DOI 10.4171/JEMS/214

Gavril Farkas · Katharina Ludwig

The Kodaira dimension of the moduli space of Prym varieties

Received May 13, 2008 and in revised form September 15, 2008

Abstract. We study the enumerative geometry of the moduli space \mathcal{R}_g of Prym varieties of dimension g-1. Our main result is that the compactication of \mathcal{R}_g is of general type as soon as g>13 and g is different from 15. We achieve this by computing the class of two types of cycles on \mathcal{R}_g : one defined in terms of Koszul cohomology of Prym curves, the other defined in terms of Raynaud theta divisors associated to certain vector bundles on curves. We formulate a Prym–Green conjecture on syzygies of Prym-canonical curves. We also perform a detailed study of the singularities of the Prym moduli space, and show that for $g \ge 4$, pluricanonical forms extend to any desingularization of the moduli space.

Prym varieties provide a correspondence between the moduli spaces of curves and abelian varieties \mathcal{M}_g and \mathcal{A}_{g-1} , via the Prym map $\mathcal{P}_g:\mathcal{R}_g\to\mathcal{A}_{g-1}$ from the moduli space \mathcal{R}_g parameterizing pairs $[C, \eta]$, where $[C] \in \mathcal{M}_g$ is a smooth curve and $\eta \in$ $\operatorname{Pic}^{0}(C)[2]$ is a torsion point of order 2. When $g \leq 6$ the Prym map is dominant and \mathcal{R}_g can be used directly to determine the birational type of \mathcal{A}_{g-1} . It is known that \mathcal{R}_g is rational for g = 2, 3, 4 (see [Dol] and references therein and [Ca] for the case of genus 4) and unirational for g = 5 (cf. [IGS] and [V2]). The situation in genus 6 is strikingly beautiful because $\mathcal{P}_6: \mathcal{R}_6 \to \mathcal{A}_5$ is equidimensional (precisely dim(\mathcal{R}_6) = $dim(A_5) = 15$). Donagi and Smith showed that P_6 is generically finite of degree 27 (cf. [DS]) and the monodromy group equals the Weyl group WE_6 describing the incidence correspondence of the 27 lines on a cubic surface (cf. [D1]). There are three different proofs that \mathcal{R}_6 is unirational (cf. [D1], [MM], [V1]). Verra has very recently announced a proof of the unirationality of \mathcal{R}_7 (see also Theorem 0.8 for a weaker result). The Prym map \mathcal{P}_g is generically injective for $g \geq 7$ (cf. [FS]), although never injective. In this range, we may regard \mathcal{R}_g as a partial desingularization of the moduli space $\mathcal{P}_g(\mathcal{R}_g) \subset \mathcal{A}_{g-1}$ of Prym varieties of dimension g - 1.

The scheme \mathcal{R}_g admits a suitable modular compactification $\overline{\mathcal{R}}_g$, which is isomorphic to (1) the coarse moduli space of the stack $\overline{\mathbf{R}}_g = \overline{\mathbf{M}}_g(\mathcal{B}\mathbb{Z}_2)$ of *Beauville admissible* double covers (cf. [B], [ACV]) and (2) the coarse moduli space of the stack of *Prym curves* (cf. [BCF]). The forgetful map $\pi : \mathcal{R}_g \to \mathcal{M}_g$ extends to a finite map $\pi : \overline{\mathcal{R}}_g \to \overline{\mathcal{M}}_g$.

G. Farkas: Institut für Mathematik, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany; e-mail: farkas@math.hu-berlin.de

K. Ludwig: Institut für Algebraische Geometrie, Leibniz Universität Hannover, D-30167 Hannover, Germany; e-mail: ludwig@math.uni-hannover.de

The aim of this paper is to initiate a study of the enumerative and global geometry of $\overline{\mathcal{R}}_g$, in particular to determine its Kodaira dimension. The main result of the paper is the following:

Theorem 0.1. The moduli space of Prym varieties $\overline{\mathcal{R}}_g$ is of general type for g > 13 and $g \neq 15$. The Kodaira dimension of $\overline{\mathcal{R}}_{15}$ is at least 1.

We point out in Remark 2.9 that the existence of an effective divisor $D \in \text{Eff}(\overline{\mathcal{M}}_{15})$ of slope s(D) < 6 + 12/(g+1) = 27/4 (that is, violating the Harris–Morrison Slope Conjecture on $\overline{\mathcal{M}}_{15}$), would imply that $\overline{\mathcal{R}}_{15}$ is of general type. There are known examples of divisors $D \in \text{Eff}(\overline{\mathcal{M}}_g)$ satisfying s(D) < 6 + 12/(g+1) for every genus of the form g = s(2s + si + i + 1) with $s \ge 2$ and $i \ge 0$ (cf. [F1], [F2]). No such examples have been found yet on $\overline{\mathcal{M}}_{15}$, though they are certainly expected to exist.

The normal variety $\overline{\mathcal{R}}_g$ has finite quotient singularities and an important part of the proof is concerned with showing that pluricanonical forms defined on the smooth part $\overline{\mathcal{R}}_g^{\text{reg}} \subset \overline{\mathcal{R}}_g$ can be lifted to any resolution of singularities $\widehat{\mathcal{R}}_g \to \overline{\mathcal{R}}_g$, that is, we have isomorphisms

 $H^0(\overline{\mathcal{R}}_g^{\mathrm{reg}}, K_{\overline{\mathcal{R}}_g}^{\otimes l}) \cong H^0(\widehat{\mathcal{R}}_g, K_{\widehat{\mathcal{R}}_g}^{\otimes l})$

for $l \geq 0$. This is achieved in the last section of the paper. The locus of non-canonical singularities in $\overline{\mathcal{R}}_g$ is also explicitly described: A Prym curve $[X, \eta, \beta] \in \overline{\mathcal{R}}_g$ is a non-canonical singularity if and only if X has an elliptic tail C with $\operatorname{Aut}(C) = \mathbb{Z}_6$ such that the line bundle $\eta_C \in \operatorname{Pic}^0(C)[2]$ is trivial (cf. Theorem 6.7).

We outline the strategy to prove that $\overline{\mathcal{R}}_g$ is of general type for given g. If $\lambda = \pi^*(\lambda) \in \operatorname{Pic}(\overline{\mathcal{R}}_g)$ is the pull-back of the Hodge class and $\delta_0', \delta_0'', \delta_0^{\operatorname{ram}} \in \operatorname{Pic}(\overline{\mathcal{R}}_g)$ and $\delta_i, \delta_{g-i}, \delta_{i:g-i} \in \operatorname{Pic}(\overline{\mathcal{R}}_g)$ for $1 \le i \le \lfloor g/2 \rfloor$ are boundary divisor classes such that

$$\pi^*(\delta_0) = \delta_0' + \delta_0'' + 2\delta_0^{\text{ram}}$$
 and $\pi^*(\delta_i) = \delta_i + \delta_{g-i} + \delta_{i:g-i}$ for $1 \le i \le [g/2]$

(see Section 2 for a precise definition of these classes), then one has the formula

$$K_{\overline{\mathcal{R}}_g} \equiv 13\lambda - 2(\delta_0' + \delta_0'') - 3\delta_0^{\text{ram}} - 2\sum_{i=1}^{[g/2]} (\delta_i + \delta_{g-i} + \delta_{i:g-i}) - (\delta_1 + \delta_{g-1} + \delta_{1:g-1}).$$

We show that this class is big by explicitly constructing effective divisors D on $\overline{\mathcal{R}}_g$ such that one can write $K_{\overline{\mathcal{R}}_g} \equiv \alpha \cdot \lambda + \beta \cdot D + \{\text{effective combination of boundary classes}\}$ for certain $\alpha, \beta \in \mathbb{Q}_{>0}$ (see (2) for the inequalities the coefficients of such D must satisfy).

We carry out an enumerative study of divisors on $\overline{\mathcal{R}}_g$ defined in terms of pairs $[C, \eta]$ such that the 2-torsion point $\eta \in \operatorname{Pic}^0(C)$ is transversal with respect to the theta divisors associated to certain stable vector bundles on C. We fix integers $k \geq 2$ and $b \geq 0$ and then define the integers

$$i := kb + k - b - 2$$
, $r := kb + k - 2$, $g := ik + 1$, $d := rk$.

The Brill-Noether number $\rho(g,r,d):=g-(r+1)(g-d+r)=0$ and a general $[C]\in \mathcal{M}_g$ carries a finite number of line bundles $L\in W^r_d(C)$. For each such line

bundle L, if Q_L denotes the dual of the *Lazarsfeld bundle* defined by the exact sequence (see [L])

$$0 \to Q_L^{\vee} \to H^0(C, L) \otimes \mathcal{O}_C \to L \to 0,$$

we compute that $\mu(Q_L) = d/r = k$ and then $\mu(\bigwedge^i Q_L) = ik = g - 1$. In these circumstances we define the *Raynaud divisor* (degeneration locus of virtual codimension 1)

$$\Theta_{\bigwedge^i Q_L} := \{ \eta \in \operatorname{Pic}^0(C) : H^0(C, \bigwedge^i Q_L \otimes \eta) \neq 0 \}.$$

This is a virtual divisor inside $\operatorname{Pic}^0(C)$, in the sense that either $\Theta_{\bigwedge^i Q_L} = \operatorname{Pic}^0(C)$ or else $\Theta_{\bigwedge^i Q_L}$ is a divisor on $\operatorname{Pic}^0(C)$ belonging to the linear system $|\binom{r}{i}\theta|$ (cf. [R]). We study the relative position of η with respect to $\Theta_{\bigwedge^i Q_L}$ and introduce the following locus on $\overline{\mathcal{R}}_g$:

$$\mathcal{D}_{g:k} := \{ [C, \eta] \in \mathcal{R}_g : \exists L \in W^r_d(C) \text{ such that } \eta \in \Theta_{\bigwedge^i Q_L} \}.$$

When k = 2, i = b, then g = 2i + 1, d = 2g - 2 and $\mathcal{D}_{2i+1:2}$ has a new incarnation using the proof of the *Minimal Resolution Conjecture* [FMP]. In this case, $L = K_C$ (a genus g curve has only one $\mathfrak{g}_{2g-2}^{g-1}$!) and [FMP] gives an identification of cycles

$$\Theta_{\bigwedge^i Q_{K_C}} = C_i - C_i \subset \operatorname{Pic}^0(C),$$

where the right-hand side stands for the i-th difference variety of C.

We prove in Section 2 that $\mathcal{D}_{g:k}$ is an effective divisor on \mathcal{R}_g . By specialization to the k-gonal locus $\mathcal{M}_{g,k}^1 \subset \mathcal{M}_g$, we show that for a generic $[C,\eta] \in \mathcal{R}_g$ the vanishing $H^0(C, \bigwedge^i Q_L \otimes \eta) = 0$ holds for every $L \in W_d^r(C)$ (Theorem 2.3). Then we extend the determinantal structure of $\mathcal{D}_{g:k}$ to a partial compactification of \mathcal{R}_g , which enables us to compute the class of the compactification $\overline{\mathcal{D}}_{g:k}$. Precisely we construct two vector bundles \mathcal{E} and \mathcal{F} over a stack $\overline{\mathbf{R}}_g^0$ which is a partial compactification of \mathbf{R}_g , such that $\mathrm{rank}(\mathcal{E}) = \mathrm{rank}(\mathcal{F})$, together with a vector bundle homomorphism $\phi: \mathcal{E} \to \mathcal{F}$ such that $Z_1(\phi) \cap \mathcal{R}_g = \mathcal{D}_{g:k}$. Then we explicitly determine the class $c_1(\mathcal{F} - \mathcal{E}) \in A^1(\overline{\mathbf{R}}_g^0)$ (Theorem 2.8). The cases of interest for determining the Kodaira dimension of $\overline{\mathcal{R}}_g$ are when k=2,3, for which we obtain the following results:

Theorem 0.2. The closure of the divisor $\mathcal{D}_{2i+1:2} = \{[C, \eta] \in \mathcal{R}_{2i+1} : h^0(C, \bigwedge^i Q_{K_C} \otimes \eta) \geq 1\}$ inside $\overline{\mathcal{R}}_{2i+1}$ has class given by the following formula in $\operatorname{Pic}(\overline{\mathcal{R}}_{2i+1})$:

$$\overline{\mathcal{D}}_{2i+1:2} \equiv \frac{1}{2i-1} {2i \choose i} \left((3i+1)\lambda - \frac{i}{2} (\delta_0' + \delta_0'') - \frac{2i+1}{4} \delta_0^{\text{ram}} - (3i-1)\delta_{g-1} - i(\delta_{1:g-1} + \delta_1) - \cdots \right).$$

To illustrate Theorem 0.2 in the simplest case, i=1 hence g=3, we write $\mathcal{D}_{3:2}=\{[C,\eta]\in\mathcal{R}_3:\eta=\mathcal{O}_C(x-y),\ x,y\in C\}$. The analysis carried out in Section 5 shows that the vector bundle morphism $\phi:\mathcal{E}\to\mathcal{F}$ is generically non-degenerate along the

boundary divisors Δ_0' , $\Delta_0^{ram} \subset \overline{\mathcal{R}}_3$ and degenerate (with multiplicity 1) along the divisor $\Delta_0'' \subset \overline{\mathcal{R}}_3$ of Wirtinger covers. Theorem 0.2 reads

$$\overline{\mathcal{D}}_{3:2} \equiv c_1(\mathcal{F} - \mathcal{E}) - \delta_0'' \equiv 8\lambda - \delta_0' - 2\delta_0'' - \frac{3}{2}\delta_0^{\text{ram}} - 6\delta_1 - 4\delta_2 - 2\delta_{1:2} \in \text{Pic}(\overline{\mathcal{R}}_3),$$

and then $\pi_*(\overline{\mathcal{D}}_{3:2}) = 56(9\lambda - \delta_0 - 3\delta_1) = 56 \cdot \overline{\mathcal{M}}_{3,2}^1 \in \operatorname{Pic}(\overline{\mathcal{M}}_3)$ (see Theorem 5.1). Theorem 0.2 is consistent with the following elementary fact (see e.g. [HF]): If $[\tilde{C} \to C] \in \mathcal{R}_3$ is an étale double cover, then $[\tilde{C}] \in \mathcal{M}_5$ is hyperelliptic if and only if $[C] \in \mathcal{M}_3$ is hyperelliptic and $\eta = \mathcal{O}_C(x - y)$, with $x, y \in C$ being Weierstrass points.

Theorem 0.3. For $b \ge 1$ and r = 3b + 1 the class of the divisor $\overline{\mathcal{D}}_{6b+4:3}$ on $\overline{\mathcal{R}}_{6b+4}$ is given by

$$\begin{split} \overline{\mathcal{D}}_{g:3} &\equiv \frac{4}{r} \binom{6b+3}{b,2b,3b+3} \\ &\times \left((3b+2)(b+2)\lambda - \frac{3b^2+7b+3}{6} (\delta_0' + \delta_0'') - \frac{24b^2+47b+21}{24} \delta_0^{\text{ram}} - \cdots \right). \end{split}$$

Theorems 2.8, 0.2 and 0.3 specify precisely the λ , δ'_0 , δ''_0 and δ^{ram}_0 coefficients in the expansion of $[\overline{\mathcal{D}}_{g:k}]$. Good lower bounds for the remaining boundary coefficients of $[\overline{\mathcal{D}}_{g:k}]$ can be obtained using Proposition 1.9. The information contained in Theorems 0.2 and 0.3 is sufficient to finish the proof of Theorem 0.1 for odd genus $g = 2i + 1 \ge 15$.

When b = 0, hence i = r = k - 2, Theorem 2.8 has the following interpretation:

Theorem 0.4. Fix integers $k \ge 3$, r = k - 2 and $g = (k - 1)^2$. The locus

$$\mathcal{D}_{g:k} := \{ [C, \eta] \in \mathcal{R}_g : \exists L \in W^{k-2}_{k(k-2)}(C) \text{ such that } H^0(C, L \otimes \eta) \neq 0 \}$$

is a divisor on \mathcal{R}_g . The class of its compactification inside $\overline{\mathcal{R}}_g$ is given by the formula

$$\begin{split} \overline{\mathcal{D}}_{g:k} &\equiv g! \frac{1!2! \cdots (k-2)!}{(k-1)! \cdots (2k-3)! (k^2-2k-1)} \bigg((k^4-4k^3+11k^2-14k+2) \lambda \\ &- \frac{k(k-2)(k^2-2k+5)}{12} (\delta_0' + \delta_0'') - \frac{(k^2-2k+3)(2k^2-4k+1)}{12} \delta_0^{\text{ram}} - \cdots \bigg) \\ &\in \text{Pic}(\overline{\mathcal{R}}_g). \end{split}$$

When k=3 and g=4, the divisor $\mathcal{D}_{4:3}$ consists of Prym curves $[C, \eta] \in \mathcal{R}_4$ for which the plane Prym-canonical model $\iota: C \xrightarrow{|K_C \otimes \eta|} \mathbf{P}^2$ has a triple point. Note that for a general $[C, \eta] \in \mathcal{R}_4$, $\iota(C)$ is a 6-nodal sextic. We can then verify the formula

$$\pi_*(\overline{\mathcal{D}}_{4:3}) = 60(34\lambda - 4\delta_0 - 14\delta_1 - 18\delta_2) = 60 \cdot \overline{\mathcal{GP}}_{4:3}^1 \in \text{Pic}(\overline{\mathcal{M}}_4),$$

where $\overline{\mathcal{GP}}_{4,3}^1 \subset \overline{\mathcal{M}}_4$ is the divisor of curves with a vanishing theta-null. This is consistent with the set-theoretic equality $\pi(\mathcal{D}_{4:3}) = \mathcal{GP}_{4,3}^1$, which can be easily established (see Theorem 5.4).

Another case which has a simple interpretation is when b=1, i=r-1, and then g=(2k-1)(k-1), d=2k(k-1). Since $\operatorname{rank}(Q_L)=r$ and $\det(Q_L)=L$, by duality we have $\bigwedge^i Q_L=M_L\otimes L$, hence points $[C,\eta]\in\mathcal{D}_{(2k-1)(k-1):k}$ can be described purely in terms of multiplication maps of sections of line bundles on C:

Theorem 0.5. Fix integers $k \ge 2$ and g = (2k - 1)(k - 1). The locus

$$\mathcal{D}_{g:k} = \{ [C, \eta] \in \mathcal{R}_g : \exists L \in W_{2k(k-1)}^{2k-2}(C)$$

$$with \ H^0(L) \otimes H^0(L \otimes \eta) \to H^0(L^{\otimes 2} \otimes \eta) \ not \ bijective \}$$

is a divisor on \mathcal{R}_g . The class of its compactification inside $\overline{\mathcal{R}}_g$ equals

$$\begin{split} \overline{\mathcal{D}}_{g:k} &\equiv g! \frac{1!2! \cdots (k-1)!}{3(2k^2 - 3k - 1)(2k - 1)!(2k)! \cdots (3k - 2)!} \\ &\times \bigg(6(8k^5 - 36k^4 + 78k^3 - 95k^2 + 49k - 6)\lambda - (8k^5 - 36k^4 + 70k^3 - 71k^2 + 29k - 2)(\delta_0' + \delta_0'') \\ &\qquad \qquad - \frac{1}{2}(32k^5 - 144k^4 + 262k^3 - 245k^2 + 107k - 14)\delta_0^{\text{ram}} - \cdots \bigg). \end{split}$$

The second class of (virtual) divisors is provided by Koszul divisors on $\overline{\mathcal{R}}_g$. For a pair (C, L) consisting of a curve $[C] \in \mathcal{M}_g$ and a line bundle $L \in \text{Pic}(C)$, we denote by $K_{i,j}(C, L)$ its (i, j)-th Koszul cohomology group (cf. [L]). For a point $[C, \eta] \in \mathcal{R}_g$ we set $L := K_C \otimes \eta$ and we stratify \mathcal{R}_g using the syzygies of the Prym-canonical curve $C \stackrel{|L|}{\longrightarrow} \mathbf{P}^{g-2}$. We define the stratum

$$\mathcal{U}_{g,i} := \{ [C, \eta] \in \mathcal{R}_g : K_{i,2}(C, K_C \otimes \eta) \neq \emptyset \},\$$

that is, $\mathcal{U}_{g,i}$ consists of those Prym curves $[C, \eta] \in \mathcal{R}_g$ for which the Prym-canonical model $C \xrightarrow{|L|} \mathbf{P}^{g-2}$ fails to satisfy the Green–Lazarsfeld property (N_i) in the sense of [GL], [L].

Theorem 0.6. There exist two vector bundles $\mathcal{G}_{i,2}$ and $\mathcal{H}_{i,2}$ of the same rank defined over a partial compactification $\widetilde{\mathbf{R}}_{2i+6}$ of the stack \mathbf{R}_{2i+6} , together with a morphism ϕ : $\mathcal{H}_{i,2} \to \mathcal{G}_{i,2}$ such that

$$\mathcal{U}_{2i+6,i} := \{ [C,\eta] \in \widetilde{\mathcal{R}}_{2i+6} : K_{i,2}(C,K_C \otimes \eta) \neq 0 \}$$

is the degeneracy locus of the map ϕ . The virtual class of $[\overline{\mathcal{U}}_{2i+6,i}]$ is given by the formula

$$[\overline{\mathcal{U}}_{2i+6,i}]^{\text{virt}} = c_1(\mathcal{G}_{i,2} - \mathcal{H}_{i,2}) = \binom{2i+2}{i} \left(\frac{3(2i+7)}{i+3} \lambda - \frac{3}{2} \delta_0^{\text{ram}} - (\delta_0' + \alpha \delta_0'') - \cdots \right),$$

where the constant α satisfies $\alpha \geq 1$.

The compactification $\widetilde{\mathbf{R}}_g$ has the property that if $\widetilde{\mathcal{R}}_g \subset \overline{\mathcal{R}}_g$ denotes its coarse moduli space, then $\operatorname{codim}(\pi^{-1}(\mathcal{M}_g \cup \Delta_0) - \widetilde{\mathcal{R}}_g) \geq 2$. In particular Theorem 0.6 precisely determines the coefficients of λ , δ'_0 , δ''_0 and $\delta^{\operatorname{ram}}_0$ in the expansion of $[\overline{\mathcal{U}}_{2i+6,i}]^{\operatorname{virt}}$. We also show that if g < 2i + 6 then $K_{i,2}(C, K_C \otimes \eta) \neq \emptyset$ for any $[C, \eta] \in \mathcal{R}_g$. By analogy with the case of canonical curves and the classical M. Green Conjecture on syzygies of canonical curves (see [Vo]), we conjecture that the morphism of vector bundles $\phi: \mathcal{G}_{i,2} \to \mathcal{H}_{i,2}$ over $\widetilde{\mathbf{R}}_{2i+6}$ is generically non-degenerate:

Conjecture 0.7 (Prym–Green Conjecture). For a generic point $[C, \eta] \in \mathcal{R}_g$ and $g \ge 2i + 6$, we have $K_{i,2}(C, K_C \otimes \eta) = 0$. Equivalently, the Prym-canonical curve $C \stackrel{|K_C \otimes \eta|}{\hookrightarrow} \mathbf{P}^{g-2}$ satisfies the Green–Lazarsfeld property (N_i) whenever $g \ge 2i + 6$. For g = 2i + 6, the locus $\mathcal{U}_{2i+6,i}$ is an effective divisor on \mathcal{R}_{2i+6} .

Proposition 3.1 shows that, if true, Conjecture 0.7 is sharp. In [F4] we verify the Prym–Green Conjecture for g=2i+6 with $0 \le i \le 4$, $i \ne 3$. In particular, this together with Theorem 0.6 proves that $\overline{\mathcal{R}}_g$ is of general type for g=14.

The strata $\mathcal{U}_{g,i}$ have been considered before for i=0,1, in connection with the Prym–Torelli problem. Unlike the classical Torelli problem, the Prym–Torelli problem is a subtle question: Donagi's tetragonal construction shows that \mathcal{P}_g fails to be injective over points $[C,\eta]\in\pi^{-1}(\mathcal{M}_{g,4}^1)$ where the curve C is tetragonal (cf. [D2]). The locus $\mathcal{U}_{g,0}$ consists of those points $[C,\eta]\in\mathcal{R}_g$ where the differential

$$(d\mathcal{P}_g)_{[C,\eta]}: H^0(C, K_C^{\otimes 2})^{\vee} \to (\operatorname{Sym}^2 H^0(C, K_C \otimes \eta))^{\vee}$$

is not injective and thus the *infinitesimal Prym–Torelli theorem* fails. It is known that $(d\mathcal{P}_g)_{[C,\eta]}$ is generically injective for $g \geq 6$ (cf. [B], or [De, Corollaire 2.3]), that is, $\mathcal{U}_{g,0}$ is a proper subvariety of \mathcal{R}_g . In particular, for g=6 the locus $\mathcal{U}_{6,0}$ is a divisor of \mathcal{R}_6 , which gives another proof of Conjecture 0.7 for i=0.

Debarre proved that $\mathcal{U}_{g,1}$ is a proper subvariety of \mathcal{R}_g for $g \geq 9$ (cf. [De, Théorème 2.2]). This immediately implies that for $g \geq 9$ the Prym map \mathcal{P}_g is generically injective, hence the *Prym-Torelli theorem* holds generically. Debarre's proof unfortunately does not cover the interesting case g = 8, when $\mathcal{U}_{8,1} \subset \mathcal{R}_8$ is an effective divisor (cf. [F4]).

The proof of Theorem 0.1 is finished in Section 4, using in an essential way results from [F3]: We set $g':=1+\frac{g-1}{g}\binom{2g}{g-1}$ and then we consider the rational map which associates to a curve one of its Brill–Noether loci

$$\phi: \overline{\mathcal{M}}_{2g-1} \dashrightarrow \overline{\mathcal{M}}_{1+\frac{g-1}{\sigma}\binom{2g}{\sigma-1}}, \quad \phi[Y] := W^1_{g+1}(Y),$$

where $W^1_{g+1}(Y):=\{L\in \operatorname{Pic}^{g+1}(Y): h^0(Y,L)\geq 2\}$. If $\chi:\overline{\mathcal{R}}_g\to \overline{\mathcal{M}}_{2g-1}$ is the map given by $\chi([C,\eta]):=[\tilde{C}]$, where $f:\tilde{C}\to C$ is the étale double cover with the property that $f_*\mathcal{O}_{\tilde{C}}=\mathcal{O}_C\oplus \eta$, then using [F3] we compute the slope of myriads of effective divisors of type $\chi^*\phi^*(A)$, where $A\in \operatorname{Ample}(\overline{\mathcal{M}}_{g'})$. This proves Theorem 0.1 for even genus $g=2i+6\geq 18$.

We mention in passing, as an immediate application of Proposition 1.9, a different proof of the statement that $\overline{\mathcal{R}}_g$ has good rationality properties for low g (see again the introduction for the history of this problem). Our proof is quite simple and uses only numerical properties of Lefschetz pencils of curves on K3 surfaces:

Theorem 0.8. For all $g \leq 7$, the Kodaira dimension of $\overline{\mathcal{R}}_g$ is $-\infty$.

We close by summarizing the structure of the paper. In Section 1 we introduce the stack $\overline{\mathbf{R}}_g$ of Prym curves and determine the Chern classes of certain tautological vector bundles. In Section 2 we carry out the enumerative study of the divisors $\overline{\mathcal{D}}_{g:k}$ while in Section 3 we study Koszul divisors on $\overline{\mathcal{R}}_g$ in connection with the Prym-Green Conjecture. The proof of Theorem 0.1 is completed in Section 4 while Section 5 is concerned with the enumerative geometry of $\overline{\mathcal{R}}_g$ for $g \leq 5$. In Section 6 we describe the behaviour of singularities of pluricanonical forms of $\overline{\mathcal{R}}_g$. There is a significant overlap between some of the results of this paper and those of [Be]. Among the things we use from [Be] we mention the description of the branch locus of π and the fact that $\overline{\mathcal{R}}_g$ is isomorphic to the coarse moduli space of $\overline{\mathbf{M}}_g(\mathcal{B}\mathbb{Z}_2)$ (see Section 1). However, some of the results in [Be] are not correct, in particular the statement in [Be, Chapter 3] on singularities of $\overline{\mathcal{R}}_g$. Hence we carried out a detailed study of singularities of $\overline{\mathcal{R}}_g$ in Section 6 of our paper.

1. The stack of Prym curves

In this section we review a few facts about compactifications of \mathcal{R}_g . As a matter of terminology, if \mathbf{M} is a Deligne–Mumford stack, we denote by \mathcal{M} its coarse moduli space (this is contrary to the convention set in [ACV] but it makes sense, at least from a historical point of view). All the Picard groups of stacks or schemes we are going to consider are with rational coefficients.

We recall that $\pi: \mathcal{R}_g \to \mathcal{M}_g$ is the $(2^{2g}-1)$ -sheeted cover which forgets the point of order 2 and we denote by $\overline{\mathcal{R}}_g$ the normalization of $\overline{\mathcal{M}}_g$ in the function field of \mathcal{R}_g . By definition, $\overline{\mathcal{R}}_g$ is a normal variety and π extends to a finite ramified covering $\pi:\overline{\mathcal{R}}_g\to\overline{\mathcal{M}}_g$. The local behaviour of this branched cover has been studied in the thesis of M. Bernstein [Be] as well as in the paper [BCF]. In particular, the scheme $\overline{\mathcal{R}}_g$ has two distinct modular incarnations which we now recall. If X is a nodal curve, a smooth rational component $E\subset X$ is said to be *exceptional* if $\#(E\cap \overline{X}-\overline{E})=2$. The curve X is said to be *quasi-stable* if any two exceptional components of X are disjoint. Thus a quasi-stable curve is obtained from a stable curve by blowing up each node at most once. We denote by $[st(X)] \in \overline{\mathcal{M}}_g$ the stable model of X. We have the following definition (cf. [BCF]):

Definition 1.1. A *Prym curve* of genus g consists of a triple (X, η, β) , where X is a genus g quasi-stable curve, $\eta \in \operatorname{Pic}^0(X)$ is a line bundle of degree 0 such that $\eta_E = \mathcal{O}_E(1)$ for every exceptional component $E \subset X$, and $\beta : \eta^{\otimes 2} \to \mathcal{O}_X$ is a sheaf homomorphism which is generically non-zero along each non-exceptional component of X.

A family of Prym curves over a base scheme S consists of a triple $(\mathcal{X} \xrightarrow{f} S, \eta, \beta)$, where $f: \mathcal{X} \to S$ is a flat family of quasi-stable curves, $\eta \in \text{Pic}(\mathcal{X})$ is a line bundle and $\beta: \eta^{\otimes 2} \to \mathcal{O}_{\mathcal{X}}$ is a sheaf homomorphism, such that for every point $s \in S$ the restriction $(X_s, \eta_{X_s}, \beta_{X_s}: \eta_{X_s}^{\otimes 2} \to \mathcal{O}_{X_s})$ is a Prym curve.

We denote by $\overline{\mathbf{R}}_g$ the non-singular Deligne–Mumford stack of Prym curves of genus g. The main result of [BCF] is that the coarse moduli space of $\overline{\mathbf{R}}_g$ is isomorphic to the normalization of $\overline{\mathcal{M}}_g$ in the function field of \mathcal{R}_g . On the other hand, it is proved in [Be] that $\overline{\mathcal{R}}_g$ is also isomorphic to the coarse moduli space of the Deligne–Mumford stack $\overline{\mathbf{M}}_g$ ($\mathcal{B}\mathbb{Z}_2$) of \mathbb{Z}_2 -admissible double covers introduced in [B] and later in [ACV]. For intersection theory calculations the language of Prym curves is better suited than that of admissible covers. In particular, the existence of a degree 0 line bundle η over the universal Prym curve will be often used to compute the Chern classes of various tautological vector bundles defined over $\overline{\mathbf{R}}_g$. Throughout this paper we use the isomorphism between rational Picard groups ϵ^* : $\mathrm{Pic}(\overline{\mathcal{R}}_g) \to \mathrm{Pic}(\overline{\mathbf{R}}_g)$ induced by the map ϵ : $\overline{\mathbf{R}}_g \to \overline{\mathcal{R}}_g$ from the stack to its coarse moduli space.

Remark 1.2. If (X, η, β) is a Prym curve with exceptional components E_1, \ldots, E_r and $\{p_i, q_i\} = E_i \cap \overline{X - E_i}$ for $i = 1, \ldots, r$, then obviously $\beta_{E_i} = 0$. Moreover, if $\tilde{X} := \overline{X - \bigcup_{i=1}^r E_i}$ (viewed as a subcurve of X), then we have an isomorphism of sheaves

$$\eta_{\tilde{X}}^{\otimes 2} \xrightarrow{\sim} \mathcal{O}_{\tilde{X}}(-p_1 - q_1 - \dots - p_r - q_r).$$
(1)

It is straightforward to describe all Prym curves $[X, \eta, \beta] \in \overline{\mathcal{R}}_g$ whose stable model has a prescribed topological type. We do this when st(X) is a 1-nodal curve and we determine in the process the boundary components of $\overline{\mathcal{R}}_g - \mathcal{R}_g$.

Example 1.3 (Curves of compact type). If $st(X) = C \cup D$ is a union of two smooth curves C and D of genus i and g-i respectively meeting transversally at a point, we use (1) to note that $X = C \cup D$ (that is, X has no exceptional components). The line bundle η on X is determined by the choice of two line bundles $\eta_C \in \operatorname{Pic}^0(C)$ and $\eta_D \in \operatorname{Pic}^0(D)$ satisfying $\eta_C^{\otimes 2} = \mathcal{O}_C$ and $\eta_D^{\otimes 2} = \mathcal{O}_D$ respectively. This shows that for $1 \le i \le \lfloor g/2 \rfloor$ the pull-back under π of the boundary divisor $\Delta_i \subset \overline{\mathcal{M}}_g$ splits into three irreducible components

$$\pi^*(\Delta_i) = \Delta_i + \Delta_{g-i} + \Delta_{i:g-i},$$

where the generic point of $\Delta_i \subset \overline{\mathcal{R}}_g$ is of the form $[C \cup D, \eta_C \neq \mathcal{O}_C, \eta_D = \mathcal{O}_D]$, the generic point of Δ_{g-i} is of the form $[C \cup D, \eta_C = \mathcal{O}_C, \eta_D \neq \mathcal{O}_D]$), and finally $\Delta_{i:g-i}$ is the closure of the locus of points $[C \cup D, \eta_C \neq \mathcal{O}_C, \eta_D \neq \mathcal{O}_D]$ (see also [Be, p. 9]).

Example 1.4 (Irreducible one-nodal curves). If $st(X) = C_{yq} := C/(y \sim q)$, where $[C, y, q] \in \mathcal{M}_{g-1,2}$, then there are two possibilities, depending on whether X has an exceptional component or not. Suppose first that X = C' and $\eta \in Pic^0(X)$. If $\nu : C \to X$ is the normalization map, then there is an exact sequence

$$1 \to \mathbb{C}^* \to \operatorname{Pic}^0(X) \xrightarrow{\nu^*} \operatorname{Pic}^0(C) \to 0.$$

Thus η is determined by a (non-trivial) line bundle $\eta_C := \nu^*(\eta) \in \text{Pic}^0(C)$ satisfying $\eta_C^{\otimes 2} = \mathcal{O}_C$ together with an identification of the fibres $\eta_C(y)$ and $\eta_C(q)$. If $\eta_C = \mathcal{O}_C$, then there is a unique way to identify the fibres $\eta_C(y)$ and $\eta_C(q)$ such that $\eta \neq \mathcal{O}_X$, and this corresponds to the classical Wirtinger cover of X. We denote by $\Delta_0'' = \Delta_0^{\text{wir}}$ the closure in $\overline{\mathcal{R}}_g$ of the locus of Wirtinger covers. If $\eta_C \neq \mathcal{O}_C$, then for each such choice of $\eta_C \in \operatorname{Pic}^0(C)[2]$ there are two ways to glue $\eta_C(y)$ and $\eta_C(q)$. This provides another $2 \times (2^{2g-2}-1)$ Prym curves having C' as their stable model. We set $\Delta'_0 \subset \overline{\mathcal{R}}_g$ to be the closure of the locus of Prym curves with $\eta_C \neq \mathcal{O}_C$.

We now treat the case when $X = C \cup_{\{y,q\}} E$, with E being an exceptional component. Then $\eta_E = \mathcal{O}_E(1)$ and $\eta_C^{\otimes 2} = \mathcal{O}_C(-y-q)$. The analysis carried out in [BCF, Proposition 12] shows that π is simply ramified at each of these 2^{2g-2} Prym curves in $\pi^{-1}([C'])$. We denote by $\Delta_0^{\text{ram}} \subset \overline{\mathcal{R}}_g$ the closure of the locus of Prym curves $[C \cup_{\{y,q\}} E, \eta, \beta]$ and then Δ_0^{ram} is the ramification divisor of π . Moreover one has the relation

$$\pi^*(\Delta_0) = \Delta_0' + \Delta_0'' + 2\Delta_0^{\text{ram}}.$$

It is easy to establish a dictionary between Prym curves and Beauville admissible covers. We explain how to do this in codimension 1 in $\overline{\mathbb{R}}_g$ (see also [D2, Example 1.9]). The general point of Δ'_0 corresponds to an étale double cover $[\tilde{C} \xrightarrow{f} C] \in \mathcal{R}_{g-1}$ induced by η_C . We denote by y_i , q_i (i = 1, 2) the points lying in $f^{-1}(y)$ and $f^{-1}(q)$ respectively. Then

$$\overline{\mathcal{M}}_{2g-1}\ni\frac{\tilde{C}}{y_1\sim q_1,\,y_2\sim q_2}\to\frac{C}{y\sim q}\in\overline{\mathcal{M}}_g$$

is an admissible double cover, defined up to a sign. This ambiguity is then resolved in the choice of an element in $\operatorname{Ker}\{\nu^* : \operatorname{Pic}^0(C_{yq})[2] \to \operatorname{Pic}^0(C)[2]\}$. If $[C/(y \sim q, \eta), \beta]$ is a general point of Δ_0'' , then we take identical copies $[C_1, y_1, q_1]$

and $[C_2, y_2, q_2]$ of $[C, y, q] \in \mathcal{M}_{g-1,2}$. The Wirtinger cover is obtained by taking

$$\overline{\mathcal{M}}_{2g-1} \ni \frac{C_1 \cup C_2}{y_1 \sim q_2, y_2 \sim q_1} \to \frac{C}{y \sim q} \in \overline{\mathcal{M}}_g.$$

If $[C \cup_{\{y,q\}} E, \eta, \beta] \in \Delta_0^{\text{ram}}$, then $\eta_C \in \sqrt{\mathcal{O}_C(-y-q)}$ induces a 2 : 1 cover $\tilde{C} \stackrel{f}{\to} C$ branched over y and q. We set $\{\tilde{y}\} := f^{-1}(y), \{\tilde{q}\} := f^{-1}(q)$. The Beauville cover is

$$\overline{\mathcal{M}}_{2g-1}\ni\frac{\tilde{C}}{\tilde{\gamma}\sim\tilde{q}}\to\frac{C}{v\sim q}\in\overline{\mathcal{M}}_g.$$

As usual, one denotes by $\delta_0', \delta_0'', \delta_0^{\text{ram}}, \delta_i, \delta_{g-i}, \delta_{i:g-i} \in \text{Pic}(\overline{\mathbf{R}}_g)$ the stacky divisor classes corresponding to the boundary divisors of $\overline{\mathbb{R}}_g$. We also set $\lambda := \pi^*(\lambda) \in \text{Pic}(\overline{\mathbb{R}}_g)$. Next we determine the canonical class $K_{\overline{R}}$:

Theorem 1.5. One has the following formula in $Pic(\overline{\mathbf{R}}_g)$:

$$K_{\overline{\mathcal{R}}_g} = 13\lambda - 2(\delta_0' + \delta_0'') - 3\delta_0^{\text{ram}} - 2\sum_{i=1}^{[g/2]} (\delta_i + \delta_{g-i} + \delta_{i:g-i}) - (\delta_1 + \delta_{g-1} + \delta_{1:g-1}).$$

Proof. We use that $K_{\overline{\mathcal{M}}_g} \equiv 13\lambda - 2\delta_0 - 3\delta_1 - 2\delta_2 - \dots - 2\delta_{\lfloor g/2 \rfloor}$ (cf. [HM]), together with the Hurwitz formula for the cover $\pi : \overline{\mathcal{R}}_g \to \overline{\mathcal{M}}_g$. We find that $K_{\overline{\mathcal{R}}_g} = \pi^*(K_{\overline{\mathcal{M}}_g}) + \delta_0^{\text{ram}}$.

Using this formula as well as the results of Section 6, we conclude that in order to prove that $\overline{\mathcal{R}}_g$ is of general type for a certain g, it suffices to exhibit a single effective divisor

$$D \equiv a\lambda - b_0'\delta_0' - b_0''\delta_0'' - b_0^{\text{ram}}\delta_0^{\text{ram}} - \sum_{i=1}^{\lfloor g/2 \rfloor} (b_i\delta_i + b_{g-i}\delta_{g-i} + b_{i:g-i}\delta_{i:g-i}) \in \text{Eff}(\overline{\mathcal{R}}_g)$$

satisfying the following inequalities:

$$\max \left\{ \frac{a}{b_0'}, \frac{a}{b_0''} \right\} < \frac{13}{2}, \quad \max \left\{ \frac{a}{b_0^{\text{ram}}}, \frac{a}{b_1}, \frac{a}{b_{g-1}}, \frac{a}{b_{1:g-1}} \right\} < \frac{13}{3}, \\
\max_{i \ge 1} \left\{ \frac{a}{b_i}, \frac{a}{b_{g-i}}, \frac{a}{b_{i:g-i}} \right\} < \frac{13}{2}.$$
(2)

1.1. The universal Prym curve

We start by introducing the partial compactification $\widetilde{\mathcal{M}}_g := \mathcal{M}_g \cup \widetilde{\Delta}_0$ of \mathcal{M}_g , obtained by adding to \mathcal{M}_g the locus $\widetilde{\Delta}_0 \subset \overline{\mathcal{M}}_g$ of one-nodal irreducible curves $[C_{yq} := C/(y \sim q)]$, where $[C, y, q] \in \mathcal{M}_{g-1,2}$. Let $p : \widetilde{\mathbf{M}}_{g,1} \to \widetilde{\mathbf{M}}_g$ denote the universal curve. We denote $\widetilde{\mathcal{R}}_g := \pi^{-1}(\widetilde{\mathcal{M}}_g) \subset \overline{\mathcal{R}}_g$ and note that the boundary divisors $\widetilde{\Delta}_0' := \Delta_0' \cap \widetilde{\mathcal{R}}_g$, $\widetilde{\Delta}_0'' := \Delta_0'' \cap \widetilde{\mathcal{R}}_g$ and $\widetilde{\Delta}_0^{\mathrm{ram}} := \Delta_0^{\mathrm{ram}} \cap \widetilde{\mathcal{R}}_g$ become disjoint inside $\widetilde{\mathcal{R}}_g$. Finally, we set $\mathcal{Z} := \widetilde{\mathbf{R}}_g \times \widetilde{\mathbf{M}}_g$ $\widetilde{\mathbf{M}}_{g,1}$ and denote by $p_1 : \mathcal{Z} \to \widetilde{\mathbf{R}}_g$ the projection.

To obtain the universal family of Prym curves over \mathbf{R}_g , we blow up the codimension 2 locus $V \subset \mathcal{Z}$ corresponding to points

$$v = ([C \cup_{\{y,q\}} E, \eta_C \in \sqrt{\mathcal{O}_C(-y-q)}], \eta_E = \mathcal{O}_E(1), v(y) = v(q)) \in \Delta_0^{\text{ram}} \times_{\widetilde{\mathbf{M}}_g} \widetilde{\mathbf{M}}_{g,1}$$

(recall that $\nu: C \to C_{yq}$ denotes the normalization map). Suppose that (t_1, \ldots, t_{3g-3}) are local coordinates in an étale neighbourhood of $[C \cup_{\{y,q\}} E, \eta_C, \eta_E] \in \widetilde{\mathcal{R}}_g$ such that the local equation of Δ_0^{ram} is $(t_1 = 0)$. Then \mathcal{Z} around v admits local coordinates $(x, y, t_1, \ldots, t_{3g-3})$ satisfying the equation $xy = t_1^2$. In particular, \mathcal{Z} is singular along V. We denote by $\mathcal{X} := \mathrm{Bl}_V(\mathcal{Z})$ and by $f: \mathcal{X} \to \widetilde{\mathbf{R}}_g$ the induced family of Prym curves. Then for every $[X, \eta, \beta] \in \widetilde{\mathcal{R}}_g$ we have $f^{-1}([X, \eta, \beta]) = X$.

Then for every $[X, \eta, \beta] \in \widetilde{\mathcal{R}}_g$ we have $f^{-1}([X, \eta, \beta]) = X$. On \mathcal{X} there exists a Prym line bundle $\mathcal{P} \in \operatorname{Pic}(\mathcal{X})$ as well as a morphism of \mathcal{O}_X modules $B: \mathcal{P}^{\otimes 2} \to \mathcal{O}_{\mathcal{X}}$ with the property that $\mathcal{P}_{|f^{-1}([X,\eta,\beta])} = \eta$ and $B_{|f^{-1}([X,\eta,\beta])} = \beta: \eta^{\otimes 2} \to \mathcal{O}_X$, for all points $[X, \eta, \beta] \in \widetilde{\mathcal{R}}_g$ (see e.g. [C], the same argument carries over from the spin to the Prym moduli space).

We set \mathcal{E}_0' , \mathcal{E}_0'' and $\mathcal{E}_0^{\mathrm{ram}} \subset \mathcal{X}$ to be the proper transforms of the boundary divisors $p_1^{-1}(\widetilde{\Delta}_0')$, $p_1^{-1}(\widetilde{\Delta}_0'')$ and $p_1^{-1}(\widetilde{\Delta}_0^{\mathrm{ram}})$ respectively. Finally, we define \mathcal{E}_0 to be the exceptional divisor of the blow-up map $\mathcal{X} \to \mathcal{Z}$.

We recall that $g: \mathcal{Y} \to S$ is a family of nodal curves and L, M are line bundles on \mathcal{Y} ; then $\langle L, M \rangle \in \text{Pic}(S)$ denotes the bilinear *Deligne pairing* of L and M.

Proposition 1.6. If $f: \mathcal{X} \to \mathbf{R}_g$ is the universal Prym curve and $\mathcal{P} \in \text{Pic}(\mathcal{X})$ is the corresponding Prym bundle, then one has the following relations in $Pic(\mathbf{R}_{\varrho})$:

- (i) $\langle \omega_f, \mathcal{P} \rangle = 0$.
- (ii) $\langle \mathcal{O}_{\mathcal{X}}(\mathcal{E}_0), \mathcal{O}_{\mathcal{X}}(\mathcal{E}_0) \rangle = -2\delta_0^{\text{ram}}.$ (iii) $\langle \mathcal{O}_{\mathcal{X}}(\mathcal{P}), \mathcal{O}_{\mathcal{X}}(\mathcal{P}) \rangle = -\delta_0^{\text{ram}}/2.$

Proof. The sheaf homomorphism $B: \mathcal{P}^{\otimes 2} \to \mathcal{O}_{\mathcal{X}}$ vanishes (with order 1) precisely along the exceptional divisor \mathcal{E}_0 , hence $[\mathcal{E}_0] = -2c_1(\mathcal{P})$. Furthermore, we have the relations $f^*(\Delta_0^{\mathrm{ram}}) = \mathcal{E}_0^{\mathrm{ram}} + \mathcal{E}_0$ and $f_*([\mathcal{E}_0^{\mathrm{ram}}] \cdot [\mathcal{E}_0]) = 2\delta_0^{\mathrm{ram}}$ (in the fibre $f^{-1}([C \cup_{\{y,q\}} E, \eta_C])$ the divisors \mathcal{E}_0 and $\mathcal{E}_0^{\mathrm{ram}}$ meet over two points, corresponding to whether the marked point equals y or q). Now (ii) and (iii) follow simply from the push-pull formula. For (i), it is enough to show that $\omega_{f|\mathcal{E}_0}$ is the trivial bundle. This follows because for any point $[X, \eta, \beta] \in \mathcal{R}_g$ we have $\omega_X \otimes \mathcal{O}_E = 0$ for any exceptional component $E \subset X$.

We now fix $i \geq 1$ and set $\mathcal{N}_i := f_*(\omega_f^{\otimes i} \otimes \mathcal{P}^{\otimes i})$. Since $R^1 f_*(\omega_f^{\otimes i} \otimes \mathcal{P}^{\otimes i}) = 0$, Grauert's theorem implies that \mathcal{N}_i is a vector bundle over $\widetilde{\mathbf{R}}_g$ of rank (g-1)(2i-1).

Proposition 1.7. For each integer $i \geq 1$ the following formula holds in $Pic(\widetilde{\mathbf{R}}_{\varrho})$:

$$c_1(\mathcal{N}_i) = {i \choose 2} (12\lambda - \delta_0' - \delta_0'' - 2\delta_0^{\text{ram}}) + \lambda - \frac{i^2}{4} \delta_0^{\text{ram}}.$$

Proof. We apply Grothendieck–Riemann–Roch to the universal Prym curve $f: \mathcal{X} \to \widetilde{\mathbf{R}}_g$: $c_1(\mathcal{N}_i)$

$$= f_* \left[\left(1 + i c_1(\omega_f \otimes \mathcal{P}) + \frac{i^2 c_1^2(\omega_f \otimes \mathcal{P})}{2} \right) \left(1 - \frac{c_1(\omega_f)}{2} + \frac{c_1^2(\omega_f) + [\operatorname{Sing}(f)]}{12} \right) \right]_2,$$

and then use Proposition 1.6 and Mumford's formula $(\kappa_1)_{\widetilde{\mathbf{R}}_{\sigma}} = 12\lambda - \delta_0' - \delta_0'' - 2\delta_0^{\mathrm{ram}}$. \square

1.2. Inequalities between coefficients of divisors on $\overline{\mathcal{R}}_{g}$

We use pencils of curves on K3 surfaces to establish certain inequalities between the coefficients of effective divisors on \mathcal{R}_g . Using K3 surfaces we construct pencils that fill up the boundary divisors Δ_i , Δ_{g-i} and $\Delta_{i:g-i}$ for $1 \le i \le \lfloor g/2 \rfloor$ when $g \le 23$. The use of such pencils in the context of $\overline{\mathcal{M}}_g$ has already been demonstrated in [FP].

We start with a Lefschetz pencil $B \subset \overline{\mathcal{M}}_i$ of curves of genus i lying on a fixed K3 surface S. The pencil B is induced by a family $f: Bl_{i^2}(S) \to \mathbf{P}^1$ which has i^2 sections corresponding to the base points and we choose one such section σ . Using B, for each $g \ge i + 1$ we create a genus g pencil $B_i \subset \mathcal{M}_g$ of stable curves, by gluing a fixed curve $[C_2, p] \in \mathcal{M}_{g-i,1}$ along the section σ to each member of the pencil B. Then we have the following formulas on $\overline{\mathcal{M}}_g$ (cf. [FP, Lemma 2.4]):

$$B_i \cdot \lambda = i + 1$$
, $B_i \cdot \delta_0 = 6i + 18$, $B_i \cdot \delta_i = -1$, $B_i \cdot \delta_j = 0$ for $j \neq i$.

We fix $1 \le i \le \lfloor g/2 \rfloor$ and lift B_i in three different ways to pencils in $\overline{\mathcal{R}}_g$. First we choose a non-trivial line bundle $\eta_2 \in \operatorname{Pic}^0(C_2)[2]$. Let us denote by $A_{g-i} \subset \Delta_{g-i} \subset \overline{\mathcal{R}}_g$ the pencil of Prym curves $[C_2 \cup_{\sigma(\lambda)} f^{-1}(\lambda), \ \eta_{C_2} = \eta_2, \ \eta_{f^{-1}(\lambda)} = \mathcal{O}_{f^{-1}(\lambda)}], \text{ with } \lambda \in \mathbf{P}^1.$

Next, we denote by $A_i \subset \Delta_i \subset \overline{\mathcal{R}}_g$ the pencil consisting of Prym curves

$$\left[C_2 \cup_{\sigma(\lambda)} f^{-1}(\lambda), \eta_{C_2} = \mathcal{O}_{C_2}, \eta_{f^{-1}(\lambda)} \in \overline{\operatorname{Pic}}^0(f^{-1}(\lambda))[2]\right], \quad \text{ where } \lambda \in \mathbf{P}^1.$$

Clearly $\pi(A_i) = B_i$ and $\deg(A_i/B_i) = 2^{2i} - 1$. Finally, $A_{i:g-i} \subset \Delta_{i:g-i} \subset \overline{\mathcal{R}}_g$ denotes the pencil of Prym curves $[C_2 \cup f^{-1}(\lambda), \eta_{C_2} = \eta_2, \eta_{f^{-1}(\lambda)} \in \overline{\operatorname{Pic}}^0(f^{-1}(\lambda))[2]]$. Again, we have $\deg(A_{i:g-i}/B_i) = 2^{2i} - 1$.

Lemma 1.8. If A_i , A_{g-i} and $A_{i:g-i}$ are pencils defined above, we have the following

- $A_{g-i} \cdot \lambda = i+1$, $A_{g-i} \cdot \delta_0' = 6i+18$, $A_{g-i} \cdot \delta_i = A_{g-i} \cdot \delta_0^{\text{ram}} = 0$, and $A_{g-i} \cdot \delta_{g-i} = -1$. $A_i \cdot \lambda = (i+1)(2^{2i}-1)$, $A_i \cdot \delta_0' = (2^{2i-1}-2)(6i+18)$, $A_i \cdot \delta_0'' = 6i+18$,
- $A_{i} \cdot \delta_{0}^{\text{ram}} = 2^{2i-2}(6i+18) \text{ and } A_{i} \cdot \delta_{i} = -(2^{2i}-1).$ $\bullet A_{i:g-i} \cdot \lambda = (i+1)(2^{2i}-1), A_{i:g-i} \cdot \delta'_{0} = (2^{2i-1}-1)(6i+18),$ $A_{i:g-i} \cdot \delta_{0}^{\text{ram}} = 2^{2i-2}(6i+18), A_{i:g-i} \cdot \delta''_{0} = 0 \text{ and } A_{i:g-i} \cdot \delta_{i:g-i} = -(2^{2i}-1).$

Note that all these intersections are computed on $\overline{\mathcal{R}}_g$. The intersection numbers of A_i , A_{g-i} and $A_{i:g-i}$ with the generators of $Pic(\overline{\mathcal{R}}_g)$ not explicitly mentioned in Lemma 1.8 are all equal to 0.

Proof. We treat in detail only the case of A_i , the other cases being similar. Using [FP] we find that $(A_i \cdot \lambda)_{\overline{\mathcal{R}}_g} = (\pi_*(A_i) \cdot \lambda)_{\overline{\mathcal{M}}_g} = (2^{2i} - 1)(B_i \cdot \lambda)_{\overline{\mathcal{M}}_g}$. Furthermore, since $A_i \cap \Delta_{g-i} = A_i \cap \Delta_{i:g-i} = \emptyset$, we can write the formulas

$$(A_i \cdot \delta_i)_{\overline{\mathcal{R}}_g} = (A_i \cdot \pi^*(\delta_i))_{\overline{\mathcal{R}}_g} = (2^{2i} - 1)(B_i \cdot \delta_i)_{\overline{\mathcal{M}}_g}.$$

Clearly $(A_i \cdot \delta_0'')_{\overline{\mathcal{R}}_g} = (B_i \cdot \delta_0)_{\overline{\mathcal{M}}_g} = 6i + 18$, whereas the intersection $A_i \cdot \delta_0'$ corresponds to choosing an element in $Pic^0(f^{-1}(\lambda))[2]$, where $f^{-1}(\lambda)$ is a singular member of B. There are $2(2^{2i-2} - 1)(6i + 18)$ such choices.

Proposition 1.9. Let $D \equiv a\lambda - b_0'\delta_0' - b_0''\delta_0'' - b_0^{\text{ram}}\delta_0^{\text{ram}} - \sum_{i=1}^{\lfloor g/2 \rfloor} (b_i\delta_i + b_{g-i}\delta_{g-i} + b_{g-i}\delta_{g-i})$ $b_{i:g-i}\delta_{i:g-i}$) $\in \text{Pic}(\overline{\mathcal{R}}_g)$ be the closure in $\overline{\mathcal{R}}_g$ of an effective divisor in \mathcal{R}_g . Then if $1 \leq 1 \leq 1 \leq n$ $i \leq \min\{[g/2], 11\}$, we have the following inequalities:

- $\begin{array}{l} (1) \ \ a(i+1) b_0'(6i+18) + b_{g-i} \geq 0. \\ (2) \ \ a(i+1) b_0^{\mathrm{ram}}(6i+18) \frac{2^{2i-2}}{2^{2i}-1} b_0'(6i+18) \frac{2^{2i-1}-1}{2^{2i}-1} + b_{i:g-i} \geq 0. \\ (3) \ \ a(i+1) b_0^{\mathrm{ram}}(6i+18) \frac{2^{2i-2}}{2^{2i}-1} b_0' \ (6i+18) \frac{2^{2i-1}-2}{2^{2i}-1} b_0''(6i+18) \frac{1}{2^{2i}-1} + b_i \geq 0. \end{array}$

Proof. We use that in this range the pencils A_i , A_{g-i} and $A_{i:g-i}$ fill up the boundary divisors Δ_i , Δ_{g-i} and $\Delta_{i:g-i}$ respectively, hence $A_i \cdot D$, $A_{g-i} \cdot D$, $A_{i:g-i} \cdot D \ge 0$. \square

Proof of Theorem 0.8. We lift the Lefschetz pencil $B \subset \overline{\mathcal{M}}_g$ corresponding to a fixed K3 surface to a pencil $\tilde{B} \subset \overline{\mathcal{R}}_g$ of Prym curves by taking Prym curves $\tilde{B} := \{[C_\lambda, \eta_{C_\lambda}] \in \overline{\mathcal{R}}_g : [C_\lambda] \in B, \eta_{C_\lambda} \in \overline{\operatorname{Pic}}^0(C_\lambda)[2]\}$. We have the following formulas:

$$\begin{split} \tilde{B} \cdot \lambda &= (2^{2g}-1)(g+1), \quad \tilde{B} \cdot \delta_0' = (2^{2g-1}-2)(6g+18), \\ \tilde{B} \cdot \delta_0'' &= 6g+18, \quad \tilde{B} \cdot \delta_0^{\text{ram}} = 2^{2g-2}(6g+18). \end{split}$$

Furthermore, \tilde{B} is disjoint from all the remaining boundary classes of $\overline{\mathcal{R}}_g$. One now verifies that $\tilde{B} \cdot K_{\overline{\mathcal{R}}_g} < 0$ precisely when $g \leq 7$. Since \tilde{B} is a covering curve for $\overline{\mathcal{R}}_g$ in the range $g \leq 11$, $g \neq 10$, we find that $\kappa(\overline{\mathcal{R}}_g) = -\infty$.

2. Theta divisors for vector bundles and geometric loci in $\overline{\mathcal{R}}_g$

We present a general method of constructing geometric divisors on $\overline{\mathcal{R}}_g$. For a fixed point $[C, \eta] \in \mathcal{R}_g$ we shall study the relative position of $\eta \in \text{Pic}^0(C)[2]$ with respect to certain pluri-theta divisors on $\text{Pic}^0(C)$.

We start by fixing a smooth curve C. If $E \in U_C(r,d)$ is a semistable vector bundle on C of integer slope $\mu(E) := d/r \in \mathbb{Z}$, then following Raynaud [R], we introduce the determinantal cycle

$$\Theta_E := \{ \eta \in \text{Pic}^{g-\mu-1}(C) : H^0(C, E \otimes \eta) \neq 0 \}.$$

Either $\Theta_E = \operatorname{Pic}^{g-\mu-1}(C)$, or else, Θ_E is a divisor on $\operatorname{Pic}^{g-\mu-1}(C)$ and then $\Theta_E \equiv r \cdot \theta$. In the latter case we say that Θ_E is the *theta divisor* of the vector bundle E. Clearly, Θ_E is a divisor if and only if $H^0(C, E \otimes \eta) = 0$ for a general bundle $\eta \in \operatorname{Pic}^{g-\mu-1}(C)$.

Let us now fix a globally generated line bundle $L \in \text{Pic}^d(C)$ such that $h^0(C, L) = r + 1$. The *Lazarsfeld vector bundle M_L* of *L* is defined using the exact sequence on *C*

$$0 \to M_L \to H^0(C, L) \otimes \mathcal{O}_C \to L \to 0$$

(see also [GL], [L], [Vo], [F1], [FMP] for many applications of these bundles). It is customary to denote $Q_L := M_L^\vee$, hence $\mu(Q_L) = d/r$. When $L = K_C$, one writes $Q_C := Q_{K_C}$. The vector bundles Q_L (and all its exterior powers) are semistable under mild genericity assumptions on C (see [L] or [F1, Proposition 2.1]). In the case $\mu(\bigwedge^i Q_L) = g - 1$, when we expect $\Theta_{\bigwedge^i Q_L}$ to be a divisor on $\operatorname{Pic}^0(C)$, we may ask whether for a given point $[C, \eta] \in \mathcal{R}_g$ the condition $\eta \in \Theta_{\bigwedge^i Q_L}$ is satisfied or not. Throughout this section we denote by $\mathfrak{G}_d^r \to \mathcal{M}_g$ the Deligne–Mumford stack parameterizing pairs [C, l], where $[C] \in \mathcal{M}_g$ and $l = (L, V) \in G_d^r(C)$ is a linear series of type \mathfrak{g}_d^r .

We fix integers $k \ge 2$ and $b \ge 0$. We set integers

$$i := kb + k - b - 2, \quad r := kb + k - 2,$$

 $g := k(kb + k - b - 2) + 1 = ik + 1, \quad d := k(kb + k - 2).$

Since $\rho(g, r, d) = 0$, a general curve $[C] \in \mathcal{M}_g$ carries a finite number of (obviously complete) linear series $l \in G^r_d(C)$. We denote this number by

$$N := g! \frac{1!2! \cdots r!}{(k-1)! \cdots (k-1+r)!} = \deg(\mathfrak{G}_d^r/\mathcal{M}_g).$$

We also note that we can write g=(r+1)(k-1) and d=rk, and moreover each line bundle $L\in W^r_d(C)$ satisfies $h^1(C,L)=k-1$. Furthermore, we compute $\mu(\bigwedge^i Q_L)=ik=g-1$ and then we introduce the following virtual divisor on \mathcal{R}_g :

$$\mathcal{D}_{g:k} := \{ [C, \eta] \in \mathcal{R}_g : \exists L \in W_d^r(C) \text{ such that } h^0(C, \bigwedge^i Q_L \otimes \eta) \ge 1 \}.$$

From the definition it follows that $\mathcal{D}_{g:k}$ is either pure of codimension 1 in \mathcal{R}_g , or else $\mathcal{D}_{g:k} = \mathcal{R}_g$. We shall prove that the second possibility does not occur.

For $[C, \eta] \in \mathcal{R}_g$ and $L \in W_d^r(C)$ one has the following exact sequence on C:

$$0 \to \bigwedge^{i} M_{L} \otimes K_{C} \otimes \eta \to \bigwedge^{i} H^{0}(C, L) \otimes K_{C} \otimes \eta \to \bigwedge^{i-1} M_{L} \otimes L \otimes K_{C} \otimes \eta \to 0,$$

from which, using Serre duality, one derives the following equivalences:

$$[C, \eta] \in \mathcal{D}_{g:k} \Leftrightarrow h^{1}(C, \bigwedge^{i} M_{L} \otimes K_{C} \otimes \eta) \geq 1$$

$$\Leftrightarrow \bigwedge^{i} H^{0}(C, L) \otimes H^{0}(C, K_{C} \otimes \eta) \to H^{0}(C, \bigwedge^{i-1} M_{L} \otimes L \otimes K_{C} \otimes \eta)$$
is not an isomorphism. (3)

Note that obviously rank $(\bigwedge^i H^0(C, L) \otimes H^0(C, K_C \otimes \eta)) = {r+1 \choose i} (g-1)$, while

$$h^{0}(C, \bigwedge^{i-1} M_{L} \otimes L \otimes K_{C} \otimes \eta) = \chi(C, \bigwedge^{i-1} M_{L} \otimes L \otimes K_{C} \otimes \eta)$$

$$= \binom{r}{i-1} (-k(i-1) + d + g - 1) = \binom{r+1}{i} (g-1)$$

(use that M_L is a semistable vector bundle and that $\mu(\bigwedge^{i-1} M_L \otimes L \otimes K_C \otimes \eta) > 2g-1$).

Remark 2.1. As pointed out in the introduction, an important particular case is k=2, when i=b, g=2i+1, r=2i, d=4i=2g-2. Since $W_{2g-2}^{g-1}(C)=\{K_C\}$, it follows that $[C,\eta]\in\mathcal{D}_{2i+1,2}\Leftrightarrow\eta\in\Theta_{\bigwedge^iQ_C}$. The main result from [FMP] states that for any $[C]\in\mathcal{M}_g$ the Raynaud locus $\Theta_{\bigwedge^iQ_C}$ is a divisor in $\operatorname{Pic}^0(C)$ (that is, \bigwedge^iQ_C has a theta divisor) and we have an equality of cycles

$$\Theta_{\bigwedge^{i} Q_{C}} = C_{i} - C_{i} \subset \operatorname{Pic}^{0}(C), \tag{4}$$

where the right-hand side denotes the i-th difference variety of C, that is, the image of the difference map

$$\phi: C_i \times C_i \to \operatorname{Pic}^0(C), \quad \phi(D, E) := \mathcal{O}_C(D - E).$$

Using Lazarsfeld's filtration argument [L, Lemma 1.4.1], one finds that for a generic choice of distinct points $x_1, \ldots, x_{g-2} \in C$, there is an exact sequence

$$0 \to \bigoplus_{l=1}^{g-2} \mathcal{O}_C(x_l) \to \mathcal{Q}_C \to K_C \otimes \mathcal{O}_C(-x_1 - \dots - x_{g-2}) \to 0,$$

which implies the inclusion $C_i - C_i \subset \Theta_{\bigwedge^i Q_C}$. The importance of (4) is that it shows that $\Theta_{\bigwedge^i Q_C}$ is a divisor on $\operatorname{Pic}^0(C)$, that is, $H^0(C, \bigwedge^i Q_C \otimes \eta) = 0$ for a generic $\eta \in \operatorname{Pic}^0(C)$.

Theorem 2.2. For every genus g = 2i + 1 we have the following identification of cycles on \mathcal{R}_g :

$$\mathcal{D}_{2i+1:2} := \{ [C, \eta] \in \mathcal{R}_g : \eta \in C_i - C_i \}.$$

Next we prove that $\mathcal{D}_{g:k}$ is an actual divisor on \mathcal{R}_g for any $k \geq 2$ and we achieve this by specialization to the k-gonal locus $\mathcal{M}_{g,k}^1$ in \mathcal{M}_g .

Theorem 2.3. Fix $k \geq 2$, $b \geq 1$ and g, r, d, i defined as above. Then $\mathcal{D}_{g:k}$ is a divisor on \mathcal{R}_g . Precisely, for a generic $[C, \eta] \in \mathcal{R}_g$ we have $H^0(C, \bigwedge^i Q_L \otimes \eta) = 0$ for every $L \in W^r_d(C)$.

Proof. Since there is a unique irreducible component of $\mathfrak{G}_d^r(\mathcal{R}_g/\mathcal{M}_g) := \mathfrak{G}_d^r \times_{\mathcal{M}_g} \mathcal{R}_g$ mapping dominantly onto \mathcal{R}_g , in order to prove that $\mathcal{D}_{g:k}$ is a divisor it suffices to exhibit a single triple $[C, L, \eta] \in \mathfrak{G}_d^r(\mathcal{R}_g/\mathcal{M}_g)$ such that (1) the Petri map

$$\mu_0(C,L): H^0(C,L) \otimes H^0(C,K_C \otimes L^{\vee}) \to H^0(C,K_C)$$

is an isomorphism and (2) the torsion point $\eta \in \operatorname{Pic}^0(C)[2]$ is such that $\eta \notin \Theta_{\bigwedge^i Q_L}$.

Proposition 2.1.1 from [CM] ensures that for a generic k-gonal curve $[C,A] \in \mathfrak{G}^1_k$ of genus g=(r+1)(k-1) one has $h^0(C,A^{\otimes j})=j+1$ for $1\leq j\leq r+1$. In particular there is an isomorphism $\operatorname{Sym}^j H^0(C,A)\cong H^0(C,A^{\otimes j})$. Using this and Riemann–Roch, we obtain $h^0(C,K_C\otimes A^{\otimes (-j)})=(k-1)(r+1-j)$ for $0\leq j\leq r+1$. Thus there is a generically injective rational map $\mathfrak{G}^1_k \dashrightarrow \mathfrak{G}^r_d$ given by $[C,A]\mapsto [C,A^{\otimes r}]$ (The use of such a map has been first pointed out to us in a different context by S. Keel.) We claim that \mathfrak{G}^1_k maps into the "main component" of \mathfrak{G}^r_d which maps dominantly onto $\overline{\mathcal{M}}_g$. To prove this it suffices to check that the Petri map

$$\mu_0(C, A^{\otimes r}): H^0(C, A^{\otimes r}) \otimes H^0(C, K_C \otimes A^{\otimes (-r)}) \to H^0(C, K_C)$$

is an isomorphism (remember that $H^0(C, A^{\otimes r}) \cong \operatorname{Sym}^r H^0(C, A)$). We use the base point free pencil trick to write down the exact sequence

$$0 \to H^0(K_C \otimes A^{\otimes -(j+1)}) \to H^0(A) \otimes H^0(K_C \otimes A^{\otimes (-j)}) \xrightarrow{\mu_j(A)} H^0(K_C \otimes A^{\otimes -(j-1)}).$$

One can now easily check that $\mu_j(A)$ is surjective for $1 \le j \le r$ by using the formulas $h^0(C, K_C \otimes A^{\otimes (-j)}) = (k-1)(r+1-j)$ valid for $0 \le j \le r+1$. This in turns implies that $\mu_0(C, A^{\otimes r})$ is surjective, hence an isomorphism.

We now check condition (2) and note that for $[C, L = A^{\otimes r}] \in \mathfrak{G}_d^r$, the Lazarsfeld bundle splits as $Q_L \cong A^{\oplus r}$. In particular, $\bigwedge^i Q_L \cong \oplus_{\binom{r}{i}} A^{\otimes i}$, hence the condition $H^0(C, \bigwedge^i Q_L \otimes \eta) \neq 0$ is equivalent to $H^0(C, A^{\otimes i} \otimes \eta) \neq 0$, that is, the translate of the theta divisor $W_{g-1}(C) - A^{\otimes i} \subset \operatorname{Pic}^0(C)$ cannot contain all points of order 2 on $\operatorname{Pic}^0(C)$. We assume by contradiction that for $\operatorname{any}[C, A] \in \mathfrak{G}_k^1$ and $\operatorname{any} \eta \in \operatorname{Pic}^0(C)[2]$, we have $H^0(C, A^{\otimes i} \otimes \eta) \geq 1$. We use that \mathfrak{G}_k^1 is irreducible and specialize C to a hyperelliptic curve and choose $A = \mathfrak{g}_2^1 \otimes \mathcal{O}_C(x_1 + \cdots + x_{k-2})$, with $x_1, \ldots, x_{k-2} \in C$ being general points. Finally we take $\eta := \mathcal{O}_C(p_1 + \cdots + p_{i+1} - q_1 - \cdots - q_{i+1}) \in \operatorname{Pic}^0(C)[2]$, with $p_1, \ldots, p_{i+1}, q_1, \ldots, q_{i+1}$ being distinct ramification points of the hyperelliptic \mathfrak{g}_2^1 . It is now straightforward to check that $H^0(C, A^{\otimes i} \otimes \eta) = 0$.

In order to compute the class $[\overline{\mathcal{D}}_{g:k}] \in \operatorname{Pic}(\overline{\mathcal{R}}_g)$ we extend the determinantal description of $\mathcal{D}_{g:k}$ to the boundary of $\overline{\mathcal{R}}_g$. We start by setting some notation. We denote by $\mathbf{M}_g^0 \subset \mathbf{M}_g$ the open substack classifying curves $[C] \in \mathcal{M}_g$ such that $W_{d-1}^r(C) = \emptyset$ and $W_d^{r+1}(C) = \emptyset$. We know that $\operatorname{codim}(\mathcal{M}_g - \mathcal{M}_g^0, \mathcal{M}_g) \geq 2$. We further denote by $\Delta_0^0 \subset \Delta_0 \subset \overline{\mathcal{M}}_g$ the locus of curves $[C/(y \sim q)]$ where $[C] \in \mathcal{M}_{g-1}$ is a curve that satisfies the Brill–Noether theorem and where $y, q \in C$ are arbitrary points. Note that every Brill–Noether general curve $[C] \in \mathcal{M}_{g-1}$ satisfies

$$W_{d-1}^{r}(C) = \emptyset$$
, $W_{d}^{r+1}(C) = \emptyset$ and $\dim W_{d}^{r}(C) = \rho(g-1, r, d) = r$.

We set $\overline{\mathbf{M}}_{g}^{0} := \mathbf{M}_{g}^{0} \cup \Delta_{0}^{0} \subset \overline{\mathbf{M}}_{g}$. Then we consider the Deligne–Mumford stack

$$\sigma_0:\mathfrak{G}^r_d\to\overline{\mathbf{M}}^0_g$$

classifying pairs [C, L] with $[C] \in \overline{\mathcal{M}}_g^0$ and $L \in G_d^r(C)$ (cf. [EH], [F2], [Kh]; note that it is essential that $\rho(g, r, d) = 0$; at the moment there is no known extension of this stack over the entire $\overline{\mathbf{M}}_g$). We remark that for any curve $[C] \in \overline{\mathcal{M}}_g^0$ and $L \in W_d^r(C)$ we have $h^0(C, L) = r + 1$, that is, \mathfrak{G}_d^r parameterizes only complete linear series. Indeed, for a smooth curve $[C] \in \mathcal{M}_g^0$ we have $W_d^{r+1}(C) = \emptyset$, so necessarily $W_d^r(C) = G_d^r(C)$. For a point $[C_{yq} := C/(y \sim q)] \in \Delta_0^0$ we have the identification

$$\sigma_0^{-1}[C_{yq}] = \{ L \in W_d^r(C) : h^0(C, L \otimes \mathcal{O}_C(-y - q)) = r \},$$

where we note that since the normalization $[C] \in \mathcal{M}_{g-1}$ is assumed to be Brill-Noether general, any sheaf $L \in \sigma_0^{-1}[C_{yq}]$ satisfies $h^0(C, L \otimes \mathcal{O}_C(-y)) = h^0(C, L \otimes \mathcal{O}_C(-q)) = r$ and $h^0(C, L) = r + 1$. Furthermore, $\sigma_0 : \mathfrak{G}_d^r \to \overline{\mathbf{M}}_g^0$ is proper, which is to say that $\overline{W}_d^r(C_{yq}) = W_d^r(C_{yq})$, where the left-hand side denotes the closure of $W_d^r(C_{yq})$ in the variety $\overline{\mathrm{Pic}}^d(C_{yq})$ of torsion-free sheaves on C_{yq} . This follows because a non-locally free

torsion-free sheaf in $\overline{W}^r_d(C_{yq}) - W^r_d(C_{yq})$ is of the form $v_*(A)$, where $A \in W^r_{d-1}(C)$ and $v: C \to C_{yq}$ is the normalization map. But we know that $W^r_{d-1}(C) = \emptyset$, because $[C] \in \mathcal{M}_{g-1}$ satisfies the Brill-Noether theorem. Since $\rho(g,r,d)=0$, by general Brill-Noether theory, there exists a unique irreducible component of \mathfrak{G}^r_d which maps onto $\overline{\mathbf{M}}^0_g$. It is certainly not the case that \mathfrak{G}^r_d is irreducible, unless $k \leq 3$, when either $\mathfrak{G}^r_d = \mathbf{M}_g$ (k = 2), or \mathfrak{G}^r_d is isomorphic to a Hurwitz stack (k = 3). Let $f^r_d: \mathfrak{C}^r_{g,d} := \overline{\mathbf{M}}^0_{g,1} \times_{\overline{\mathbf{M}}^0_g} \mathfrak{G}^r_d \to \mathfrak{G}^r_d$

denote the pullback of the universal curve $\overline{\mathbf{M}}_{g,1}^0 \to \overline{\mathbf{M}}_g^0$ to \mathfrak{G}_d^r . Once we have chosen a Poincaré bundle \mathcal{L} on $\mathfrak{C}_{g,d}^r$ we can form the three codimension 1 tautological classes in $A^1(\mathfrak{G}_d^r)$:

$$\mathfrak{a} := (f_d^r)_* (c_1(\mathcal{L})^2), \quad \mathfrak{b} := (f_d^r)_* (c_1(\mathcal{L}) \cdot c_1(\omega_{f_d^r})),
\mathfrak{c} := (f_d^r)_* (c_1(\omega_{f_d^r})^2) = (\sigma_0)^* ((\kappa_1)_{\overline{\mathbf{M}}_g^0}).$$
(5)

These classes depend on the choice of \mathcal{L} and behave functorially with respect to base change (see also Remark 2.7 for the precise statement regarding the choice of \mathcal{L}). We set $\overline{\mathbf{R}}_g^0 := \pi^{-1}(\widetilde{\mathbf{M}}_g^0) \subset \widetilde{\mathbf{R}}_g$ and introduce the stack of \mathfrak{g}_d^r 's on Prym curves

$$\sigma: \mathfrak{G}^r_d(\widetilde{\mathbf{R}}_g^0/\widetilde{\mathbf{M}}_g^0) := \overline{\mathbf{R}}_g^0 \times_{\overline{\mathbf{M}}_g^0} \mathfrak{G}_d^r \to \overline{\mathbf{R}}_g^0.$$

By a slight abuse of notation we denote the boundary divisors by the same symbols, that is, $\Delta_0' := \sigma^*(\Delta_0')$, $\Delta_0'' := \sigma^*(\Delta_0'')$ and $\Delta_0^{\mathrm{ram}} := \sigma^*(\Delta_0^{\mathrm{ram}})$. Finally, we introduce the universal curve over the stack of \mathfrak{g}_d^r 's on Prym curves:

$$f': \mathcal{X}^r_d := \mathcal{X} \times_{\overline{\mathbf{R}}^0_g} \mathfrak{G}^r_d(\overline{\mathbf{R}}^0_g/\overline{\mathbf{M}}^0_g) \to \mathfrak{G}^r_d(\overline{\mathbf{R}}^0_g/\overline{\mathbf{M}}^0_g).$$

On \mathcal{X}_d^r there are two tautological line bundles, the universal Prym bundle \mathcal{P}_d^r which is the pull-back of $\mathcal{P} \in \operatorname{Pic}(\mathcal{X})$ under the projection $\mathcal{X}_d^r \to \mathcal{X}$, and a Poincaré bundle $\mathcal{L} \in \operatorname{Pic}(\mathcal{X}_d^r)$ characterized by the property $\mathcal{L}_{|f'^{-1}[X,\eta,\beta,L]} = L \in W_d^r(C)$, for each point $[X,\eta,\beta,L] \in \mathfrak{G}_d^r(\overline{\mathcal{R}}_g^0/\overline{\mathcal{M}}_g^0)$. Note that we also have the codimension 1 classes $\mathfrak{a},\mathfrak{b},\mathfrak{c} \in A^1(\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0))$ defined by the formulas (5).

Proposition 2.4. Let C be a curve of genus g and let $L \in W_d^r(C)$ be a globally generated complete linear series. Then for any integer $0 \le j \le r$ and for any line bundle $A \in \operatorname{Pic}^a(C)$ such that $a \ge 2g + d - r + j - 1$, we have $H^1(C, \bigwedge^j M_L \otimes A) = 0$.

Proof. We use a filtration argument due to Lazarsfeld [L]. Having fixed L and A, we choose general points $x_1, \ldots, x_{r-1} \in C$ such that $h^0(C, L \otimes \mathcal{O}_C(-x_1 - \cdots - x_{r-1})) = 2$ and then there is an exact sequence on C

$$0 \to L^{\vee}(x_1 + \dots + x_{r-1}) \to M_L \to \bigoplus_{l=1}^{r-1} \mathcal{O}_C(-x_l) \to 0.$$

Taking the *j*-th exterior powers and tensoring the resulting exact sequence with A, we find that in order to conclude that $H^1(C, \bigwedge^i M_L \otimes A) = 0$ for $i \le r$, it suffices to show that for $1 \le i \le r$ the following hold:

- (1) $H^1(C, A \otimes \mathcal{O}_C(-D_j)) = 0$ for each effective divisor $D_j \in C_j$ with support in the set $\{x_1, \ldots, x_{r-1}\},$
- (2) $H^1(C, A \otimes L^{\vee} \otimes \mathcal{O}_C(D_{r-j})) = 0$, for any effective divisor $D_{r-j} \in C_{r-j}$ with support contained in $\{x_1, \ldots, x_{r-1}\}$.

Both (1) and (2) hold for degree reasons since $\deg(C, A \otimes \mathcal{O}_C(-D_j)) \geq 2g-1$ and $\deg(C, A \otimes L^{\vee} \otimes \mathcal{O}_C(D_{r-j})) \geq 2g-1$ and the points $x_1, \ldots, x_{r-1} \in C$ are general. \square

Next we use Proposition 2.4 to prove a vanishing result for Prym curves.

Proposition 2.5. For each point $[X, \eta, \beta, L] \in \mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0)$ and $0 \le a \le i-1$, we have

$$H^1(X, \bigwedge^a M_L \otimes L^{\otimes (i-a)} \otimes \omega_X \otimes \eta) = 0.$$

Proof. If X is smooth, then the vanishing follows directly from Proposition 2.4. Assume now that $[X, \eta, \beta] \in \Delta_0' \cup \Delta_0''$, that is, st(X) = X and $\eta \in \text{Pic}^0(X)[2]$. As usual, we denote by $\nu : C \to X$ the normalization map, and $L_C := \nu^*(L) \in W_d^r(C)$ satisfies $h^0(C, L_C \otimes \mathcal{O}_C(-y - q)) = r$, hence $H^0(X, L) \cong H^0(C, L_C)$, which implies that $\nu^*(M_L) = M_{L_C}$. Tensoring the usual exact sequence on X,

$$0 \to \mathcal{O}_X \to \nu_* \mathcal{O}_C \to \nu_* \mathcal{O}_C / \mathcal{O}_X \to 0$$
,

by the line bundle $\bigwedge^a M_L \otimes L^{\otimes (i-a)} \otimes \omega_X \otimes \eta$, we find that a sufficient condition for the vanishing $H^1(X, \bigwedge^a M_L \otimes L^{\otimes (i-a)} \otimes \omega_X \otimes \eta) = 0$ to hold is that

$$\begin{split} H^1(C, \bigwedge^a M_{L_C} \otimes L_C^{\otimes (i-a)} \otimes K_C \otimes \eta_C) \\ &= H^1(C, \bigwedge^a M_{L_C} \otimes L_C^{\otimes (i-a)} \otimes K_C(y+q) \otimes \eta_C) = 0. \end{split}$$

Since i < r, this follows directly from Proposition 2.4.

We are left with the case when $[X, \eta, \beta] \in \Delta_0^{\mathrm{ram}}$, when $X := C \cup_{\{q,y\}} E$, with E being a smooth rational curve, $L_C \in W^r_d(C)$, $L_E = \mathcal{O}_E$ and $\eta_C^{\otimes 2} = \mathcal{O}_C(-y-q)$. We also have $M_{L|C} = M_{L_C}$ and $M_{L|E} = H^0(C, L_C \otimes \mathcal{O}_C(-y-q)) \otimes \mathcal{O}_E$. A standard argument involving the Mayer–Vietoris sequence on X shows that the vanishing of the group $H^1(X, \bigwedge^a M_L \otimes L^{\otimes (i-a)} \otimes \omega_X \otimes \eta)$ is implied by the following vanishing conditions:

$$\begin{split} H^1(C, \bigwedge^a M_{L_C} \otimes L_C^{\otimes (i-a)} \otimes K_C(y+q) \otimes \eta_C) \\ &= H^1(C, \bigwedge^a M_{L_C} \otimes L_C^{\otimes (i-a)} \otimes K_C \otimes \eta_C) = 0. \end{split}$$

The conditions of Proposition 2.4 being satisfied $(i \le r - 1)$, we finish the proof.

Proposition 2.5 enables us to define a sequence of tautological vector bundles on $\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0)$: First, we set $\mathcal{H}:=f_*'(\mathcal{L})$. By Grauert's theorem, \mathcal{H} is a vector bundle of rank r+1 with fibre $\mathcal{H}[X,\eta,\beta,L]=H^0(X,L)$. For $j\geq 0$ we set

$$\mathcal{A}_{0,j} := f'_*(\mathcal{L}^{\otimes j} \otimes \omega_{f'} \otimes \mathcal{P}_d^r).$$

Since $R^1 f'_*(\mathcal{L}^{\otimes j} \otimes \omega_{f'} \otimes \mathcal{P}^r_d) = 0$ we find that $\mathcal{A}_{0,j}$ is a vector bundle over $\mathfrak{G}^r_d(\overline{\mathbf{R}}^0_g/\overline{\mathbf{M}}^0_g)$ of rank equal to $h^0(X, L^{\otimes j} \otimes \omega_X \otimes \eta) = jd + g - 1$. Next we introduce the global Lazarsfeld vector bundle \mathcal{M} over \mathcal{X}^r_d by the exact sequence

$$0 \to \mathcal{M} \to f'^*(\mathcal{H}) \to \mathcal{L} \to 0$$

hence $\mathcal{M}_{f'^{-1}[X,\eta,\beta,L]}=M_L$ for each $[X,\eta,\beta,L]\in\mathfrak{G}^r_d(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0)$. Then for integers $a,j\geq 1$ we define the sheaf

$$\mathcal{A}_{a,j} := f'_*(\bigwedge^a \mathcal{M} \otimes \mathcal{L}^{\otimes j} \otimes \omega_{f'} \otimes \mathcal{P}_d^r).$$

For each $1 \le a \le i-1$, we have proved that $R^1 f'_*(\bigwedge^a \mathcal{M} \otimes \mathcal{L}^{\otimes (i-a)} \otimes \omega_{f'} \otimes \mathcal{P}^r_d) = 0$ (cf. Proposition 2.5), therefore $\mathcal{A}_{a,i-a}$ is a vector bundle over $\mathfrak{G}^0_d(\overline{\mathbf{R}}^0_g/\overline{\mathbf{M}}^0_g)$ having rank

$$\operatorname{rk}(\mathcal{A}_{a,i-a}) = \chi(X, \bigwedge^{a} M_{L} \otimes L^{\otimes (i-a)} \otimes \omega_{X} \otimes \eta) = \binom{r}{a} k(i-a)(r+1).$$

Proposition 2.5 also shows that for all integers $1 \le a \le i - 1$, the vector bundles $A_{a,i-a}$ sit in exact sequences

$$0 \to \mathcal{A}_{a,i-a} \to \bigwedge^a \mathcal{H} \otimes \mathcal{A}_{0,i-a} \to \mathcal{A}_{a-1,i-a+1} \to 0. \tag{6}$$

We shall need the expression for the Chern numbers of $A_{a,i-a}$. Using (6) it will be sufficient to compute $c_1(A_{0,j})$ for all $j \ge 0$.

Proposition 2.6. For all $j \geq 0$ one has the following formula in $A^1(\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0))$:

$$c_1(A_{0,j}) = \lambda + \frac{j}{2}B + \frac{j^2}{2}A - \frac{1}{4}\delta_0^{\text{ram}}.$$

Proof. We apply Grothendieck–Riemann–Roch to the morphism $f': \mathcal{X}_d^r \to \mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0)$:

$$c_{1}(\mathcal{A}_{0,j}) = c_{1}(f'_{!}(\omega_{f'} \otimes \mathcal{L}^{\otimes j} \otimes \mathcal{P}'_{d}))$$

$$= f'_{*} \left[\left(1 + c_{1}(\omega_{f'} \otimes \mathcal{L}^{\otimes j} \otimes \mathcal{P}'_{d}) + \frac{c_{1}^{2}(\omega_{f'} \otimes \mathcal{L}^{\otimes j} \otimes \mathcal{P}'_{d})}{2} \right) \cdot \left(1 - \frac{c_{1}(\omega_{f'})}{2} + \frac{c_{1}^{2}(\omega_{f'}) + [\operatorname{Sing}(f')]}{12} \right) \right]_{2},$$

where $\operatorname{Sing}(f') \subset \mathcal{X}_d^r$ denotes the codimension 2 singular locus of the morphism f', therefore $f'_*[\operatorname{Sing}(f')] = \Delta_0' + \Delta_0'' + 2\Delta_0^{\operatorname{ram}}$. We finish the proof using Mumford's formula $\kappa_1 = f'_*(c_1^2(\omega_{f'})) = 12\lambda - (\delta_0' + \delta_0'' + 2\delta_0^{\operatorname{ram}})$ and noting that $f'_*(c_1(\mathcal{L}) \cdot c_1(\mathcal{P}_d^r)) = 0$ (the restriction of \mathcal{L} to the exceptional divisor of $f': \mathcal{X}_d^r \to \mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0)$ is trivial) and $f'_*(c_1(\omega_{f'}) \cdot c_1(\mathcal{P}_d^r)) = 0$. Finally, according to Proposition 1.6 we have $f'_*(c_1^2(\mathcal{P}_d^r)) = -\delta_0^{\operatorname{ram}}/2$.

Remark 2.7. While the construction of the vector bundles $\mathcal{A}_{a,j}$ depends on the choice of the Poincaré bundle \mathcal{L} and that of the Prym bundle \mathcal{P}_d^r , it is easy to check that if we set the vector bundles $\mathcal{A} := \bigwedge^i \mathcal{H} \otimes \mathcal{A}_{0,0}$ and $\mathcal{B} := \mathcal{A}_{i-1,i}$, then the vector bundle $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$ on $\mathfrak{G}_d^r(\overline{\mathbb{R}}_g^0/\overline{\mathbb{M}}_g^0)$, as well as the morphism

$$\phi \in H^0(\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0), \operatorname{Hom}(\mathcal{A}, \mathcal{B}))$$

whose degeneracy locus is the virtual divisor $\overline{\mathcal{D}}_{g:k}$, are independent of such choices. More precisely, let us denote by Ξ the collection of triples $\alpha:=(\pi_{\alpha},\mathcal{L}_{\alpha},(\mathcal{P}_{d}^{r})_{\alpha})$, where $\pi_{\alpha}:\Sigma_{\alpha}\to \mathfrak{G}_{d}^{r}(\overline{\mathbf{R}}_{g}^{0}/\overline{\mathbf{M}}_{g}^{0})$ is an étale surjective morphism from a scheme $\Sigma_{\alpha},(\mathcal{P}_{d}^{r})_{\alpha}$ is a Prym bundle and \mathcal{L}_{α} is a Poincaré bundle on $p_{2,\alpha}:\mathcal{X}_{d}^{r}\times_{\mathfrak{G}_{d}^{r}}(\overline{\mathbf{R}}_{g}^{0}/\overline{\mathbf{M}}_{g}^{0})$ $\Sigma_{\alpha}\to\Sigma_{\alpha}$. Recall that if $\Sigma\to\mathfrak{G}_{d}^{r}(\overline{\mathbf{R}}_{g}^{0}/\overline{\mathbf{M}}_{g}^{0})$ is an étale surjection from a scheme and \mathcal{L} and \mathcal{L}' are two Poincaré bundles on $p_{2}:\mathcal{X}_{d}^{r}\times_{\mathfrak{G}_{d}^{r}}(\overline{\mathbf{R}}_{g}^{0}/\overline{\mathbf{M}}_{g}^{0})$ $\Sigma\to\Sigma$, then the sheaf $\mathcal{N}:=p_{2*}\operatorname{Hom}(\mathcal{L},\mathcal{L}')$ is invertible and there is a canonical isomorphism $\mathcal{L}\otimes p_{2}^{*}\mathcal{N}\cong\mathcal{L}'$. For every $\alpha\in\Xi$ we construct the morphism between vector bundles of the same rank $\phi_{\alpha}:\mathcal{A}_{\alpha}\to\mathcal{B}_{\alpha}$ as above. Then since a straightforward cocycle condition is met, we find that there exists a vector bundle $\operatorname{Hom}(\mathcal{A},\mathcal{B})$ on $\mathfrak{G}_{d}^{r}(\overline{\mathbf{R}}_{g}^{0}/\overline{\mathbf{M}}_{g}^{0})$ together with a section $\phi\in H^{0}(\mathfrak{G}_{d}^{r}(\overline{\mathbf{R}}_{g}^{0}/\overline{\mathbf{M}}_{g}^{0})$, $\operatorname{Hom}(\mathcal{A},\mathcal{B})$) such that for every $\alpha=(\pi_{\alpha},\mathcal{L}_{\alpha},(\mathcal{P}_{d}^{r})_{\alpha})\in\Xi$ we have

$$\pi_{\alpha}^*(\operatorname{Hom}(\mathcal{A},\mathcal{B})) = \operatorname{Hom}(\mathcal{A}_{\alpha},\mathcal{B}_{\alpha}) \quad \text{and} \quad \pi_{\alpha}^*(\phi) = \phi_{\alpha}.$$

We are finally in a position to compute the class of the divisor $\overline{\mathcal{D}}_{g:k}$.

Theorem 2.8. Fix integers $k \ge 2$, $b \ge 0$ and set i := kb - b + k - 2, r := kb + k - 2, g := ik + 1, d := rk as above. Then there exists a morphism $\phi : \bigwedge^i \mathcal{H} \otimes \mathcal{A}_{0,0} \to \mathcal{A}_{i-1,1}$ between vector bundles of the same rank over $\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0)$, such that the push-forward under σ of the restriction to $\mathfrak{G}_d^r(\mathbf{R}_g^0/\mathbf{M}_g^0)$ of the degeneration locus of ϕ is precisely the effective divisor $\mathcal{D}_{g:k}$. Moreover we have the following expression for its class in $A^1(\overline{\mathbf{R}}_g^0)$:

$$\sigma_*(c_1(\mathcal{A}_{i-1,1} - \bigwedge^i \mathcal{H} \otimes \mathcal{A}_{0,0}))$$

$$\equiv \binom{r}{b} \frac{N}{(r+k)} (kr + k - r - 3) \left(\mathfrak{A}\lambda - \frac{\mathfrak{B}_0}{6} (\delta_0' + \delta_0'') - \frac{\mathfrak{B}_0^{\text{ram}}}{12} \delta_0^{\text{ram}} \right),$$

where

$$\mathfrak{A} = (k^5 - 4k^4 + 5k^3 - 2k^2)b^3 + (3k^5 - 13k^4 + 24k^3 - 23k^2 + 9k)b^2 + (3k^5 - 14k^4 + 34k^3 - 45k^2 + 24k - 4)b + k^5 - 5k^4 + 15k^3 - 25k^2 + 16k - 2,$$

$$\mathfrak{B}_0 = (k^5 - 4k^4 + 5k^3 - 2k^2)b^3 + (3k^5 - 13k^4 + 22k^3 - 17k^2 + 5k)b^2 + (3k^5 - 14k^4 + 30k^3 - 33k^2 + 14k - 2)b + k^5 - 5k^4 + 13k^3 - 19k^2 + 10k$$

and

$$\mathfrak{B}_0^{\text{ram}} = (4k^5 - 16k^4 + 20k^3 - 8k^2)b^3 + (12k^5 - 52k^4 + 85k^3 - 65k^2 + 20k)b^2 + (12k^5 - 56k^4 + 111k^3 - 114k^2 + 53k - 8)b + 4k^5 - 20k^4 + 46k^3 - 58k^2 + 34k - 6.$$

Proof. To compute the class of the degeneracy locus of ϕ we use the exact sequence (6) and Proposition 2.6. We write the following identities in $A^1(\mathfrak{G}_d^r(\overline{\mathbf{R}}_\varrho^0/\overline{\mathbf{M}}_\varrho^0))$:

$$\begin{split} c_{1}(\mathcal{A}_{i-1,1} - \bigwedge^{i} \mathcal{H} \otimes \mathcal{A}_{0,0}) &= \sum_{l=0}^{i} (-1)^{l-1} c_{1}(\bigwedge^{i-l} \mathcal{H} \otimes \mathcal{A}_{0,l}) \\ &= \sum_{l=0}^{i} (-1)^{l-1} \bigg((ld+g-1) \binom{r}{i-l-1} c_{1}(\mathcal{H}) + \binom{r+1}{i-l} c_{1}(\mathcal{A}_{0,l}) \bigg) \\ &= -k \binom{kb+k-4}{b-1} c_{1}(\mathcal{H}) + \frac{1}{2} \binom{kb+k-3}{b} \mathfrak{b} \\ &- \binom{kb+k-2}{b} \lambda - \frac{kb+k-2b-3}{2(kb+k-3)} \binom{kb+k-3}{b} \mathfrak{a} + \frac{1}{4} \binom{kb+k-2}{b} \delta_{0}^{\text{ram}} \\ &= \binom{r-1}{b} \bigg(-\frac{kb}{r-1} c_{1}(\mathcal{H}) + \frac{1}{2} \mathfrak{b} - \frac{r-2b-1}{2(r-1)} \mathfrak{a} - \frac{r}{r-b} \lambda + \frac{r}{4(r-b)} \delta_{0}^{\text{ram}} \bigg), \end{split}$$

where $\delta_0^{\mathrm{ram}} = \sigma^*(\delta_0^{\mathrm{ram}}) \in A^1(\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0))$. The classes $\mathfrak{a}, \mathfrak{b} \in A^1(\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0))$ and the line bundle $\mathcal{H} \in \mathrm{Pic}(\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0))$ are defined in terms of a Poincaré bundle \mathcal{L} : If $\mathcal{L}' := \mathcal{L} \otimes f'^*(\mathcal{M})$ is another Poincaré bundle with $\mathcal{M} \in \mathrm{Pic}(\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0))$ and if $\mathfrak{a}', \mathfrak{b}', \mathcal{H}'$ denote the classes defined in terms of \mathcal{L}' using (5), then we have the formulas

$$\mathfrak{a}' = \mathfrak{a} + 2dc_1(\mathcal{M}), \quad \mathfrak{b}' = \mathfrak{b} + (2g - 2)c_1(\mathcal{M}), \quad c_1(\mathcal{H}') = c_1(\mathcal{H}) + (r+1)c_1(\mathcal{M}).$$

A straightforward calculation shows that the class

$$\Xi := -\frac{kb}{r-1}c_1(\mathcal{H}) + \frac{1}{2}\mathfrak{b} - \frac{r-2b-1}{2(r-1)}\mathfrak{a} \in A^1(\mathfrak{G}_d^r(\overline{\mathbf{R}}_g^0/\overline{\mathbf{M}}_g^0))$$
 (7)

is independent of the choice of \mathcal{L} and $\sigma_*(\Xi) = \pi^*((\sigma_0)_*(\Xi_0))$, where the $\Xi_0 \in A^1(\mathfrak{G}_d^r)$ is defined by the same formula (7) but inside $\mathrm{Pic}(\mathfrak{G}_d^r)$. We outline below the computation of $\pi^*((\sigma_0)_*(\Xi_0))$, which uses [F2] in an essential way.

We follow closely [F2] and denote by $\overline{\mathbf{M}}_g^1 := \mathbf{M}_g^0 \cup \Delta_0^0 \cup \Delta_1^0$ the partial compactification of \mathbf{M}_g^0 obtained from $\overline{\mathbf{M}}_g^0$ by adding the stack $\Delta_1^0 \subset \Delta_1$ consisting of curves $[C \cup_y E]$, where $[C, y] \in \mathcal{M}_{g-1,1}$ is a Brill-Noether general pointed curve and $[E, y] \in \overline{\mathcal{M}}_{1,1}$. We extend $\sigma_0 : \mathfrak{G}_d^r \to \overline{\mathbf{M}}_g^0$ to a proper map $\sigma_1 : \widetilde{\mathfrak{G}}_d^r \to \overline{\mathbf{M}}_g^1$ from the Deligne-Mumford stack of limit linear series \mathfrak{g}_d^r (cf. [EH], [F2], [Kh]). Then for each $n \geq 1$ we consider the vector bundles $\mathcal{G}_{0,n}$ over $\widetilde{\mathfrak{G}}_d^r$ defined in [F2, Proposition 2.8] with the following description of their fibres:

- $\bullet \ \mathcal{G}_{0,n}(C,L)=H^0(C,L^{\otimes n}) \ \text{for each} \ [C]\in \mathcal{M}_g^0 \ \text{and} \ L\in W^r_d(C).$
- $\mathcal{G}_{0,n}(t) = H^0(C, L^{\otimes n}(-y-q)) \oplus \mathbb{C} \cdot u^n \subset H^0(C, L^{\otimes n})$, where $t = (C_{yq}, L \in W_d^r(C)) \in \sigma_0^{-1}([C_{yq}])$ with $u \in H^0(C, L)$ being a section such that

$$H^0(C, L) = H^0(C, L(-y - q)) \oplus \mathbb{C} \cdot u$$
.

• $\mathcal{G}_{0,n}(t) = H^0(C, L^{\otimes n}(-2y)) \oplus \mathbb{C} \cdot u^n \subset H^0(C, L^{\otimes n})$, where $t = (C \cup_y E, l_C, l_E) \in \sigma_0^{-1}([C \cup_y E])$ and $(l_C, l_E) \in G_d^r(C) \times G_d^r(E)$ is a limit linear series \mathfrak{g}_d^r with $l_C = (L, H^0(C, L))$ and $u \in H^0(C, L)$ a section such that

$$H^0(C, L) = H^0(C, L(-2y)) \oplus \mathbb{C} \cdot u$$
.

We extend the classes $\mathfrak{a},\mathfrak{b}\in A^1(\mathfrak{G}^r_d)$ over the stack $\widetilde{\mathfrak{G}}^r_d$ by choosing a Poincaré bundle over $\overline{\mathbf{M}}^1_{g,1}\times_{\overline{\mathbf{M}}^1_g}\widetilde{\mathfrak{G}}^r_d$ which restricts to line bundles of bidegree (d,0) on curves $[C\cup_y E]\in \Delta^0_1$. Grothendieck–Riemann–Roch applied to the universal curve over $\widetilde{\mathfrak{G}}^r_d$ gives that

$$c_1(\mathcal{G}_{0,n}) = \lambda - \frac{n}{2}\mathfrak{b} + \frac{n^2}{2}\mathfrak{a} \in A^1(\widetilde{\mathfrak{G}}_d^r) \quad \text{for all } n \ge 2,$$
 (8)

while obviously $\sigma^*(\mathcal{G}_{0,1}) = \mathcal{H}$. We now fix a general pointed curve $[C, q] \in \mathcal{M}_{g-1}$ and an elliptic curve $[E, y] \in \mathcal{M}_{1,1}$ and consider the test curves (see also [F2, p. 7])

$$C^0 := \{C/(y \sim q)\}_{y \in C} \subset \Delta_0^0 \subset \overline{\mathcal{M}}_g^1 \quad \text{and} \quad C^1 := \{C \cup_y E\}_{y \in C} \subset \Delta_1^0 \subset \overline{\mathcal{M}}_g^1.$$

For $n \ge 1$, the intersection numbers $C^0 \cdot (\sigma_0)_*(c_1(\mathcal{G}_{0,n}))$ and $C^1 \cdot (\sigma_0)_*(c_1(\mathcal{G}_{0,n}))$ can be computed using [F2, Lemmas 2.6 and 2.13 and Proposition 2.12]. Together with the relation (cf. [F2, p. 15] for details)

$$(\sigma_0)_*(c_1(\mathcal{G}_{0,n}))_{\lambda} - 12(\sigma_0)_*(c_1(\mathcal{G}_{0,n}))_{\delta_0} + (\sigma_0)_*(c_1(\mathcal{G}_{0,n}))_{\delta_1} = 0,$$

this completely determines the classes $(\sigma_0)_*(c_1(\mathcal{G}_{0,n})) \in A^1(\widetilde{\mathfrak{G}}_d^r)$. Then using (8) we find

$$\begin{split} (\sigma_0)_*(\mathfrak{a}) &\equiv N \bigg(-\frac{rk(r^2k^2 - 3r^2k + 3rk^2 + 2r^2 + 2k^2 + 4k - 7rk - 4r - 10)}{(rk - r + k - 3)(rk - r + k - 2)} \lambda \\ &\qquad \qquad + \frac{rk(r^2k^2 - 3r^2k + 3rk^2 - 8rk + 2r^2 + 2k^2 + r - k - 3)}{6(rk - r + k - 3)(rk - r + k - 2)} \delta_0 + \cdots \bigg), \\ (\sigma_0)_*(\mathfrak{b}) &\equiv N \bigg(\frac{6rk}{rk - r + k - 2} \lambda - \frac{rk}{2(rk - r + k - 2)} \delta_0 + \cdots \bigg); \end{split}$$

this completes the computation of the class $(\sigma_0)_*(\Xi)$ and finishes the proof.

The rather unwieldy expressions from Theorem 2.8 simplify nicely for k = 2, 3 when we obtain Theorems 0.2 and 0.3.

Proof of Theorem 0.1 when g=2i+1. We construct an effective divisor on $\overline{\mathcal{R}}_g$ satisfying the inequalities (2) as follows: The pull-back to $\overline{\mathcal{R}}_g$ of the Harris–Mumford divisor $\overline{\mathcal{M}}_{g,i+1}^1$ of curves of genus 2i+1 with a \mathfrak{g}_{i+1}^1 is given by the formula

$$\pi^*(\overline{\mathcal{M}}_{g,i+1}^1) \equiv \frac{(2i-2)!}{(i+1)!(i-1)!} \times \left(6(i+2)\lambda - (i+1)(\delta_0' + \delta_0'' + 2\delta_0^{\text{ram}}) - \sum_{j=1}^i 3j(g-j)(\delta_j + \delta_{g-j} + \delta_{j:g-j})\right).$$

We split $\overline{\mathcal{D}}_{2i+1:2}$ into boundary components of compact type and their complement,

$$\overline{\mathcal{D}}_{2i+1:2} \equiv E + \sum_{j=1}^{i} (a_j \delta_j + a_{g-j} \delta_{g-j} + a_{j:g-j} \delta_{j:g-j}),$$

where $a_j, a_{g-j}, a_{j:g-j} \ge 0$ and $\Delta_j, \Delta_{g-j}, \Delta_{j:g-j} \subsetneq \operatorname{supp}(E)$ for $1 \le j \le i$, and we consider the following positive linear combination on $\overline{\mathcal{R}}_g$:

$$A := \frac{i!(i-1)!}{(2i-1)(2i-3)!} \cdot \pi^*(\overline{\mathcal{M}}_{2i+1,i+1}^1) + 4\frac{(i!)^2}{(2i)!} \cdot E$$
$$\equiv \frac{4(3i+5)}{i+1} \lambda - 2(\delta_0' + \delta_0'') - 3\delta_0^{\text{ram}} - \cdots,$$

where each of the coefficients of δ_j , δ_{g-j} and $\delta_{j:g-j}$ in the expansion of A is at least

$$\frac{6(i-1)j(2i+1-j)}{(2i-1)(i+1)} \ge 2.$$

Since $\frac{4(3i+5)}{i+1} < 13$ for $i \ge 8$, the conclusion now follows using (2). For i = 7 we find that $A \equiv 13\lambda - 2(\delta_0' + \delta_0'') - 3\delta_0^{\mathrm{ram}} - \cdots$, hence $\kappa(\overline{\mathcal{R}}_{15}) \ge 0$. To obtain $\kappa(\overline{\mathcal{R}}_{15}) \ge 1$, we use the fact that on $\overline{\mathcal{M}}_{15}$ there exists a Brill–Noether divisor other than $\overline{\mathcal{M}}_{15,8}^1$, namely the divisor $\overline{\mathcal{M}}_{15,14}^3$ of curves $[C] \in \mathcal{M}_{15}$ with a \mathfrak{g}_{14}^3 . This divisor has the same slope $s(\overline{\mathcal{M}}_{15,14}^3) = s(\overline{\mathcal{M}}_{15,8}^1) = 27/4$, but $\operatorname{supp}(\overline{\mathcal{M}}_{15,14}^3) \ne \operatorname{supp}(\overline{\mathcal{M}}_{15,8}^1)$. It follows that there exist constants $\alpha, \beta, \gamma, m \in \mathbb{Q}_{>0}$ such that

$$\alpha \cdot E + \beta \cdot \pi^*(\overline{\mathcal{M}}_{15,8}^1) \equiv \alpha \cdot E + \gamma \cdot \pi^*(\overline{\mathcal{M}}_{15,14}^3) \in |mK_{\overline{\mathcal{R}}_{15}}|.$$

Thus we have found distinct multicanonical divisors on $\overline{\mathcal{M}}_{15}$, that is, $\kappa(\overline{\mathcal{M}}_{15}) \geq 1$.

Remark 2.9. The same numerical argument shows that if one replaces $\overline{\mathcal{M}}_{15,8}^1$ with any divisor $D \in \mathrm{Eff}(\overline{\mathcal{M}}_{15})$ with $s(D) < s(\overline{\mathcal{M}}_{15,8}^1) = 27/4$, then $\overline{\mathcal{R}}_{15}$ is of general type. Any counterexample to the Slope Conjecture on $\overline{\mathcal{M}}_{15}$ makes $\overline{\mathcal{R}}_{15}$ of general type.

3. Koszul cohomology of Prym canonical curves

We recall that for a curve C, a line bundle $L \in \text{Pic}^d(C)$ and integers $i, j \ge 0$, the Koszul cohomology group $K_{i,j}(C,L)$ is obtained from the complex

$$\bigwedge^{i+1} H^0(L) \otimes H^0(L^{\otimes (j-1)}) \xrightarrow{d_{i+1,j-1}} \bigwedge^i H^0(L) \otimes H^0(L^{\otimes j})$$

$$\xrightarrow{d_{i,j}} \bigwedge^{i-1} H^0(L) \otimes H^0(L^{\otimes (j+1)}),$$

where the maps are the Koszul differentials (cf. [GL]). There is a well-known connection between Koszul cohomology groups and Lazarsfeld bundles. Assuming that *L* is globally generated, a diagram chasing argument involving exact sequences of the type

$$0 \to \bigwedge^a M_L \otimes L^{\otimes b} \to \bigwedge^a H^0(L) \otimes L^{\otimes b} \to \bigwedge^{a-1} M_L \otimes L^{\otimes (b+1)} \to 0,$$

for various $a, b \ge 0$, yields the following identification (see also [GL, Lemma 1.10]):

$$K_{i,j}(C,L) = \frac{H^0(C, \bigwedge^i M_L \otimes L^{\otimes j})}{\operatorname{Image}\{\bigwedge^{i+1} H^0(C, L) \otimes H^0(C, L^{\otimes (j-1)})\}}.$$
(9)

We fix $[C, \eta] \in \mathcal{R}_g$, set $L := K_C \otimes \eta \in W^{g-2}_{2g-2}(C)$ and consider the *Prym-canonical* map $C \xrightarrow{|L|} \mathbf{P}^{g-2}$. We denote by $\mathcal{I}_C \subset \mathcal{O}_{\mathbf{P}^{g-2}}$ the ideal sheaf of the Prym-canonical curve. By analogy with [F2] we study the Koszul stratification of \mathcal{R}_g and define the strata

$$\mathcal{U}_{g,i} := \{ [C, \eta] \in \mathcal{R}_g : K_{i,2}(C, K_C \otimes \eta) \neq \emptyset \}.$$

Using (9) we write the series of equivalences

$$\begin{split} [C,\eta] \in \mathcal{U}_{g,i} & \Leftrightarrow \ H^1(C,\bigwedge^{i+1}M_L \otimes L) \neq \emptyset \\ & \Leftrightarrow \ h^0(C,\bigwedge^{i+1}M_L \otimes L) > \binom{g-2}{i+1} \bigg(-\frac{(i+1)(2g-2)}{g-2} + (g-1) \bigg). \end{split}$$

Next we write down the exact sequence

$$0 \to H^0(\bigwedge^{i+1} M_{\mathbf{P}^{g-2}}(1)) \overset{a}{\to} H^0(C, \bigwedge^{i+1} M_L \otimes L) \to H^1(\bigwedge^{i+1} M_{\mathbf{P}^{g-2}} \otimes \mathcal{I}_C(1)) \to 0,$$

and then also

$$\operatorname{Coker}(a) = H^{1}(\mathbf{P}^{g-2}, \bigwedge^{i+1} M_{\mathbf{P}^{g-2}} \otimes \mathcal{I}_{C}(1)) = H^{0}(\mathbf{P}^{g-2}, \bigwedge^{i} M_{\mathbf{P}^{g-2}} \otimes \mathcal{I}_{C}(2)).$$

Using the well-known fact that $h^0(\mathbf{P}^{g-2}, \bigwedge^{i+1} M_{\mathbf{P}^{g-2}}(1)) = \binom{g-1}{i+2}$ (use for instance the Bott vanishing theorem), we end up with the following equivalence:

$$[C, \eta] \in \mathcal{U}_{g,i} \iff h^0(\mathbf{P}^{g-2}, \bigwedge^i M_{\mathbf{P}^{g-2}} \otimes \mathcal{I}_C(2)) > \binom{g-3}{i} \frac{(g-1)(g-2i-6)}{i+2}.$$
 (10)

Proposition 3.1. (1) For g < 2i + 6, we have $K_{i,2}(C, K_C \otimes \eta) \neq \emptyset$ for any $[C, \eta] \in \mathcal{R}_g$, that is, the Prym-canonical curve $C \xrightarrow{|K_C + \eta|} \mathbf{P}^{g-2}$ does not satisfy property (N_i) .

(2) For g = 2i + 6, the locus $\mathcal{U}_{g,i}$ is a virtual divisor on \mathcal{R}_g , that is, there exist vector bundles $\mathcal{G}_{i,2}$ and $\mathcal{H}_{i,2}$ over \mathbf{R}_g such that $\operatorname{rank}(\mathcal{G}_{i,2}) = \operatorname{rank}(\mathcal{H}_{i,2})$, together with a bundle morphism $\phi: \mathcal{H}_{i,2} \to \mathcal{G}_{i,2}$ such that $\mathcal{U}_{g,i}$ is the degeneracy locus of ϕ .

Proof. Part (1) is an immediate consequence of (10), since we have the equivalence

$$K_{i,2}(C,K_C\otimes \eta)=0 \ \Leftrightarrow \ h^0(\mathbf{P}^{g-2},\bigwedge^i M_{\mathbf{P}^{g-2}}\otimes \mathcal{I}_C(2))=\binom{g-3}{i}\frac{(g-1)(g-2i-6)}{i+2}.$$

For part (2) one constructs two vector bundles $\mathcal{G}_{i,2}$ and $\mathcal{H}_{i,2}$ over \mathbf{R}_g having fibres

$$\mathcal{G}_{i,2}[C,\eta] = H^0(C, \bigwedge^i M_{K_C \otimes \eta}(2))$$
 and $\mathcal{H}_{i,2}[C,\eta] = H^0(\mathbf{P}^{g-2}, \bigwedge^i M_{\mathbf{P}^{g-2}}(2)).$

There is a natural morphism $\phi: \mathcal{H}_{i,2} \to \mathcal{G}_{i,2}$ given by restriction. We have

$$\operatorname{rank}(\mathcal{G}_{i,2}) = \binom{g-2}{i} \left(-\frac{i(2g-2)}{g-2} + 3(g-1) \right) \quad \text{and} \quad \operatorname{rank}(\mathcal{H}_{i,2}) = (i+1) \binom{g}{i+2}$$

and the condition that $rank(\mathcal{G}_{i,2}) = rank(\mathcal{H}_{i,2})$ is equivalent to g = 2i + 6.

We describe a set-up that will be used to define certain tautological sheaves over $\widetilde{\mathbf{R}}_g$ and compute the class $[\overline{\mathcal{U}}_{g,i}]^{\mathrm{virt}}$. We use the notation from Subsection 1.1, in particular from Proposition 1.7 and recall that $f: \mathcal{X} \to \widetilde{\mathbf{R}}_g$ is the universal Prym curve, $\mathcal{P} \in \mathrm{Pic}(\mathcal{X})$ denotes the universal Prym line bundle and $\mathcal{N}_i = f_*(\omega_f^{\otimes i} \otimes \mathcal{P}^{\otimes i})$. We denote by $T:=\mathcal{E}_0''\cap \mathrm{Sing}(f)$ the codimension 2 subvariety corresponding to Wirtinger covers $[C_{yq}, \eta \in \mathrm{Pic}^0(C_{yq})[2], \nu(y) = \nu(q)] \in \mathcal{X}$ (where $\nu^*(\eta) = \mathcal{O}_C$), with the marked point being the node of the underlying curve C_{yq} . Let us fix a point $[X:=C_{yq}, \eta, \beta] \in \widetilde{\Delta}_0' \cup \widetilde{\Delta}_0''$ where as usual $\nu:C \to X$ is the normalization map. Then we have an identification

$$\mathcal{N}_1[X,\eta,\beta] = \operatorname{Ker}\{H^0(C,\omega_C(y+q)\otimes\eta_C) \to (\nu_*\mathcal{O}_C/\mathcal{O}_X)\otimes\omega_X\otimes\eta \cong \mathbb{C}_{y\sim q}\}, (11)$$

where the map is given by taking the difference of residues at y and q. Note that when $\eta_C = \mathcal{O}_C$, that is, when $[X, \eta, \beta] \in \widetilde{\Delta}_0''$, we have $\mathcal{N}_1[X, \eta, \beta] = H^0(C, \omega_C)$. For a point

$$[X = C \cup_{\{y,q\}} E, \eta_C \in \sqrt{\mathcal{O}_C(-y-q)}, \eta_E] \in \widetilde{\Delta}_0^{\text{ram}}$$

we have an identification

$$\mathcal{N}_1[X,\eta,\beta] = \operatorname{Ker}\{H^0(C,\omega_C(y+q)\otimes\eta_C) \oplus H^0(E,\mathcal{O}_E(1)) \to (\omega_X\otimes\eta)_{y,q} \cong \mathbb{C}^2_{y,q}\}.$$
(12)

We set

$$\mathcal{M} := \operatorname{Ker} \{ f^*(\mathcal{N}_1) \to \omega_f \otimes \mathcal{P} \}.$$

From the discussion above it is clear that the image of $f^*(\mathcal{N}_1) \to \omega_f \otimes \mathcal{P}$ is $\omega_f \otimes \mathcal{P} \otimes \mathcal{I}_T$. Since $T \subset \mathcal{X}$ is smooth of codimension 2 it follows that \mathcal{M} is locally free. For $a,b \geq 0$, we define the sheaf $\mathcal{E}_{a,b} := f_*(\bigwedge^a \mathcal{M} \otimes \omega_f^{\otimes b} \otimes \mathcal{P}^{\otimes b})$ over $\widetilde{\mathbf{R}}_g$. Clearly $\mathcal{E}_{a,b}$ is locally free. We have $\mathcal{E}_{0,b} = \mathcal{N}_b$ for $b \geq 0$, and we always have left-exact sequences

$$0 \to \mathcal{E}_{a,b} \to \bigwedge^{a} \mathcal{E}_{0,1} \otimes \mathcal{E}_{0,b} \to \mathcal{E}_{a-1,b+1}, \tag{13}$$

which are right-exact off the divisor $\widetilde{\Delta}_0''$ (to be proved later). We then define inductively a sequence of vector bundles $\{\mathcal{H}_{a,b}\}_{a,b\geq 0}$ over $\widetilde{\mathbf{R}}_g$ in the following way: We set $\mathcal{H}_{0,b}:=$

Sym^b(\mathcal{N}_1) for each $b \ge 0$. Then having defined $\mathcal{H}_{a-1,b}$ for all $b \ge 0$, we define the vector bundle $\mathcal{H}_{a,b}$ by the exact sequence

$$0 \to \mathcal{H}_{a,b} \to \bigwedge^a \mathcal{H}_{0,1} \otimes \operatorname{Sym}^b(\mathcal{H}_{0,1}) \to \mathcal{H}_{a-1,b+1} \to 0. \tag{14}$$

For a point $[X, \eta, \beta] \in \widetilde{\mathcal{R}}_g$, if we use the identification $H^0(X, \omega_X \otimes \eta) = H^0(\mathbf{P}^{g-2}, \mathcal{O}_{\mathbf{P}^{g-2}}(1))$, we have a natural identification of the fibre

$$\mathcal{H}_{a,b}[X,\eta,\beta] = H^0(\mathbf{P}^{g-2}, \bigwedge^a M_{\mathbf{P}^{g-2}}(b)).$$

By induction on $a \ge 0$, there exist vector bundle morphisms $\phi_{a,b}: \mathcal{H}_{a,b} \to \mathcal{E}_{a,b}$

Proposition 3.2. For $b \ge 2$ and $a \ge 0$ we have the vanishing of the higher direct images

$$R^1 f_* (\bigwedge^a \mathcal{M} \otimes \omega_f^{\otimes b} \otimes \mathcal{P}^{\otimes b})_{|\mathbf{R}_a \cup \widetilde{\Delta}_o' \cup \widetilde{\Delta}_a^{ram}} = 0.$$

It follows that the sequences (13) are right-exact off the divisor $\widetilde{\Delta}_0''$ of $\widetilde{\mathbf{R}}_g$.

Proof. Over the locus \mathbf{R}_g the vanishing is a consequence of Proposition 2.4. For simplicity we prove that $R^1 f_*(\bigwedge^a \mathcal{M} \otimes \omega_f^{\otimes b} \otimes \mathcal{P}^{\otimes b}) \otimes \mathcal{O}_{\widetilde{\Delta}_0^{\mathrm{ram}}} = 0$, the vanishing over $\widetilde{\Delta}_0'$ being similar. We fix a point $[X = C \cup_{\{y,q\}} E, \eta_C, \eta_E] \in \widetilde{\Delta}_0^{\mathrm{ram}}$ with $\eta_C^{\otimes 2} = \mathcal{O}_C(-y-q), \eta_E = \mathcal{O}_E(1)$ and set $L := \omega_X \otimes \eta \in \mathrm{Pic}^{2g-2}(X)$. We show that $H^1(X, \bigwedge^a M_L \otimes L^{\otimes b}) = 0$ for all $a \geq 0$ and $b \geq 2$. A Mayer–Vietoris argument shows that it suffices to prove that

$$H^{1}(C, \bigwedge^{a} M_{L} \otimes L^{\otimes b} \otimes \mathcal{O}_{C}) = 0, \quad H^{1}(E, \bigwedge^{a} M_{L} \otimes L^{\otimes b} \otimes \mathcal{O}_{E}) = 0,$$

$$H^{1}(C, \bigwedge^{a} M_{L} \otimes L^{\otimes b} \otimes \mathcal{O}_{C}(-y - q)) = 0.$$
(15)

For $L_C := L \otimes \mathcal{O}_C = K_C(y+q) \otimes \eta_C$ and $L_E := L_E \otimes \mathcal{O}_E$, we write the exact sequences

$$0 \to H^0(C, L_C(-y-q)) \otimes \mathcal{O}_E \to M_L \otimes \mathcal{O}_E \to M_{L_E} \to 0,$$

$$0 \to H^0(E, L_E(-y-q)) \otimes \mathcal{O}_C \to M_L \otimes \mathcal{O}_C \to M_{L_C} \to 0,$$

and we find that $M_L \otimes \mathcal{O}_C = M_{L_C}$ while obviously $M_{L_E} = \mathcal{O}_E(-1)$. We conclude that the statements (15) and (16) for all $a \ge 0$ and $b \ge 2$ can be reduced to showing that

$$\begin{split} H^1(C, \bigwedge^a M_{L_C} \otimes L_C^{\otimes b}) \\ &= H^1(C, \bigwedge^a M_{L_C} \otimes L_C^{\otimes b} \otimes \mathcal{O}_C(-y-q)) = 0 \quad \text{ for all } a \geq 0, b \geq 2. \end{split}$$

This is now a direct application of Proposition 2.4.

Proof of Theorem 0.6. We have constructed the vector bundle morphism $\phi_{i,2}: \mathcal{H}_{i,2} \to \mathcal{E}_{i,2}$ over \mathbf{R}_g . For g = 2i + 6 we have rank $(\mathcal{H}_{i,2}) = \text{rank}(\mathcal{E}_{i,2})$ and the virtual Koszul class $[\overline{\mathcal{U}}_{g,i}]^{\text{virt}}$ is given by $c_1(\mathcal{E}_{i,2} - \mathcal{H}_{i,2})$. We recall that for a rank e vector bundle \mathcal{E} over a

variety X and for $i \ge 1$, we have the formulas $c_1(\bigwedge^i \mathcal{E}) = \binom{e-1}{i-1}c_1(\mathcal{E})$ and $c_1(\operatorname{Sym}^i(\mathcal{E})) = \binom{e+i-1}{e}c_1(\mathcal{E})$. Using (13) we find that there exists a constant $\alpha \ge 0$ such that

$$c_{1}(\mathcal{E}_{i,2}) - \alpha \cdot \delta_{0}'' = \sum_{l=0}^{i} (-1)^{l} c_{1}(\bigwedge^{i-l} \mathcal{E}_{0,1} \otimes \mathcal{E}_{0,l+2}) = \sum_{l=0}^{i} (-1)^{l} \binom{g-1}{i-l} c_{1}(\mathcal{E}_{0,l+2}) + \sum_{l=0}^{i} (-1)^{l} ((g-1)(2l+3)) \binom{g-2}{i-l-1} c_{1}(\mathcal{E}_{0,1}),$$

while a repeated application of the exact sequence (14) gives that

$$c_{1}(\mathcal{H}_{i,2}) = \sum_{l=0}^{l} (-1)^{l} c_{1}(\bigwedge^{i-l} \mathcal{H}_{0,1} \otimes \operatorname{Sym}^{l+2}(\mathcal{H}_{0,1}))$$

$$= \sum_{l=0}^{i} (-1)^{l} \left(\binom{g-1}{i-l} c_{1}(\operatorname{Sym}^{l+2}(\mathcal{H}_{0,1})) + \binom{g+l}{l+2} c_{1}(\bigwedge^{i-l} \mathcal{H}_{0,1}) \right)$$

$$= \sum_{l=0}^{i} (-1)^{l} \left(\binom{g-1}{i-l} \binom{g+l}{g-1} + \binom{g+l}{l+2} \binom{g-2}{i-l-1} \right) c_{1}(\mathcal{H}_{0,1}),$$

with $\mathcal{E}_{0,1} = \mathcal{H}_{0,1} = \mathcal{N}_1$ and $\mathcal{E}_{0,l+2} = \mathcal{N}_{l+2}$ for $l \geq 0$. Proposition 1.7 finishes the proof.

Comparing these formulas with the canonical class of $\overline{\mathcal{R}}_g$, one finds that $\overline{\mathcal{R}}_g$ is of general type for g > 12.

4. Effective divisors on $\overline{\mathcal{R}}_g$

We now use in an essential way results from [F3] to produce myriads of effective divisors on $\overline{\mathcal{R}}_g$. This construction, though less explicit than that of $\overline{\mathcal{U}}_{2i+6}$ and $\overline{\mathcal{D}}_{g:k}$, is still very effective and we use it to show $\overline{\mathcal{R}}_{18}$, $\overline{\mathcal{R}}_{20}$ and $\overline{\mathcal{R}}_{22}$ are of general type.

effective and we use it to show $\overline{\mathcal{R}}_{18}$, $\overline{\mathcal{R}}_{20}$ and $\overline{\mathcal{R}}_{22}$ are of general type. We consider the morphism $\chi:\overline{\mathcal{R}}_g\to\overline{\mathcal{M}}_{2g-1}$ given by $\chi([C,\eta]):=[\tilde{C}]$, where $f:\tilde{C}\to C$ is the étale double cover determined by η . Thus one has

$$f_*\mathcal{O}_{\tilde{C}} = \mathcal{O}_C \oplus \eta \text{ and}$$

 $H^i(\tilde{C}, f^*L) = H^i(C, L) \oplus H^i(C, L \otimes \eta) \text{ for any } L \in \text{Pic}(C), i = 0, 1.$

The pullback map χ^* at the level of Picard groups has been determined by M. Bernstein in [Be, Lemma 3.1.3]. We record her results:

Proposition 4.1. The pullback map $\chi^* : \operatorname{Pic}(\overline{\mathcal{R}}_g) \to \operatorname{Pic}(\overline{\mathcal{M}}_{2g-1})$ is given as follows:

$$\chi^*(\lambda) = 2\lambda - \frac{1}{4}\delta_0^{\text{ram}}, \quad \chi^*(\delta_0) = \delta_0^{\text{ram}} + 2\Big(\delta_0' + \delta_0'' + \sum_{i=1}^{[g/2]} \delta_{i:g-i}\Big),$$
$$\chi^*(\delta_i) = 2\delta_{g-i} \quad \text{for } 1 \le i \le g-1.$$

. П *Proof.* The formula for $\chi^*(\delta_i)$ when $1 \le i \le g-1$ is immediate. To determine $\chi^*(\lambda)$ one notices that $\chi^*((\kappa_1)_{\overline{\mathcal{M}}_{2g-1}}) = 2(\kappa_1)_{\overline{\mathcal{R}}_g}$ and the rest follows from Mumford's formulas $(\kappa_1)_{\overline{\mathcal{M}}_{2g-1}} = 12\lambda - \delta \in \operatorname{Pic}(\overline{\mathcal{M}}_{2g-1})$ and $(\kappa_1)_{\overline{\mathcal{R}}_g} = 12\lambda - \pi^*(\delta) \in \operatorname{Pic}(\overline{\mathcal{R}}_g)$.

We set the integer $g' := 1 + \frac{g-1}{g} {2g \choose g-1}$. In [F3] we have studied the rational map

$$\phi: \overline{\mathcal{M}}_{2g-1} \dashrightarrow \overline{\mathcal{M}}_{1+\frac{g-1}{g}\binom{2g}{g-1}}, \quad \phi[Y] := W^1_{g+1}(Y),$$

and determined the pullback map at the level of divisors ϕ^* : $\operatorname{Pic}(\overline{\mathcal{M}}_{g'}) \to \operatorname{Pic}(\overline{\mathcal{M}}_{2g-1})$. In particular, we proved that if $A \in \operatorname{Pic}(\overline{\mathcal{M}}_{g'})$ is a divisor of slope s(A) = s, then the slope of the pullback $\phi^*(A)$ is equal to (cf. [F3, Theorem 0.2])

$$s(\phi^*(A)) = 6 + \frac{8g^3s - 32g^3 - 19g^2s + 66g^2 + 6gs - 16g + 3s + 6}{(g-1)(g+1)(g^2s - 2gs - 4g^2 + 7g + 3)}.$$
 (17)

To obtain effective divisors of small slope on $\overline{\mathcal{R}}_g$ we shall consider pullbacks $(\phi\chi)^*(A)$, where $A \in \text{Ample}(\overline{\mathcal{M}}_{g'})$. (Of course, one can consider the cone $\chi^*(\text{Ample}(\overline{\mathcal{M}}_{2g-1}))$, but a quick look at Proposition 4.1 shows that it is impossible to obtain in this way divisors on $\overline{\mathcal{R}}_g$ satisfying the inequalities (2). Pulling back merely *effective* divisors $\overline{\mathcal{M}}_{2g-1}$, rather than ample ones, is problematic since $\chi(\overline{\mathcal{R}}_g)$ tends to be contained in many geometric divisors on $\overline{\mathcal{M}}_{2g-1}$.) In order for the pullbacks $\chi^*\phi^*(A)$ to be well-defined as effective divisors on $\overline{\mathcal{R}}_g$ we prove the following result:

Proposition 4.2. If $dom(\phi) \subset \overline{\mathcal{M}}_{2g-1}$ is the domain of definition of the rational morphism $\phi: \overline{\mathcal{M}}_{2g-1} \to \overline{\mathcal{M}}_{g'}$, then $\chi(\overline{\mathcal{R}}_g) \cap dom(\phi) \neq \emptyset$. It follows that for any ample divisor $A \in Ample(\overline{\mathcal{M}}_{g'})$, the pullback $\chi^*\phi^*(A) \in Eff(\overline{\mathcal{R}}_g)$ is well-defined.

Proof. We take a general point $[C \cup_y E, \eta_C = \mathcal{O}_C, \eta_E] \in \Delta_1 \subset \overline{\mathcal{R}}_g$. The corresponding admissible double cover is then $f: C_1 \cup_{y_1} \widetilde{E} \cup_{y_2} C_2 \to C \cup_y E$, where $[C_1, y_1]$ and $[C_2, y_2]$ are copies of [C, y] mapping isomorphically to [C, y], and $f: \widetilde{E} \to E$ is the étale double cover induced by the torsion point $\eta_E \in \operatorname{Pic}^0(E)[2]$. We have $C_i \cap \widetilde{E} = \{y_i\}$, where $f_{\widetilde{E}}(y_1) = f_{\widetilde{E}}(y_2) = y$. Thus $\chi[C \cup E, \mathcal{O}_C, \eta_E] := [C_1 \cup_{y_1} \widetilde{E} \cup_{y_2} C_2]$, where $y_1, y_2 \in \widetilde{E}$ are such that $\mathcal{O}_{\widetilde{E}}(y_1 - y_2)$ is a 2-torsion point in $\operatorname{Pic}^0(\widetilde{E})$.

Suppose now that $X := C_1 \cup_{y_1} E \cup_{y_2} C_2$ is a curve of compact type such that

Suppose now that $X := C_1 \cup_{y_1} E \cup_{y_2} C_2$ is a curve of compact type such that $[C_i, y_i] \in \mathcal{M}_{g-1,1}$ (i = 1, 2) and $[E, y_1, y_2] \in \mathcal{M}_{1,2}$ are all Brill-Noether general. In particular, the class $y_1 - y_2 \in \operatorname{Pic}^0(E)$ is not torsion. Then $\phi([X]) := [\overline{W}_{g+1}^1(X)]$ is the variety of limit linear series \mathfrak{g}_{g+1}^1 on X. The general point of each irreducible component of $\overline{W}_{g+1}^1(X)$ corresponds to a refined linear series l on X satisfying the following compatibility conditions in terms of Brill-Noether numbers (see also [EH], [F3]):

$$1 = \rho(l_{C_1}, y_1) + \rho(l_{C_2}, y_2) + \rho(l_E, y_1, y_2) = 1,$$

$$\rho(l_{C_1}, y_1), \rho(l_{C_2}, y_2), \rho(l_E, y_1, y_2) \ge 0.$$
(18)

If $\rho(l_{C_2}, y_2) = 1$, we find two types of components of $\overline{W}_{g+1}^1(X)$ which we describe: Since $\rho(l_{C_1}, y_1) = 0$, there exists an integer $0 \le a \le g/2$ such that $a^{l_{C_1}}(y_1) = (a, g+2-a)$.

On E there are two choices for $l_E \in G_{g+1}^1(E)$ such that $a^{l_E}(y_1) = (a-1,g+1-a)$. Either $a^{l_E}(y_2) = (a,g+1-a)$ (there is a unique such l_E), and then l_{C_2} belongs to the connected curve $T_a := \{l_{C_2} \in G_{g+1}^1(C_2) : a^{l_{C_2}}(y_2) \geq (a,g+1-a)\}$, or else, $a^{l_E}(y_2) = (a-1,g+2-a)$ (again, there is a unique such l_E), and then the C_2 -aspect of l belongs to the curve $T_a' := \{l_{C_2} \in G_{g+1}^1(C_2) : a^{l_{C_2}}(y_2) \geq (a-1,g+2-a)\}$. Thus $\{l_{C_1}\} \times T_a$ and $\{l_{C_2}\} \times T_a'$ are irreducible components of $\overline{W}_{g+1}^1(X)$. If $\rho(l_E,y_1,y_2) = 1$, then there are three types of irreducible components of $\overline{W}_{g+1}^1(X)$ corresponding to the cases

$$a^{l_E}(y_1) = (a-1, g+1-a),$$
 $a^{l_E}(y_2) = (a-1, g+1-a)$ for $0 \le a \le g/2$,
 $a^{l_E}(y_1) = (a-1, g+1-a),$ $a^{l_E}(y_2) = (a, g-a)$ for $1 \le a \le (g-1)/2$,
 $a^{l_E}(y_1) = (a-1, g+1-a),$ $a^{l_E}(y_2) = (a-2, g+2-a)$ for $2 \le a \le (g-1)/2$.

Finally, the case $\rho(l_{C_1},y_1)=1$ is identical to the case $\rho(l_{C_2},y_2)=1$ by reversing the roles of the curves C_1 and C_2 . The singular points of $\overline{W}_{g+1}^1(X)$ correspond to (necessarily) crude limit \mathfrak{g}_{g+1}^1 's satisfying $\rho(l_{C_1},y_1)=\rho(l_{C_2},y_2)=\rho(l_E,y_1,y_2)=0$. For such l, there must exist two irreducible components of X, say Y and Z, for which $Y\cap Z=\{x\}$ and such that $a_0^{l_Y}(x)+a_1^{l_Z}(x)=g+2$ and $a_1^{l_Y}(x)+a_0^{l_Z}(x)=g+1$. The point l lies precisely on the two irreducible components of $\overline{W}_{g+1}^1(X)$: The one corresponding to refined limit \mathfrak{g}_{g+1}^1 with vanishing sequence on Y equal to $(a_0^{l_Y}(x)-1,a_1^{l_Y}(x))$, and the one with vanishing $(a_0^{l_Z}(x),a_1^{l_Z}(x)-1)$ on Z. Thus $\overline{W}_{g+1}^1(X)$ is a stable curve of compact type, so $[X]\in \mathrm{dom}(\phi)$. Using [F3], this set-theoretic description applies to the image under ϕ of any point $[C_1\cup_{y_1}E\cup_{y_2}C_2]$, in particular to $[C_1\cup_{y_1}\widetilde{E}\cup_{y_2}C_2]=\chi([C\cup_yE])$. We have shown that $\chi(\Delta_1)\cap \mathrm{dom}(\phi)\neq\emptyset$.

Proof of Theorem 0.1 for genus g = 18, 20, 22. We construct an effective divisor on $\overline{\mathcal{R}}_g$ which satisfies the inequalities (2) and which is of the form

$$\mu \pi^*(D) + \epsilon \chi^* \phi^*(A) = \alpha \lambda - 2(\delta_0' + \delta_0'') - 3\delta_0^{\text{ram}} - \sum_{i=1}^{\lfloor g/2 \rfloor} (b_i \delta_i + b_{g-i} \delta_{g-i} + b_{i:g-i} \delta_{i:g-i}),$$

where $A \equiv s\lambda - \delta \in \operatorname{Pic}(\overline{\mathcal{M}}_{g'})$ is an ample class (which happens precisely when s > 11, cf. [CH]), $D \in \operatorname{Eff}(\overline{\mathcal{M}}_g)$ and $\mu, \epsilon > 0$ and $\alpha < 13$. We solve this linear system using Proposition 4.1 and find that we must have

$$\epsilon = \frac{8}{12 - s(\phi^*(A))}$$
 and $\mu = \frac{16 - 2s(\phi^*(A))}{12 - s(\phi^*(A))}$.

To conclude that $\overline{\mathcal{R}}_g$ is of general type, it suffices to check that the inequality

$$\alpha = \frac{8s(\phi^*(A))}{12 - s(\phi^*(A))} + \left(6 + \frac{12}{g+1}\right) \frac{16 - 2s(\phi^*(A))}{12 - s(\phi^*(A))} < 13$$

has a solution $s = s(A) \ge 11$. Using (17), we find that this is the case for $g \ge 18$.

5. The enumerative geometry of $\overline{\mathcal{R}}_g$ in small genus

In this section we describe the divisors $\mathcal{D}_{g:k}$ and $\mathcal{U}_{g,i}$ for small g. We start with the case g=3. This result has been first obtained by M. Bernstein [Be, Theorem 3.2.3] using test curves inside $\overline{\mathcal{R}}_3$. Our method is more direct and uses the identification of cycles $C-C=\Theta_{\mathcal{Q}_C}\subset \operatorname{Pic}^0(C)$, valid for all curves $[C]\in\mathcal{M}_3$.

Theorem 5.1. The divisor $\mathcal{D}_{3:2} = \{[C, \eta] \in \mathcal{R}_3 : \eta \in C - C\}$ is equal to the locus of étale double covers $[\tilde{C} \stackrel{f}{\to} C] \in \mathcal{R}_3$ such that $[\tilde{C}] \in \mathcal{M}_5$ is hyperelliptic. We have the equality of cycles $\overline{\mathcal{D}}_{3:2} \equiv 8\lambda - \delta_0' - 2\delta_0'' - \frac{3}{2}\delta_0^{\text{ram}} - 6\delta_1 - 4\delta_2 - 2\delta_{1:2} \in \text{Pic}(\overline{\mathcal{R}}_3)$. Moreover,

$$\pi_*(\overline{\mathcal{D}}_{3:2}) \equiv 56 \cdot \overline{\mathcal{M}}_{3,2}^1 = 56 \cdot (9\lambda - \delta_0 - 3\delta_1) \in \text{Pic}(\overline{\mathcal{M}}_3).$$

This equality corresponds to the fact that for an étale double cover $f: \tilde{C} \to C$, the source \tilde{C} is hyperelliptic if and only if C is hyperelliptic and $\eta \in C - C \subset \operatorname{Pic}^0(C)$.

Proof. We use the set-up from Theorem 2.8 and recall that there exists a vector bundle morphism $\phi: \mathcal{H} \otimes \mathcal{A}_{0,0} \to \mathcal{A}_{0,1}$ over $\overline{\mathbf{R}}_3^0$ such that $Z_1(\phi) \cap \mathcal{R}_3 = \mathcal{D}_{3:2}$. Here $\mathcal{H} = \pi^*(\mathbb{E})$, $\mathcal{A}_{0,0}[X,\eta,\beta] = H^0(X,\omega_X\otimes\beta)$ and $\mathcal{A}_{0,1}[X,\eta,\beta] = H^0(X,\omega_X^{\otimes 2}\otimes\beta)$, for each point $[X,\eta,\beta] \in \widetilde{\mathcal{R}}_g$. Using (11) and (12) we check that both $\phi_{|\Delta_0'}$ and $\phi_{|\Delta_0^{\mathrm{ram}}}$ are generically non-degenerate. Over a point $t = [C_{yq}, \eta, \beta] \in \Delta_0''$ corresponding to a Wirtinger covering (i.e. $\nu: C \to C_{yq}$ with $[C] \in \mathcal{M}_2$ and $\nu^*(\eta) = \mathcal{O}_C$), we have

$$\phi(t): H^0(C, K_C) \otimes H^0(C, K_C \otimes \mathcal{O}_C(y+q)) \to \mathcal{A}_{0,1}(t) \subset H^0(C, \omega_C^{\otimes 2} \otimes \mathcal{O}_C(2y+2q)).$$

From the base point free pencil trick we find that $\operatorname{Ker}(\phi(t)) = H^0(C, \mathcal{O}_C(y+q))$, that is, $\phi_{|\Delta_0''}$ is everywhere degenerate and the class $c_1(\mathcal{A}_{0,1} - \mathcal{H} \otimes \mathcal{A}_{0,0}) - \delta_0'' \in \operatorname{Pic}(\overline{\mathbf{R}}_3^0)$ is effective. From the formulas $\pi_*(\lambda) = 63\lambda$, $\pi_*(\delta_0') = 30\delta_0$, $\pi_*(\delta_0'') = \delta_0$ and $\pi_*(\delta_0^{\operatorname{ram}}) = 16\delta_0$, we obtain

$$s(\pi_*(c_1(A_{0,1} - \mathcal{H} \otimes A_{0,0}) - \delta_0'')) = 9.$$

The hyperelliptic locus $\overline{\mathcal{M}}_{3,2}^1$ is the only divisor on $D \in \mathrm{Eff}(\overline{\mathcal{M}}_3)$ with $\Delta_i \subsetneq \mathrm{supp}(D)$ for i=0,1 and $s(D)\leq 9$, which leads to the formula $\pi_*(\overline{\mathcal{D}}_{3:2})=56\cdot\overline{\mathcal{M}}_{3,2}^1$.

Theorem 5.2. The divisor $\overline{\mathcal{D}}_{5:2}:=\{[C,\eta]\in\mathcal{R}_5:\eta\in C_2-C_2\}$ equals the locus of étale double covers $[\tilde{C}\stackrel{f}{\to}C]\in\mathcal{R}_5$ such that the genus 9 curve \tilde{C} is tetragonal. We have the formula $\overline{\mathcal{D}}_{5:2}=14\lambda-2(\delta_0'+\delta_0'')-\frac{5}{2}\delta_0^{ram}-10\delta_4-4\delta_{1:4}-\cdots\in Pic(\overline{\mathcal{R}}_5)$.

Proof. We start with an étale cover $f: \tilde{C} \stackrel{2:1}{\to} C$ corresponding to the torsion point $\eta = \mathcal{O}_C(D-E)$ with $D, E \in C_2$. Then

$$H^0(\tilde{C},\mathcal{O}_{\tilde{C}}(f^*D))=H^0(C,\mathcal{O}_C(D))\oplus H^0(C,\mathcal{O}_C(E)),$$

that is, $|f^*D| \in G^1_4(\tilde{C})$ and $[\tilde{C}] \in \overline{\mathcal{M}}^1_{9,4}$. Conversely, if $l \in G^1_4(\tilde{C})$, then l must be invariant under the involution of \tilde{C} and then $f_*(l) \in G^1_4(C)$ contains two divisors of the type $2x + 2y \equiv 2p + 2q$. Then we take $\eta = \mathcal{O}_C(x + y - p - q)$, that is, $[C, \eta] \in \mathcal{D}_{5:2}$. \square

Remark 5.3. Since $\operatorname{codim}(\overline{\mathcal{M}}_{9,4}^1, \overline{\mathcal{M}}_9) = 3$ while $\mathcal{D}_{5:2}$ is a divisor in \mathcal{R}_3 , there seems to be a dimensional discrepancy in Theorem 5.2. This is explained by noting that for an étale double covering $f: \tilde{C} \to C$ over a general curve $[C] \in \mathcal{M}_5$, the codimension 1 condition $\operatorname{gon}(\tilde{C}) \leq 5$ is equivalent to the seemingly stronger condition $\operatorname{gon}(\tilde{C}) \leq 4$. Indeed, if $l \in G_5^1(\tilde{C})$ is base point free, then l is not invariant under the involution of \tilde{C} and $\dim |f_*l| \geq 2$ so $G_5^2(C) \neq \emptyset$, a contradiction with the genericity assumption on C.

Theorem 5.4. The divisor $\mathcal{D}_{4:3} = \{[C, \eta] \in \mathcal{R}_4 : \exists A \in W_3^1(C) \text{ with } H^0(C, A \otimes \eta) \neq 0\}$ can be identified with the locus of Prym curves $[C, \eta] \in \mathcal{R}_4$ such that the Prym-canonical model $C \xrightarrow{|K_C \otimes \eta|} \mathbf{P}^2$ is a plane sextic curve with a triple point. We also have the class formula

$$\overline{\mathcal{D}}_{4:3} \equiv 8\lambda - \delta_0' - 2\delta_0'' - \frac{7}{4}\delta_0^{ram} - 4\delta_3 - 7\delta_1 - 3\delta_{1:3} - \dots \in Pic(\overline{\mathcal{R}}_4),$$

hence $\pi_*(\overline{\mathcal{D}}_{4:3}) = 60 \cdot \overline{\mathcal{GP}}_{4:3}^1 = 60(34\lambda - 4\delta_0 - 14\delta_1 - 18\delta_2) \in \text{Pic}(\overline{\mathcal{M}}_4)$, where

$$\mathcal{GP}^1_{4,3}\subset\mathcal{M}_4:=\{C]\in\mathcal{M}_4:\exists A\in W^1_3(C),\,A^{\otimes 2}=K_C\}$$

is the Gieseker–Petri divisor of curves $[C] \in \mathcal{M}_4$ with a vanishing theta-null.

Proof. We start with a Prym curve $[C, \eta] \in \mathcal{R}_4$ such that there exists $A \in W_3^1(C)$ with $H^0(C, A \otimes \eta) \neq 0$. We claim that $A^{\otimes 2} = K_C$, that is, $[C] \in \mathcal{GP}_{4,3}^1$. Indeed, assuming the opposite, we find *disjoint* divisors $D_1, D_2 \in C_3$ such that $D_1 \in |A \otimes \eta|$ and $D_2 \in |K_C \otimes A^{\vee} \otimes \eta|$. In particular, the subspaces $H^0(C, K_C \otimes \eta(-D_1)) \subset H^0(C, K_C)$ are both of dimension 2, hence they intersect non-trivially, that is, $H^0(C, K_C \otimes \eta(-D_1 - D_2)) \neq 0$. Since $D_1 + D_2 \equiv K_C$, this implies $\eta = 0$, a contradiction.

The proof that the vector bundle morphism $\phi: \mathcal{H} \otimes \mathcal{A}_{0,0} \to \mathcal{A}_{0,1}$ constructed in the proof of Theorem 2.8 is degenerate with order 1 along the divisor $\Delta_0'' \subset \overline{\mathcal{R}}_4$ follows from (11). Thus $c_1(\mathcal{A}_{0,1} - \mathcal{H} \otimes \mathcal{A}_{0,0}) - \delta_0'' \in \operatorname{Pic}(\overline{\mathcal{R}}_4)$ is an effective class and its pushforward to $\overline{\mathcal{M}}_4$ has slope 17/2. The only divisor $D \in \operatorname{Eff}(\overline{\mathcal{M}}_4)$ with $\Delta_i \subsetneq \operatorname{supp}(D)$ for i = 0, 1, 2 and $s(D) \leq 17/2$ is the theta-null divisor $\overline{\mathcal{GP}}_4^1$ (cf. [F3, Theorem 5.1]). \square

Remark 5.5. For a general point $[C, \eta] \in \mathcal{R}_4$, the Prym-canonical curve $\iota : C \xrightarrow{|K_C \otimes \eta|} \mathbf{P}^2$ is a plane sextic with 6 nodes which correspond to the preimages in $\phi^{-1}(\eta)$ under the second difference map

$$C_2 \times C_2 \rightarrow \operatorname{Pic}^0(C), (D_1, D_2) \mapsto \mathcal{O}_C(D_1 - D_2).$$

Note that $W_2(C) \cdot (W_2(C) + \eta) = 6$. For a general $[C, \eta] \in \mathcal{D}_{4:3}$, the model $\iota(C) \subset \mathbf{P}^2$ has a triple point. For a hyperelliptic curve $[C] \in \mathcal{M}^1_{4,2}$, out of the $255 = 2^{2g} - 1$ étale double covers of C, there exist 210 for which $C \xrightarrow{|K_C \otimes \eta|} \mathbf{P}^2$ has an ordinary 4-fold point and no other singularity. The remaining $45 = {2g+2 \choose 2}$ coverings correspond to the case $\eta = \mathcal{O}_C(x-y)$, with $x, y \in C$ being Weierstrass points, when $|K_C \otimes \eta|$ has two base points and ι is a degree 2 map onto a conic.

6. The singularities of the moduli space of Prym curves

The moduli space $\overline{\mathcal{R}}_g$ is a normal variety with finite quotient singularities. To determine its Kodaira dimension we consider a smooth model $\widehat{\mathcal{R}}_g$ of $\overline{\mathcal{R}}_g$ and then analyze the growth of the dimension of the spaces $H^0(\widehat{\mathcal{R}}_g, K_{\widehat{\mathcal{R}}_g}^{\otimes l})$ of pluricanonical forms for all $l \geq 0$. In this section we show that in doing so one only needs to consider forms defined on $\overline{\mathcal{R}}_g$ itself.

Theorem 6.1. Fix $g \ge 4$ and let $\widehat{\mathcal{R}}_g \to \overline{\mathcal{R}}_g$ be any desingularization. Then every pluricanonical form defined on the smooth locus $\overline{\mathcal{R}}_g^{\text{reg}}$ of $\overline{\mathcal{R}}_g$ extends holomorphically to $\widehat{\mathcal{R}}_g$, that is, for all integers $l \ge 0$ we have isomorphisms

$$H^0(\overline{\mathcal{R}}_g^{\mathrm{reg}}, K_{\overline{\mathcal{R}}_g}^{\otimes l}) \cong H^0(\widehat{\mathcal{R}}_g, K_{\widehat{\mathcal{R}}_g}^{\otimes l}).$$

A similar statement has been proved for the moduli space $\overline{\mathcal{M}}_g$ of curves (cf. [HM, Theorem 1]) and for the moduli space $\overline{\mathcal{S}}_g$ of spin curves (cf. [Lud, Theorem 4.1]). We start by explicitly describing the locus of non-canonical singularities in $\overline{\mathcal{R}}_g$, which has codimension 2. At a non-canonical singularity there exist *local* pluricanonical forms that do acquire poles on a desingularization. We show that this situation does not occur for forms defined on the smooth locus $\overline{\mathcal{R}}_g^{\text{reg}}$, and they extend holomorphically to $\widehat{\mathcal{R}}_g$.

Definition 6.2. An *automorphism* of a Prym curve (X, η, β) is an automorphism $\sigma \in \operatorname{Aut}(X)$ such that there exists an isomorphism of sheaves $\gamma : \sigma^* \eta \to \eta$ making the following diagram commutative:

$$\begin{array}{ccc}
(\sigma^* \eta)^{\otimes 2} & \xrightarrow{\gamma^{\otimes 2}} \eta^{\otimes 2} \\
 & & \downarrow^{\beta} \\
 & & \sigma^* \mathcal{O}_X & \xrightarrow{\simeq} & \mathcal{O}_X
\end{array}$$

If C := st(X) denotes the stable model of X then there is a group homomorphism $\operatorname{Aut}(X, \eta, \beta) \to \operatorname{Aut}(C)$ given by $\sigma \mapsto \sigma_C$. The kernel $\operatorname{Aut}_0(X, \eta, \beta)$ of this homomorphism is called the subgroup of *inessential automorphisms* of (X, η, β) .

Remark 6.3. The subgroup $\operatorname{Aut}_0(X,\eta,\beta)$ is isomorphic to $\{\pm 1\}^{CC(\widetilde{X})}/\pm 1$, where $CC(\widetilde{X})$ is the set of connected components of the non-exceptional subcurve \widetilde{X} (compare [CCC, Lemma 2.3.2] and [Lud, Proposition 2.7]). Given $\gamma_j \in \{\pm 1\}$ for every connected component \widetilde{X}_j of \widetilde{X} consider the automorphism $\widetilde{\gamma}$ of $\widetilde{\eta} = \eta_{|\widetilde{X}}$ which is multiplication by γ_j in every fibre over \widetilde{X}_j . Then there exists a unique inessential automorphism σ such that $\widetilde{\gamma}$ extends to an isomorphism $\gamma: \sigma^*\eta \to \eta$ compatible with the morphisms $\sigma^*\beta$ and β . Considering $(-\gamma_j)_j$ instead of $(\gamma_j)_j$ gives the same automorphism σ .

Definition 6.4. For a quasi-stable curve X, an irreducible component C_j is called an *elliptic tail* if $p_a(C_j) = 1$ and $C_j \cap \overline{(X - C_j)} = \{p\}$. The node p is then an *elliptic tail node*. A non-trivial automorphism σ of X is called an *elliptic tail automorphism* (with respect to C_j) if $\sigma_{|X-C_j}$ is the identity.

Theorem 6.5. Let (X, η, β) be a Prym curve of genus $g \ge 4$. The point $[X, \eta, \beta] \in \overline{\mathcal{R}}_g$ is smooth if and only if $\operatorname{Aut}(X, \eta, \beta)$ is generated by elliptic tail involutions.

Throughout this section, X denotes a quasi-stable curve of genus $g \ge 2$ and C := st(X) is its stable model. We denote by $N \subset \operatorname{Sing}(C)$ the set of exceptional nodes and $\Delta := \operatorname{Sing}(C) - N$. Then X is the support of a Prym curve if and only if N considered as a subgraph of the dual graph $\Gamma(C)$ is *eulerian*, that is, every vertex of $\Gamma(C)$ is incident to an even number of edges in N (cf. [BCF, Proposition 0.4]).

Locally at a point $[X, \eta, \beta]$, the moduli space $\overline{\mathcal{R}}_g$ is isomorphic to the quotient of the versal deformation space \mathbb{C}^{3g-3}_{τ} of (X, η, β) modulo the action of the automorphism group $\operatorname{Aut}(X, \eta, \beta)$. If $\mathbb{C}^{3g-3}_t = \operatorname{Ext}^1(\Omega^1_C, \mathcal{O}_C)$ denotes the versal deformation space of C, then the map $\mathbb{C}^{3g-3}_{\tau} \to \mathbb{C}^{3g-3}_t$ is given by $t_i = \tau_i^2$ if $(t_i = 0) \subset \mathbb{C}^{3g-3}_t$ is the locus where the exceptional node $p_i \in N$ persists and $t_i = \tau_i$ otherwise. The morphism $\pi: \overline{\mathcal{R}}_g \to \overline{\mathcal{M}}_g$ is given locally by the map $\mathbb{C}^{3g-3}_{\tau}/\operatorname{Aut}(X, \eta, \beta) \to \mathbb{C}^{3g-3}_t/\operatorname{Aut}(C)$. One has the following decomposition of the versal deformation space of (X, η, β) :

$$\mathbb{C}_{\tau}^{3g-3} = \bigoplus_{p_i \in N} \mathbb{C}_{\tau_i} \oplus \bigoplus_{p_i \in \Delta} \mathbb{C}_{\tau_i} \oplus \bigoplus_{C_j \subset C} H^1(C_j^{\nu}, T_{C_j^{\nu}}(-D_j)),$$

where for a node $p_i \in N$ we denote by $(\tau_i = 0) \subset \mathbb{C}_{\tau}^{3g-3}$ the locus where the corresponding exceptional component E_i persists, while for a node $p_i \in \Delta$ we denote by $(\tau_i = 0) \subset \mathbb{C}_{\tau}^{3g-3}$ the locus of those deformations in which p_i persists. Finally, for a component $C_j \subset C$ with normalization C_j^{ν} , if D_j consists of the inverse images of the nodes of C under the normalization map $C_j^{\nu} \to C_j$, the group $H^1(C_j^{\nu}, T_{C_j^{\nu}}(-D_j))$ parameterizes deformations of the pair (C_j^{ν}, D_j) . This decomposition is compatible with the decomposition

$$\mathbb{C}_{t}^{3g-3} = \left(\bigoplus_{p_{i} \in \operatorname{Sing}(C)} \mathbb{C}_{t_{i}}\right) \oplus \left(\bigoplus_{C_{i}} H^{1}(C_{j}^{\nu}, T_{C_{j}^{\nu}}(-D_{j}))\right)$$

as well as with the actions of the automorphism groups on \mathbb{C}_{τ}^{3g-3} and \mathbb{C}_{t}^{3g-3} (see also [Lud, p. 5]). The point $[X,\eta,\beta]\in\overline{\mathcal{R}}_{g}$ is smooth if and only if the action of $\operatorname{Aut}(X,\eta,\beta)$ on \mathbb{C}_{τ}^{3g-3} is generated by quasi-reflections, that is, elements $\sigma\in\operatorname{Aut}(X,\eta,\beta)$ having 1 as an eigenvalue of multiplicity precisely 3g-4. Theorem 6.5 follows from the following proposition.

Proposition 6.6. Let $\sigma \in \operatorname{Aut}(X, \eta, \beta)$ be an automorphism of a Prym curve (X, η, β) of genus $g \geq 4$. Then σ acts on \mathbb{C}^{3g-3}_{τ} as a quasi-reflection if and only if X has an elliptic tail C_j such that σ is the elliptic tail involution with respect to C_j .

Proof. Let σ be an elliptic tail involution with respect to C_j . The induced automorphism σ_C is an elliptic tail involution of C and acts on the versal deformation space \mathbb{C}^{3g-3}_t of C as $t_1 \mapsto -t_1$ and $t_i \mapsto t_i$, $i \neq 1$. Here t_1 is the coordinate corresponding to the node $p_1 \in C_j \cap \overline{C - C_j}$. The node p_1 being non-exceptional, we have $t_1 = \tau_1$, hence

 $\sigma \cdot \tau_1 = -\tau_1$. If $\tau_i = t_i$ $(i \neq 1)$, then $\sigma \cdot \tau_i = \tau_i$. For coordinates $t_i = \tau_i^2$, σ is the identity in a neighbourhood of the corresponding exceptional component E_i , thus $\sigma \cdot \tau_i = \tau_i$.

Now let $\sigma \in \operatorname{Aut}(X, \eta, \beta)$ act as a quasi-reflection with eigenvalues ζ and 1. As in the proof of [Lud, Proposition 2.15], there exists a node $p_1 \in C$ such that the action of σ is given by $\sigma \cdot \tau_1 = \zeta \tau_1$ and $\sigma \cdot \tau_j = \tau_j$ for $j \neq 1$. When $p_1 \in N$, the induced automorphism σ_C acts via $t_1 \mapsto \zeta^2 t_1$ and $\sigma_C \cdot t_j = t_j$ for $j \neq 1$. If $\zeta^2 \neq 1$, then σ_C acts as a quasi-reflection and p_1 is an elliptic tail node, which contradicts the assumption $p_1 \in N$. Therefore $\sigma_C = \operatorname{Id}_C$ and the exceptional component E_1 over p_1 is the only component on which σ acts non-trivially. The graph $N \subset \Gamma(C)$ is eulerian and there exists a circuit of edges in N containing p_1 :

By Remark 6.3, σ corresponds to an element $\pm(\gamma_j)_j \in \{\pm 1\}^{CC(\widetilde{X})}/\pm 1$. Since σ acts non-trivially on E_1 we find that $\gamma_1 = -\gamma_2$. In particular, there exists $i \neq 1$ such that σ acts non-trivially on E_i . This is a contradiction which shows that the node p_1 is non-exceptional, $\tau_1 = t_1$ and $\sigma_C \cdot t_1 = \zeta t_1$ and $\sigma_C \cdot t_i = t_i$ for $i \neq 1$. Thus σ_C is an elliptic tail involution of C with respect to an elliptic tail through the node p_1 and $\zeta = -1$. Since σ fixes every coordinate corresponding to an exceptional component of X, it follows that σ is an elliptic tail involution of X.

Theorem 6.7. Fix $g \ge 4$. A point $[X, \eta, \beta] \in \overline{\mathcal{R}}_g$ is a non-canonical singularity if and only if X has an elliptic tail C_j with j-invariant 0 and η is trivial on C_j .

The proof is similar to that of the analogous statement for $\overline{\mathcal{S}}_g$ and we refer to [Lud, Theorem 3.1] for a detailed outline of the proof and background on quotient singularities. Locally at $[X, \eta, \beta]$, the space $\overline{\mathcal{R}}_g$ is isomorphic to a neighbourhood of the origin in $\mathbb{C}_{\tau}^{3g-3}/\mathrm{Aut}(X,\eta,\beta)$. We consider the normal subgroup H of $\mathrm{Aut}(X,\eta,\beta)$ generated by automorphisms acting as quasi-reflections on \mathbb{C}_{τ}^{3g-3} . The map $\mathbb{C}_{\tau}^{3g-3} \to \mathbb{C}_{\tau}^{3g-3}/H = \mathbb{C}_{v}^{3g-3}$ is given by $v_i = \tau_i^2$ if p_i is an elliptic tail node and $v_i = \tau_i$ otherwise. The automorphism group $\mathrm{Aut}(X,\eta,\beta)$ acts on \mathbb{C}_{v}^{3g-3} and the quotient $\mathbb{C}_{v}^{3g-3}/\mathrm{Aut}(X,\eta,\beta)$ is isomorphic to $\mathbb{C}_{\tau}^{3g-3}/\mathrm{Aut}(X,\eta,\beta)$. Since $\mathrm{Aut}(X,\eta,\beta)$ acts on \mathbb{C}_{v}^{3g-3} without quasi-reflections the Reid–Shepherd-Barron–Tai criterion applies to this new action.

We fix an automorphism $\sigma \in \operatorname{Aut}(X, \eta, \beta)$ of order n and a primitive n-th root of unity ζ_n . If the action of σ on \mathbb{C}_v^{3g-3} has eigenvalues $\zeta_n^{a_1}, \ldots, \zeta_n^{a_{3g-3}}$ with $0 \le a_i < n$ for $i = 1, \ldots, 3g-3$, then following [Re2] we define the age of σ by

$$age(\sigma, \zeta_n) := \frac{1}{n} \sum_{i=1}^n a_i.$$

We say that σ satisfies the *Reid–Shepherd-Barron–Tai inequality* if $age(\sigma, \zeta_n) \geq 1$. The *Reid–Shepherd-Barron–Tai criterion* states that $\mathbb{C}^{3g-3}_{\upsilon}/\mathrm{Aut}(X, \eta, \beta)$ has canonical singularities if and only if every $\sigma \in \mathrm{Aut}(X, \eta, \beta)$ satisfies the Reid–Shepherd-Barron–Tai inequality (cf. [Re], [T], [Re2]).

Proof of the "if" part of Theorem 6.7. Let (X, η, β) be a Prym curve, C = st(X) and $C_j \subset X$ an elliptic tail with $\operatorname{Aut}(C_j) = \mathbb{Z}_6$ and assume $\eta_{C_j} = \mathcal{O}_{C_j}$. We fix an elliptic tail automorphism σ_C with respect to $C_j \subset C$ such that $\operatorname{ord}(\sigma_C) = 6$. Then σ_C acts on \mathbb{C}_t^{3g-3} by $t_1 \mapsto \zeta_6 t_1$, $t_2 \mapsto \zeta_6^2 t_2$ for an appropriate sixth root of unity ζ_6 and $\sigma \cdot t_i = t_i$ for $i \neq 1, 2$. Here $t_1, t_2 \in \operatorname{Ext}^1(\Omega_C^1, \mathcal{O}_C)$ correspond to smoothing the node $p_1 \in C_j \cap \overline{C - C_j}$ and deforming the curve $[C_j, p_1] \in \overline{\mathcal{M}}_{1,1}$ respectively. Since $\eta_{C_j} = \mathcal{O}_{C_j}$, the automorphism σ_C lifts to an automorphism $\sigma \in \operatorname{Aut}(X, \eta, \beta)$ such that $\sigma_{\overline{X - C_j}}$ is the identity. Then σ acts on \mathbb{C}_τ^{3g-3} as $\sigma \cdot \tau_1 = \zeta_6 \tau_1, \sigma \cdot \tau_2 = \zeta_6^2 \tau_2$ and $\sigma \cdot \tau_i = \tau_i$ for $i \neq 1, 2$. Since $\upsilon_1 = \tau_1^2$ and $\upsilon_2 = \tau_2$, the action of σ on $\mathbb{C}_\upsilon^{3g-3}$ is $\upsilon_1 \mapsto \zeta_6^2 \upsilon_1, \upsilon_2 \mapsto \zeta_6^2 \upsilon_2$ and $\upsilon_i \mapsto \upsilon_i, i \neq 1, 2$. We compute $\operatorname{age}(\sigma, \zeta_6^2) = \frac{1}{3} + \frac{1}{3} + 0 + \cdots + 0 = \frac{2}{3} < 1$, that is, $[X, \eta, \beta] \in \overline{\mathcal{R}}_g$ is a non-canonical singularity. Similarly, an elliptic tail automorphism of order 3 with respect to C_j acts $\operatorname{via} \tau_1 \mapsto \zeta_3^2 \tau_1, \tau_2 \mapsto \zeta_3 \tau_2$ and $\upsilon_i \mapsto \upsilon_i, i \neq 1, 2$, and then for the action on $\mathbb{C}_\upsilon^{3g-3}$ as $\upsilon_1 \mapsto \zeta_3 \upsilon_1, \upsilon_2 \mapsto \zeta_3 \upsilon_2$ and $\upsilon_i \mapsto \upsilon_i$ for $i \neq 1, 2$. This gives a value of $\frac{2}{3}$ for the age.

Suppose that $[X, \eta, \beta] \in \overline{\mathcal{R}}_g$ is a non-canonical singularity. Then there exists an automorphism $\sigma \in \operatorname{Aut}(X, \eta, \beta)$ of order n which acts on \mathbb{C}_v^{3g-3} such that $\operatorname{age}(\sigma, \zeta_n) < 1$. Let $p_{i_0}, p_{i_1} = \sigma_C(p_{i_0}), \ldots, p_{i_{m-1}} = \sigma_C^{m-1}(p_{i_0})$ be distinct nodes of C which are cyclically permuted by the induced automorphism σ_C and p_{i_j} is not an elliptic tail node. The action of σ on the subspace $\bigoplus_j \mathbb{C}_{\tau_{i_j}} \subset \mathbb{C}_\tau^{3g-3}$ is given by the matrix

$$B = \begin{pmatrix} 0 & c_1 & & \\ \vdots & & \ddots & \\ 0 & & & c_{m-1} \\ c_m & 0 & \cdots & 0 \end{pmatrix}$$

for appropriate scalars $c_j \neq 0$. The pair $((X, \eta, \beta), \sigma)$ is said to be *singularity reduced* if for every such cycle we have $\prod_{j=1}^m c_j \neq 1$.

Proposition 6.8 ([HM], [Lud, Proposition 3.6]). There exists a deformation (X', η', β') of (X, η, β) such that σ deforms to an automorphism $\sigma' \in \operatorname{Aut}(X', \eta', \beta')$ and the nodes of every cycle of nodes as above with $\prod_{j=1}^m c_j = 1$ are smoothed. The pair $((X', \eta', \beta'), \sigma')$ is then singularity reduced and the action of σ on $\mathbb{C}^{3g-3}_{v'}$ and that of σ' on $\mathbb{C}^{3g-3}_{v'}$ have the same eigenvalues and hence the same age.

We fix a singularity reduced pair $((X, \eta, \beta), \sigma)$ with $n := \operatorname{ord}(\sigma) \ge 2$ and assume that $\operatorname{age}(\sigma, \zeta_n) < 1$. We denote this assumption by (\star) . Using [Lud, Proposition 3.7] we find that if (\star) holds, the induced automorphism σ_C of $C = \operatorname{st}(X)$ fixes every node with the possible exception of two nodes which are interchanged.

Proposition 6.9. If (\star) holds, then σ_C fixes all components of the stable model C of X.

Proof. Let $C_{i_0}, C_{i_1} = \sigma_C(C_{i_0}), \ldots, C_{i_{m-1}} = \sigma_C^{m-1}(C_{i_0})$ be distinct components of C, $\sigma_C^m(C_{i_0}) = C_{i_0}$ and assume that $m \geq 2$. Most of the proof of Proposition 3.8. in [Lud] applies to the case of Prym curves and implies that the normalization $C_{i_0}^{\nu}$ is rational and there are exactly three preimages of nodes $p_1^+, p_2^+, p_3^+ \in C_{i_0}^{\nu}$ mapping to different nodes of C. By [Lud, Proposition 3.7] at least one of p_1, p_2, p_3 is fixed by σ_C . If either one or all three nodes are fixed, then g(C) = 2, impossible. Thus two nodes, say p_1 and p_2 , are fixed by σ_C while p_3 is interchanged with a fourth node p_4 . Interchanging p_3 and p_4 gives a contribution of $\frac{1}{2}$ to age (σ, ζ_n) . Now consider the action of σ_C near p_1 and let xy = 0 be a local equation of C at p_1 . We have $t_1 = xy \mapsto yx = t_1$ and $\tau_1 \mapsto \pm \tau_1$, where the minus sign is only possible if $p_1 \in N$. Since p_1 is not an elliptic tail node and $((X, \eta, \beta), \sigma)$ is singularity reduced, we have $\tau_1 \mapsto -\tau_1$, which gives an additional contribution of $\frac{1}{2}$ to the age, that is, $age(\sigma, \zeta_n) \ge \frac{1}{2} + \frac{1}{2} = 1$, contradicting (\star) .

Proposition 6.10 ([HM, pp. 28, 36], [Lud, Proposition 3.9]). Assume that (★) holds and denote by $\varphi_j = \sigma_{|C_i^{\nu}|}^{\nu}$ the induced automorphism of the normalization C_j^{ν} of the irreducible component C_j of C. Then the pair (C_j^{ν}, φ_j) is one of the following types:

- (i) $\varphi_j = \operatorname{Id}_{C_i^{\nu}}$ and C_i^{ν} arbitrary.
- (ii) C_j^{ν} is rational and $\operatorname{ord}(\varphi_j) = 2, 4$.
- (iii) C_j^{ν} is elliptic and $\operatorname{ord}(\varphi_j) = 2, 4, 3, 6$. (iv) C_j^{ν} is hyperelliptic of genus 2 and φ_j is the hyperelliptic involution.
- (v) C_i^{ν} is hyperelliptic of genus 3 and φ_i is the hyperelliptic involution.
- (vi) C_i^{ν} is bielliptic of genus 2 and φ_j is the associated involution.

The possibility of σ_C interchanging two nodes does not appear (cf. [Lud, Prop. 3.10]):

Proposition 6.11. Under the assumption (\star) , the automorphism σ_C fixes all the nodes of C.

Proposition 6.12. Assume (\star) holds. Let C_j be a component of C with normalization C_j^{ν} , D_j the divisor of the marked points on C_j^{ν} and $\varphi_j = \sigma_{|C_j^{\nu}|}^{\nu}$. Then $(C_j^{\nu}, D_j, \varphi_j)$ is of one of the following types and the contribution to $age(\sigma, \zeta_n)$ coming from $H^1(C_j^{\nu}, T_{C_i^{\nu}}(-D_j)) \subset$ \mathbb{C}^{3g-3}_{ij} is at least the following quantity w_j :

- (i) Identity component: $\varphi_j = \operatorname{Id}_{C_i^{\nu}}$, arbitrary pair (C_i^{ν}, D_j) and $w_j = 0$.
- (ii) Elliptic tail: C_j^{ν} is elliptic, $D_j = p_1^+$ and p_1^+ is fixed by φ_j . order 2: $\operatorname{ord}(\varphi_j) = 2$ and $w_j = 0$ order 4: C_i^{ν} has j-invariant 1728, $\operatorname{ord}(\varphi_i) = 4$ and $w_i = \frac{1}{2}$ order 3, 6: C_i^{ν} has j-invariant 0, $\operatorname{ord}(\varphi_j) = 3$ or 6 and $w_j = \frac{1}{3}$
- (iii) Elliptic ladder: C_j^{ν} is elliptic, $D_j = p_1^+ + p_2^+$, with p_1^+ and p_2^+ both fixed by φ_j . order 2: ord(φ_j) = 2 and $w_j = \frac{1}{2}$ order 4: C_i^{ν} has j-invariant 1728, $\operatorname{ord}(\varphi_j) = 4$ and $w_j = \frac{3}{4}$ order 3: C_i^{ν} has j-invariant 0, ord $(\varphi_j) = 3$ and $w_j = \frac{2}{3}$

(iv) Hyperelliptic tail: C_j^{ν} has genus 2, φ_j is the hyperelliptic involution, D_j is of the form $D_j = p_1^+$ with p_1^+ fixed by φ_j and $w_j = \frac{1}{2}$.

Proof. The proof is along the lines of the proof of Proposition 3.11 in [Lud]. The only difference occurs in the case of a singular elliptic tail on which σ acts with order 2. Assume that C_j^{ν} is rational, $D_j = p_1^+ + p_1^- + p_2$, with $\operatorname{ord}(\varphi_j) = 2$ which fixes p_2^+ and interchanges p_1^+ and p_1^- . If xy = 0 is an equation for C at p_1 , then σ_C acts via $t_1 = xy \mapsto yx = t_1$. Since p_1 is not an elliptic tail node and $((X, \eta, \beta), \sigma)$ is singularity reduced, the node p_1 must be exceptional and $\sigma \cdot \tau_1 = -\tau_1$.

A deformation of (X, η, β) over the locus $(\tau_i = 0)_{i \neq 1} \subset \mathbb{C}_{\tau}^{3g-3}$ smooths p_1 . Furthermore, σ deforms to an automorphism σ' of a general Prym curve (X', η', β') over this locus, φ_j deforms to the involution φ_j' on the smooth elliptic tail C_j' such that it fixes the line bundle $\eta'_{C_j'}$, and the restrictions of σ and σ' to the complement of C_j resp. C_j' coincide. Over the non-exceptional subcurve $\widetilde{X} \subset X$ we have $(\widetilde{\sigma}')^*\widetilde{\eta}' \cong \widetilde{\eta}'$. Thus $\sigma \cdot \tau_1 = \tau_1$, which is a contradiction. The case of a singular elliptic tail is thus excluded.

Proposition 6.13. *Under the hypothesis* (\star) *, the hyperelliptic tail case does not occur.*

Proof. Let C_j be a genus 2 tail of C and $C_{j'}$ the second component through p_1 . The action of σ on $H^1(C_j^{\nu}, T_{C_j^{\nu}}(-D_j))$ contributes $\frac{1}{2}$ to the age of σ and $C_{j'}$ has to be one of the cases of Proposition 6.12. If $C_{j'}$ is elliptic, then g(C)=3. If $C_{j'}$ is a hyperelliptic tail or an elliptic ladder, the action on $H^1(C_{j'}^{\nu}, T_{C_{j'}^{\nu}}(-D_{j'}))$ contributes at least $\frac{1}{2}$. Therefore $C_{j'}$ is an identity component. If xy=0 is an equation for C at p_1 , then σ_C acts via $t_1=xy\mapsto -xy=-t_1$. The node p_1 is disconnecting, hence non-exceptional, and it is not an elliptic tail node. Therefore, $v_1=\tau_1=t_1$ and σ acts as $\sigma \cdot v_1=-v_1$. This gives an additional contribution of $\frac{1}{2}$ to the age of σ , finishing the proof.

Proposition 6.14. In situation (\star) the elliptic ladder cases do not occur.

Proof. Let C_j be an elliptic ladder of C of order $n_j = \operatorname{ord}(\varphi_j)$ and denote by $C_{j'}$ resp. $C_{j''}$ the second component through the node p_1 resp. p_2 . Since every elliptic ladder contributes at least $\frac{1}{2}$ to the age, $C_{j'}$ and $C_{j''}$ can only be elliptic tails or identity components. If both are elliptic tails, then g(C) = 3, hence we may assume that $C_{j'}$ is an identity component. If xy = 0 is an equation for C at p_1 , then σ_C acts as $x \mapsto x$, $y \mapsto \alpha y$ and $t_1 \mapsto \alpha t_1$, where α is a primitive n_j -th root of 1. If p_1 is non-exceptional then $v_1 = \tau_1 = t_1$ and the space $H^1(C_j^v, T_{C_j^v}(-D_j)) \oplus \mathbb{C} \cdot v_1$ contributes to the age at least

$$1 = \begin{cases} \frac{1}{2} + \frac{1}{2} & \text{if } n_j = 2, \\ \frac{3}{4} + \frac{1}{4} & \text{if } n_j = 4, \\ \frac{2}{3} + \frac{1}{3} & \text{if } n_j = 3. \end{cases}$$

Therefore $p_1 \in N$. Since $N \subset \Gamma(C)$ is an eulerian subgraph, the node p_2 is also exceptional, both p_1 and p_2 are non-disconnecting and $C_{j''}$ is an identity component as well. Moreover $\sigma_C \cdot t_i = \alpha t_i$, i = 1, 2. Since $v_i = \tau_i$ and $\tau_i^2 = t_i$ for i = 1, 2, we find that

 $\sigma \cdot \upsilon_i = \alpha_i \upsilon_i$, i = 1, 2, where α_i is a square root of α . Therefore, the contribution to the age of σ coming from $H^1(C_i^{\nu}, T_{C_i^{\nu}}(-D_j)) \oplus \mathbb{C} \cdot \upsilon_1 \oplus \mathbb{C} \cdot \upsilon_2$ is at least

$$1 = \begin{cases} \frac{1}{2} + \frac{1}{4} + \frac{1}{4} & \text{if } n_j = 2, \\ \frac{3}{4} + \frac{1}{8} + \frac{1}{8} & \text{if } n_j = 4, \\ \frac{2}{3} + \frac{1}{6} + \frac{1}{6} & \text{if } n_j = 3, \end{cases}$$

and the case of elliptic ladders is excluded.

Proposition 6.15. Under hypothesis (\star) , the case of an elliptic tail of order 4 does not occur.

Proof. Let C_j be an elliptic tail of order 4, and $C_{j'}$ another component of C through p_1 . Then $\sigma_{C|C'_j} = \operatorname{Id}_{C'_j}$ and σ_C acts as $t_1 = xy \mapsto \zeta_4 xy = \zeta_4 t_1$ for a suitable fourth root ζ_4 of 1. Since p_1 is an elliptic tail node, we have $\upsilon_1 = t_1^2$ and $\sigma \cdot \upsilon_1 = -\upsilon_1$. The action of σ on $H^1(C_j^{\upsilon}, T_{C_j^{\upsilon}}(-D_j)) \oplus \mathbb{C} \cdot \upsilon_1$ contributes $\geq \frac{1}{2} + \frac{1}{2} = 1$ to $\operatorname{age}(\sigma, \zeta_4)$, excluding this case.

Proposition 6.16. In situation (\star) there has to be at least one elliptic tail of order 3 or 6.

Proof. Assume to the contrary that every component of C is either an identity component or an elliptic tail of order 2. The action of σ on every space $H^1(C_j^{\nu}, T_{C_j^{\nu}}(-D_j))$ is trivial. If p_1 is the node of an elliptic tail of order 2, then $\sigma_C \cdot t_1 = -t_1$ and we have $\upsilon_1 = \tau_1^2 = t_1^2$ and $\sigma \cdot \upsilon_1 = \upsilon_1$. In case p_1 is non-exceptional but not an elliptic tail node, $\sigma_C \cdot t_1 = t_1$. Since $\upsilon_1 = \tau_1 = t_1$, we find that σ fixes υ_1 . If $p_1 \in N$, then $\sigma_C \cdot t_1 = t_1$ and $\upsilon_1^2 = \tau_1^2 = t_1$ and σ acts as $\upsilon_1 \mapsto \pm \upsilon_1$. Since $\deg(\sigma, \zeta_n) < 1$, then exactly one node p_1 such that $\sigma \cdot \upsilon_1 = -\upsilon_1$, that is, σ acts as quasi-reflection on $\mathbb{C}^{3g-3}_{\upsilon}$, a contradiction.

Proof of the "only if" part of Theorem 6.7. We proved that if $((X, \eta, \beta), \sigma)$ is a singularity reduced pair and $\operatorname{age}(\sigma, \zeta_n) < 1$, where $n = \operatorname{ord}(\sigma)$, there exists an elliptic tail $C_j \subset C$ with $\operatorname{Aut}(C_j) = \mathbb{Z}_6$ such that $\operatorname{ord}(\sigma_{C_j}) \in \{3, 6\}$. Since $\sigma_{C_j}^*(\eta_{C_j}) \cong \eta_{C_j}$, we find that $\eta_{C_j} = \mathcal{O}_{C_j}$. Let $((X, \eta, \beta), \sigma)$ be a pair consisting of a Prym curve and an automorphism such that $\operatorname{age}(\sigma, \zeta_n) < 1$. By Proposition 6.8 we may deform $((X, \eta, \beta), \sigma)$ to a singularity reduced pair $((X', \eta', \beta'), \sigma')$ such that the actions of σ on \mathbb{C}_v^{3g-3} and σ' on $\mathbb{C}_{v'}^{3g-3}$ have the same ages. Therefore X' has an elliptic tail C_j' with $\operatorname{Aut}(C_j') = \mathbb{Z}_6$ such that $\eta'_{C_j'}$ is trivial and σ' acts on C_j' of order 3 or 6. In the deformation of (X, η, β) to (X', η', β') elliptic tails are preserved, hence $((X, \eta, \beta), \sigma)$ enjoys the same properties.

Remark 6.17. If $\sigma \in \operatorname{Aut}(X, \eta, \beta)$ satisfies the inequality $\operatorname{age}(\sigma, \zeta_n) < 1$ (with respect to the action on $\mathbb{C}^{3g-3}_{\upsilon}$), then σ is an elliptic tail automorphism and $\operatorname{ord}(\sigma) \in \{3, 6\}$. Indeed, we already know that $\sigma_C \in \operatorname{Aut}(C)$ acts with order 3 or 6 on an elliptic tail C_j . The action of σ on $H^1(C_j^{\upsilon}, T_{C_j^{\upsilon}}(-D_j))$ and the υ -coordinate corresponding to the elliptic tail node on C_j contribute at least $\frac{2}{3}$ to $\operatorname{age}(\sigma, \zeta_n)$. Thus there is exactly one elliptic tail

of order 3 or 6 and σ_C is an elliptic tail automorphism of the same order. If σ is not an elliptic tail automorphism of X, then there exists an exceptional component $E_1 \subset X$ on which σ acts non-trivially. Since E_1 connects two non-exceptional components of X on which σ acts trivially, $\sigma \cdot v_1 = -v_1$, giving a contribution of $\frac{1}{2}$ and an age $\geq \frac{2}{3} + \frac{1}{2} \geq 1$.

Proof of Theorem 6.1. We start with a pluricanonical form ω on $\overline{\mathcal{R}}_g^{\text{reg}}$ and show that ω lifts to a desingularization of a neighbourhood of every point $[X, \eta, \beta] \in \overline{\mathcal{R}}_g$. We may assume that $[X, \eta, \beta]$ is a general non-canonical singularity of $\overline{\mathcal{R}}_g$, hence $X = C_1 \cup_p C_2$, where $[C_1, p] \in \mathcal{M}_{g-1,1}$ is general and $[C_2, p] \in \mathcal{M}_{1,1}$ has j-invariant 0. Furthermore $\eta_{C_2} = \mathcal{O}_{C_2}$ and $\eta_1 := \eta_{C_1} \in \text{Pic}^0(C_1)[2]$. We consider the pencil $\phi : \overline{\mathcal{M}}_{1,1} \to \overline{\mathcal{R}}_g$ given by $\phi[C', p] = [C' \cup_p C_1, \eta_{C'} = \mathcal{O}_{C'}, \eta_{C_1} = \eta_1]$. Since $\phi(\overline{\mathcal{M}}_{1,1}) \cap \Delta_0^{\text{ram}} = \emptyset$, we imitate [HM, pp. 41–44] and construct an *explicit* open neighbourhood $\overline{\mathcal{R}}_g \supset S \supset \phi(\overline{\mathcal{M}}_{1,1})$ such that the restriction to S of $\pi : \overline{\mathcal{R}}_g \to \overline{\mathcal{M}}_g$ is an isomorphism and every form $\omega \in H^0(\overline{\mathcal{R}}_g^{\text{reg}}, K_{\overline{\mathcal{R}}_g}^{\otimes l})$ extends to a resolution \widehat{S} of S. For an arbitrary non-canonical singularity we show that ω extends locally to a desingularization along the lines of [Lud, Theorem 4.1].

Acknowledgments. Research of the first author was partially supported by an Alfred P. Sloan Fellowship, the NSF Grant DMS-0500747 and a Texas Research Assignment.

References

- [ACGH] Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves. Grundlehren Math. Wiss. 267, Springer (1985) Zbl 0559.14017 MR 0770932
- [ACV] Abramovich, D., Corti, A., Vistoli, A.: Twisted bundles and admissible coverings. Comm. Algebra 31, 3547–3618 (2003) Zbl 1077.14034 MR 2007376
- [BCF] Ballico, E., Casagrande, C., Fontanari, C.: Moduli of Prym curves. Documenta Math. 9, 265–281 (2004) Zbl 1072.14029 MR 2117416
- [B] Beauville, A.: Prym varieties and the Schottky problem. Invent. Math. 41, 149–196 (1977) Zbl 0333.14013 MR 0572974
- [Be] Bernstein, M.: Moduli of curves with level structures. Harvard Univ. Ph.D. Thesis (1999)
- [CCC] Caporaso, L., Casagrande, C., Cornalba, M.: Moduli of roots of line bundles on curves. Trans. Amer. Math. Soc. 359, 3733–3768 (2007) Zbl 1140.14022 MR 2302513
- [Ca] Catanese, F.: On the rationality of certain moduli spaces related to curves of genus 4. In: Algebraic Geometry (Ann Arbor, MI), Lecture Notes in Math. 1008, Springer, 30–50 (1983) Zbl 0517.14020 MR 0723706
- [C] Cornalba, M.: A remark on the Picard group of spin moduli space. Rend. Lincei Mat. Appl. **2**, 211–217 (1991) Zbl 0768.14010 MR 1135424
- [CH] Cornalba, M., Harris, J.: Divisor classes associated to families of stable varieties, with applications to the moduli space of curves. Ann. Sci. École Norm. Sup. 21, 455–475 (1988) Zbl 0674.14006 MR 0974412
- [CM] Coppens, M., Martens, G.: Linear series on a general *k*-gonal curve. Abh. Math. Sem. Univ. Hamburg **69**, 347–371 (1999) Zbl 0957.14018 MR 1722944
- [De] Debarre, O.: Sur le problème de Torelli pour les variétés de Prym. Amer. J. Math. **111**, 111–134 (1989) Zbl 0699.14052 MR 0980302

- [Dol] Dolgachev, I.: Rationality of fields of invariants. In: Algebraic Geometry, Bowdoin, 1985, Proc. Sympos. Pure Math. 46, Part 2, Amer. Math. Soc., 3–16 (1987) Zbl 0659.14009 MR 0927970
- [D1] Donagi, R.: The unirationality of A_5 . Ann. of Math. **119**, 269–307 (1984) Zbl 0589.14043 MR 0740895
- [D2] Donagi, R., The fibers of the Prym map. In: Curves, Jacobians, and Abelian Varieties (Amherst, MA, 1990), Contemp. Math. 136, Amer. Math. Soc. 55–125 (1992) Zbl 0783.14025 MR 1188194
- [DS] Donagi, R., Smith, R.: The structure of the Prym map. Acta Math. 146, 25–102 (1981) Zbl 0538.14019 MR 0594627
- [EH] Eisenbud, D., Harris, J.: Limit linear series: basic theory. Invent. Math. 85, 337–371 (1986) Zbl 0598.14003 MR 0846932
- [F1] Farkas, G.: Syzygies of curves and the effective cone of $\overline{\mathcal{M}}_g$. Duke Math. J. 135, 53–98 (2006) Zbl 1107.14019 MR 2259923
- [F2] Farkas, G.: Koszul divisors on moduli spaces of curves. Amer. J. Math. 131, 819–867 (2009) Zbl pre05573661 MR 2530855
- [F3] Farkas, G.: Rational maps between moduli spaces of curves and Gieseker–Petri divisors. J. Algebraic Geom. 19, 243–284 (2010)
- [F4] Farkas, G.: The Prym-Green Conjecture. In preparation
- [FMP] Farkas, G., Mustață, M., Popa, M.: Divisors on $\mathcal{M}_{g,g+1}$ and the Minimal Resolution Conjecture for points on canonical curves. Ann. Sci. École Norm. Sup. **36**, 553–581 (2003) Zbl 1063.14031 MR 2013926
- [FP] Farkas, G., Popa, M.: Effective divisors on $\overline{\mathcal{M}}_g$, curves on K3 surfaces and the Slope Conjecture. J. Algebraic Geom. **14**, 241–267 (2005) Zbl 1081.14038 MR 2123229
- [FS] Friedman, R., Smith, R.: The generic Torelli theorem for the Prym map. Invent. Math. **67**, 473–490 (1982) Zbl 0506.14042 MR 0664116
- [GL] Green, M., Lazarsfeld, R.: Some results on the syzygies of finite sets and algebraic curves. Compos. Math. 67, 301–314 (1988) Zbl 0671.14010 MR 0959214
- [HF] Farkas, H.: Unramified double coverings of hyperelliptic surfaces. J. Anal. Math. 30, 150-155 (1976) Zbl 0348.32006 MR 0437741
- [HM] Harris, J., Mumford, D.: On the Kodaira dimension of $\overline{\mathcal{M}}_g$. Invent. Math. 67, 23–88 (1982) Zbl 0506.14016 MR 0664324
- [EH] Eisenbud, D., Harris, J.: The Kodaira dimension of the moduli space of curves of genus ≥ 23. Invent. Math. 90, 359–387 (1987) Zbl 0631.14023 MR 0910206
- [IGS] Izadi, E., Lo Giudice, M., Sankaran, G. K.: The moduli space of étale double covers of genus 5 curves is unirational. Pacific J. Math. 239, 39–52 (2009) Zbl pre05366395 MR 2449010
- [Kh] Khosla, D.: Tautological classes on moduli spaces of curves with linear series and a push-forward formula when $\rho=0$. arXiv:0704.1340
- [L] Lazarsfeld, R.: A sampling of vector bundle techniques in the study of linear systems. In: Lectures on Riemann Surfaces (Trieste, 1987), World Sci., 500–559 (1989) Zbl 0800.14003 MR 1082360
- [Lud] Ludwig, K.: On the geometry of the moduli space of spin curves. J. Algebraic Geom. 19, 133–171 (2010)
- [MM] Mori, S., Mukai, S.: The uniruledness of the moduli space of curves of genus 11. In: Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math. 1016, Springer, 334–353 (1983) Zbl 0557.14015 MR 0726433
- [R] Raynaud, M.: Sections des fibrés vectoriels sur une courbe. Bull. Soc. Math. France 110, 103–125 (1982) Zbl 0505.14011 MR 0662131

- [Re] Reid, M.: Canonical 3-folds. In: Journées de Géométrie Algébrique d'Angers (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn, 273–310 (1980) Zbl 0451.14014 MR 0605348
- [Re2] Reid, M.: La correspondance de McKay. In: Séminaire Bourbaki, Vol. 1999/2000, Astérisque **276**, 53–72 (2002) Zbl 0996.14006 MR 1886756
- [T] Tai, Y.: On the Kodaira dimension of the moduli space of abelian varieties. Invent. Math. **68**, 425–439 (1982) Zbl 0508.14038 MR 0669424
- [V1] Verra, A.: A short proof of the unirationality of \mathcal{A}_5 . Indag. Math. **46**, 339–355 (1984) Zbl 0553.14010 MR 0763470
- [V2] Verra, A.: On the universal principally polarized abelian variety of dimension 4. In: Curves and Abelian Varieties, Contemp. Math. 465, Amer. Math. Soc., 253–274 (2008) Zbl 1160.14032 MR 2457741
- [Vo] Voisin, C.: Green's generic syzygy conjecture for curves of even genus lying on a K3 surface. J. Eur. Math. Soc. 4, 363–404 (2002) Zbl 1080.14525 MR 1941089