ∼m y then also x ∼m+1 y. One
can verify that this is the same as the definition of x ∼m y given in [5].

The coupling result we want is:

Proposition 4.17 (cf. [5, Theorem 3.14]). Let x1, x2 ∈ F with x1 ∼n x2, where x1 ∈

S1 ∈ Sn(F ), x2 ∈ S2 ∈ Sn(F ), and let 8 = ϕS1 |S2 . Then there exists a probability space
(�,F ,P) carrying processes Xk , k = 1, 2, and Z with the following properties.

(a) Each Xk is an E-diffusion started at xk .
(b) Z = ϕS2(X2) = 8 ◦ ϕS1(X1).
(c) X1 and X2 are conditionally independent given Z.

Proof. Let Y be the diffusion corresponding to the Dirichlet form E and let Y1, Y2 be
processes such that Yi is equal in law to Y started at xi . Let Z1 = 8 ◦ ϕS1(Y1) and Z2 =

ϕS2(Y2). Since the Dirichlet form for ϕSi (Y ) is ESi and Z1, Z2 have the same starting
point, then Z1 and Z2 are equal in law. Use Lemma 4.16 to find functions F1 and F2 such
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that (Fi(Zi, U), Zi) is equal in law to (Yi, Zi), i = 1, 2, if U is an independent uniform
random variable on [0, 1].

Now take a probability space supporting a process Z with the same law as Zi and two
independent random variables U1, U2 independent of Z which are uniform on [0, 1]. Let
Xi = Fi(Z,Ui), i = 1, 2. We proceed to show that the Xi satisfy (a)–(c).

Xi is equal in law to Fi(Zi, Ui), which is equal in law to Yi , i = 1, 2, which estab-
lishes (a). Similarly (Xi, Z) is equal in law to (F (Zi, Ui), Zi), which is equal in law to
(Yi, Zi). Since Z1 = 8 ◦ ϕS1(Y1) and Z2 = ϕS2(Y2), it follows from the equality in law
that Z = 8 ◦ ϕS1(Y1) and Z = ϕS2(Y2). This establishes (b).

AsXi = Fi(Z,Ui) for i = 1, 2, and Z, U1, and U2 are independent, (c) is immediate.
ut

Given a pair of E-diffusions X1(t) and X2(t) we define the coupling time

TC(X1, X2) = inf{t ≥ 0 : X1(t) = X2(t)}. (4.33)

Given Propositions 4.12 and 4.17 we can now use the same arguments as in [5] to
couple copies of X started at points x, y ∈ F , provided that x ∼m y for some m ≥ 1.

Theorem 4.18. Let r > 0, ε > 0 and r ′ = r/L2
F . There exist constants q3 and δ,

depending only on the GSC F , such that the following hold:

(a) Suppose x1, x2 ∈ F with ‖x1−x2‖∞ < r ′ and x1 ∼m x2 for somem ≥ 1. There exist
E-diffusions Xi(t), i = 1, 2, with Xi(0) = xi , such that, writing

τi = inf{t ≥ 0 : Xi(t) 6∈ B(x1, r)},

we have
P(TC(X1, X2) < τ1 ∧ τ2) > q3. (4.34)

(b) If in addition ‖x1 − x2‖∞ < δr and x1 ∼m x2 for some m ≥ 1 then

P(TC(X1, X2) < τ1 ∧ τ2) > 1− ε. (4.35)

Proof. Given Propositions 4.12 and 4.17, this follows by the same arguments as in [5,
pp. 694–701]. ut

4.5. Elliptic Harnack inequality

As mentioned in Section 2.1, there are two definitions of harmonic that we can give. We
adopt the probabilistic one here. Recall that a function h is harmonic in a relatively open
subset D of F if h(Xt∧τ ′D ) is a martingale under Px for q.e. x whenever D′ is a relatively
open subset of D.

X satisfies the elliptic Harnack inequality if there exists a constant c1 such that the
following holds: for any ball B(x,R), whenever u is a non-negative harmonic function
on B(x,R) then there is a quasi-continuous modification ũ of u that satisfies

sup
B(x,R/2)

ũ ≤ c1 inf
B(x,R/2)

ũ.

We abbreviate ‘elliptic Harnack inequality’ by ‘EHI.’
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Lemma 4.19. Let E be in E, r ∈ (0, 1), and h be bounded and harmonic inB = B(x0, r).
Then there exists θ > 0 such that

|h(x)− h(y)| ≤ C

(
|x − y|

r

)θ
(sup
B

|h|), x, y ∈ B(x0, r/2), x ∼m y. (4.36)

Proof. As in [5, Proposition 4.1] this follows from the coupling in Theorem 4.18 by
standard arguments. ut

Proposition 4.20. Let E be in E and h be bounded and harmonic in B(x0, r). Then there
exists a set N of E-capacity 0 such that

|h(x)− h(y)| ≤ C

(
|x − y|

r

)θ
(sup
B

|h|), x, y ∈ B(x0, r/2)−N . (4.37)

Proof. Write B = B(x0, r), B ′ = B(x0, r/2). By Lusin’s theorem, there exist open sets
Gn ↓ such that µ(Gn) ↓ 0, and h restricted to Gcn ∩ B

′ is continuous. We will first show
that h restricted to any Gcn satisfies (4.36) except when one or both of x, y are in Nn, a
set of measure 0. If G =

⋂
nGn, then h on Gc is Hölder continuous outside of

⋃
Nn,

which is a set of measure 0. Thus h is Hölder continuous on all of B ′ outside of a set E
of measure 0.

So fix n and let H = Gcn. Let x, y be points of density for H ; recall Remark 4.13.
Let Sx and Sy be appropriate isometries of an element of Sk such that x ∈ Sx , y ∈ Sy ,
and µ(Sx ∩H)/µ(Sx) ≥ 2/3 and the same for Sy . Let8 be the isometry taking Sx to Sy .
Then the measure of 8(Sx ∩ H) must be at least two thirds the measure of Sy and we
already know the measure of Sy ∩H is at least two thirds that of Sy . Hence the measure
of (Sy ∩ H) ∩ (8(Sx ∩ H)) is at least one third the measure of Sy . So there must exist
points xk ∈ Sx ∩ H and yk = 8(xk) ∈ Sy ∩ H that are m-associated for some m. The
inequality (4.36) holds for each pair xk, yk . We do this for each k sufficiently large and
get sequences xk ∈ H tending to x and yk ∈ H tending to y. Since h restricted to H is
continuous, (4.36) holds for our given x and y.

We therefore know that h is continuous a.e. onB ′. We now need to show the continuity
q.e., without modifying the function h. Let x, y be two points in B ′ for which h(Xt∧τB )
is a martingale under Px and Py . The set of pointsN where this fails has E-capacity zero.
Let R = |x − y| < r and let ε > 0. Since µ(E) = 0, by [14, Lemma 4.1.1], for each t ,
Tt1E(x) = Tt (x, E) = 0 for m-a.e. x. As Tt1E is in the domain of E , by [14, Lemma
2.1.4], Tt1E = 0 q.e. Enlarge N to include the null sets where Tt1E 6= 0 for some t
rational. Hence if x, y /∈ N , then with probability one with respect to both Px and Py , we
have Xt /∈ E for t rational. Choose balls Bx, By with radii in [R/4, R/3] and centered
at x and y, resp., such that Px(XτBx ∈ N ) = Py(XτBy ∈ N ) = 0. By the continuity of
paths, we can choose t rational and small enough that Px(sups≤t |Xs − X0| > R/4) < ε

and the same with x replaced by y. Then

|h(x)− h(y)| = |Exh(Xt∧τBx )− Eyh(Xt∧τBy )|

≤ |Ex[h(Xt∧τBx ); t < τBx ]− Ey[h(Xt∧τBy ); t < τBy ]| + 2ε‖h‖∞

≤ C(R/r)θ‖h‖∞ + 4ε‖h‖∞.



Uniqueness of Brownian motion on Sierpiński carpets 691

The last inequality holds because Px(Xt ∈ N ) = 0 and similarly for Py , points in Bx are
at most 2R from points in By , and Xt∧τBx and Xt∧τBy are not in E almost surely. Since ε
is arbitrary, this shows that except for x, y in a set of capacity 0, we have (4.36). ut

Lemma 4.21. Let E ∈ E. Then there exist constants κ > 0 and Ci , depending only on F ,
such that if 0 < r < 1, x0 ∈ F and y, z ∈ B(x0, C1r) then for all 0 < δ < C1,

Py(TB(z,δr) < τB(x0,r)) > δκ . (4.38)

Proof. This follows by using corner and slide moves, as in [5, Corollary 3.24]. ut

Proposition 4.22. EHI holds for E , with constants depending only on F .

Proof. Given Proposition 4.20 and Lemma 4.21 this follows by the same argument as in
[5, Theorem 4.3]. ut

Corollary 4.23. (a) E is irreducible.
(b) If E(f, f ) = 0 then f is a.e. constant.

Proof. (a) If A is an invariant set, then Tt1A = 1A, or 1A is harmonic on F . By EHI,
either 1A is never 0 except for a set of capacity 0, or else it is 0 q.e. Hence µ(A) is
either 0 or 1. So E is irreducible.

(b) The equivalence of (a) and (b) in this setting is well known to experts. Suppose
that f is a function such that E(f, f ) = 0, and that f is not a.e. constant. Then using
the contraction property and scaling we can assume that 0 ≤ f ≤ 1 and there exist
0 < a < b < 1 such that the sets A = {x : f (x) < a} and B = {x : f (x) > b} both have
positive measure. Let g = b ∧ (a ∨ f ); then E(g, g) = 0 also. By Lemma 1.3.4 of [14],
for any t > 0,

E (t)(g, g) = t−1
〈g − Ttg, g〉 = 0.

So 〈g, Ttg〉 = 〈g, g〉. By the semigroup property, T 2
t = T2t , and hence 〈Ttg, Ttg〉 =

〈g, T2tg〉 = 〈g, g〉, from which it follows that 〈g − Ttg, g − Ttg〉 = 0. This implies that
g(x) = Exg(Xt ) a.e. Hence the sets A and B are invariant for (Tt ), which contradicts the
irreducibility of E . ut

Given a Dirichlet form (E,F) on F we define the effective resistance between subsets A1
and A2 of F by

Reff(A1, A2)
−1
= inf{E(f, f ) : f ∈ F , f |A1 = 0, f |A2 = 1}. (4.39)

Let
A(t) = {x ∈ F : x1 = t}, t ∈ [0, 1]. (4.40)

For E ∈ E we set
‖E‖ = Reff(A(0), A(1))−1. (4.41)

Let E1 = {E ∈ E : ‖E‖ = 1}.

Lemma 4.24. If E ∈ E then ‖E‖ > 0.
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Proof. Write H for the set of functions u on F such that u = i on A(i), i = 0, 1.
First, observe that F ∩H is not empty. This is because, by the regularity of E , there is a
continuous function u ∈ F such that u ≤ 0 on the face A(0) and u ≥ 1 on the opposite
face A(1). Then the Markov property for Dirichlet forms says 0 ∨ (u ∧ 1) ∈ F ∩H.

Second, observe that by Proposition 4.14 and the symmetry, TA(0) < ∞ a.s., which
implies that (E,FA(0)) is a transient Dirichlet form (see Lemma 1.6.5 and Theorem 1.6.2
in [14]). Here as usual we denote FA(0) = {f ∈ F : f |A(0) = 0}. Hence FA(0) is
a Hilbert space with the norm E . Let u ∈ F ∩ H and h be its orthogonal projection
onto the orthogonal complement of FA(0)∪A(1) in this Hilbert space. It is easy to see that
E(h, h) = ‖E‖.

If we suppose that ‖E‖ = 0, then h = 0 by Corollary 4.23. By our definition, h is
harmonic in the complement of A(0)∪A(1) in the Dirichlet form sense, and so by Propo-
sition 2.5, h is harmonic in the probabilistic sense and h(x) = Px(XTA(0)∪A(1) ∈ A(1)).
Thus, by the symmetries of F , the fact that h = 0 contradicts the fact that TA(1) <∞ by
Proposition 4.14.

An alternative proof of this lemma starts with defining h probabilistically and uses
[11, Corollary 1.7] to show h ∈ FA(0). ut

4.6. Resistance estimates

Let now E ∈ E1. Let S ∈ Sn and let γn = γn(E) be the conductance across S. That is, if
S = Q ∩ F for Q ∈ Qn(F ) and Q = {ai ≤ xi ≤ bi, i = 1, . . . , d}, then

γn = inf{ES(u, u) : u ∈ FS, u|{x1=a1} = 0, u|{x1=b1} = 1}.

Note that γn does not depend on S, and that γ0 = 1. Write vn = vEn for the minimizing
function. We remark that from the results in [4, 30] we have

C1ρ
n
F ≤ γn(EBB) ≤ C2ρ

n
F .

Proposition 4.25. Let E ∈ E1. Then for n,m ≥ 0,

γn+m(E) ≥ C1γm(E)ρnF . (4.42)

Proof. We begin with the case m = 0. As in [4] we compare the energy of v0 with that
of a function constructed from vn and the minimizing function on a network where each
cube side L−nF is replaced by a diagonal crosswire.

Write Dn for the network of diagonal crosswires, as in [4, 30], obtained by joining
each vertex of a cube Q ∈ Qn to a vertex at the center of the cube by a wire of unit
resistance. Let RDn be the resistance across two opposite faces of F in this network, and
let fn be the minimizing potential function.

Fix a cube Q ∈ Qn and let S = Q ∩ F . Let xi , i = 1, . . . , 2d , be its vertices, and
for each i let Aij , j = 1, . . . , d , be the faces containing xi . Let A′ij be the face opposite
to Aij . Let wij be the function, congruent to vn, which is 1 on Aij and zero on A′ij . Set

ui = min{wi1, . . . , wid}.
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Note that ui(xi) = 1, and ui = 0 on
⋃
j A
′

ij . Then

E(ui, ui) ≤
∑
j

E(wij , wij ) = dγn.

Write ai = f (xi), and a = 2−d
∑
i ai . Then the energy of fn in S is

ESD(fn, fn) =
∑
i

(ai − a)
2.

Now define a function gS : S → R by

gS(y) = a +
∑
i

(ai − a)ui(y).

Then
ES(gS, gS) ≤ CE(u1, u1)

∑
i

(ai − a)
2
≤ CγnESD(fn, fn).

We can check from the definition of gS that if two cubes Q1, Q2 have a common
face A and Si = Qi ∩ F , then gS1 = gS2 on A. Now define g : F → R by taking g(x) =
gS(x) for x ∈ S. Summing over Q ∈ Qn(F ) we deduce that E(g, g) ≤ Cγn(R

D
n )
−1.

However, the function g is zero on one face of F , and 1 on the opposite face. Therefore

1 = γ0 = E(v0, v0) ≤ E(g, g) ≤ Cγn(RDn )−1
≤ Cγnρ

−n
F ,

which gives (4.42) in the case m = 0.
The proof when m ≥ 1 is the same, except we work in a cube S ∈ Sm and use

subcubes of side L−n−mF . ut

Lemma 4.26. We have
C1γn ≤ γn+1 ≤ C2γn. (4.43)

Proof. The left-hand inequality is immediate from (4.42). To prove the right-hand one,
let first n = 0. By Propositions 4.12 and 4.14, we deduce that v0 ≥ C3 > 0 on A(L−1

F );
recall the definition in (4.40). Letw = (v0∧C3)/C3. Choose a cubeQ ∈ Q1(F1) between
the hyperplanes A1(0) and A1(L

−1
F ); A1(t) is defined in (4.40). Then

γ1 = EF1(v1, v1) ≤ EF1(w,w) ≤ E(w,w)

= C−2
3 E(v0 ∧ C3, v0 ∧ C3) ≤ C

−2
3 E(v0, v0) = C4γ0.

Again the case n ≥ 0 is similar, except we work in a cube S ∈ Sn. ut

Note that (4.42) and (4.43) only give a one-sided comparison between γn(E) and γn(EBB);
however this will turn out to be sufficient.

Set
α = logmF /logLF , β0 = log(mFρF )/logLF .
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By [5, Corollary 5.3] we have β0 ≥ 2, and so ρFmF ≥ L2
F . Let

H0(r) = r
β0 .

We now define a ‘time scale function’ H for E . First note that by (4.42) we have, for
n, k ≥ 0,

γnm
n
F

γn+km
n+k
F

≤ Cρ−kF m−kF . (4.44)

Since ρFmF ≥ L2
F > 1 there exists k ≥ 1 such that

γnm
n
F < γn+km

n+k
F , n ≥ 0. (4.45)

Fix this k, let

H(L−nkF ) = γ−1
nk m

−nk
F , n ≥ 0, (4.46)

and defineH by linear interpolation on each interval (L−(n+1)k
F , L−nkF ). Set alsoH(0)=0.

We now summarize some properties of H .

Lemma 4.27. There exist constants Ci and β ′, depending only on F , such that the fol-
lowing hold.

(a) H is strictly increasing and continuous on [0, 1].
(b) For any n,m ≥ 0,

H(L−nk−mkF ) ≤ C1H(L
−nk
F )H0(L

−mk
F ). (4.47)

(c) For n ≥ 0,

H(L
−(n+1)k
F ) ≤ H(L−nkF ) ≤ C2H(L

−(n+1)k
F ). (4.48)

(d)

C3(t/s)
β0 ≤

H(t)

H(s)
≤ C4(t/s)

β ′ for 0 < s ≤ t ≤ 1. (4.49)

In particular H satisfies the ‘fast time growth’ condition of [17] and [6, Assumption
1.2].

(e) H satisfies ‘time doubling’:

H(2r) ≤ C5H(r) for 0 ≤ r ≤ 1/2. (4.50)

(f) For r ∈ [0, 1],

H(r) ≤ C6H0(r).
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Proof. (a), (b) and (c) are immediate from the definitions ofH andH0, (4.42) and (4.43).
For (d), using (4.47) we have

H(L−knF )

H(L−kn−kmF )
≥ C7

H(L−knF )

H(L−knF )H0(L
−km
F )

= C7L
kmβ0
F = C7

( L−knF

L−kn−kmF

)β0
,

and interpolating using (c) gives the lower bound in (4.49). For the upper bound, using
(4.43), we obtain

H(L−knF )

H(L−kn−kmF )
≤ Ckm8 = L

kmβ ′

F =

( L−knF

L−kn−kmF

)β ′
, (4.51)

where β ′ = logC8/logLF , and again using (c) gives (4.49). (e) is immediate from (d).
Taking n = 0 in (4.47) and using (c) gives (f). ut

We say E satisfies the condition RES(H, c1, c2) if for all x0 ∈ F , r ∈ (0, L−1
F ),

c1
H(r)

rα
≤ Reff(B(x0, r), B(x0, 2r)c) ≤ c2

H(r)

rα
. (RES(H, c1, c2))

Proposition 4.28. There exist constants C1, C2, depending only on F , such that E satis-
fies RES(H,C1, C2).
Proof. Let k be the smallest integer so that L−kF ≤

1
2d
−1/2R. Note that if Q ∈ Qk and

x, y ∈ Q, then d(x, y) ≤ d1/2L−kF ≤
1
2R. Write B0 = B(x0, R) and B1 = B(x0, 2R)c.

We begin with the upper bound. Let S0 be a cube in Qk containing x0: then S0 ∩ F

⊂ B. We can find a chain of cubes S0, S1, . . . , Sn such that Sn ⊂ B1 and Si is adjacent
to Si+1 for i = 0, . . . , n − 1. Let f be the harmonic function in F − (S0 ∪ B1) which
is 1 on S0 and 0 on B1. Let A0 = S0 ∩ S1, and A1 be the face of S1 opposite to A0. Then
using the lower bounds for slides and corner moves, we find that there exists C1 ∈ (0, 1)
such that f ≥ C1 on A1. So g = (f − C1)+/(1− C1) satisfies ES1(g, g) ≥ γk . Hence

Reff(S0, B1)
−1
= E(f, f ) ≥ ES1(f, f ) ≥ (1− C1)

−2γk,

and by the monotonicity of resistance

Reff(B0, B1) ≤ Reff(S0, B1) ≤ C2γ
−1
k ,

which gives the upper bound in (RES(H, c1, c2)).
Now let n = k + 1 and let S ∈ Qn. Recall from Proposition 4.25 the definition of the

functions vn, wij and ui . By the symmetry of vn we have wij ≥ 1
2 on the half of S which

is closer to Aij , and therefore ui(x) ≥ 1
2 if ‖x − xi‖∞ ≤ 1

2L
−n
F .

Now let y ∈ L−nF Zd∩F , and let V (y) be the union of the 2d cubes inQn containing y.
By looking at functions congruent to 2ui∧1 in each of the cubes in V (y), we can construct
a function gi such that gi = 0 on F −V (y), gi(z) = 1 for z ∈ F with ‖z−y‖∞ ≤ 1

2L
−n
F ,

and E(gi, gi) ≤ Cγn. We now choose y1, . . . , ym so that B0 ⊂
⋃
i V (yi); clearly we can

take m ≤ C5. Then if h = 1 ∧ (
∑
i gi), we have h = 1 on B0 and h = 0 on B1. Thus

Reff(B0, B1)
−1
≤ E(h, h) ≤ E

(∑
gi,
∑

gi

)
≤ C6γn,

proving the lower bound. ut
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4.7. Heat kernel estimates

We write h for the inverse of H , and V (x, r) = µ(B(x, r)). We say F satisfies volume
doubling, VD, if there exists a constant c1 such that

V (x, 2R) ≤ c1V (x,R) for all x ∈ F, 0 ≤ R ≤ 1. (VD)

We say that pt (x, y) satisfies HK(H ; η1, η2, c0) if for x, y ∈ F , 0 < t ≤ 1,

pt (x, y) ≥ c
−1
0 V (x, h(t))−1 exp(−c0(H(d(x, y))/t)

η1),

pt (x, y) ≤ c0V (x, h(t))
−1 exp(−c−1

0 (H(d(x, y))/t)η2).

The following equivalence is proved in [17]. (See also [6, Theorem 1.3, (a)⇒(c)] for
a detailed proof of (a)⇒(b), which is adjusted to our current setting.)

Theorem 4.29. Let H : [0, 1] → [0,∞) be a strictly increasing function with H(1) ∈
(0,∞) that satisfies (4.50) and (4.49). Then the following are equivalent:

(a) (E,F) satisfies VD, EHI and RES(H, c1, c2) for some c1, c2 > 0.
(b) (E,F) satisfies HK(H ; η1, η2, c0) for some α, η1, η2, c0 > 0.

Further the constants in each implication are effective.

By saying that the constants are ‘effective’ we mean that if, for example (a) holds, then
the constants ηi , c0 in (b) depend only on the constants ci in (a), and the constants in VD,
EHI and (4.50) and (4.49).

Theorem 4.30. X has a transition density pt (x, y) which satisfies HK(H ; η1, η2, C),
where η1 = 1/(β0 − 1), η2 = 1/(β ′ − 1), and the constant C depends only on F .

Proof. This is immediate from Theorem 4.29, and Propositions 4.22 and 4.28. ut

Let

Jr(f ) = r
−α

∫
F

∫
B(x,r)

|f (x)− f (y)|2 dµ(x) dµ(y),

N r
H (f ) = H(r)

−1Jr(f ), NH (f ) = sup
0<r≤1

N r
H (f ),

WH = {f ∈ L
2(F, µ) : NH (f ) <∞}. (4.52)

We now use Theorem 4.1 of [25], which we rewrite slightly for our context. (See also
Theorem 1.4 of [6], which is adjusted to our current setting.) Let rj = L−kj , where k is
as in the definition of H .

Theorem 4.31. Suppose pt satisfies HK(H, η1, η2, C0), and H satisfies (4.50) and
(4.49). Then

C1E(f, f ) ≤ lim sup
j→∞

N
rj
H (f ) ≤ NH (f ) ≤ C2E(f, f ) for all f ∈ WH , (4.53)

where the constants Ci depend only on the constants in (4.50) and (4.49), and in
HK(H ; η1, η2, C0). Further,

F = WH . (4.54)
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Theorem 4.32. Let (E,F) ∈ E1.

(a) There exist constants C1, C2 > 0 such that for all r ∈ [0, 1],

C1H0(r) ≤ H(r) ≤ C2H0(r). (4.55)

(b) WH = WH0 , and there exist constants C3, C4 such that

C3NH0(f ) ≤ E(f, f ) ≤ C4NH0(f ) for all f ∈ WH . (4.56)

(c) F = WH0 .

Proof. (a) We have H(r) ≤ C2H0(r) by Lemma 4.27, and so

NH (f ) ≥ C
−1
2 NH0(f ). (4.57)

Recall that (EBB ,FBB) is (one of) the Dirichlet forms constructed in [5]. By (4.57) and
(4.54) we have F ⊂ FBB . In particular, vE0 ∈ FBB (see Subsection 4.6).

Now let

A = lim sup
k→∞

H(rk)

H0(rk)
;

we have A ≤ C2.
Let f ∈ F . Then by Theorem 4.31,

EBB(f, f ) ≤ C3 lim sup
j→∞

H0(rj )
−1Jrj (f ) = C3 lim sup

j→∞

H(rj )

H0(rj )
H(rj )

−1Jrj (f )

≤ C3 lim sup
j→∞

AN
rj
H (f ) ≤ C4AE(f, f ).

Taking f = vE0 yields

1 ≤ EBB(vE0 , v
E
0 ) ≤ C4AE(vE0 , v

E
0 ) = C4A. (4.58)

Thus A ≥ C5 = C
−1
4 . By Lemma 4.27(c) we have, for n,m ≥ 0,

H(rn+m)

H0(rn+m)
≤ C6

H(rn)

H0(rn)
.

So, for any n,
H(rn)

H0(rn)
≥ C−1

6 A ≥ C5/C6,

and (a) follows.
(b) and (c) are then immediate by Theorem 4.31. ut

Remark 4.33. (4.55) now implies that pt (x, y) satisfies HK(H0, η1, η1, C) with η1 =

1/(β0 − 1).



698 Martin T. Barlow et al.

5. Uniqueness

Definition 5.1. Let W = WH0 be as defined in (4.52). Let A,B ∈ E. We say A ≤ B if

B(u, u)−A(u, u) ≥ 0 for all u ∈ W.

For A,B ∈ E define

sup(B|A) = sup
{
B(f, f )
A(f, f )

: f ∈ W
}
, inf(B|A) = inf

{
B(f, f )
A(f, f )

: f ∈ W
}
,

h(A,B) = log
(

sup(B|A)
inf(B|A)

)
;

h is Hilbert’s projective metric and we have h(θA,B) = h(A,B) for any θ ∈ (0,∞).
Note that h(A,B) = 0 if and only if A is a non-zero constant multiple of B.

Theorem 5.2. There exists a constant CF , depending only on the GSC F , such that if
A,B ∈ E then

h(A,B) ≤ CF .

Proof. Let A′ = A/‖A‖, B′ = B/‖B‖. Then h(A,B) = h(A′,B′). By Theorem 4.32
there exist Ci depending only on F such that (4.56) holds for both A′ and B′. Therefore

B′(f, f )
A′(f, f )

≤
C2

C1
for f ∈ W,

and so sup(B′|A′) ≤ C2/C1. Similarly, inf(B′|A′) ≥ C1/C2, so that h(A′,B′) ≤
2 log(C2/C1). ut

Proof of Theorem 1.2. By Proposition 1.1, E is non-empty.
Let A,B ∈ E, and λ = inf(B|A). Let δ > 0 and C = (1 + δ)B − λA. By Theorem

2.1, C is a local regular Dirichlet form on L2(F, µ) and C ∈ E. Since

C(f, f )
A(f, f )

= (1+ δ)
B(f, f )
A(f, f )

− λ, f ∈ W,

we obtain

sup(C|A) = (1+ δ) sup(B|A)− λ, inf(C|A) = (1+ δ) inf(B|A)− λ = δλ.

Hence for any δ > 0,

eh(A,C) =
(1+ δ) sup(B|A)− λ

δλ
≥

1
δ
(eh(A,B) − 1).

If h(A,B) > 0, this is not bounded as δ → 0, contradicting Theorem 5.2. We must
therefore have h(A,B) = 0, which proves our theorem. ut

Proof of Corollary 1.4. Note that Theorem 1.2 implies that the Px law of X is uniquely
defined, up to scalar multiples of the time parameter, for all x /∈ N , where N is a set
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of capacity 0. If f is continuous and X is a Feller process, the map x 7→ Exf (Xt ) is
uniquely defined for all x by the continuity of Ttf . By a limit argument it is uniquely
defined if f is bounded and measurable, and then by the Markov property, we see that
the finite-dimensional distributions of X under Px are uniquely determined. Since X has
continuous paths, the law of X under Px is determined. (Recall that the processes con-
structed in [5] are Feller processes.) ut

Remark 5.3. In addition to (H1)–(H4), assume that the (d − 1)-dimensional fractal F ∩
{x1 = 0} also satisfies the conditions corresponding to (H1)–(H4). (This assumption is
used in [19, Section 5.3].) Then one can show 0(f, f )(F ∩∂F0) = 0 for all f ∈ F where
0(f, f ) is the energy measure for E ∈ E and f ∈ F . Indeed, by the uniqueness we know
that E is self-similar, so the results in [19] can be applied. For h given in [19, Proposition
3.8], we have 0(h, h)(F ∩ ∂[0, 1]d) = 0 by taking i → ∞ in the last inequality of [19,
Proposition 3.8]. For general f ∈ F , take an approximating sequence {gm} ⊂ F as in the
proof of Theorem 2.5 of [19]. Using the inequality

|0(gm, gm)(A)
1/2
− 0(f, f )(A)1/2| ≤ 0(gm − f, gm − f )(A)

1/2

≤ 2E(gm − f, gm − f )1/2

(see page 111 in [14]), we conclude that 0(f, f )(F ∩ ∂[0, 1]d) = 0. Using the self-
similarity, we can also prove that the energy measure does not charge the image of F ∩
∂[0, 1]d by any of the contraction maps.

Remark 5.4. One question left over from [3, 5] is whether the sequence of approximat-
ing reflecting Brownian motions used to construct the Barlow–Bass processes converges.
Let X̃nt = X

n
cnt

, where Xn is defined in Subsection 3.1 and cn is a normalizing constant.
We choose cn so that the expected time for X̃n started at 0 to reach one of the faces not
containing 0 is one. There will exist subsequences {nj } such that there is resolvent con-
vergence for {X̃nj } and also weak convergence, starting at every point in F . Any of the
subsequential limit points will have a Dirichlet form that is a constant multiple of one of
the EBB . By virtue of the normalization and our uniqueness result, all the limit points are
the same, and therefore the whole sequence {X̃n} converges, both in the sense of resolvent
convergence and in the sense of weak convergence for each starting point.
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Probab. Theory Related Fields 93, 169–196 (1992) Zbl 0767.60076 MR 1176724

[28] Lindstrøm, T.: Brownian motion on nested fractals. Mem. Amer. Math. Soc. 83, no. 420
(1990), 128 pp. Zbl 0688.60065 MR 0988082

[29] Mandelbrot, B.: The Fractal Geometry of Nature. W. H. Freeman, San Francisco (1982)
Zbl 0504.28001 MR 0665254

[30] McGillivray, I.: Resistance in higher-dimensional Sierpiński carpets. Potential Anal. 16, 289–
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