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Abstract. This is the second of a series of papers in which we investigate the problem of finding,
in hyperbolic space, complete hypersurfaces of constant curvature with a prescribed asymptotic
boundary at infinity for a general class of curvature functions. In this paper we focus on graphs over
a domain with nonnegative mean curvature.
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1. Introduction

In this paper we continue our study of complete hypersurfaces in hyperbolic space Hn+1

of constant curvature with a prescribed asymptotic boundary at infinity. Given 0 ⊂
∂∞Hn+1 and a smooth symmetric function f of n variables, we seek a complete hy-
persurface 6 in Hn+1 satisfying

f (κ[6]) = σ, (1.1)
∂6 = 0, (1.2)

where κ[6] = (κ1, . . . , κn) denotes the hyperbolic principal curvatures of 6 and σ ∈
(0, 1) is a constant.

We will use the half-space model,

Hn+1
= {(x, xn+1) ∈ Rn+1 : xn+1 > 0}

equipped with the hyperbolic metric

ds2
=

1
x2
n+1

n+1∑
i=1

dx2
i . (1.3)
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Thus ∂∞Hn+1 is naturally identified with Rn = Rn × {0} ⊂ Rn+1 and (1.2) may be
understood in the Euclidean sense.

As in our earlier work [11, 9, 5, 7], we will take 0 = ∂� where � ⊂ Rn is a smooth
domain and seek 6 as the graph of a function u(x) over �, i.e.

6 = {(x, xn+1) : x ∈ �, xn+1 = u(x)}.

Then the coordinate vector fields and upper unit normal are given by

Xi = ei + uien+1, n = uν = u
−uiei + en+1

w
,

where w =
√

1+ |∇u|2. The first fundamental form gij is then given by

gij = 〈Xi, Xj 〉 =
1
u2 (δij + uiuj ) =

geij

u2 . (1.4)

To compute the second fundamental form hij we use

0kij =
1

xn+1
{−δjkδi n+1 − δikδj n+1 + δij δk n+1} (1.5)

to obtain

∇XiXj =

(
δij

xn+1
+ uij −

uiuj

xn+1

)
en+1 −

uj ei + uiej

xn+1
. (1.6)

Then

hij = 〈∇XiXj , uν〉 =
1
uw

(
δij

u
+ uij −

uiuj

u
+ 2

uiuj

u

)
=

1
u2w

(δij + uiuj + uuij ) =
heij

u
+
geij

u2w
. (1.7)

The hyperbolic principal curvatures κi of 6 are the roots of the characteristic equation

det(hij − κgij ) = u−n det
(
heij −

1
u

(
κ −

1
w

)
geij

)
= 0.

Therefore,

κi = uκ
e
i +

1
w
. (1.8)

We will present other more explicit and useful expressions for the κi in Section 2.
The function f is assumed to satisfy the fundamental structure conditions:

fi(λ) ≡
∂f (λ)

∂λi
> 0 in K, 1 ≤ i ≤ n, (1.9)

f is a concave function in K, (1.10)

and
f > 0 in K, f = 0 on ∂K, (1.11)
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where K ⊂ Rn is an open symmetric convex cone such that

K+n := {λ ∈ Rn : each component λi > 0} ⊂ K. (1.12)

In addition, we shall assume that f is normalized,

f (1, . . . , 1) = 1 (1.13)

and
f is homogeneous of degree one. (1.14)

Since f is symmetric, by (1.10), (1.13) and (1.14) we have

f (λ) ≤ f (1)+
∑

fi(1)(λi − 1) =
∑

fi(1)λi =
1
n

∑
λi in K (1.15)

and ∑
fi(λ) = f (λ)+

∑
fi(λ)(1− λi) ≥ f (1) = 1 in K. (1.16)

Lemma 1.1. Suppose f satisfies (1.9)–(1.14). Then∑
i 6=r

fiλ
2
i ≥

1
n− 1

(2f |λr | + frλ2
r ) if λr < 0 (1.17)

and so ∑
i 6=r

fiλ
2
i ≥

1
n

∑
fiλ

2
i if λr < 0. (1.18)

Proof. Suppose λr < 0 and order the eigenvalues with λ1 > 0 the largest and λn < 0 the
smallest. Then as a consequence of the concavity condition (1.10) we have

fn ≥ fi for all i and so fnλ
2
n ≥ frλ

2
r . (1.19)

By (1.14), ∑
i 6=n

fiλi = f + fn|λn|.

By the Schwarz inequality and (1.19),

f 2
+ 2ffn|λn| + f 2

n λ
2
n ≤

∑
i 6=n

fi
∑
i 6=n

fiλ
2
i ≤ (n− 1)fn

∑
i 6=n

fiλ
2
i .

Therefore, ∑
i 6=n

fiλ
2
i ≥

1
n− 1

(2f |λn| + fnλ2
n).

Using (1.19) this implies∑
i 6=r

fiλ
2
i ≥

∑
i 6=n

fiλ
2
i ≥

1
n− 1

(2f |λn| + fnλ2
n) ≥

1
n− 1

(2f |λr | + frλ2
r ), (1.20)

completing the proof. ut
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All of the above assumptions (1.9)–(1.14) are fairly standard. In the present work, the
following more technical assumption is important:

lim
R→∞

f (λ1, . . . , λn−1, λn + R) ≥ 1+ ε0 uniformly in Bδ0(1) (1.21)

for some fixed ε0 > 0 and δ0 > 0, where Bδ0(1) is the ball of radius δ0 centered at
1 = (1, . . . , 1) ∈ Rn.

The assumption (1.21) is fairly mild. For f = H
1/k
k corresponding to the “higher

order mean curvatures”, where Hk is the k-th normalized elementary function,

lim
R→∞

f (1+O(ε)+ Ren) = ∞

while for f = (Hk,l)1/(k−l) = (Hk/Hl)1/(k−l), k > l, the class of curvature quotients,

lim
R→∞

f (1+O(ε)+ Ren) = (1+O(ε))(k/ l)1/(k−l).

Problem (1.1)–(1.2) reduces to the Dirichlet problem for a fully nonlinear second
order equation which we shall write in the form

G(D2u,Du, u) = σ, u > 0 in � ⊂ Rn (1.22)

with the boundary condition
u = 0 on ∂�. (1.23)

The exact formula for G will be given in Section 2.
We seek solutions of the Dirichlet problem (1.22)–(1.23) satisfying κ[u] ≡

κ[graph(u)] ∈ K . Following the literature we define the class of admissible functions

A(�) = {u ∈ C2(�) : κ[u] ∈ K}.

Our main result may be stated as follows.

Theorem 1.2. Let 0 = ∂� × {0} ⊂ Rn+1 where � is a bounded smooth domain in Rn.
Suppose that the Euclidean mean curvature H∂� is nonnegative and σ ∈ (0, 1) satisfies
σ > σ0, where σ0 is the unique zero in (0, 1) of

φ(a) :=
8
3
a +

22
27
a3
−

5
27
(a2
+ 3)3/2. (1.24)

(Numerical calculations show 0.3703 < σ0 < 0.3704.) Under conditions (1.9)–(1.14)
and (1.21), there exists a complete hypersurface 6 in Hn+1 satisfying (1.1)–(1.2) with
uniformly bounded principal curvatures

|κ[6]| ≤ C on 6. (1.25)

Moreover, 6 is the graph of a unique admissible solution u ∈ C∞(�) ∩ C1(�̄) of the
Dirichlet problem (1.22)–(1.23). Furthermore, u2

∈ C∞(�) ∩ C1,1(�) and√
1+ |Du|2 ≤ 1/σ , u|D2u| ≤ C in �,√
1+ |Du|2 = 1/σ on ∂�.

(1.26)
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Theorem 1.2 holds for a large family of functions f such as

f = N−1
N∑
l=1

(fl1 · · · flNl )
1/Nl

where each flk satisfies (1.9)–(1.14) and at least one of fl1, . . . , flNl (for every l) satisfies
(1.21).

By [2] condition (1.9) implies that equation (1.22) is elliptic for admissible solutions.
As we shall see in Section 2, equation (1.22) is degenerate where u = 0. It is therefore
natural to approximate the boundary condition (1.23) by

u = ε > 0 on ∂�. (1.27)

When ε is sufficiently small, the Dirichlet problem (1.22), (1.27) is solvable for all σ ∈
(0, 1).

Theorem 1.3. Let � be a bounded smooth domain in Rn with H∂� ≥ 0 and suppose f
satisfies (1.9)–(1.14) and (1.21). Then for any σ ∈ (0, 1) and ε > 0 sufficiently small,
there exists a unique admissible solution uε ∈ C∞(�̄) of the Dirichlet problem (1.22),
(1.27). Moreover, uε satisfies the a priori estimates√

1+ |Duε|2 ≤ 1/σ in �, (1.28)

uε|D2uε| ≤ C/ε2 in �, (1.29)

where C is independent of ε.

We shall use the continuity method to reduce the proof of Theorem 1.3 to obtaining C2

a priori estimates for admissible solutions. This approach critically depends on the sharp
global gradient estimate (1.28), which is carried out in Section 3 under the assumption
H∂� ≥ 0. It implies that the linearized operator of equation (1.22) is invertible for all
ε ∈ (0, 1], a crucial condition for the continuity method. The centerpiece of this paper
is the boundary second derivative estimate, which we derive in Section 5. Here we make
use of Lemma 1.1 and a careful analysis of the linearized operator to derive the mixed
normal-tangential estimate. Again the sharp global gradient estimate (1.28) enters into
the proof in an essential way. We then use assumption (1.21) to establish a pure normal
second derivative estimate. In order to use Theorem 1.3 to obtain Theorem 1.2 (see the
end of Section 4 for a more detailed explanation), we need a uniform (in ε) estimate
for the hyperbolic principal curvatures of the graph uε. Therefore in Section 6 we prove
a maximum principle for the maximal hyperbolic principal curvature using a method
derived in our earlier paper [7]. It is here that we have had to restrict the allowable range
of σ ∈ (0, 1). Otherwise our approach is completely general and we expect Theorem 1.2
is valid for all σ ∈ (0, 1). In Section 2 we summarize the basic information about vertical
graphs and the linearized operator that we will need, and in Section 3 we review some
important barrier arguments using equidistant sphere solutions.
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2. Vertical graphs and the linearized operator

Suppose 6 is locally represented as the graph of a function u ∈ C2(�), u > 0, in a
domain � ⊂ Rn:

6 = {(x, u(x)) ∈ Rn+1 : x ∈ �}.

oriented by the upward (Euclidean) unit normal vector field ν to 6:

ν =

(
−Du

w
,

1
w

)
, w =

√
1+ |Du|2.

The Euclidean metric and second fundamental form of 6 are given respectively by

geij = δij + uiuj , heij = uij/w.

According to [3], the Euclidean principal curvatures κe[6] are the eigenvalues of the
symmetric matrix Ae[u] = {aeij }:

aeij :=
1
w
γ ikuklγ

lj , (2.1)

where
γ ij = δij −

uiuj

w(1+ w)
. (2.2)

Note that the matrix {γ ij } is invertible with inverse

γij = δij +
uiuj

1+ w
(2.3)

which is the square root of {geij }, i.e., γikγkj = geij . By (1.8) the hyperbolic principal
curvatures κ[u] of 6 are the eigenvalues of the matrix A[u] = {aij [u]}:

aij [u] :=
1
w
(δij + uγ

ikuklγ
lj ). (2.4)

Let S be the vector space of n× n symmetric matrices and

SK = {A ∈ S : λ(A) ∈ K},

where λ(A) = (λ1, . . . , λn) denotes the eigenvalues of A. Define a function F by

F(A) = f (λ(A)), A ∈ SK . (2.5)

Throughout the paper we denote

F ij (A) =
∂F

∂aij
(A), F ij,kl(A) =

∂2F

∂aij∂akl
(A). (2.6)
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The matrix {F ij (A)}, which is symmetric, has eigenvalues f1, . . . , fn, and therefore is
positive definite for A ∈ SK if f satisfies (1.9), while (1.10) implies that F is concave for
A ∈ SK (see [2]), that is,

F ij,kl(A)ξij ξkl ≤ 0, ∀{ξij } ∈ S, A ∈ SK . (2.7)

We have

F ij (A)aij =
∑

fi(λ(A))λi, (2.8)

F ij (A)aikajk =
∑

fi(λ(A))λ
2
i . (2.9)

The function G in equation (1.22) is determined by

G(D2u,Du, u) = F(A[u]) (2.10)

where A[u] = {aij [u]} is given by (2.4). Let

L = Gst∂s∂t +Gs∂s +Gu (2.11)

be the linearized operator of G at u, where

Gst =
∂G

∂ust
, Gs =

∂G

∂us
, Gu =

∂G

∂u
. (2.12)

We shall give the exact formula for Gs later but note that

Gst =
u

w
F ijγ isγ j t , Gstust = uGu = F

ijaij −
1
w

∑
F ii, (2.13)

and

Gpq,st :=
∂2G

∂upq∂ust
=
u2

w2F
ij,klγ isγ tjγ kpγ ql (2.14)

where F ij = F ij (A[u]), etc. It follows that, under condition (1.9), equation (1.22) is
elliptic for u if A[u] ∈ SK , while (1.10) implies that G(D2u,Du, u) is concave with
respect to D2u.

For later use, the eigenvalues of {Gij } and {F ij } (which are the fi) are related by

Lemma 2.1. Let 0 < µ1 ≤ · · · ≤ µn and 0 < f1 ≤ · · · ≤ fn denote the eigenvalues of
{Gij } and {F ij } respectively. Then

wµk ≤ ufk ≤ w
3µk, 1 ≤ k ≤ n. (2.15)

Proof. For any ξ = (ξ1, . . . , ξn) ∈ Rn we have from (2.13)

uF ij ξiξj = wG
klγikγlj ξiξj = wG

klξ ′kξ
′

l

where
ξ ′i = γikξk = ξi +

(ξ ·Du)ui

1+ w
.

Note that
|ξ |2 ≤ |ξ ′|2 = |ξ |2 + |ξ ·Du|2 ≤ w2

|ξ |2

where ξ ′ = (ξ ′1, . . . , ξ
′
n). Since both {Gij } and {F ij } are positive, (2.15) follows from the

minimax characterization of eigenvalues. ut
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3. Height estimates and the asymptotic angle condition

In this section let 6 be a hypersurface in Hn+1 with ∂6 ⊂ P(ε) := {xn+1 = ε} so 6
separates {xn+1 ≥ ε} into an inside (bounded) region and an outside (unbounded) one.
Let � be the region in Rn × {0} such that its vertical lift �ε to P(ε) is bounded by ∂6
(and Rn \ � is connected and unbounded). It is allowable that � has several connected
components. Suppose κ[6] ∈ K and f (κ) = σ ∈ (0, 1) with respect to the outer normal.

Let B1 = BR(a) be a ball of radius R centered at a = (a′,−σR) ∈ Rn+1 where
σ ∈ (0, 1) and S1 = ∂B1 ∩ Hn+1. Then κi[S1] = σ for all 1 ≤ i ≤ n with respect
to its outward normal. Similarly, let B2 = BR(b) be a ball of radius R centered at b =
(b′, σR) ∈ Rn+1 with S2 = ∂B2 ∩Hn+1. Then κi[S2] = σ for all 1 ≤ i ≤ n with respect
to its inward normal.

These so called equidistant spheres serve as useful barriers.

Lemma 3.1.
(i) 6 ∩ {xn+1 < ε} = ∅.

(ii) If ∂6 ⊂ B1, then 6 ⊂ B1.

(iii) If B1 ∩ P(ε) ⊂ �
ε, then B1 ∩6 = ∅.

(iv) If B2 ∩�
ε
= ∅, then B2 ∩6 = ∅.

(3.1)

Proof. For (i) let c = minx∈6 xn+1 and suppose 0 < c < ε. Then the horosphere P(c)
satisfies f (κ) = 1 with respect to the upward normal, lies below 6 and has an interior
contact violating the maximum principle. Thus c = ε. For (ii), (iii), (iv) we perform
homothetic dilations from (a′, 0) and (b′, 0) respectively which are hyperbolic isometries
and use the maximum principle. For (ii), expand B1 continuously until it contains 6 and
then reverse the process. Since the curvatures of 6 and S1 are calculated with respect
to their outward normals and both hypersurfaces satisfy f (κ) = σ , there cannot be a
first contact. For (iii) and (iv) we shrink B1 and B2 until they are respectively inside and
outside 6. When we expand B1 there cannot be a first contact as above. Now shrink B2
until it lies below P(ε) and so is disjoint (outside) from 6. Now reverse the process and
suppose there is a first interior contact. Then the outward normal to6 at this contact point
is the inward normal to S2. Since the curvatures of S2 are calculated with respect to its
inner normal and it satisfies f (κ) = σ , this contradicts the maximum principle. ut

Lemma 3.2. Suppose f satisfies (1.9), (1.11) and (1.14). Assume that ∂6 ∈ C2 and let
u denote the height function of 6. Then for ε > 0 sufficiently small,

−
ε
√

1− σ 2

r2
−
ε2(1+ σ)

r2
2

< νn+1
− σ <

ε
√

1− σ 2

r1
+
ε2(1− σ)

r2
1

on ∂6 (3.2)

where r2 and r1 are the maximal radii of exterior and interior spheres to ∂�, respectively.
In particular, νn+1

→ σ on ∂6 as ε→ 0.
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Proof. Assume first r2 <∞. Fix a point x0 ∈ ∂� and let e1 be the outward pointing unit
normal to ∂� at x0. LetB1, B2 be balls in Rn+1 with centers a1 = (x0−r1e1,−R1σ, a2 =

(x0 + r2e1, R2σ) and radii R1, R2 respectively satisfying

R2
1 = r

2
1 + (R1σ + ε)

2, R2
2 = r

2
2 + (R2σ − ε)

2. (3.3)

Then B1 ∩ P(ε) is an n-ball of radius r1 internally tangent to ∂�ε at x0 while B2 ∩

P(ε) is an n-ball of radius r2 externally tangent to ∂�ε at x0. By Lemma 3.1(iii) & (iv),
Bi ∩6 = ∅, i = 1, 2. Hence,

−
u− σR2

R2
< νn+1 <

u+ σR1

R1
at x0.

That is,
−
ε

R2
< νn+1

− σ <
ε

R1
at x0. (3.4)

From (3.3),

1
R1
=

√
(1− σ 2)r2

1 + ε
2 − εσ

r2
1 + ε

2
<

√
1− σ 2

r1
+
ε(1− σ)
r2

1
,

1
R2
=

√
(1− σ 2)r2

2 + ε
2 + εσ

r2
2 + ε

2
<

√
1− σ 2

r2
+
ε(1+ σ)
r2

2
.

These estimates and (3.4) give (3.2), completing the proof of the lemma. ut

4. The approximating problems and the continuity method

We study the approximating Dirichlet problem

G(D2u,Du, u) = σ in �,
u = ε on ∂�,

(4.1)

using the continuity method.
Consider for 0 ≤ t ≤ 1 the family of Dirichlet problems

G(D2ut ,Dut , ut ) = σ t := tσ + (1− t) in �,
ut = ε on ∂�,

u0
≡ ε.

(4.2)

For � a C2+α domain, we find (starting from u0
≡ ε) a smooth family of solutions

ut , 0 ≤ t ≤ 2t0, by the implicit function theorem since Gu|u0 ≡ 0. We shall show in a
moment that these solutions are unique. By elliptic regularity it is now well understood
that if we can find uniform estimates in C2 for 0 < t0 ≤ t ≤ 1 then we can solve (4.1).

By Lemma 3.1, we obtain the C0 estimate

ε ≤ ut ≤ C in �. (4.3)
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4.1. The C1 estimate

The following proposition shows that we have uniform C1 estimates in the continuity
method and that the linearized operator L satisfies the maximum principle.

Proposition 4.1. Let ut ∈ C2+α(�) be a family of admissible solutions of (4.2) for 0 ≤
t ≤ t∗. SupposeH∂� ≥ 0. ThenGu|ut ≤ 0 so we have uniqueness. Hence wt assumes its
maximum on ∂� and wt ≤ 1/σ t on � for all 0 ≤ t ≤ t∗.

Proof. We (usually) suppress the t dependence for convenience. By (2.13) and (1.16),

uGu = σ
t
−

1
wt

∑
fi ≤ σ

t
−

1
wt
.

For t = 0, we have σ 0
= 1, u0

≡ ε, κi = 1, fi = 1/n and so uGu ≡ 0. Note also
that d

dt
(σ t − 1/wt )|t=0 = σ − 1 < 0. Hence for t > 0 sufficiently small, uGu < 0 so

the operator L given by (2.11) satisfies the maximum principle. But Luk = 0 so each
derivative uk achieves its maximum on ∂�. In particular, w assumes its maximum on ∂�.
Let 0 ∈ ∂� be a point where w assumes its maximum. Choose coordinates (x1, . . . , xn)

at 0 with xn the inner normal direction for ∂�. Then at 0,

uα = 0, 1 ≤ α < n, un > 0, unn ≤ 0,

and ∑
α<n

uαα = −un(n− 1)H∂� ≤ 0.

Note that by (1.15), the hyperbolic mean curvature of graph(u) is at least σ . Therefore,

n

ε

(
σ −

1
w

)
≤

1
w

(∑
α<n

uαα +
unn

w2

)
≤ −(n− 1)

un

w
H∂� ≤ 0.

Hence σ − 1/w ≤ 0, or w ≤ 1/σ . Thus Gu ≤ 0 so L satisfies the maximum principle.
Consequently, the same estimates must continue to hold as we increase t up to t∗. ut

In Section 5, we will make use of Proposition 4.1 to complete the proof of the C2 esti-
mates (see Theorem 5.1 and Corollary 5.8). Since the linearized operator is invertible, we
have unique smooth solvability all the way to t = 1, completing the proof of Theorem 1.3.
Using the global maximum principle, Theorem 6.1 of Section 6 and Theorem 5.1, we ob-
tain uniform estimates for the hyperbolic principal curvatures. Note also that by Lemma
3.1(iii), we have a positive lower bound (uniform in ε) on each compact subdomain of
� for the solutions uε obtained in Theorem 1.3. This allows us to obtain uniform C2+α

estimates for uε on compact subdomains of � by the interior estimates of Evans–Krylov.
We can now let ε tend to zero to obtain Theorem 1.2.
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5. Boundary estimates for second derivatives

In this section we establish boundary estimates for second derivatives of admissible so-
lutions to the Dirichlet problem (4.2) for all t0 ≤ t ≤ 1. Clearly it suffices to consider
the case t = 1. Throughout this section let � be a bounded smooth domain in Rn with
H∂� ≥ 0, and u ∈ C3(�̄) an admissible solution of the Dirichlet problem{

G(D2u,Du, u) = σ on �,
u = ε on ∂�,

(5.1)

where G is defined in (2.10).

Theorem 5.1. Suppose that f satisfies (1.9)–(1.14) and (1.21). If ε is sufficiently small,
then

u|D2u| ≤ C on ∂� (5.2)

where C is independent of ε.

Recall that in Section 4, we proved the global gradient estimate w ≤ 1/σ . In particular,
ε ≤ u ≤ (1 + 1/σ)ε in an ε-neighborhood of ∂�, This will be used repeatedly in the
proof of Theorem 5.1 without comment.

The notation of this section follows that of Section 2. Let L′ denote the partial lin-
earized operator of G at u:

L′ = L−Gu = Gst∂s∂t +Gs∂s

where Gst ,Gu are defined in (2.12) and

Gs :=
∂G

∂us
= −

us

w2F
ijaij −

2
w
F ijaik

(
wukγ

sj
+ ujγ

ks

1+ w

)
+

2
w2F

ijuiγ
sj (5.3)

by the formula (2.21) in [6], where F ij = F ij (A[u]) and aij = aij [u].
Since F = {F ij } and A = {aij } are simultaneously diagonalizable by an orthogonal

matrix P , we have

|F ijaik| = (FA)jk = |(P (P
T FP)(P TAP)P T )jk| =

∣∣∣∑PjrfrκrPkr

∣∣∣ ≤∑ fr |κr |.

(5.4)
Hence from (5.3) and (5.4), we obtain

Lemma 5.2. Suppose that f satisfies (1.9), (1.10), (1.13) and (1.14). Then

|Gs | ≤
σ

w
+

2
w

∑
F ii + 2

∑
fi |κi |. (5.5)
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Since γ sjus = uj/w,

Gsus =

(
1
w2 − 1

)
F ijaij −

2
w2F

ijaikukuj +
2
w3F

ijuiuj . (5.6)

It follows from (2.6), (2.8) and (2.13) that

L′u =
1
w2F

ijaij −
1
w

∑
F ii −

2
w2F

ijaikukuj +
2
w3F

ijuiuj . (5.7)

Lemma 5.3. Suppose that f satisfies (1.9), (1.10), (1.13) and (1.14). Then

L
(

1−
ε

u

)
≤ −

(1− σ)ε
u2w

∑
F ii −

2ε
u2w2F

ijaikukuj in �. (5.8)

Proof. By (5.7), (2.13) and (1.14),

L
(

1−
ε

u

)
=
ε

u2L
′u−

2ε
u3G

stusut +Gu

(
1−

ε

u

)
=
ε

u2

(
σ

w2 −
1
w

∑
F ii
)
+Gu

(
1−

ε

u

)
−

2ε
u2w2F

ijaikukuj . (5.9)

Since Gu ≤ 0 by Proposition 4.1, (5.8) now follows from (1.16). ut

We now refine Lemma 5.3. For the symmetric matrix A = A[u] we can uniquely define
the symmetric matrices (see [10])

|A| = {AAT }1/2, A+ =
1
2
(|A| + A), A− =

1
2
(|A| − A), (5.10)

which all commute and satisfy A+A− = 0. Moreover, F = {F ij } commutes with
|A|, A± and so all are simultaneously diagonalizable. Write A± = {a±ij } and define

L = L−
2
w2F

ija−ikuk∂j . (5.11)

Lemma 5.4. Suppose that f satisfies (1.9), (1.10), (1.13) and (1.14). Then

L

(
1−

ε

u

)
≤ −

(1− σ)ε
u2w

∑
F ii in �. (5.12)

Proof. Since {F ij } is positive definite and simultaneously diagonalizable with A±,

F ija±ikξj ξk ≥ 0, ∀ξ ∈ Rn.

Therefore,
F ijaikukuj = F

ij (a+ik − a
−

ik)ukuj ≥ −F
ija−ikukuj . (5.13)

Combining (5.13) and Lemma 5.3 we obtain (5.12). ut

The following lemma is stated in [4]; it applies to our situation since horizontal rotations
are hyperbolic isometries. For completeness we sketch the proof.
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Lemma 5.5. Suppose that f satisfies (1.9), (1.10), (1.13) and (1.14). Then

L(xiuj − xjui) = 0, Lui = 0, 1 ≤ i, j ≤ n. (5.14)

Proof. Without loss of generality we may assume i = 2, j = 1. Let R(θ) be the or-
thogonal n × n matrix with entries r11 = r22 = cos θ, r12 = −r21 = − sin θ, rkl = δkl
for k or l ≤ 3. Let y = Rx and v(y) = u(x). Then since rotations in x1, . . . , xn are
hyperbolic isometries, v(y) satisfies

G(D2v(y),Dv(y), v(y)) = σ, (5.15)

where

v(y) = u(RT y), Dv(y) = RDu(RT y), D2v(y) = R(D2u(RT y))RT . (5.16)

We differentiate (5.15) with respect to θ and evaluate at θ = 0. With the obvious notation,
we obtain

Gkl v̇kl +G
s v̇s +Guv̇ = 0. (5.17)

Using (5.16) and the definition of R, we compute

v̇ = ui
∂xi

∂θ

∣∣∣∣
θ=0
= ui ṙpi(0)xp = x2u1 − x1u2,

v̇s = ṙsi(0)ui + rsi(0)uij ṙpj (0)xp = x2u1s − x1u2s + u1δs2 − u2δs1

= (x2u1 − x1u2)s,

v̇kl = δkiδljuijmṙnm(0)xn + (uil ṙki(0)+ ukj ṙlj (0)) = (x2u1 − x1u2)kl .

Hence L(v̇) = 0 as stated. The statement L(ui) = 0 is left to the reader. ut

Proof of Theorem 5.1. Consider an arbitrary point on ∂�, which we may assume to be
the origin of Rn and choose the coordinates so that the positive xn axis is the interior
normal to ∂� at the origin. There exists a uniform constant r > 0 such that ∂� ∩ Br(0)
can be represented as a graph

xn = ρ(x
′) =

1
2

∑
α,β<n

Bαβxαxβ +O(|x
′
|
3), x′ = (x1, . . . , xn−1). (5.18)

We shall assume ε ≤ r below. Since u = ε on ∂�, we see that u(x′, ρ(x′)) = ε and

uαβ(0) = −unραβ , α, β < n. (5.19)

Consequently,
|uαβ(0)| ≤ C|Du(0)|, α, β < n, (5.20)

where C depends only on the (Euclidean maximal principal) curvature of ∂�.
As in [1], we consider for fixed α < n the operator

Tα = ∂α +
∑
β<n

Bαβ(xβ∂n − xn∂β). (5.21)
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Using Lemma 5.5 and the boundary condition u = ε on ∂� we have

LTαu = 0,

|Tαu| +
1
2

∑
l<n

u2
l ≤ C in � ∩ Bε(0),

|Tαu| +
1
2

∑
l<n

u2
l ≤ C|x|

2 on ∂� ∩ Bε(0).

(5.22)

Now define

φ = ±Tαu+
1
2

∑
l<n

u2
l −

C

ε2 |x|
2

where C is chosen large enough (independent of ε) so that φ ≤ 0 on ∂(� ∩ Bε(0)). This
is possible by (5.22).

By (5.5), (5.22), (2.13) and Lemma 2.1 (recall u ≤ cε in Bε(0) by virtue of the C1

estimates),

Lφ ≥
∑
l<n

Gijuliulj −
C

ε

(∑
fi +

∑
fi |κi |

)
in � ∩ Bε(0). (5.23)

Following Ivochkina, Lin and Trudinger [8] we have

Proposition 5.6. At each point in � ∩ Bε(0) there is an index r such that

∑
l<n

Gijuliulj ≥ c0u
∑
i 6=r

fi(κ
e
i )

2
≥
c0

2u

(∑
i 6=r

fiκ
2
i −

2
w2

∑
fi

)
. (5.24)

Proof. Let P be an orthogonal matrix that simultaneously diagonalizes {F ij } and Ae. By
(2.13) and (2.1),∑

l<n

Gijuliulj =
u

w

∑
l<n

F stγ isγ j tuliulj = uw
∑
l<n

F staesqa
e
ptγplγql

= uw
∑
l<n

fi(κ
e
i )

2PpiγplPqiγql = uw
∑
l<n

fi(κ
e
i )

2b2
il, (5.25)

where B = {brs} = {Pirγis} and detB = det(BT ) = w.
Suppose for some i, say i = 1, that∑

l<n

b2
l1 < θ2.

Expanding detB by cofactors along the first column gives

1 ≤ w = detB = b11C
11
+ · · · + bn−1 1C

1 n−1
+ bn1 detM ≤ c1θ + c2 detM,
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where the C1j are cofactors and M is the n− 1 by n− 1 matrix

M =

b12 . . . bn−1 2
...

. . .
...

b1n . . . bn−1 n

 . (5.26)

So detM ≥ (1− c1θ)/c2. Now expanding detM by cofactors along row r ≥ 2 gives

detM ≤ c3

(∑
l<n

b2
lr

)1/2

by the Schwarz inequality. Hence∑
l<n

b2
lr ≥

(
1− c1θ

c2c3

)2

. (5.27)

If we choose θ < 1/(2c1), (5.27) and (5.25) imply∑
l<n

Gijuliulj ≥ c0u
∑
i 6=r

fi(κ
e
i )

2 for some r.

Finally using κei =
1
u
(κi − 1/w) yields (5.24). ut

Proposition 5.7. Let L be defined by (5.11). Then

Lφ ≥ −C1

(
Gijφiφj +

1
ε

∑
fi

)
for a controlled constant C1 independent of ε.

Proof. By the generalized Schwarz inequality,

2
w2 |F

ija−jkuiφk| ≤ 2(uF ijφiφj )1/2
(

1
u
F ija−il a

−

kj

ukul

w2

)1/2

≤
c0

8nu

∑
κi<0

fiκ
2
i + CG

ijφiφj (5.28)

where we have used Lemma 2.1 to compare uF ijφiφj to Gijφiφj .
Since (recall (1.14)) ∑

fi |κi | = σ + 2
∑
κi<0

fi |κi |,

using (5.28), (5.23), Proposition 5.6 and Lemma 1.1 we have

Lφ ≥
c0

2u

∑
i 6=r

fiκ
2
i −

c0

4nu

∑
κi<0

fiκ
2
i − C

(
Gijφiφj +

1
ε

∑
fi

)

≥ −C1

(
Gijφiφj +

1
ε

∑
fi

)
(5.29)

for a controlled constant C1 independent of ε. ut
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Let h = (eC1φ − 1) − A(1 − ε/u) with C1 the constant in Proposition 5.7 and A large
compared to C1. By Proposition 5.7 and Lemma 5.4 (here again we use u ≤ cε in Bε(0)
by virtue of the C1 estimates),

h ≤ 0 on ∂(� ∩ Bε(0)), Lh ≥ 0 in � ∩ Bε(0).

By the maximum principle h ≤ 0 in � ∩ Bε(0). Since h(0) = 0, we have hn(0) ≤ 0,
which gives

|uαn(0)| ≤
A

C1ε
un(0). (5.30)

Finally, |unn(0)| can be estimated as in [7] using hypothesis (1.21). For completeness
we include the argument here. We may assume [uαβ(0)], 1 ≤ α, β < n, to be diagonal.
Note that uα(0) = 0 for α < n. We have, at x = 0,

A[u] =
1
w


1+ uu11 0 . . . uu1n/w

0 1+ uu22 . . . uu2n/w
...

...
. . .

...

uun1/w uun2/w . . . 1+ uunn/w2

 .
By Lemma 1.2 in [2], if εunn(0) is very large, the eigenvalues λ1, . . . , λn of A[u] are

asymptotically given by

λα =
1
w
(1+ εuαα(0))+ o(1), α < n,

λn =
εunn(0)
w3

(
1+O

(
1

εunn(0)

))
.

(5.31)

By (5.20) and assumptions (1.14), (1.21), for all ε > 0 sufficiently small,

σ =
1
w
F(wA[u](0)) ≥

1
w

(
1+

ε0

2

)
if εunn(0) ≥ R where R is a uniform constant. By the hypothesis (1.21) and Proposi-
tion 4.1 however,

σ ≥
1
w

(
1+

ε0

2

)
≥ σ

(
1+

ε0

2

)
> σ,

which is a contradiction. Therefore ε|unn(0)| ≤ R and the proof is complete. ut

Applying the maximum principle for the largest principal curvature κmax obtained in The-
orem 5.2 of [7] we obtain

Corollary 5.8. Let � be a bounded smooth domain in Rn with H∂� ≥ 0, and u ∈
C3(�̄) ∩ C4(�) an admissible solution of problem (5.1). Suppose that f satisfies (1.9)–
(1.14) and (1.21). Then, if ε is sufficiently small,

u|D2u| ≤ C/ε2 in � (5.32)

where C is independent of ε.

Note that Corollary 5.8 suffices to complete the proof of Theorem 1.3 but we cannot use
it to pass to the limit as ε→ 0. In the following section we address this problem.
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6. Global estimates for second derivatives

In this section we prove a maximum principle for the largest hyperbolic principal cur-
vature κmax(x) of solutions of f (κ[u]) = σ . We make extensive use of our previous
calculations in Section 5 of [7].

Let 6 be the graph of u. For x ∈ � let κmax(x) be the largest principal curvature of 6
at the point X = (x, u(x)) ∈ 6. We define, as in [4],

M0 = max
x∈�

κmax(x)

η − a
,

where η = νn+1
= e · ν and 0 < a < σ ≤ inf η. Here e is the vertical Euclidean unit

vector and as before ν is the Euclidean upward unit normal to 6.

Theorem 6.1. Suppose that f satisfies (1.9)–(1.14) and σ ∈ (0, 1) satisfies σ > σ0,
where σ0 is the unique zero in (0, 1) of

φ(a) :=
8
3
a +

22
27
a3
−

5
27
(a2
+ 3)3/2. (6.1)

Let u ∈ C4(�) be an admissible solution of (5.1) such that νn+1
= 1/w ≥ σ . Then at an

interior maximum of M0,
κmax ≤ C/(σ − σ0)

2

where C is independent of ε. Numerical calculations show 0.3703 < σ0 < 0.3704.

Proof. SupposeM0 is attained at an interior point x0 ∈ � and letX0 = (x0, u(x0)). After
a horizontal translation of the origin in Rn+1, we may write 6 locally near X0 as a radial
graph

X = evz, z ∈ Sn+ ⊂ Rn+1, (6.2)

with X0 = ev(z0)z0, z0 ∈ Sn+, such that ν(X0) = z0. Note that the height function
u = yev , and the upward unit (Euclidean) normal is ν = (z−∇v)/w where y = e · z
and w = (1+ |∇v|2)1/2 . Hence η = (y − e · ∇v)/w.

We choose an orthonormal local frame τ1, . . . , τn around z0 on Sn+ such that vij =
∇τj∇τiv is diagonal at z0, where ∇ denotes the Levi-Civita connection on Sn. As shown
in Section 2.2 of [7], the hyperbolic principal curvatures of the radial graph X are the
eigenvalues of the matrix As[v] = {as

ij [v]}:

as
ij [v] :=

1
w
(yγ ikvklγ

lj
− e · ∇vδij ) (6.3)

where
γ ij = δij −

vivj

w(1+ w)
.

We can then rewrite equation (5.1) in the form

F(As[v]) = σ. (6.4)

Henceforth we write A[v] = As[v] and aij = as
ij [v].
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Since ν(X0) = z0, ∇v(z0) = 0 and hence

aij = yvij = κiδij (6.5)

at z0 by (6.3), where κ1, . . . , κn are the principal curvatures of 6 at X0.
We note that, at z0,

yi = ∇i(e · z) = e · ∇iz = e · τi,
(e · ∇v)k = e · vikτi = yivik = ykvkk,

ηi =

(
y − e · ∇v

w

)
i

= yi(1− vii),

aij,k = yvijk + yk(vii − vkk)δij ,

vijk = vikj = vkij (since ∇v(z0) = 0),
y(ai1,1 − a11,i) = yi(κi − κ1).

(6.6)

We may assume
κ1 = κmax(X0). (6.7)

The function a11/(η − a), which is defined locally near z0, then achieves its maximum
at z0. Therefore at z0, (

a11

η − a

)
i

= 0, 1 ≤ i ≤ n, (6.8)

and

y2(y − a)F iia11,ii − y
2κ1F

iiηii = y
2(y − a)2F ii

(
a11

η − a

)
ii

≤ 0. (6.9)

The left hand side of (6.9) is exactly calculated (these calculations are long) in Propo-
sition 5.3 and Lemma 5.4 of [7] (with φ = η) and yield

σ(y − a)κ2
1 + aκ1

∑
fiκ

2
i + (a − 2(1− y2)(y − a))κ1

∑
fi

≤ 2σκ1 +
2aκ1

α

∑
fi(κi − α) y

2
i −

2a2κ2
1

α2(y − a)

n∑
i=2

fi − f1

κ1 − κi
(κi − α)

2y2
i (6.10)

where α = aκ1/(κ1 − (y − a)). We note only that differentiation of equation (6.4) twice
gives

y2(y − a)F iiaii,11 = −y
2(y − a)F ij,rsaij,1akl,1 (6.11)

and the last term in (6.10) comes from this “concavity term”

−y2(y − a)F ij,klaij,1akl,1 ≥ 2(y − a)
n∑
i=2

fi − f1

κ1 − κi
(yai1,1)

2 (6.12)

where, since ( a11
η−a

)i = 0, that is, a11,i =
κ1
y−a

ηi , we find, using (6.6),

yai1,1 = ya11,i + (κi − κ1)yi = (aκ1 − (κ1 − (y − a))κi)
yi

y − a
= −

aκ1(κi − α)yi

α(y − a)
.
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We also recall the identity ∑
y2
i = 1− y2

which has been used in (6.10), which follows from

yi = ∇i(e · z) = e · τi and e =
∑

(e · τi)τi + yz.

It was shown in Section 6 of [7] that the coefficient γ (y) of κ1
∑
fi in (6.10),

γ (y) = a − 2(1− y2)(y − a), (6.13)

satisfies

γ (y) >
7
3
a −

4
27
a3
−

4
27
(a2
+ 3)3/2 > 0 on (a, 1) (6.14)

if a2 > 1/8. Therefore the terms on the left hand side of (6.10) are all positive and we
have one term of order κ2

1 . The only “dangerous” term on the right hand side of (6.10) is
the second one and we may throw away those terms in that sum where κi ≤ α. Thus we
need only concern ourselves with

I = {i : κi > α > a}.

Fix θ ∈ (0, 1) to be chosen later and let

J = {i ∈ I : f1 ≤ θfi}, K = {i ∈ I : f1 > θfi}.

Then
aκ1

∑
i∈J

fiκ
2
i > a3κ1

∑
i∈J

fi (6.15)

and
2aκ1

α

∑
i∈K

fi(κi − α) y
2
i − aκ

3
1f1 ≤ κ

2
1

(
2
θ
− aκ1

)
f1 < 0, (6.16)

provided κ1 > 2/(aθ). On the other hand by the Cauchy–Schwarz inequality (or com-
pleting the square),

∑
i∈J

fi(κi − α) y
2
i −

aκ1

α(y − a)

∑
i∈J

fi − f1

κ1 − κi
(κi − α)

2y2
i

≤

∑
i∈J

fiy
2
i

(
(κi − α)−

(1− θ)a
α(y − a)

(κi − α)
2
)

≤
α(y − a)(1− y2)

4(1− θ)a

∑
i∈J

fi =
α(a − γ (y))

8(1− θ)a

∑
i∈J

fi . (6.17)

Combining (6.10), (6.15), (6.16) and (6.17) we obtain

σ(y − a)κ2
1 + φθ (y)κ1

∑
i∈J

fi ≤ 2σκ1 (6.18)
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where the coefficient of κ1
∑
i∈J fi in (6.18) is

φθ (y) = γ (y)−
a − γ (y)

4(1− θ)
+ a3.

Note that by (6.14),

φ0(y) =
5
4

{
γ (y)+

4
5
a3
−
a

5

}
>

5
4

{
7
3
a −

4
27
a3
−

4
27
(a2
+ 3)3/2 +

4
5
a3
−
a

5

}
=

8
3
a +

22
27
a3
−

5
27
(a2
+ 3)3/2 =: φ(a). (6.19)

For a ∈ (0, 1) it is easily checked that φ′(a) > 0, φ(0) < 0, φ(1) > 0. Let σ0 be the
unique zero of φ(a) in (0, 1). Numerical calculations show that 0.3703 < σ0 < 0.3704.

Now assume that 2ε0 := σ − σ0 > 0 and choose a = σ0 + ε0. Then φθ (y) > 0 on
(a, 1) if θ > 0 is chosen sufficiently small. By Proposition 4.1, y − a ≥ σ − a ≥ ε0 at
z0, so by (6.18) (assuming κ1 > 2/(aθ)) we obtain ε0κ

2
1 ≤ 2κ1. Hence

κ1 ≤ 2 max
{

1
aθ
,

1
ε0

}
= 4 max

{
1

θ(σ + σ0)
,

1
σ − σ0

}
and so (since η − a < 1)

max
x∈�

κmax(x) ≤
κ1(z0)

ε0
≤ 8 max

{
1

θ(σ 2 − σ 2
0 )
,

1
(σ − σ0)2

}
,

completing the proof of Theorem 6.1. ut
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