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Abstract. Suppose that µ is an absolutely continuous probability measure on Rn, for large n. Then
µ has low-dimensional marginals that are approximately spherically-symmetric. More precisely, if
n ≥ (C/ε)Cd , then there exist d-dimensional marginals of µ that are ε-far from being spherically-
symmetric, in an appropriate sense. Here C > 0 is a universal constant.

1. Introduction

The purpose of this paper is to clarify a seven line paragraph by Gromov [11, Sec-
tion 1.2.F]. We are interested in projections of high-dimensional probability measures.
Not all probability measures on Rn, for large n, are truly n-dimensional. For instance,
a measure supported on an atom or two should not be considered high-dimensional.
Roughly speaking, we think of a probability measure on a linear space as decently high-
dimensional if any subspace of bounded dimension contains only a small fraction of the
total mass.

Definition 1.1. Let µ be a Borel probability measure on Rn and ε > 0. We say that µ
is decently high-dimensional with parameter ε, or ε-decent for short, if for any linear
subspace E ⊆ Rn,

µ(E) ≤ ε dim(E). (1)

We say that µ is decent if it is ε-decent for ε = 1/n, the minimal possible value of ε.

Clearly, all absolutely continuous probability measures on Rn are decent, as are many
discrete measures. Note that a decent measure µ necessarily satisfies µ({0}) = 0, how-
ever, this feature should not be taken too seriously. A measure µ is weakly ε-decent if (1)
holds for all subspaces E ⊆ Rn except E = {0}. For a measure µ on a measurable
space � and a measurable map T : � → �′, we write T∗(µ) for the push-forward of µ
under T , i.e.,

T∗(µ)(A) = µ(T
−1(A))

for all measurable setsA ⊆ �′. Whenµ is a probability measure on Rn and T : Rn→ R`
is a linear map with ` < n, we say that T∗(µ) is a marginal of µ, or a measure projection
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of µ. The classical Dvoretzky theorem asserts that appropriate geometric projections of
any high-dimensional convex body are approximately Euclidean balls (see Milman [23]
and references therein). The analogous statement for probability measures should perhaps
be the following (see Gromov [11]): Appropriate measure projections of any decent high-
dimensional probability measure are approximately spherically-symmetric. When can we
say that a probability measure µ on Rd is approximately radially-symmetric?

We need some notation. Let µ be a finite measure on a measurable space �. For a
subset A ⊆ � with µ(A) > 0 we write µ|A for the conditioning of µ on A, i.e.,

µ|A(B) = µ(A ∩ B)/µ(A)

for any measurable set B ⊆ �. Write Sd−1 for the unit sphere centered at the origin
in Rd . The uniform probability measure on the sphere Sd−1 is denoted by σd−1. For two
probability measures µ and ν on the sphere Sd−1 and 1 ≤ p <∞ we write Wp(µ, ν) for
the Lp Monge–Kantorovich transportation distance between µ and ν in the sphere Sd−1

endowed with the geodesic distance (see, e.g., [33] or Section 2 below). The metrics Wp
are all equivalent (we have W1 ≤ Wp ≤ πW

1/p
1 ) and they metrize weak convergence

of probability measures. For an interval J ⊂ (0,∞) we consider the spherical shell
S(J ) = {x ∈ Rd; |x| ∈ J }, where | · | is the standard Euclidean norm in Rd . The radial
projection in Rd is the mapR(x) = x/|x|. An interval is either open, closed or half-open
and half-closed.

Definition 1.2 (Gromov [12]). Let µ be a Borel probability measure on Rd and let
ε > 0. We say that µ is ε-radial if for any interval J ⊂ (0,∞) with µ(S(J )) ≥ ε,
we have

W1(R∗(µ|S(J )), σd−1) ≤ ε.

That is, when we condition µ on any spherical shell that contains at least an ε-fraction
of the mass, and then project radially to the sphere, we obtain an approximation to the
uniform probability measure on the sphere in the transportation-metric sense.

Note that this definition is scale-invariant. We think of the dimension n from Defini-
tion 1.1 as a very large number, tending to infinity. On the other hand, we usually view
the dimension d in Definition 1.2 as being fixed, and typically not very large. The case
d = 1 of Definition 1.2 corresponds to the measure being approximately even. We are not
sure whether Dirac’s measure δ0 is a good example of an ε-radial measure. An ε-radial
measure µ is said to be proper if µ({0}) = 0. Our main theorem reads as follows:

Theorem 1.3. There exists a universal constant C > 0 for which the following holds:
Let 0 < ε < 1 and let d, n be positive integers. Suppose that

n ≥ (C/ε)Cd . (2)

Then, for any decent probability measureµ on Rn, there exists a linear map T : Rn→ Rd
such that T∗(µ) is ε-radial proper.

Furthermore, let η > 0 be such that η−1
≥ (C/ε)Cd . Then, for any η-decent prob-

ability measure µ on Rn, there exists a linear map T : Rn → Rd such that T∗(µ) is
ε-radial proper.
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Gromov has a topological proof for the cases d = 1, 2 of Theorem 1.3, which does not
seem to generalize to higher dimensions [12], [22]. Theorem 1.3 is tight, up to the value
of the constant C, as demonstrated by the example where µ is distributed uniformly on n
linearly independent vectors: In this case µ is decent, but for any linear map T and an
interval J , the discrete measure R((T∗µ)|S(J )) is composed of at most n atoms. It is not
difficult to see that when the support of ν contains no more than ε−(d−1) points, we have
the lower bound W1(ν, σd−1) ≥ cε, for a certain universal constant c > 0. It is desirable
to find the best constant in the exponent in Theorem 1.3, perhaps also with respect to
other notions of ε-radial measures.

The conclusion of Theorem 1.3 also holds when the measure µ is assumed to be only
weakly ε-decent, except that T∗(µ) is no longer necessarily proper. Another possibility
in this context is to allow affine maps in Theorem 1.3 in place of linear maps, and obtain
a measure T∗(µ) which is ε-radial proper. (It is also possible to modify Definition 1.1
slightly, and require that (1) hold for all affine subspaces of dimension at least one. The
effect of such a modification is minor, since an ε-decent measure will remain at most
2ε-decent after such a change.)

The conclusion of Theorem 1.3 does not necessarily hold for non-decent measures,
even when their support spans the entire Rn: Let e1, . . . , en be linearly independent vec-
tors in Rn, and consider the probability measure µ = (1 − 2−n)−1∑n

i=1 2−iδei , where
δx is Dirac’s unit mass at x ∈ Rn. Then µ is not decent, and none of the two-dimensional
marginals of µ are ε-radial proper, for ε = 1/10.

As in Milman’s proof of Dvoretzky’s theorem (see [23]), Theorem 1.3 will be proved
by demonstrating that a random linear map T works with positive probability, once the
measure µ is put in the right “position”. That is, we first push-forward µ under an appro-
priate invertible linear map in Rn, which is non-random, and only then do we project the
resulting probability measure to a random d-dimensional subspace, distributed uniformly
in the Grassmannian. The measure µ is in the correct “position” when the covariance ma-
trix ofR∗µ is proportional to the identity matrix. If we assume that the covariance matrix
of µ itself is proportional to the identity, then a random projection will not work, in gen-
eral, with high probability (compare with Sudakov’s theorem; see [29] or the presentation
in Bobkov [4]).

Here is an outline of the proof of Theorem 1.3 and also of the structure of this article:
In Section 5 we use the non-degeneracy conditions from Definition 1.1 in order to guar-
antee the existence of the initial linear transformation that puts µ in the right “position”.
Once we know that the covariance matrix of R∗µ is approximately a scalar matrix, we
prove that the measure µ may be decomposed into many almost-orthogonal ensembles.
Each such ensemble is simply a discrete probability measure, uniform on a collection of
approximately-orthogonal vectors in Rn that are not necessarily of the same length. This
decomposition, which essentially appeared earlier in the work of Bourgain, Lindenstrauss
and Milman [6], is discussed in Section 4. Section 3 is concerned with the analysis of a
single ensemble of our decomposition. As it turns out, a random projection works with
high probability, and transforms the discrete measure into an almost-radial one. Section 2
contains a preliminary discussion regarding ε-radial measures and the transportation met-
ric. The proof of Theorem 1.3 is completed in Section 6, in which we also make some
related comments and prove the following corollary to Theorem 1.3.
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Corollary 1.4. There exists a sequence Rn → ∞ with the following property: Let µ
be a decent probability measure on Rn. Then there exists a non-zero linear functional
ϕ : Rn→ R such that

µ({x;ϕ(x) ≥ tM}) ≥ c exp(−Ct2) for all 0 ≤ t ≤ Rn

and
µ({x;ϕ(x) ≤ −tM}) ≥ c exp(−Ct2) for all 0 ≤ t ≤ Rn

where M > 0 is a median, that is,

µ({x; |ϕ(x)| ≤ M}) ≥ 1/2 and µ({x; |ϕ(x)| ≥ M}) ≥ 1/2 (3)

and c, C > 0 are universal constants. Moreover, one may take Rn = c(log n)1/4.

In other words, any high-dimensional probability measure has super-gaussian marginals.
Furthermore, as is evident from the proof, most of the marginals are super-gaussian when
the measure is in the right “position”. In the case of independent random variables, Corol-
lary 1.4 essentially goes back to Kolmogorov [20]. See also Nagaev [25].

In Section 7 we formulate our results in an infinite-dimensional setting. Unless stated
otherwise, throughout the text the letters c, C,C′, c̃ etc. stand for various positive univer-
sal constants, whose value may change from one instance to the next. We usually denote
by lower-case c, c̃, c′, c̄ etc. positive universal constants that are assumed to be sufficiently
small, and by upper-case C, C̃, C′, C̄ etc. sufficiently large universal constants. We write
x · y for the usual scalar product of x, y ∈ Rn.

2. Transportation distance and empirical distributions

Let (X, ρ) be a metric space and let µ1, µ2 be Borel probability measures on X. A cou-
pling of µ1 and µ2 is a Borel probability measure γ on X × X whose first marginal
is µ1 and whose second marginal is µ2, that is, (P1)∗γ = µ1 and (P2)∗γ = µ2 where
P1(x, y) = x and P2(x, y) = y. The L1 Monge–Kantorovich distance is

W1(µ1, µ2) = inf
γ

∫
X×X

ρ(x, y) dγ (x, y)

where the infimum runs over all couplings γ of µ1 and µ2. Then W1 is a metric, and it
satisfies the convexity relation

W1(λµ1 + (1− λ)µ2, ν) ≤ λW1(µ1, ν)+ (1− λ)W1(µ2, ν) (4)

for any 0 < λ < 1 and probability measuresµ1, µ2, ν onX. The Kantorovich–Rubinstein
duality theorem (see [33, Theorem 1.14]) states that

W1(µ, ν) = sup
ϕ

∫
X

ϕ d[µ− ν] (5)
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where the supremum runs over all 1-Lipschitz functions ϕ : X→ R (i.e., |ϕ(x)−ϕ(y)| ≤
ρ(x, y) for all x, y ∈ X). We are concerned mostly with the case where the metric
space X is the Euclidean sphere Sn−1 with the metric ρ(x, y) being the geodesic distance
in Sd−1, i.e., cos ρ(x, y) = x ·y. Denote by M(Sd−1) the space of Borel probability mea-
sures on Sd−1, endowed with the weak∗ topology and the corresponding Borel σ -algebra.
Similarly, M(Rd) is the space of Borel probability measures on Rd , endowed with the
weak∗ topology (convergence of integrals of compactly-supported continuous functions)
and σ -algebra. A measure here always means a non-negative measure. The total variation
distance between two measures µ and ν on a measurable space � is

dT V (µ, ν) = sup
A⊆�

|µ(A)− ν(A)|

where the supremum runs over all measurable sets A ⊆ �. Clearly, for µ, ν ∈M(Sd−1),

W1(µ, ν) ≤ πdT V (µ, ν) ≤ π. (6)

Additionally, dT V (S∗µ, S∗ν) ≤ dT V (µ, ν) for any measures µ, ν and a measurable
map S. When S is a λ-Lipschitz map between metric spaces, we obtain the inequality
W1(S∗µ, S∗ν) ≤ λW1(µ, ν). The following lemma is an obvious consequence of (4)
and (6), via Jensen’s inequality.

Lemma 2.1. Let d be a positive integer, 0 ≤ ε < 1 and µ ∈ M(Sd−1). Suppose that
we are given a “random probability measure” on Sd−1. That is, let λ be a probability
measure on a measurable space �, and suppose that with any α ∈ � we associate a
probability measure µα ∈ M(Sd−1) such that the map � 3 α 7→ µα ∈ M(Sd−1) is
measurable. Assume that

dT V

(
µ,

∫
�

µα dλ(α)

)
≤ ε.

Then

W1(µ, σd−1) ≤

∫
�

W1(µα, σd−1) dλ(α)+ πε ≤ sup
α∈�

W1(µα, σd−1)+ 4ε.

Recall that µ|X stands for the conditioning of µ on X.

Lemma 2.2. Suppose that µ and ν are finite measures on a measurable space � and let
ε > 0. Let X ⊆ � be such that ν(X) > ε. Suppose that

|µ(A)− ν(A)| ≤ ε for all A ⊆ X.

Then dT V (µ|X, ν|X) ≤ 2ε/ν(X).

Proof. For any A ⊆ X,∣∣ν|X(A)−µ|X(A)∣∣ = ∣∣∣∣ν(A)− µ(A)ν(X)
+
µ(A)

µ(X)
·
µ(X)− ν(X)

ν(X)

∣∣∣∣ ≤ ε

ν(X)
+

ε

ν(X)
=

2ε
ν(X)

,

since µ(A) ≤ µ(X). ut

Next we describe a few simple properties of ε-radial measures.
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Lemma 2.3. Let d be a positive integer and 0 < ε < 1/2. Let µ, ν be Borel probability
measures on Rd . Additionally, assume that we are given a “random probability measure”
on Rd . That is, let λ be a probability measure on a measurable space �. Suppose that
with any α ∈ � we associate a measure µα ∈ M(Rd) such that the map � 3 α 7→ µα ∈

M(Rd) is measurable.

(a) Suppose that µ is ε-radial and that dT V (µ, ν) ≤ ε2. Then ν is 5ε-radial.
(b) Suppose that µα is ε-radial for any α ∈ �. Assume that µ =

∫
�
µα dλ(α). Then µ is

4
√
ε-radial.

(c) Suppose that A ⊆ � satisfies λ(A) ≥ 1 − ε, and µα is ε-radial for any α ∈ A.
Assume that µ =

∫
�
µα dλ(α). Then µ is 20

√
ε-radial.

Proof. (a) Let J ⊂ (0,∞) be an interval with ν(S(J )) ≥ 2ε, where S(J ) = {x ∈ Rd;
|x| ∈ J } is a spherical shell. Denote νJ = ν|S(J ) andµJ = µ|S(J ). Since dT V (µ, ν) ≤ ε2,
we may apply Lemma 2.2 with ε2 and X = S(J ). We conclude that dT V (µJ , νJ ) ≤
2ε2/2ε = ε. Consequently,

dT V (R∗(µJ ),R∗(νJ )) ≤ ε. (7)

Sinceµ is ε-radial andµ(S(J )) ≥ 2ε−ε2
≥ ε, it follows thatW1(R∗(µJ ), σd−1) ≤ ε ac-

cording to Definition 1.2. From (6), (7) and the triangle inequality, W1(R∗(νJ ), σd−1) ≤

(π + 1)ε ≤ 5ε. This completes the proof of (a).
(b) Let J ⊂ (0,∞) be an interval with µ(S(J )) ≥ 4

√
ε. Let X = {α ∈ �;

µα(S(J )) ≥ ε}. Denote ν =
∫
X
µα dλ(α), a finite Borel measure on Rn. Then for any

A ⊆ S(J ),

|µ(A)− ν(A)| =

∫
�\X

µα(A) dλ(α) ≤

∫
�\X

µα(S(J )) dλ(α) ≤ ελ(� \X) ≤ ε. (8)

Denote µJ = µ|S(J ) and νJ = ν|S(J ). From (8) and Lemma 2.2,

dT V (µJ , νJ ) ≤ 2ε/(4
√
ε) =
√
ε/2. (9)

Note that νJ =
∫
X
µα|S(J ) dλ

′(α) where λ′ is a certain probability measure on X. Since
µα is ε-radial and µα(S(J )) ≥ ε for α ∈ X, Definition 1.2 yields

W1(R∗(µα|S(J )), σd−1) ≤ ε for α ∈ X. (10)

We have R∗(νJ ) =
∫
X
R∗(µα|S(J )) dλ′(α). Thus, (10) and Lemma 2.1 imply that

W1(R∗(νJ ), σd−1) ≤ ε. Combining the last inequality with (6) and (9), we see that

W1(R∗(µJ ), σd−1) ≤ 4dT V (R∗(µJ ),R∗(νJ ))+W1(R∗(νJ ), σd−1) ≤ 2
√
ε+ε ≤ 4

√
ε.

Since µJ = µ|S(J ), and J ⊂ (0,∞) is an arbitrary interval with µ(S(J )) ≥ 4
√
ε, the

assertion (b) is proven.
(c) Denote ν =

∫
A
µα dλ|A(α), a probability measure on Rd . Then ν is 4

√
ε-

radial, according to (b). Furthermore, clearly dT V (λ|A, λ) = 1 − λ(A) ≤ ε, and hence
dT V (µ, ν) ≤ ε ≤ (4

√
ε)2. According to (a), the measure µ is 20

√
ε-radial, and (c) is

proven. ut
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Probability measures are the protagonists of this text. Some of our constructions of prob-
ability measures are probabilistic in nature. To avoid confusion, we try to distinguish
sharply between the measures themselves, and the randomness used in their construc-
tion. Whenever we have objects that are declared random (for instance, random vectors
in Sd−1), all statements containing probability estimates or using the symbol P refer to
these random objects and only to them.

The crude bound in the following lemma is certainly a standard application of the
so-called “empirical distribution method” (see, e.g., [5]). We were not able to find it in
the literature, so a proof is provided. Recall that δx stands for the Dirac unit mass at the
point x.

Lemma 2.4. Let d,N be positive integers, and let X1, . . . , XN be independent random
vectors, distributed uniformly on Sd−1. Denote µ = N−1∑N

i=1 δXi . Then, with probabil-
ity greater than 1− C exp(−c

√
N) of selecting X1, . . . , XN ,

W1(µ, σd−1) ≤ C/N
c/d

where C > 1 and 0 < c < 1 are universal constants.

Proof. Denote by F the class of all 1-Lipschitz functions ϕ : Sd−1
→ R such that∫

ϕ dσd−1 = 0. Note that sup |ϕ| ≤ π for any ϕ ∈ F . According to (5),

W1(µ, σd−1) = sup
ϕ∈F

∫
Sd−1

ϕ dµ. (11)

Let ε > 0 be a parameter to be specified later on. A subset N ⊂ Sd−1 is an ε-net if for
any x ∈ Sd−1 there exists y ∈ N with ρ(x, y) ≤ ε. Let N be an ε-net of cardinality
#(N ) ≤ (C/ε)d (see, e.g., [26, Lemma 4.16]). For ϕ ∈ F denote

ϕ̃(x) = min
y∈N

(εdϕ(y)/εe + ρ(x, y)),

where dae is the minimal integer that is not smaller than a. Then ϕ̃ is a 1-Lipschitz
function, as a minimum of 1-Lipschitz functions. It is easily verified that ϕ ≤ ϕ̃ ≤ ϕ+3ε.
Denote ϕ◦(x) = ϕ̃(x)−

∫
ϕ̃(y) dσd−1(y). Then ϕ◦ ∈ F for any ϕ ∈ F , and sup |ϕ◦− ϕ|

≤ 3ε. Hence,

W1(µ, σd−1) = sup
ϕ∈F

∫
Sd−1

ϕ dµ ≤ 3ε + sup
ϕ∈F

∫
Sd−1

ϕ◦ dµ = 3ε + sup
ϕ∈F

1
N

N∑
i=1

ϕ◦(Xi).

(12)
Denote F̃ = {ϕ̃; ϕ ∈ F} and F◦ = {ϕ◦; ϕ ∈ F}. These sets are finite. In fact, as each
ϕ ∈ F̃ is determined by the restriction ϕ|N , we have

#(F◦) ≤ #(F̃) ≤ (2π/ε + 1)#(N ) ≤ exp((C/ε)2d). (13)

Fix ϕ◦ ∈ F◦. Then ϕ◦ is a 1-Lipschitz function on the sphere Sd−1 with
∫
ϕ◦ dσd−1 = 0.

According to Lévy’s lemma (see Milman and Schechtman [24, Section 2 and Ap-
pendix V]), for any i = 1, . . . , N ,

P(|ϕ◦(Xi)| ≥ t) ≤ C exp(−ct2d) ∀t ≥ 0,
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where P refers, of course, to the probability of choosing the random vectors X1, . . . , XN .
From Bernstein’s inequality (see, e.g., Bourgain, Lindenstrauss and Milman [6, Proposi-
tion 1]),

P
(∣∣∣∣ 1
N

N∑
i=1

ϕ◦(Xi)

∣∣∣∣ ≥ t) ≤ C′ exp(−c′t2Nd) ∀t ≥ 0. (14)

Set t = ε in (14). From (13) and (14),

P
(

sup
ϕ◦∈F◦

∣∣∣∣ 1
N

N∑
i=1

ϕ◦(Xi)

∣∣∣∣ ≥ ε) ≤ C′ exp((C/ε)2d − c′ε2Nd). (15)

We now select ε = CN−1/(2d+2), for a sufficiently large universal constant C > 0.
Substitute the value of ε in (15) and apply (12), to deduce that

W1(µ, σd−1) ≤ 3ε + sup
ϕ◦∈F◦

1
N

N∑
i=1

ϕ◦(Xi) ≤ 4ε ≤ C′N−1/(2d+2),

with probability greater than 1− C′ exp(−c′Nd/(d+1)) of selecting X1, . . . , XN . ut

Remark. The discrepancy of µ ∈M(Sd−1) is defined as

D(µ) = sup
B

|µ(B)− σd−1(B)|

where the supremum runs over all geodesic balls B ⊆ Sd−1. A result analogous to
Lemma 2.4 for discrepancy appears in Beck and Chen [3, Section 7.4]. It is possible
to adapt our technique to suit the discrepancy metric, and some of its variants, in place of
W1. In fact, the only properties of the metricW1 that are used in our proof are Lemma 2.4
and (4) and (6) above. Our method, of course, works for the Wp metrics as long as
1 ≤ p < ∞, but it does not seem to apply for the W∞ metric. The W∞ metric in-
duces a topology that is much stronger than weak convergence, and it is not even weaker
than convergence in norm.

3. Isotropic Gaussians

A centered Gaussian random vector in Rd is a random vector whose density is propor-
tional to x 7→ exp(−Mx ·x) for a positive definite matrixM . A centered Gaussian random
vector is said to be isotropic if M is a scalar matrix. It is called standard if M = Id/2,
where Id is the identity matrix. Recall that R stands for radial projection.

Lemma 3.1. Let d,N be positive integers and let Z1, . . . , ZN be independent isotropic
Gaussian random vectors in Rd . Denote µ = N−1∑N

i=1 δZi . Then, with probability
greater than 1 − C exp(−cN1/4) of selecting the Zi’s, the measure µ is δ-radial for
δ = CN−c/d . Here, C > 1 and 0 < c < 1 are universal constants.
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Proof. Set ε = 5/N1/4. We may assume that ε ≤ 1/10, as otherwise the conclusion
of the lemma is obvious for a suitable choice of universal constants c, C > 0. The
central observation is that the radii |Z1|, . . . , |ZN | are independent of the angular parts
R(Z1), . . . ,R(ZN ), and that the random vectors R(Z1), . . . ,R(ZN ) are independent
random vectors that are distributed uniformly on Sd−1.

With probability one, none of the |Zi |’s are zero, and there are no i 6= j with |Zi | =
|Zj |. We condition on the values |Z1|, . . . , |ZN |, which are assumed to be distinct and
non-zero. For an interval J ⊂ (0,∞) write

Z(J ) = {i; |Zi | ∈ J } and w(J ) = #(Z(J )).

Denote k = d1/ε2
e, and let J1, . . . , Jk ⊂ (0,∞) be disjoint intervals such that

w(Ji) = bNi/kc − bN(i − 1)/kc for i = 1, . . . , k.

J JJ1 23

Fig. 1

Since ε2N ≥ 2, we have ε2N/2 ≤ w(Ji) ≤ 2ε2N for any i. For an interval J ⊂ (0,∞)
with w(J ) 6= 0, denote

µJ =
1

w(J )

∑
j∈Z(J )

δR(Zj ).

Fix i = 1, . . . , k. We abbreviate µi = µJi . Since {R(Zj )}j∈Z(Ji ) is a collection of w(Ji)
independent random vectors, distributed uniformly on the sphere, Lemma 2.4 applies and
yields

P
(
W1(µi, σd−1) ≤

C

w(Ji)c/d

)
≥ 1− C exp(−c

√
w(Ji)).

We now let i vary. Since w(Ji) has the order of magnitude of ε2N , we have

P
(

max
i=1,...,k

W1(µi, σd−1) ≤
C

(ε2N)c/d

)
≥ 1− Ck exp(−cε

√
N). (16)

Write I for the collection of all non-empty intervals in (0,∞). Fix an interval J ∈ I with
w(J ) ≥ Nε. Let Ji1 , . . . , Ji` be all the intervals among the Ji’s that are contained in J .
Then Ji1 ∪ · · · ∪ Ji` covers all but at most 4ε2N of the |Zi |’s that belong to the interval J .
Therefore,

dT V

(
µJ ,

∑̀
j=1

λjµij

)
≤

4ε2N

Nε
= 4ε

where λ1, . . . , λ` are appropriate non-negative coefficients that add to one. According to
Lemma 2.1,

W1(µJ , σd−1) ≤ max
i=1,...,k

W1(µi, σd−1)+ 20ε for all J ∈ I with w(J ) ≥ Nε.
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We thus conclude from (16) that with probability at least 1− Ck exp(−cε
√
N),

W1(µJ , σd−1) ≤
C

(ε2N)c/d
+ 20ε for all J ∈ I with w(J ) ≥ Nε. (17)

The latter probability bound is valid under the conditioning on |Z1|, . . . , |ZN |, and it
holds for all possible values of |Z1|, . . . , |ZN |, up to measure zero. Hence the afore-
mentioned probability bound for (17) also holds with no conditioning at all. Recall that
we write S(J ) = {x ∈ Rn; |x| ∈ J }, and note that µJ = R∗(µ|S(J )) and w(J ) =
Nµ(S(J )). Since ε

√
N ≥ N1/4, (17) translates as follows: With probability greater than

1− C exp(−cN1/4) of selecting Z1, . . . , ZN ,

W1(R∗(µ|S(J )), σd−1) ≤ CN
−c/d
+ Cε for all J ∈ I with µ(S(J )) ≥ ε.

This means thatµ isC(N−c/d+ε)-radial with probability greater than 1−C exp(−cN1/4).
Since N−c/d + ε ≤ C′N−c

′/d , the lemma is proven. ut

Lemma 3.2. Let k be a positive integer. For an invertible k×k matrix A, write γA for the
probability measure on Rk whose density is proportional to x 7→ exp(−|Ax|2/2). Then,
for any k × k invertible matrices A and B,

dT V (γA, γB) ≤ Ck‖BA
−1
− Id‖

where Id is the identity matrix, ‖ · ‖ is the operator norm, and C > 0 is a universal
constant.

Proof. LetX be a standard Gaussian random vector in Rk . Then γA(U) = P(A−1X ∈ U)

for any measurable set U ⊆ Rk . Therefore,

dT V (γA, γB) = sup
U⊆RK

|P(X ∈ U)− P(AB−1X ∈ U)| = dT V (γBA−1 , γId).

DenoteM = BA−1, write γ = γId and set ε = ‖M − Id‖ = sup|x|=1 |Mx− x|. We write
ϕM(x) = (detM)(2π)−d/2 exp(−|Mx|2/2) for the density of γM and similarly ϕ stands
for the density of γ . We may assume that ε < 1/2, as otherwise the conclusion of the
lemma is trivial. Then

∣∣|Mx|2 − |x|2∣∣ ≤ 3ε|x|2 for any x ∈ Rk , and also (1 + 2ε)−k ≤
detM ≤ (1+ ε)k . Therefore,

|ϕ(x)− ϕM(x)| = ϕ(x)

∣∣∣∣1− (detM) exp
(
|x|2 − |Mx|2

2

)∣∣∣∣
≤ ϕ(x)[(1+ 2ε)k exp(3ε|x|2)− 1]

for any x ∈ Rk . Consequently,

dT V (γ, γM) =
1
2

∫
Rk
|ϕ(x)− ϕM(x)| dx ≤ (1+ 2ε)k

∫
Rk

exp(3ε|x|2)ϕ(x) dx − 1.
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However,∫
Rk

exp(3ε|x|2)ϕ(x) dx = (2π)−d/2
∫

Rk
exp(−|

√
1− 6εx|2/2) dx = (1− 6ε)−k/2.

We deduce that

dT V (γ, γM) ≤ (1+ 2ε)k(1− 6ε)−k/2 − 1 ≤ Ckε,

under the legitimate assumption that ε < c/k (otherwise, there is nothing to prove). ut

Consider the map E : (Rd)N →M(Rd) defined by

(Rd)N 3 (x1, . . . , xN )
E
7→

1
N

N∑
i=1

δxi .

A Borel probability measure α on (Rd)N thus induces the Borel probability measure E∗α
on the space M(Rd). The next lemma is a small perturbation of Lemma 3.1.

Lemma 3.3. Let d,N be positive integers, ε > 0. Let X1, . . . , XN be independent, stan-
dard Gaussian random vectors in Rd . Let (aij )1≤j≤i≤N be real numbers, with aii 6= 0 for
all i, such that

|aij | ≤ ε|aii | for j < i. (18)

Denote Yi =
∑
j≤i aijXj and consider the probability measure µ = N−1∑N

i=1 δYi .
Then, with probability greater than 1−C exp(−cN1/4)−CN2d2ε of selecting the random
vectors X1, . . . , XN , the measure µ is δ-radial for δ = CN−c/d . Here, C > 1 and
0 < c < 1 are universal constants.

Proof. DenoteZi = aiiXi . TheZi’s are independent, isotropic, Gaussian random vectors
in Rd . Denote by U ⊆ M(Rd) the collection of all δ-radial probability measures, where
δ = CN−c/d is the same as in Lemma 3.1. Let α be the probability measure on (Rd)N
that is the joint distribution of Z1, . . . , ZN . According to Lemma 3.1,

(E∗α)(U) ≥ 1− C exp(−cN1/4).

Let β be the probability measure on (Rd)N which is the joint distribution of Y1, . . . , YN .
To prove the lemma, we need to show that

(E∗β)(U) ≥ 1− C exp(−cN1/4)− C′N2d2ε.

This would follow if we could prove that

dT V ((E∗α), (E∗β)) ≤ dT V (α, β) ≤ C′N2d2ε. (19)

Let k = dN . Let A be the k × k matrix that represents the linear operator

Rk = (Rd)N 3 (x1, . . . , xN ) 7→ (a11x1, . . . , aNNxN ) ∈ (Rd)N = Rk.
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That is, A is a diagonal matrix, and the diagonal of A contains each number aii exactly
d times. Denoting X = (X1, . . . , XN ) ∈ (Rd)N = Rk and Z = (Z1, . . . , ZN ) ∈ (Rd)N
= Rk , we see that Z = AX. Therefore, in the notation of Lemma 3.2, we have α = γA−1 .

Similarly, let B be the k × k matrix that corresponds to the linear operator

(xi)i=1,...,N 7→
(∑
j≤i

aijxj

)
i=1,...,N

where x1, . . . , xN are vectors in Rd . Denoting Y = (Y1, . . . , YN ) ∈ Rk we have Y = BX
and consequently β = γB−1 . Condition (18) implies that the off-diagonal elements of
A−1B do not exceed ε in absolute value. The diagonal elements of A−1B are all ones.
Hence ‖A−1B − Id‖ ≤ kε, and according to Lemma 3.2,

dT V (α, β) = dT V (γB−1 , γA−1) ≤ Ck‖A
−1B − Id‖ ≤ Ck2ε = CN2d2ε.

Thus (19) holds and the proof is complete. ut

4. Orthogonal decompositions

This section is concerned with probability measures on Rn that may be decomposed as a
mixture, whose components are mostly ensembles of approximately-orthogonal vectors.
Later on, we will apply a random projection, and use Lemma 3.3 in order to show that the
projection of most elements in the mixture is typically ε-radial for small ε > 0.

Definition 4.1. Let `, n be positive integers and let ε > 0. Let v1, . . . , v` ∈ Rn be
non-zero vectors, and consider v = (v1, . . . , v`), an `-tuple of vectors. We say that v
is ε-orthogonal if there exist orthonormal vectors w1, . . . , w` ∈ Rn and real numbers
(aij )1≤j≤i≤` such that

vi =

i∑
j=1

aijwj for i = 1, . . . , `

and |aij | ≤ ε|aii | for j < i.

Note that (v1, . . . , v`) is ε-orthogonal if and only if (R(v1), . . . ,R(v`)) is ε-ortho-
gonal. We write O`,ε ⊂ (Rn)` for the collection of all ε-orthogonal `-tuples v =
(v1, . . . , v`) ∈ (Rn)`. For a subspace E ⊂ Rn denote by ProjE the orthogonal projection
operator onto E in Rn.

Lemma 4.2. Let `, n be positive integers. Suppose that µ is a Borel probability measure
on the unit sphere Sn−1 such that for any unit vector θ ∈ Sn−1,∫

Sn−1
(x · θ)2 dµ(x) ≤

1
`50 .

Let X1, . . . , X` be independent random vectors in Sn−1, all distributed according to µ.
Then, with positive probability, (X1, . . . , X`) is (`−20/2)-orthogonal.
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Proof. We may assume that ` ≥ 2, otherwise the lemma is vacuously true. Write
W1, . . . ,W` ∈ Rn for the vectors obtained from X1, . . . , X` through the Gram–Schmidt
orthogonalization process. (If theXi’s are not linearly independent, then some of theWi’s
might be zero.) For i ≥ 2 denote by Ei the linear span of X1, . . . , Xi−1. Then, for i ≥ 2,

E|ProjEi (Xi)|
2
= E

i−1∑
j=1

(Xi ·Wj )
2
= E

i−1∑
j=1

∫
Sn−1

(x ·Wj )
2 dµ(x) ≤

i − 1
`50 ≤ `

−49,

as Xi is independent of W1, . . . ,Wi−1. By Chebyshev’s inequality,

P{∃2 ≤ i ≤ `; |ProjEi (Xi)| ≥ `
−21/2} ≤ (`− 1)

`−49

`−42/4
≤ 4`−6 < 1.

Therefore, with positive probability, |ProjEi (Xi)| < `−21/2 for all i ≥ 2. In this event, the
vectors X1, . . . , X` are linearly independent, and W1, . . . ,W` are orthonormal vectors.

Furthermore, in this event aii :=
√

1− |ProjEi (Xi)|
2 ≥ 1− `−21/2 while aij := Xi ·Wj

satisfies
|aij | ≤ |ProjEi (Xi)| ≤ `

−21/2 for j < i.

Thus, with positive probability, Xi =
∑
j≤i aijWj for all i, with |aij | ≤ (`−20/2)|aii | for

j < i and with W1, . . . ,W` being orthonormal vectors. This completes the proof. Note
that the “positive probability” is in fact greater than 1− `−5. ut

The next lemma is essentially a measure-theoretic variant of a lemma going back to Bour-
gain, Lindenstrauss and Milman [6, Lemma 12], with the main difference being that the
logarithmic dependence is improved upon to a power law. For two Borel measures µ and
ν on a compact K we say that µ ≤ ν if∫

K

ϕ dµ ≤

∫
K

ϕ dν for any continuous ϕ : K → [0,∞). (20)

Recall that a point is not in the support of a measure if and only if it has an open neigh-
borhood of measure zero. We abbreviate O` = O`,`−20 . For v = (v1, . . . , v`) ∈ O`
denote

µv =
1
`

∑̀
i=1

δvi ,

a Borel probability measure on Rn (in the notation of the previous section, µv = E(v)).
When K ⊆ Rn, we write O`(K) ⊆ O` for the collection of all (v1, . . . , v`) ∈ O` with
vi ∈ K for all i. ThenO`(K) = O` ∩K`

⊆ (Rn)`, and it is straightforward to verify that
O`(K) is compact whenever K ⊂ Rn is a compact that does not contain the origin.

Lemma 4.3. Let `, n be positive integers and let 0 < ε < 1/2. Let µ be a Borel proba-
bility measure on Rn with µ({0}) = 0. Assume that

sup
θ∈Sn−1

∫
Sn−1

(x · θ)2 dR∗µ(x) <
ε

`50 . (21)
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Then there exists a Borel probability measure λ on O` such that

dT V

(
µ,

∫
O`
µv dλ(v)

)
< ε. (22)

Proof. Sinceµ({0}) = 0, for any δ > 0 we may find a large spherical shellK = {x ∈ Rn;
r ≤ |x| ≤ R} with 0 < r < R such that µ(K) ≥ 1 − δ. We may assume that µ
is supported on a compact set that does not contain the origin: Otherwise, replace µ
with µ|K for a large spherical shell K ⊂ Rn with µ(K) ≥ 1 − δ as above, and observe
that dT V (µ,µ|K) ≤ δ, so the effect of the replacement on the inequalities (21) and (22) is
bounded by δ, which can be made arbitrarily small. Write K ⊂ Rn for the support of µ,
a compact which does not contain the origin. Denote by F the collection of all Borel
measures λ supported on O`(K) for which∫

O`
µv dλ(v) ≤ µ. (23)

The condition (23) defining F is closed in the weak∗ topology. Furthermore, λ(O`) ≤ 1
for all λ ∈ F (use (23), and take ϕ ≡ 1 in the definition (20)). Hence F is a weak∗

closed subset of the unit ball of the Banach space of signed finite Borel measures on
the compact O`(K). From the Banach–Alaoglu theorem, F is compact in the weak∗

topology. Therefore the continuous functional λ 7→ λ(O`) attains its maximum on F at
some λ0 ∈ F . Clearly λ0(O`) ≤ 1. To prove the lemma, it suffices to show that

λ0(O`) > 1− ε. (24)

Indeed, if (24) holds, then we may define a probability measure λ1 = λ0 + λ̃, where λ̃ is
any Borel measure on O` of total mass 1− λ0(O`). Then clearly

dT V

(
µ,

∫
O`
µv dλ1(v)

)
≤ λ̃(O`) < ε,

and the lemma follows. We thus focus on the proof of (24). Assume by contradiction that
(24) fails. Denote ν = µ −

∫
O` µv dλ0(v). Then ν is a non-negative Borel measure on

K ⊂ Rn, according to (23), and also ν ≤ µ. Moreover, ν(K) ≥ ε, since we assume that
(24) fails. Denote ν̃ = ν/ν(K), a probability measure on K ⊂ Rn. Then ν̃ ≤ ν/ε and
hence R∗(ν̃) ≤ R∗(ν)/ε ≤ R∗(µ)/ε. For any unit vector θ ∈ Sn−1,∫
Sn−1

(x · θ)2 dR∗ν̃(x) ≤ ε−1
∫
Sn−1

(x · θ)2 dR∗ν(x) ≤ ε−1
∫

Rn
(x · θ)2 dR∗µ(x) ≤

1
`50 ,

from our assumption (21). Lemma 4.2 thus asserts the existence of x̃1, . . . , x̃` ∈ S
n−1

in the support of R∗(ν̃) such that (x̃1, . . . , x̃`) is (`−20/2)-orthogonal. Consequently,
there exist non-zero vectors x1, . . . , x` ∈ Rn in the support of ν such that (x1, . . . , x`) is
(`−20/2)-orthogonal. Let U1, . . . , U` ⊂ Rn be small open neighborhoods of x1, . . . , x`,
respectively, such that

(y1, . . . , y`) ∈ O`,`−20 = O` for all y1 ∈ U1, . . . , y` ∈ U`.
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The Ui’s are necessarily disjoint and U1× · · ·×U` ⊆ O`. Denote η = mini=1,...,` ν(Ui).
Then η > 0, since Ui is an open neighborhood of the point xi , and the point xi belongs to
the support of ν. We set νi = ν|Ui , the conditioning of ν on Ui . Then νi is a probability
measure supported on K ⊂ Rn, and

ηνi ≤ ν(Ui)νi ≤ ν = µ−

∫
O`
µv dλ0(v) for i = 1, . . . , `.

Therefore, also

η

∫
U1×···×U`

(
1
`

∑̀
i=1

δyi

)
dν1(y1) . . . dν`(y`) = η

∑`
i=1 νi

`
≤ µ−

∫
O`
µv dλ0(v).

Consequently, the non-negative measure λ = λ0+η(ν1×· · ·×ν`) onO`(K) satisfies (23).
Hence λ ∈ F , but λ(O`) = λ0(O`) + η > λ0(O`), in contradiction to the maximality
of λ0. We thus conclude that (24) must be true, and the lemma is proven. ut

A d × n matrix 0 will be called a standard Gaussian random matrix if the entries of 0
are independent standard Gaussian random variables (of mean zero and variance one).
Suppose that w1, . . . , w` are orthonormal vectors in Rn and that 0 is a d × n standard
Gaussian random matrix. Observe that in this case, 0(w1), . . . , 0(w`) are independent
standard Gaussian random vectors in Rd .

Lemma 4.4. Let d ≤ ` ≤ n be positive integers, let 0 < ε < 1 and assume that

` ≥ (C/ε)Cd . (25)

Suppose that λ is a Borel probability measure on O`, and denote µ =
∫
O` µv dλ(v).

Let 0 be a d × n standard Gaussian random matrix. Then, with positive probability of
selecting the random matrix 0, the measure 0∗µ on Rd is ε-radial. Here, C > 1 is a
universal constant. (In fact, this probability is at least 1− `−8.)

Proof. Fix v = (v1, . . . , v`) ∈ O`. Consider the measure µ̃v := 0∗(µv) on Rd . Then
µ̃v = 0∗(

1
`

∑`
i=1 δvi ) =

1
`

∑`
i=1 δ0(vi ). Let E(v) be the following event:

• The measure µ̃v is C`−c/d -radial, where C > 1 and 0 < c < 1 are the universal
constants from Lemma 3.3.

Let us emphasize that for any v ∈ O`, the event E(v) might either hold or not, de-
pending on the Gaussian random matrix 0. We are going to apply Lemma 3.3. Since
v ∈ O` = O`,`−20 , there exist orthonormal vectors w1, . . . , w` ∈ Rn and numbers aij
such that vi =

∑
j≤i aijwj and |aij | ≤ `−20

|aii | for j < i, with aii 6= 0 for all i. Denote
Xi = 0(wi) and Yi =

∑
j≤i aijXj . Then X1, . . . , X` are independent standard Gaussian

random vectors in Rd , and µ̃v = `−1∑`
i=1 δYi . We may thus apply Lemma 3.3 (with

N = ` and ε = `−20) to conclude that for any v ∈ O`,

P(E(v)) ≥ 1− C exp(−c`1/4)− C`2d2`−20
≥ 1− C′`−16. (26)
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Let F ⊆ O` be the collection of all v ∈ O` for which the event E(v) holds. Then F is a
random subset of O` (depending on the random matrix 0). According to (26),

Eλ(F) = E
∫
O`

1F (v) dλ(v) =
∫
O`

E1F (v) dλ(v) =
∫
O`

P(E(v)) dλ(v) ≥ 1−C′`−16

where 1F is the characteristic function of F . Therefore, by Chebyshev’s inequality,

P(λ(F) ≤ 1− 2C′`−8) ≤
E(1− λ(F))

2C′`−8 ≤ `−8/2 < 1.

We may assume that C′`−8
≤ 1/2, thanks to (25). We showed that with positive prob-

ability λ(F) ≥ 1 − 2C′`−8. Recall that µ̃v = 0∗(µv) is C`−c/d -radial for any v ∈ F .
Hence, according to Lemma 2.3(c), with positive probability of selecting the Gaussian
random matrix 0, the measure∫

O`
0∗(µv) dλ(v) = 0∗

(∫
O`
µv dλ(v)

)
= 0∗(µ)

is C′`−c
′/d -radial on Rd . ut

The Grassmannian Gn,k of all k-dimensional subspaces in Rn carries a unique rotation-
ally invariant probability measure, which will be referred to as the uniform probability
measure onGn,k . When 0 is a d ×n standard Gaussian random matrix, the kernel of 0 is
a random (n−d)-dimensional subspace that is distributed uniformly in the Grassmannian
Gn,n−d . For a subspace E ⊆ Rn we write E⊥ = {x ∈ Rn; ∀y ∈ E, x · y = 0} for its
orthogonal complement.

Lemma 4.5. Let 0 ≤ k ≤ n − 1 be integers, and let µ be a Borel probability measure
on Rn with µ({0}) = 0. Suppose that E is a random k-dimensional subspace distributed
uniformly in Gn,k . Then µ(E) = 0 with probability one of selecting E.

Proof. By induction on k. The case k = 0 holds trivially. Suppose now that k ≥ 1, let n be
such that k ≤ n−1, and letµ be a Borel probability measure on Rn withµ({0}) = 0. Since
µ({0}) = 0, there are at most countably many one-dimensional subspaces ` ⊂ Rn with
µ(`) > 0. Let ` be a random one-dimensional subspace, distributed uniformly in Gn,1.
Then with probability one, µ(`) = 0. Denote ν = (Proj`⊥)∗µ, a measure supported on an
(n− 1)-dimensional subspace, with ν({0}) = 0. Let F be a random (k − 1)-dimensional
subspace in `⊥, distributed uniformly. By the induction hypothesis, ν(F ) = 0 with prob-
ability one. Denoting E = Proj−1

`⊥
(F ), we see that µ(E) = ν(F ) = 0 with probability

one. From the uniqueness of the Haar measure, E is distributed uniformly in Gn,k , and
the lemma follows. ut

Corollary 4.6. Let 1 ≤ d ≤ n be integers and let 0 < ε < 1/2. Let µ be a Borel
probability measure on Rn with µ({0}) = 0. Assume that

sup
θ∈Sn−1

∫
Sn−1

(x · θ)2 dR∗µ(x) ≤ (c̃ε)C̃d . (27)
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Let 0 be a d × n standard Gaussian random matrix. Then, with positive probability of
selecting 0, the measure 0∗µ on Rd is ε-radial proper. Here, 0 < c̃ < 1 and C̃ > 1 are
universal constants. (In fact, we have a lower bound of 1 − (c̃ε)C̃d/10 for the aforemen-
tioned probability.)

Proof. Throughout this proof, we write C for the universal constant from Lemma 4.4.
We define c̃ = (10C)−1 and C̃ = 100C. It is elementary to verify that with this choice of
universal constants, there exists an integer ` such that

` ≥ (5C/ε)Cd and (c̃ε)C̃d ≤
ε2

50`50 .

Note that the left-hand side of (27) is at least 1/n. Indeed,

sup
θ∈Sn−1

∫
Sn−1

(x · θ)2 dR∗µ(x) ≥
∫
Sn−1

∫
Sn−1

(x · θ)2 dR∗µ(x) dσd−1(θ)

=

∫
Sn−1

|x|2

n
dR∗(µ)(x) =

1
n
.

We conclude that d < ` ≤ n, and

sup
θ∈Sn−1

∫
Sn−1

(x · θ)2 dR∗µ(x) ≤
ε2

50`50 .

According to Lemma 4.3, there exists a Borel probability measure λ on O` such that

dT V

(
µ,

∫
O`
µv dλ(v)

)
≤ ε2/25. (28)

Denote ν =
∫
O` µv dλ(v). From Lemma 4.4 the measure 0∗(ν) is (ε/5)-radial, with

probability at least 1 − `−8 of selecting 0, because ` ≥ (5C/ε)Cd . Additionally,
dT V (0∗µ,0∗ν) ≤ ε2/25, by (28). From Lemma 2.3(a) we thus learn that 0∗(µ) is ε-
radial, with positive probability of selecting 0. Moreover, 0∗(µ)({0}) = µ(0−1(0)) = 0
with probability one, according to Lemma 4.5. Hence, with positive probability, 0∗(µ) is
ε-radial proper. ut

5. Selecting a position

Our goal in this section is to find an appropriate invertible linear transformation T on Rn
such that T∗µ satisfies the requirements of Corollary 4.6. Our analysis is very much re-
lated to the results of Barthe [2], Carlen and Cordero-Erausquin [7] and Carlen, Lieb and
Loss [8]. For x = (x1, . . . , xn) ∈ Rn we write x ⊗ x for the n × n matrix whose entries
are (xixj )i,j=1,...,n. For a probability measure µ on the unit sphere Sn−1 define

M(µ) =

∫
Sn−1

(x ⊗ x) dµ(x).
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Then M(µ) is a positive semi-definite matrix of trace one. Clearly, for any θ ∈ Rn, we
have M(µ)θ · θ =

∫
Sn−1(x · θ)

2 dµ(x). More generally, for any subspace E ⊆ Rn,∫
Sn−1
|ProjE(x)|

2 dµ(x) = Tr(ProjEM(µ)) = Tr(M(µ)ProjE),

the trace of the matrix M(µ)ProjE . A Borel probability measure µ on Sn−1 is called
isotropic if M(µ) = Id/n, where Id is the identity matrix. Observe that when µ is
isotropic, for any subspace E ⊆ Rn,∫

Sn−1
|ProjE x|

2 dµ(x) =
dim(E)
n

. (29)

In particular, µ(E) ≤ dim(E)/n and hence an isotropic probability measure is neces-
sarily decent in the sense of Definition 1.1. A Borel probability measure µ on Rn with
µ({0}) = 0 is called potentially isotropic if there exists an invertible linear map T on Rn
such that (R ◦ T )∗µ is isotropic.

Lemma 5.1. Let µ be a Borel probability measure on Sn−1 such that

µ(H) = 0 (30)

for any hyperplane H ⊂ Rn through the origin. Then µ is potentially isotropic.

Proof. Given an invertible linear map T : Rn → Rn we abbreviate Mµ(T ) =

M((R ◦ T )∗µ). Then Mµ(T ) is a positive semi-definite matrix of trace one, and by the
arithmetic-geometric means inequality, detMµ(T ) ≤ n

−n. Note that Mµ(T ) = Mµ(λT )

for any λ > 0. Consider the supremum of the continuous functional

T 7→ detMµ(T ) (31)

over the space of all invertible linear operators T : Rn → Rn of Hilbert–Schmidt norm
one.

We claim that the supremum is attained. Indeed, let T1, T2, . . . be a maximizing
sequence of matrices. By passing to a subsequence if necessary, we may assume that
Ti → T , for a certain matrix T of Hilbert–Schmidt norm one. We need to show that T is
invertible. Denote by E the image of T , a subspace of Rn. We need to show that E = Rn.
For any x ∈ Sn−1 which is not in the kernel of T , we have Tix → T x ∈ E \ {0}, hence

|ProjE⊥(R ◦ Ti)(x)|
i→∞
−−−→ 0. (32)

The kernel of T is at most (n − 1)-dimensional, since the Hilbert–Schmidt norm of T
is one. According to (30), the convergence in (32) occurs µ-almost-everywhere in x.
Therefore,

Tr(Mµ(Ti)ProjE⊥) =
∫
Sn−1
|ProjE⊥(R ◦ Ti)(x)|2 dµ(x)

i→∞
−−−→ 0.
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We conclude that if E 6= Rn, then detMµ(Ti) → 0, in contradiction to the maximizing
property of the sequence (Ti)i≥1. Hence E = Rn and T is invertible. Thus the supremum
of the functional (31) is attained for some invertible matrix T0 of Hilbert–Schmidt norm
one. We will show that (R◦T0)∗µ is isotropic. Without loss of generality we assume that
T0 = Id (otherwise, replace µ with (R ◦ T0)∗µ and note that this replacement does not
affect the validity of the assumptions and the conclusions of the lemma).

The matrix M(µ) = Mµ(Id) is a positive semi-definite matrix of trace one. It is non-
singular, thanks to (30), and thereforeM(µ) is in fact positive definite. Moreover, for any
function u : Sn−1

→ R which is positive µ-almost-everywhere and for any θ ∈ Sn−1,∫
Sn−1

u(x)(x · θ)2 dµ(x) > 0. (33)

Assume by contradiction thatM(µ) is not a scalar matrix. Denote by λ1 the largest eigen-
value of M(µ) = Mµ(Id), and let E ⊂ Rn be the eigenspace corresponding to the eigen-
value λ1. Then 1 ≤ dim(E) ≤ n− 1. For 0 ≤ δ < 1 consider the linear operator

Lδ(x) = x − δ ProjE(X) (x ∈ Rn).

Then ProjE Lδ = (1 − δ)ProjE while ProjE⊥ Lδ = ProjE⊥ . This means that R ◦ Lδ
strengthens the E⊥-component of a given point in Rn, at the expense of its E-component.
More precisely, for any x ∈ Sn−1 and 0 ≤ δ < 1 there exists εδx ≥ 0 such that

ProjE⊥(R(Lδx)) = (1+ εδx)ProjE⊥(x).

Moreover, when x 6∈ E ∪ E⊥ we have the inequality εδx ≥ ε(x)δ for some ε(x) > 0
depending only on x. Consequently, for any 0 ≤ δ < 1 and a non-zero vector θ ∈ E⊥,∫

Sn−1
(R(Lδx) · θ)2 dµ(x) =

∫
Sn−1

(1+ εδx)
2(x · θ)2 dµ(x)

≥

∫
Sn−1

(x · θ)2 dµ(x)+ 2δ
∫
Sn−1

ε(x)(x · θ)2 dµ(x). (34)

The symmetric matrix Mµ(Lδ) is of trace one, and it depends smoothly on δ. Denote
D = dMµ(Lδ)/dδ|δ=0, a traceless symmetric matrix. According to our assumption (30),
the condition x 6∈ E∪E⊥ holds µ-almost-everywhere as 1 ≤ dim(E) ≤ n−1. Therefore
ε(x) > 0 for µ-almost every x ∈ Sn−1. From (33) and (34) we learn that for any 0 6=
θ ∈ E⊥,

Dθ · θ =
d

dδ

(∫
Sn−1

(R(Lδx) · θ)2 dµ(x)
)∣∣∣∣
δ=0

> 0. (35)

Recall that E is the eigenspace corresponding to the maximal eigenvalue λ1 of M(µ).
Denote by λ2 the second-largest eigenvalue, which is still positive but is strictly smaller
than λ1. Then ProjE⊥M(µ)

−1
≥ λ−1

2 ProjE⊥ in the sense of symmetric matrices. Using
elementary linear algebra, we deduce from (35) that

Tr(ProjE⊥M(µ)
−1D) ≥ λ−1

2 Tr(ProjE⊥ D) > 0.
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Since Tr(D) = 0 we have Tr(ProjE D) = −Tr(ProjE⊥ D) and

d log detMµ(Lδ)

dδ

∣∣∣∣
δ=0
= Tr(M(µ)−1D)

= Tr(ProjEM(µ)
−1D)+ Tr(ProjE⊥M(µ)

−1D)

=
Tr(ProjE D)

λ1
+ Tr(ProjE⊥M(µ)

−1D) ≥

(
1
λ2
−

1
λ1

)
Tr(ProjE⊥ D) > 0,

in contradiction to the maximality of detM(µ). Hence our assumption that M(µ) is not
a scalar matrix was absurd. Since Tr(M(µ)) = 1 it follows that M(µ) = Id/n and µ is
isotropic. ut

For a subspace E ⊂ Rn and δ > 0 we write

Nδ(E) = {rx; |x| = 1, r ≥ 0, d(x,E ∩ Sn−1) ≤ δ} (36)

where d(x,A) = infy∈A |x − y|. Then Nδ(E) is the projective δ-neighborhood of E. We
will need the following auxiliary continuity lemma.

Lemma 5.2. Let n ≥ 1 be an integer and let µ be a Borel probability measure on Rn
with µ({0}) = 0 such that µ(E) < dim(E)/n for any subspace E ⊂ Rn other than
Rn and {0}. Suppose there exists a sequence of potentially isotropic probability measures
on Sn−1 that converges to R∗µ in the weak∗ topology. Then µ is potentially isotropic.

Proof. From the assumptions of the lemma, there exist Borel probability measures µ1,

µ2, . . . on Sn−1 and invertible linear maps T1, T2, . . . for which the following holds:

• µi → R∗µ in the weak∗ topology as i →∞;
• (R ◦ Ti)∗µi is isotropic for all i.

Without loss of generality we may assume that the Ti’s are positive definite operators of
trace one: If not, we will replace the operator Ti by rUiTi , where Ui is an orthogonal
transformation such that UiTi is positive definite and r−1 is the trace of UiTi . This does
not affect the isotropy of (R ◦ Ti)∗µi . Furthermore, replacing Ti (i = 1, 2, . . .) with a
subsequence, we may assume that Ti → T , where T is a positive semi-definite matrix of
trace one.

We claim that T is invertible. Assume by contradiction that T is singular. Denote by
E ⊂ Rn the kernel of T , and set k = dim(E). Then 1 ≤ k ≤ n − 1, as the trace of T
equals one, and hence µ(E) < k/n. Since E =

⋂
δ>0Nδ(E), there exists δ > 0 such

that
µ(Nδ(E)) < k/n.

The set Nδ(E) ∩ Sn−1 is closed in Sn−1. Since µi → R∗µ in the weak∗ topology, we
have

lim sup
i→∞

µi(Nδ(E)) ≤ R∗µ(Nδ(E)) = µ(Nδ(E)) <
k

n
. (37)
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Recall that Ti → T , that the Ti’s are self-adjoint, and that E is the kernel of T , hence E⊥

is the image of T . This entails, roughly speaking, that for any x 6∈ E, the sequence Tix is
“approaching E⊥”. In more precise terms, we conclude that for any x 6∈ Nδ(E),∣∣∣∣ProjE⊥

(
Tix

|Tix|

)∣∣∣∣ i→∞−−−→ 1. (38)

Moreover, the convergence in (38) is uniform over x ∈ Rn \Nδ(E). Consequently, from
(37) and (38),

lim inf
i→∞

∫
Sn−1\Nδ(E)

∣∣∣∣ProjE⊥
(
Tix

|Tix|

)∣∣∣∣2 dµi(x) = lim inf
i→∞

µi(S
n−1
\Nδ(E)) > 1−

k

n
.

(39)
Recall that (R ◦ Ti)∗µi is isotropic. According to (29),∫

Sn−1

∣∣∣∣ProjE⊥
(
Tix

|Tix|

)∣∣∣∣2 dµi(x) = dim(E⊥)
n

= 1−
k

n
,

in contradiction to (39). Thus our assumption that T is singular was absurd, and T is
necessarily invertible.

Since Ti → T with T being invertible, we know that for any x ∈ Sn−1,

Tix

|Tix|

i→∞
−−−→

T x

|T x|

and the convergence is uniform in Sn−1. Therefore, for any θ ∈ Sn−1,∫
Sn−1

(
Tix

|Tix|
· θ

)2

dµi(x)
i→∞
−−−→

∫
Sn−1

(
T x

|T x|
· θ

)2

dR∗µ(x). (40)

However, the left-hand side of (40) is always 1/n. We see that (R◦T ◦R)∗µ = (R◦T )∗µ
is isotropic, and therefore µ is potentially isotropic. ut

Corollary 5.3. Let n be a positive integer and let µ be a Borel probability measure on Rn
with µ({0}) = 0 such that

µ(E) < dim(E)/n (41)

for any subspace E ⊂ Rn other than Rn and {0}. Then µ is potentially isotropic.

Proof. Consider a sequence µ1, µ2, . . . of Borel probability measures on Sn−1, abso-
lutely continuous with respect to the Lebesgue measure on Sn−1, that converges to R∗µ
in the weak∗ topology. The µi’s are potentially isotropic by Lemma 5.1. Therefore µ is
potentially isotropic according to Lemma 5.2. ut

A clever proof of Corollary 5.3 for the case where the measure µ is discrete and has finite
support appears in the works of Barthe [2], Carlen and Cordero-Erausquin [7, Lemma 3.5]
and Carlen, Lieb and Loss [8]. We were not able to generalize their argument to the case
of a general measure satisfying (41). The proof presented above is unfortunately longer,
but perhaps it has the advantage of being geometrically straightforward.
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Lemma 5.4. Let n be a positive integer and α > 0. Suppose that µ is an α-decent prob-
ability measure on Rn. Then for any 0 < ε < 1, there exists a linear transformation
T : Rn→ Rn such that ν = T∗(µ) satisfies∫

Sn−1
(x · θ)2 dR∗ν(x) ≤ α + ε for all θ ∈ Sn−1.

Proof. By induction on the dimension n. The case n = 1 is obvious. Suppose that
n ≥ 2. We may assume that µ(H) < 1 for any hyperplane H ⊂ Rn that passes
through the origin (otherwise, invoke the induction hypothesis). We may also assume that
α = supE⊆Rn µ(E)/dim(E)where the supremum runs over all subspaces {0} 6= E ⊆ Rn.
Corollary 5.3 takes care of the case where µ(E) < dim(E)/n for any subspace E ⊂ Rn
with 1 ≤ dim(E) ≤ n − 1. We may thus focus on the case where there exists a proper
subspace E ⊂ Rn with µ(E) ≥ dim(E)/n. Clearly α ≥ 1/n. Consequently, there is a
subspace E ⊂ Rn, with 1 ≤ dim(E) ≤ n − 1, such that α − ε/(3n) ≤ µ(E) < 1. Let
T : Rn→ Rn be the map defined by

T (x) =

{
ProjE⊥ x, x 6∈ E,

x, x ∈ E.

The map T may be viewed as a “stratified linear map” as in Furstenberg [9]. Set λ =
µ(E) > 0. The probability measure T∗µ on Rn is supported on E ∪ E⊥, and it may be
decomposed as

T∗µ = λµE + (1− λ)µE⊥

where µE = µ|E is the conditioning of µ on E, and µE⊥ is a certain probability measure
supported on E⊥. Clearly, µE = µ|E is (α/λ)-decent. Regarding µE⊥ , let us select a
subspace F ⊆ E⊥. Then µE⊥(F ) = 0 if F = {0} and otherwise

(1− λ)µE⊥(F ) = µ(T
−1(F \ {0})) = µ((F ⊕ E) \ E) = µ(F ⊕ E)− µ(E)

≤ α(dim(E)+ dim(F ))− (α − ε/(3n)) dim(E) ≤ (α + ε/3) dim(F )

where E ⊕ F = {x + y; x ∈ E, y ∈ F } is the subspace spanned by E and F . Con-
sequently, µE⊥ is an ((α + ε/3)/(1− λ))-decent measure on E⊥. We may apply the in-
duction hypothesis for µE and µE⊥ . We conclude that there exists a linear transformation
S : Rn→ Rn, with S(E) ⊆ E and S(E⊥) ⊆ E⊥, such that∫

Sn−1
(x · θ)2 d(R ◦ S ◦ T )∗µ(x) ≤ α + ε/2 for any θ ∈ Sn−1. (42)

The problem is that S ◦ T is not a linear map. However, it is easy to approximate it
by a linear map: For 0 < δ < 1 denote Tδx = x − δ ProjE x. Then (R ◦ T )(x) =
limδ→1−(R ◦ Tδ)(x) for any 0 6= x ∈ Rn. Consequently,

(R ◦ S ◦ Tδ)∗µ = (R ◦ S ◦R ◦ Tδ)∗µ
δ→1−
−−−→ (R ◦ S ◦R ◦ T )∗µ = (R ◦ S ◦ T )∗µ
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in the weak∗ topology. We conclude that the matrices M((R ◦ S ◦ Tδ)∗µ) tend to
M((R ◦ S ◦ T )∗µ) as δ→ 1−. Hence, by (42), for some δ0 < 1,∫

Sn−1
(x · θ)2d(R ◦ S ◦ Tδ0)∗µ(x) ≤ α + ε for any θ ∈ Sn−1.

The map S ◦ Tδ0 is the desired linear transformation. This completes the proof. ut

6. Proof of the main results and some remarks

Proof of Theorem 1.3. Suppose that µ is an η-decent probability measure on Rn. Accord-
ing to Lemma 5.4, there exists a linear map S : Rn→ Rn such that ν = S∗µ satisfies∫

Sn−1
(x · θ)2 dR∗ν(x) ≤ 2η for all θ ∈ Sn−1.

We invoke Corollary 4.6 for the measure ν. We see that if the positive integer d and
0 < ε < 1/2 are such that

2η ≤ (c̃ε)C̃d ,

then there exists a d × n matrix 0 for which the measure 0∗ν on Rd is ε-radial proper.
Setting T = 0S, a d × n matrix, we conclude that T∗µ = 0∗ν is a measure on Rd which
is ε-radial proper. ut

Proof of Corollary 1.4. We may assume that n exceeds a given large universal constant.
Denote d = c̄d

√
log ne and δ = e−d/500, for a small universal constant 0 < c̄ < 1

such that n ≥ (C/δ)Cd where C is the universal constant from Theorem 1.3. According
to Theorem 1.3, we may pass to a d-dimensional marginal and assume that our measure
µ is a proper δ-radial measure on Rd . For t ∈ R and L > 0 let χt,L be the L-Lipschitz
function on the real line which equals zero on (−∞, t] and one on [t + 1/L,∞). Recall
the Kantorovich–Rubinstein duality as in (5) above. Then, for any probability measure ν
on the unit sphere Sd−1 and 0 < t < c ≤ 1/2,

ν({x; x1 ≥ t}) ≥

∫
Sd−1

χt,d(x1) dν(x) ≥

∫
Sd−1

χt,d(x1) dσd−1(x)− dW1(ν, σd−1),

where x = (x1, . . . , xd) are the coordinates of x ∈ Sd−1. The integral with respect to
σd−1 may be estimated directly, and it is bounded from below by ce−Ct

2d (note that the
marginal of σd−1 on the first coordinate has a density that is proportional to (1−t2)(d−3)/2

+

on [−1, 1]). We conclude that for any 0 < t < c and an interval J = [a, b] ⊂ (0,∞)
with µ(S(J )) ≥ δ,

µ|S(J )({x; x1 ≥ at}) ≥ R∗(µ|S(J ))({x; x1 ≥ t}) ≥ ce
−Ct2d

−d ·W1(R∗(µ|S(J )), σd−1)

≥ ce−Ct
2d
−dδ ≥ c′e−C

′t2d . (43)
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Similarly, for any interval J = [a, b] ⊂ (0,∞) with µ(S(J )) ≥ δ,

µ|S(J )({x; |x1| ≥ 20b/
√
d}) ≤ R∗(µ|S(J ))({x; |x1| ≥ 20/

√
d})

≤

∫
Sd−1

χ20/
√
d−d−1,d(|x1|) dσd−1(x)+ d ·W1(R∗(µ|S(J )), σd−1) ≤ 1/5, (44)

where the integral with respect to σd−1 is estimated in a straightforward manner. Let
M̃ > 0 be a quantile with

µ({x; |x| ≤ M̃}) ≥ 3/4 and µ({x; |x| ≥ M̃}) ≥ 1/4.

Let a > 0 be such that the interval J = [a, M̃] satisfies µ(S(J )) ≥ 2/3. We apply (44)
for the interval J = [a, M̃] to deduce that

µ({x; |x1| ≥ 20M̃/
√
d}) ≤

1
3
+

2
3
· µ|S(J )({x; |x1| ≥ 20M̃/

√
d})

≤
1
3
+

2
3
·

1
5
<

1
2
. (45)

Suppose that M > 0 satisfies (3) with the linear functional ϕ(x) = x1. We learn from
(45) that necessarily M ≤ 20M̃/

√
d. Let b > 0 be such that the interval J = [M̃, b]

satisfies µ(S(J )) ≥ 1/5. We apply (43) for the interval J = [M̃, b] and conclude that,
for any 0 ≤ t ≤ c

√
d/20,

µ({x; x1 ≥ tM}) ≥
1
5
· µ|S(J )({x; x1 ≥ 20tM̃/

√
d}) ≥

c′

5
exp(−400C′t2).

Since c
√
d/20 ≥ c̃ log1/4 n, the proof of the lower bound for µ({x; x1 ≥ tM}) is com-

plete. The proof of the lower bound for µ({x; x1 ≤ −tM}) is almost entirely identical.
The corollary is thus proven. ut

Remarks.

1. It is conceivable that a more delicate analysis yields a better bound for Rn in Corol-
lary 1.4. However, note that Rn ≤ C

√
log n as is shown by the example where µ is

distributed uniformly on n linearly independent vectors in Rn. Compare the “super-
gaussian” tail behavior of Corollary 1.4 with the almost sub-gaussian bounds in the
convex case in [13] and in Giannopoulos, Paouris and Pajor [10].

2. The central limit theorem for convex bodies [14, 15] states that any uniform proba-
bility measure on a high-dimensional convex set has some low-dimensional marginals
that are approximately Gaussian. It is clear that there are perfectly regular probability
measures in high dimension (e.g., a mixture of two Gaussians) without any approxi-
mately Gaussian marginals. Therefore, a geometric condition such as convexity is in-
deed relevant when we look for approximately Gaussian marginals. For arbitrary high-
dimensional measures without convexity properties, we may still state the more mod-
est conclusion that some of the marginals are approximately spherically-symmetric,
according to Theorem 1.3. There is no hope for approximate Gaussians.
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Theorem 1.3 bears a strong relation to the proof of the central limit theorem for con-
vex bodies presented in [14, 15] (see [16] for another proof, which at present works
only for a subclass of convex bodies). That proof begins by showing that marginals of
the uniform measure on a convex body are approximately spherically-symmetric. The
approximation in [14, 15] is rather strong compared to Theorem 1.3, but nevertheless,
a simple compactness argument enables us to leverage Theorem 1.3 in order to obtain
the desired type of approximation. In principle, this approach yields a slightly different
proof of the central limit theorem for convex sets, albeit with weaker estimates.
The Euclidean structure with respect to which a random projection “works” with high
probability seems a priori different in Theorem 1.3 and in the central limit theorem for
convex bodies. In Theorem 1.3 we use the Euclidean structure with respect to which
the covariance matrix of R∗µ is scalar, while in the central limit theorem for convex
bodies, the most natural position is to require the covariance matrix of µ itself to be
a scalar matrix (compare also with [18], [21]). For convex bodies, these Euclidean
structures are close to each other, since most of the mass of a normalized convex body
is located very close to a sphere (see [17]).

3. The linear map T in Theorem 1.3 may be assumed to be an orthogonal projection.
This follows from the following simple observation we learned from G. Schechtman:
Any n-dimensional ellipsoid has an dn/2e-dimensional projection which is precisely a
Euclidean ball. Therefore, in order to show that T may be chosen to be an orthogonal
projection, one essentially has to verify that a dd/2e-dimensional marginal of an ε-
radial measure on Rd is 100ε1/8-radial. We omit the details.

4. The isoperimetric inequality on the high-dimensional sphere, which is the cornerstone
of the concentration of measure phenomenon (see Milman and Schechtman [24]), is
not used in the proof of Theorem 1.3. We do apply Levy’s lemma, whose proof in-
volves the isoperimetric inequality, in the proof of Lemma 2.4, but only in d dimen-
sions. The dimension d here is typically not very large.

5. For a positive integer d and ε > 0 denote by N0(ε, d) the minimal dimension with the
following property: Whenever N ≥ N0(ε, d), any N -dimensional Banach space has a
d-dimensional subspace which is ε-close to a Hilbert space. The classical Dvoretzky
theorem states that N0(ε, d) ≤ exp(Cd/ε2), where C > 0 is a universal constant
(see Milman [23] and references therein). The power of 1/ε in the exponent in the
bound for N0(ε, d) can be made arbitrarily close to one at the expense of increasing
the universal constant C (see Schechtman [27]). It is conceivable, however, that these
bounds are still far from optimal; perhaps N0(ε, d) can be made as small as (C/ε)Cd?
See Milman [22] for a discussion of this conjecture. An affirmative answer for the case
d = 2 was given by Gromov [22], using a topological argument which does not seem
to generalize to higher dimensions.
The analogy with the present article suggests an attempt to use Theorem 1.3, or ideas
from its proof, in order to improve the bounds in Dvoretzky’s theorem. Furthermore,
the operation of marginal is dual, via the Fourier transform, to the operation of restric-
tion to a subspace. So, for instance, suppose a norm ‖ · ‖ in Rn may be represented



748 Bo’az Klartag

as

‖x‖ =

∫
Rn
|x · θ | dµ(θ) (46)

for a compactly-supported probability measure µ on Rn. In this case, we may consider
subspaces E ⊂ Rn for which (ProjE)∗µ is ε-radial, and expect that the restriction of
‖ · ‖ to these subspaces is close, in a certain sense, to the Euclidean norm. See Koldob-
sky [19, Chapter 6] for a comprehensive discussion of norms admitting representations
in the spirit of (46).
While this approach may possibly yield some meaningful estimates for some classes
of normed spaces, it has limitations. Theorem 1.3 is proven by considering a random
marginal with respect to an appropriate Euclidean structure, i.e., a projection of the
given measure to a subspace which is distributed uniformly over the Grassmannian
of all d-dimensional subspaces in Rn. However, for Banach spaces such as `N∞, a
random subspace is not sufficiently close to a Hilbert space (see Schechtman [28]),
and there are better choices than the random one. (Indeed, the `N∞ norm cannot be
represented as in (46) or in a similar way, see Theorem 6.13 in Koldobsky [19], due to
Misiewicz.) A direct application of Theorem 1.3 is thus quite unlikely to provide new
information regarding approximately Hilbertian subspaces for all finite-dimensional
normed spaces.

6. In principle, the measures T∗(µ) in Theorem 1.3 are not only approximately radial, but
are also approximately a composition of isotropic Gaussians. Indeed, it is well-known
that any d-dimensional marginal of the measure σk−1, for d � k, is approximately an
isotropic d-dimensional Gaussian measure. Thus, we may project an approximately-
radial measure on Rk to any d-dimensional subspace, and obtain a measure which
is approximately, in some sense, a composition of isotropic Gaussians. We did not
rigorously investigate this approximation property on a precise, quantitative level.

7. Infinite-dimensional spaces

This section contains a corollary to Theorem 1.3, pertaining to probability measures sup-
ported on infinite-dimensional spaces. We begin with a lemma regarding distributions on
finite-dimensional spaces. Let n ≥ 1 be an integer, suppose that µ is a Borel probability
measure on Rn and let 0 < a ≤ 1. A subspace E ⊆ Rn is a-basic for µ if

(i) µ(E) ≥ a,
(ii) µ(F) < a for any proper subspace F ( E.

Note that any subspace E ⊆ Rn with µ(E) ≥ a contains an a-basic subspace. Also,
suppose T : Rn → Rm is a linear map, and let E ⊆ Rn be an a-basic subspace for µ
containing the kernel of T . Then T (E) is a-basic for T∗(µ).

Lemma 7.1. Let n ≥ 1 be an integer, 0 < a ≤ 1, and let µ be a Borel probability
measure on Rn. Then there are only finitely many subspaces E ⊆ Rn that are a-basic
for µ.
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Proof. Let k ≥ 0 be an integer and 0 < a ≤ 1. We will prove by induction on k the
following statement: For any integer n ≥ k and for any Borel probability measure µ
on Rn, there are at most finitely many subspaces E ⊆ Rn whose dimension is at most k,
that are a-basic for the measure µ. The statement clearly implies the lemma. The case
k = 0 is easy, as there is only one 0-dimensional subspace in Rn.

Let k ≥ 1. Suppose that n ≥ k is an integer, 0 < a ≤ 1 and letµ be a Borel probability
measure on Rn. Denote by G the family of all subspaces E ⊆ Rn whose dimension is at
most k that are a-basic for the measure µ. We need to show that

#(G) <∞. (47)

First, note that it is sufficient to prove (47) under the additional assumption that
µ({0}) = 0. Indeed, denote ε = µ({0}). If a ≤ ε then there is only one a-basic sub-
space in Rn, which is the subspace {0}, and (47) clearly holds. In the non-trivial case
where a > ε, we may replace µ by (µ− εδ0) /(1 − ε) and a by (a − ε) /(1 − ε). The
family of basic subspaces remains exactly the same. From now on, we will thus assume
that µ({0}) = 0.

Denote by E ⊆ G the collection of all subspaces E ⊆ Rn that are a-basic for µ, with
dim(E) ≤ k, for which µ(F) < a2/8 for any proper subspace F ( E. We will prove that

#(E) ≤ 2/a <∞. (48)

To that end, let Ẽ be any finite subset of E , and denote N = #(Ẽ). For any two distinct
subspaces E1, E2 ∈ Ẽ , we have µ(E1 ∩ E2) < a2/8 as E1 ∩ E2 is a proper subspace
of E1. According to the inclusion-exclusion principle,

1 ≥ µ
(⋃
E∈Ẽ

E
)
≥

∑
E∈Ẽ

µ(E)−
∑

E1,E2∈Ẽ
E1 6=E2

µ(E1 ∩ E2) > Na −
N(N − 1)

2
a2/8,

where we used the fact that µ(E) ≥ a for any E ∈ Ẽ , since E is a-basic. We conclude
that

1 > Na −
N(N − 1)a2

16
≥ Na

[
1−

Na

10

]
, so |Na − 5| > 3. (49)

Thus, there are no finite subsets of E whose cardinality is N = d2/ae: In this case 2 ≤
Na ≤ 3, which is impossible according to (49). Hence #(E) ≤ 2/a and (48) is proven.

Next, denote by G̃ the family of all subspaces E ⊆ Rn that are a-basic, with
dim(E) ≤ k, for which there exists a proper subspace F ( E with µ(F) ≥ a2/8. In
view of (48), in order to deduce (47) it suffices to show that

#(G̃) <∞. (50)

Whenever a subspace E ⊆ Rn contains a proper subspace F ( E with µ(F) ≥ a2/8,
it also contains an a2/8-basic proper subspace F̃ ( E with dim(F̃ ) ≤ k − 1. By the
induction hypothesis, there are only finitely many subspaces F̃ ⊆ Rn that are a2/8-basic
for µ whose dimension is at most k−1. Fix such an a2/8-basic subspace F̃ . Let F be the
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collection of all subspaces E ⊆ Rn that are a-basic, contain F̃ , and satisfy dim(E) ≤ k.
The task of proving (50) and completing the proof of the lemma is reduced to showing
that

#(F) <∞.

Note that dim(F̃ ) ≥ 1 as µ({0}) = 0 < a2/8, and hence {0} is not an a2/8-basic
subspace. Denote by P = Proj

F̃⊥
the orthogonal projection operator onto F̃⊥ in Rn.

Then ν = P∗(µ) is a Borel probability measure on F̃⊥. For any E ∈ F , the subspace
P(E) is a-basic for the measure ν, and dim(P (E)) = dim(E) − dim(F̃ ) ≤ k − 1.
From the induction hypothesis, we see that the set {P(E); E ∈ F} is finite. However,
P(E1) 6= P(E2) for any distinct E1, E2 ∈ F . Thus #(F) <∞, as promised. The lemma
is proven. ut

An alternative proof of Lemma 7.1 was suggested by N. Alon. His idea is to replace the
first part of the proof of the induction step with the known fact that there exists a finite set
A ⊂ Rn that intersects any subspace of measure at least a (see, e.g., Alon and Spencer
[1, Section 13.4]).

We write R∞ for the linear space of infinite sequences a = (a1, a2, . . .) with ai ∈ R
for all i ≥ 1. The space R∞ is endowed with the standard product topology (also known
as Tikhonov’s topology) and the corresponding Borel σ -algebra. The projection map Pn :
R∞→ Rn is defined by

Pn(x) = (x1, . . . , xn)

for x = (x1, x2, . . .) ∈ R∞. Then Pn is a continuous, linear map. Note that any finite-
dimensional subspace E ⊂ R∞ is a closed set. Also for any subspace E ⊆ R∞ we have

dim(E) = sup
n

dim(Pn(E)). (51)

With a slight abuse of notation, for m ≥ n ≥ 1 we also write Pn : Rm → Rn for
the projection operator defined by Pn(x1, . . . , xm) = (x1, . . . , xn). We will also use the
ridiculous space R0

= {0}, and P0(x) = 0 for any x. Let ε > 0 and let X be a measur-
able linear space in which all finite-dimensional subspaces are measurable. A probability
measure µ on X is called ε-decent if for any finite-dimensional subspace E ⊆ X,

µ(E) ≤ ε dim(E).

Lemma 7.2. Let ε > 0 and let µ be a Borel probability measure on R∞. Suppose that µ
is ε-decent. Then there exists N ≥ 1 such that (PN )∗µ is 2ε-decent.

Proof. For n ≥ 0 denote µn = (Pn)∗µ, a Borel probability measure on Rn. We say
that a subspace E ⊆ Rn is thick if µn(E) ≥ 2ε dim(E). A thick subspace E ⊆ Rn is
necessarily of dimension at most (2ε)−1. We say that E is a primitive, thick subspace if
it is thick and additionally

µn(F ) < 2ε dim(F )

for any proper subspace F ( E. Clearly, any thick subspaceE ⊆ Rn contains a primitive,
thick subspace. Observe also that a primitive, thick, k-dimensional subspace E ⊆ Rn is
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necessarily 2εk-basic for the measure µn. From Lemma 7.1 we thus learn that for any n,
there are only finitely many primitive, thick subspaces E ⊆ Rn.

Denote by V the collection of all pairs (E, n) such that E ⊆ Rn is a primitive, thick
subspace. In order to prove the lemma, it suffices to show that V is finite. Indeed, in
this case, set N = max{n + 1; ∃E ⊆ Rn, (E, n) ∈ V}. Then there are no primitive,
thick subspaces in RN , and hence there are no thick subspaces in RN . Consequently,
µN = (PN )∗(µ) is 2ε-decent, and the lemma is proven. The rest of the argument is thus
the proof that V is finite.

Define a directed graph structure on V as follows: There is an edge going from the
node (E, n) ∈ V to the node (F, n + 1) ∈ V if and only if E ⊆ Pn(F ). Note that for
each node (F, n + 1) ∈ V , the subspace Pn(F ) ⊆ Rn is clearly thick, hence it contains
a primitive, thick subspace Ẽ ⊆ Rn. Therefore each node (F, n + 1) is connected to a
certain node (Ẽ, n) ∈ V . We conclude that there is a path from ({0}, 0) ∈ V to any node
in V . For each n ≥ 1 there are only finitely many nodes of the form (E, n) ∈ V , since
there are only finitely many primitive, thick subspaces E ⊆ Rn. Therefore, V is finite if
and only if it does not contain an infinite path.

We deduce that in order to prove the lemma, it suffices to show that there is no se-
quence of subspaces En ⊆ Rn (n = 0, 1, . . .) such that for any n ≥ 0,

En ⊆ Pn(En+1) and (En, n) ∈ V. (52)

Assume by contradiction that such a sequence exists. Recall that a subspace of dimension
larger than (2ε)−1 cannot be thick, hence dim(En) is bounded by (2ε)−1. Additionally,
dim(En) ≤ dim(En+1) for all n. Therefore, there exist n0 ≥ 1 and d ≤ (2ε)−1 such that

dim(En) = d for all n ≥ n0.

Consequently, En = Pn(En+1) for any n ≥ n0. Consider the direct limit

E = {a ∈ R∞; Pn(a) ∈ En for all n ≥ n0} ⊆ R∞.

Then E =
⋂
n≥n0

P−1
n (En) is a subspace of R∞ with Pn(E) = En for all n ≥ n0.

Furthermore, dim(E) = d according to (51). Note that P−1
n (En) ⊃ P

−1
n+1(En+1) for any

n ≥ n0. Therefore

µ(E) = µ
(⋂
n≥n0

P−1
n (En)

)
= lim
n→∞

µ
(
P−1
n (En)

)
= lim
n→∞

µn (En) ≥ 2εd,

since En ⊆ Rn is a d-dimensional thick subspace. Hence µ(E) ≥ 2εd, in contradiction
to our assumption that µ is ε-decent. We conclude that there are no infinite paths in V ,
and hence that V is finite. The lemma is proven. ut

SupposeX is a topological vector space. We say thatX has a countable separating family
of continuous linear functionals if there exist continuous linear functionals f1, f2, . . . :
X→ R such that for any x ∈ X,

x = 0 ⇔ ∀n, fn(x) = 0.
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This condition is not too restrictive. For example, any separable normed space, any sep-
arable Fréchet space, and any topological vector space dual to a separable Fréchet space
admits a countable separating family of continuous linear functionals.

Corollary 7.3. Let ε > 0, let d ≥ 1 be an integer, and letX be a topological vector space
with a countable separating family of continuous linear functionals. Suppose that µ is
an ε-decent Borel probability measure on X. Then there exists a continuous linear map
T : X→ Rd such that T∗(µ) is δ-radial proper for δ = cεc/d . Here, c > 0 is a universal
constant.

Proof. Let f1, f2, . . . : X → R be the separating sequence of continuous linear func-
tionals. Then the linear map T : X→ R∞ defined by

T (x) = (f1(x), f2(x), . . .)

is a continuous linear embedding. Since µ is ε-decent, also T∗(µ) is an ε-decent, Borel
probability measure on R∞. According to Lemma 7.2, there exists a finite N ≥ 1 and
a continous linear map P : R∞ → RN such that (P ◦ T )∗(µ) is a 2ε-decent measure
on RN . The corollary now follows from Theorem 1.3. ut

Note that the linear map T in Corollary 7.3 is not only measurable but also continuous.
In principle, we could have formulated Corollary 7.3 for a probability measure on a mea-
surable linear space, without having to rely on an ambient topology: All we need is a
linear, measurable embedding in R∞. We refer the reader to Tsirelson [30] for a discus-
sion of measures on infinite-dimensional linear spaces, and for an exposition of Vershik’s
“de-topologization” program [31, 32]. We conclude this note with an infinite-dimensional
analog of Corollary 1.4.

Corollary 7.4. Let X be a topological vector space with a countable separating family
of continuous linear functionals. Suppose that µ is a Borel probability measure onX such
that µ(E) = 0 for any finite-dimensional subspace E ⊂ X. Then, for any R > 0, there
exists a non-zero continuous linear functional ϕ : X→ R such that

µ({x; ϕ(x) ≥ tM}) ≥ c exp(−Ct2) for all 0 ≤ t ≤ R

and
µ({x; ϕ(x) ≤ −tM}) ≥ c exp(−Ct2) for all 0 ≤ t ≤ R

where M > 0 is a median, that is,

µ({x; |ϕ(x)| ≤ M}) ≥ 1/2 and µ ({x; |ϕ(x)| ≥ M}) ≥ 1/2

and c, C > 0 are universal constants.
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