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Abstract. Several Liouville-type theorems are presented for stable solutions of the equation −1u
= f (u) in RN , where f > 0 is a general convex, nondecreasing function. Extensions to solutions
which are merely stable outside a compact set are discussed.

1. Introduction

For N ≥ 1 and f ∈ C1(R) consider the equation

−1u = f (u) in RN . (1)

The aim of this paper is to classify solutions u ∈ C2(RN ) which are stable, i.e. such that
for all ϕ ∈ C1

c (RN ), ∫
RN
f ′(u)ϕ2 dx ≤

∫
RN
|∇ϕ|2 dx. (2)

For some of our results, we shall assume in addition u > 0 in RN and/or u ∈ L∞(RN ).
We shall also discuss extensions to solutions which are merely stable outside a compact
set (i.e. (2) holds for test functions supported in the complement of a given compact set
K ⊂⊂ RN ).

Stable radial solutions of (1) are by now well-understood: by the work of Cabré and
Capella [4], refined by Villegas in [21], every bounded radial stable solution of (1) must be
constant if N ≤ 10. The result holds for any nonlinearity f ∈ C1(R). Conversely, there
exist unbounded radial stable solutions in any dimension. Take, for example, u(x) =
|x|2/2N solving (1) with f (u) = −1. Also, there are examples of bounded radial stable
solutions when N ≥ 11. See e.g. [21], [14]. When dealing with nonradial solutions,
much less is known. In the case N = 2, any stable solution of (1) with bounded gradient
is one-dimensional (i.e. up to a rotation of space, u depends only on one variable) under
the sole assumption that f is locally Lipschitz continuous (see [15]). For N = 3, this
result remains valid under the additional assumptions that f ≥ 0 and u is bounded, as
demonstrated by N. Dancer in [7].
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In arbitrary dimension, a complete analysis of stable solutions and solutions which
are stable outside a compact set is provided for two important nonlinearities f (u) =
|u|p−1u, p > 1 and f (u) = eu in [12], [14], [13] and [8] (see also [6], [11]). After
completing this work, we were informed by B. Sciunzi about the recent work [5], where
nonlinearities with a vertical asymptote are also considered. To our knowledge, the most
general classification result for bounded stable solutions of (1) in arbitrary dimension is
now given in [10]. Regarding the class of solutions which are stable outside a compact
set, we also mention the recent paper [16] on symmetry of solutions of low Morse index.

Under a mere nonnegativity assumption on the nonlinearity, we begin this paper by
stating that up to space dimension N = 4, bounded stable solutions of (1) are trivial:

Theorem 1.1. Assume f ∈ C1(R), f ≥ 0 and 1 ≤ N ≤ 4. Assume u ∈ C2(RN ) is a
bounded, stable solution of (1). Then u is constant.

Remark 1.2. It would be interesting to know whether Theorem 1.1 still holds if one
assumes that u is unbounded but |∇u| is bounded.

1.1. Power-type nonlinearities

For our next set of results, we restrict to the following class of nonlinearities:

f ∈ C0(R+) ∩ C2(R+∗ ), f > 0 is nondecreasing and convex in R+∗ . (3)

As demonstrated in [14] for the particular case of the power nonlinearities f (u) =
|u|p−1u, two critical exponents play an important role, namely the classical Sobolev ex-
ponent

pS(N) =
N + 2
N − 2

for N ≥ 3 (4)

and the Joseph–Lundgren exponent

pc(N) =
(N − 2)2 − 4N + 8

√
N − 1

(N − 2)(N − 10)
for N ≥ 11. (5)

In order to relate the nonlinearity f and the above exponents, we introduce a quantity q
defined for u ∈ R+∗ by

q(u) =
f ′2

ff ′′
(u) =

(ln f )′

(ln f ′)′
(u) (6)

whenever ff ′′(u) 6= 0, and q(u) = +∞ otherwise. If f (u) = |u|p−1u, p ≥ 1, then q is
independent of u and coincides with the conjugate exponent of p, i.e. 1/p + 1/q = 1. In
this section, we assume that q(u) converges as u→ 0+ and denote its limit by

q0 = lim
u→0+

q(u) ∈ R. (7)

Remark 1.3. If u ∈ C2(RN ) with u ≥ 0 solves (1), and (3) holds, then f (0) = 0.

In dimension N = 1, 2, this follows directly from the classical Liouville theorem for
superharmonic nonnegative functions. For a proof in dimension N ≥ 3, see Step 6. in
Section 6. We then observe that
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Lemma 1.4. If f ∈ C0(R+)∩C2(R+∗ ) is convex nondecreasing, f (0) = 0 and (7) holds,
then in fact q0 ∈ [1,+∞].

Proof. Indeed, assume by contradiction that there exists θ > 1 such that 0 ≤ q(u) ≤ 1/θ
in a neighbourhood of 0. Consequently, near 0,

f ′′

f ′
− θ

f ′

f
≥ 0.

So, f ′/f θ is nondecreasing, hence bounded above near 0. Integrating again, we deduce
that f 1−θ (u) ≤ Cu+ C′ near 0, which is not possible if f (0) = 0. ut

Define now p0 ∈ R, the conjugate exponent of q0, by

1/p0 + 1/q0 = 1. (8)

The exponent p0 must be understood as a measure of the “flatness“ of f at 0. All nonlin-
earities f such that (3) holds and which either are analytic at the origin, or have at least
one nonzero derivative at the origin, or are merely of the form f (u) = upg(u), where
p ≥ 1 and g(0) 6= 0, satisfy (7). Exponentially flat functions such as f (u) = e−1/u2

also
qualify (with p0 = +∞). However, although we have not tried to prove it, there most
probably exist (convex increasing) nonlinearities failing (7). This being said, we establish
the following theorem.

Theorem 1.5. Assume f ∈ C0(R+) ∩ C2(R+∗ ) is nondecreasing, convex, f > 0 in R+∗
and (7) holds. Assume u ∈ C2(RN ) is a bounded, nonnegative, stable solution of (1).
Then u ≡ 0 if any one of the following conditions holds:

1. 1 ≤ N ≤ 9,
2. N = 10 and p0 < +∞, where p0 is given by (8),
3. N ≥ 11 and p0 < pc(N), where p0 is given by (8) and pc(N) by (5).

Remark 1.6. Theorem 1.5 was first proved by A. Farina when f (u) = |u|p−1u. See
[14]. As observed e.g. in [14], for N ≥ 11, there exists a nonconstant bounded positive
stable solution for f (u) = |u|p−1u as soon as p ≥ pc(N). So our result is sharp in the
class of power-type nonlinearities for N ≥ 11. We do not know whether Theorem 1.5
remains true when N = 10 and p0 = +∞. Nor do we know if for N ≤ 10, assumption
(7) can be completely removed. See Theorem 1.11 in Section 1.2 for partial results in this
direction. See also [21] for a positive answer in the radial case.

1.2. Some generalizations: unbounded and sign-changing solutions, beyond power-type
nonlinearities

First, we discuss the case of unbounded solutions. When f (u) = |u|p−1u, the assump-
tion u ∈ L∞(RN ) is unnecessary (see [14]). For general power-type nonlinearities, The-
orem 1.5 remains true for unbounded solutions under an additional assumption on the
behaviour of f at +∞:
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Corollary 1.7. Assume as before that f ∈ C0(R+) ∩ C2(R+∗ ) is nondecreasing, convex,
f > 0 in R+∗ and (7) holds. Let p∞ ∈ R be defined by

q∞ := lim sup
u→+∞

q(u), 1/p∞ + 1/q∞ = 1. (9)

Let u ∈ C2(RN ) denote a nonnegative, stable solution of (1). Then u ≡ 0 if any one of
the following conditions holds:

1. 1 ≤ N ≤ 9 and 1 < p∞,
2. N = 10, p0 < +∞ and 1 < p∞ < +∞,
3. N ≥ 11, p0 < pc(N) and 1 < p∞ < pc(N).

Next, we look at solutions which may change sign. When f (u) = |u|p−1u, the assump-
tion u ≥ 0 is also unnecessary (see [14]). For power-type nonlinearities, Theorem 1.5 can
be extended to the case of solutions of arbitrary sign if f is odd:

Corollary 1.8. Assume that f ∈ C0(R) ∩ C2(R+∗ ) is nondecreasing and that when re-
stricted to R+∗ , f is convex and f > 0. Assume (7) holds. Assume in addition that f is
odd. Let u ∈ C2(RN ) denote a bounded, stable solution of (1). Then u ≡ 0 if any one of
the following conditions holds:

1. 1 ≤ N ≤ 9 and 1 < p0,
2. N = 10 and 1 < p0 < +∞,
3. N ≥ 11 and 1 < p0 < pc(N).

Remark 1.9. The above corollary remains true if f is not odd but simply f (0) = 0 and
the assumptions made on f also hold for f̃ defined for u ∈ R+ by f̃ (u) = −f (−u).

Corollary 1.10. Assuming in addition 1 < p∞ if N ≤ 9 (respectively 1 < p∞ < +∞ if
N = 10 and 1 < p∞ < pc(N) whenN ≥ 11), Corollary 1.8 remains valid for any stable
solution. That is, one can drop from Corollaries 1.7 and 1.8 both assumptions u ≥ 0 and
u ∈ L∞(RN ).

Finally, we study nonlinearities for which (7) fails. To do so, we introduce q0, q0 ∈ R
defined by

q0 = lim sup
u→0+

q(u), q0 = lim inf
u→0+

q(u). (10)

Theorem 1.11. Assume f ∈ C0(R+) ∩ C2(R+∗ ) is nondecreasing, convex, f > 0 in R+∗
and let q0, q0 be defined by (10). Assume u ∈ C2(RN ) is a bounded, nonnegative, stable
solution of (1). Then u ≡ 0 if any one of the following conditions holds:

1. N ≤ 4,
2. 5 ≤ N and q0 > N/2,
3. 5 ≤ N ≤ 6 and q0 <∞,
4. 5 ≤ N , q0 <∞ and 4

N−2 (1+ 1/
√
q0) > 1/q0.
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Remark 1.12. The above theorem is of particular interest when f ′ is convex or concave
near the origin. Assume f (0) = f ′(0) = 0 (this is not restrictive, see Remark 3.3). Apply
Cauchy’s mean value theorem: given un ∈ R+∗ , there exists vn ∈ (0, un) such that

q(un) =
f ′2

ff ′′

∣∣∣∣
u=un

=
2f ′f ′′

f ′f ′′ + ff ′′′

∣∣∣∣
u=vn

.

If f ′′′ ≥ 0 near 0, we deduce that q0 ≤ 2. By case 3 of Theorem 1.11, we conclude that
if f ′ is convex near 0 and N ≤ 6, then u ≡ 0. Similarly, if f ′ is concave near 0, then
q0 ≥ 2. By case 4 of the theorem, if f ′ is concave near 0, N ≤ 10 and q0 < +∞, then
u ≡ 0.

Remark 1.13. Our methods yield absolutely no result under the assumption 10 ≥ N ≥ 5
and q0 ≤ N/2 < q0 = ∞.

1.3. Solutions which are stable outside a compact set

Stability outside a compact set is a much weaker requirement than stability through-
out RN . For example, the well-known bubble solutions of (1) for the critical nonlinearity
f (u) = u(N+2)/(N−2) are stable only outside a compact set. The same observation can
be made for any solution of (1) having finite Morse index (see for instance [12], [14]).
Setting aside the case where f is a power or an exponential nonlinearity, little is known
about the classification of solutions of (1) which are stable outside a compact set, even in
the radial case. Now, recall the definition of the critical exponents given in (4) and (5).
As demonstrated in [14], the nonlinearities f (u) = |u|p−1u, p = pS(N), N ≥ 3 and
p ≥ pc(N), N ≥ 11, must be singled out. For such values of p, radial solutions which
are stable outside a compact set are nontrivial and completely classified, while for other
values of p > 1, all solutions which are stable outside a compact set (whether radial
or not) must be constant. See [14]. When dealing with more general nonlinearities, the
first basic step consists in determining the behaviour of a solution u at infinity. This can
be done by exploiting the classification of stable solutions obtained in Theorem 1.5 and
Corollary 1.8:

Proposition 1.14. Assume f ∈ C0(R). Assume u = 0 is the only bounded stable C2

solution of (1). If u ∈ C2(RN ) is a bounded solution of (1) which is stable outside a
compact set, then

lim
|x|→∞

u(x) = 0.

Remark 1.15. As follows from the proof, the same result is valid for bounded positive
solutions which are stable outside a compact set, under the weaker assumption that all
bounded positive stable solutions of the equation are constant.

Remark 1.16. If f ′(0) > 0, then in fact there exists no bounded solution of (1) which is
stable outside a compact set. See the proof of Proposition 1.14 below.
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Remark 1.17. Clearly, if we assume instead that f vanishes only at u0 6= 0 then
lim|x|→∞ u(x) = u0. Similarly, we leave it to the reader to check that if the set of ze-
ros of f is totally disconnected and the only bounded stable solutions of the equation are
constant, then lim|x|→∞ u(x) = u0, where u0 is a zero of f .

Remark 1.18. We do not know if a version of Proposition 1.14 holds if one assumes
that f vanishes only at −∞ or +∞. If f (u) = eu and N = 2 (see e.g. [13]), there exist
(infinitely many) solutions of (1) which are stable outside a compact set and such that

lim
|x|→∞

u(x) = −∞.

Proof of Proposition 1.14. For k ≥ 1, let τk ∈ RN be such that limk→∞ |τk| = +∞ and
let uk(x) = u(x+ τk) for x ∈ RN . Standard elliptic regularity implies that a subsequence
of (uk) converges in the topology of C2

loc(R
N ) to a solution v of (1). In addition, since

u is stable outside a compact set, v is stable. Therefore, v is constant and f (v) = 0, so
v = 0. If f ′(0) > 0, then v = 0 is clearly unstable, which is absurd. This proves Remark
1.16. In addition, since v = 0 is the unique cluster point of (uk), the whole sequence must
converge to 0, and Proposition 1.14 follows. ut

In light of Proposition 1.14, it is natural to try to characterize the speed of decay of our
solutions as |x| → ∞. When f is power-type, we have the following:

Theorem 1.19. Assume f ∈ C0(R+)∩C2(R+∗ ) is nondecreasing, convex, f > 0 in R+∗ ,
f (0) = 0 and (7) holds: Assume u ∈ C2(RN ) is a bounded positive solution of (1) which
is stable outside a compact set. If any one of the following conditions holds:

1. 1 ≤ N ≤ 9,
2. N = 10 and p0 < +∞,
3. N ≥ 11 and p0 < pc(N),

then there exists a constant C > 0 such that for all x ∈ RN sufficiently large,

u(x) ≤ Cs(|x|). (11)

In the above inequality, the speed of decay s(R) is defined for R > 0 as the unique
solution s = s(R) of

f (A1R
2f (s)) = A2f (s), (12)

where A1, A2 are two positive constants depending on N only. In other words, s is given
by s(R) = f−1(C1R

−2g(C2R
−2)) where C1, C2 are two positive constants depending

on N only and g is the inverse function of t 7→ f (t)/t .

Remark 1.20. In the above theorem, we have implicitly assumed that the functions f
and t 7→ f (t)/t are invertible in a neighborhood of 0. This is indeed true: by convexity
of f , t 7→ f (t)/t is nondecreasing. By Step 6 in Section 6, we must have f (0) = 0
and limt→0+ f (t)/t = 0. If there existed two values 0 < t1 < t2 such that f (t1)/t1 =
f (t2)/t2, then, by convexity, f would be linear on (t1, t2), hence on (0, t2) by convexity.
This contradicts limt→0+ f (t)/t = 0. So, t 7→ f (t)/t is invertible for t > 0 small and so
too must be f .
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Remark 1.21. Equation (12) looks somewhat complicated at first glance. For many non-
linearities (including f (u) = |u|p−1u), one can actually set the constants A1, A2 equal
to 1. Then (12) takes the simplified form

f (s)/s = R−2.

In particular, when f (u) = |u|p−1u, we recover the familiar speed s(R) = R−2/(p−1).

Remark 1.22. If p0 <∞, then for each ε > 0 there exists C > 0 such that

s(R) ≤ CR−2/(p0−1)+ε for R ≥ 1.

However, even when p0<∞, there do exist nonlinearities f failing the estimate s(R)≤
CR−2/(p0−1).

Proof of Remark 1.22. An easy calculation shows that for all δ > 0 small, there exist
C, ε > 0 such that C−1up0+δ ≤ f (u) ≤ Cup0−δ and C−1up0+δ−1

≤ f ′(u) ≤ Cup0−δ−1

for u ∈ (0, ε) provided (7) holds and p0 < +∞. Plugging this information into the
definition of s(R) yields the desired conclusion. ut

From now on, our aim is to prove a Liouville-type result for solutions which are stable
outside a compact set. As follows from the analysis in [14], we must distinguish the
subcritical and supercritical cases. We first consider the case where p0 is subcritical, i.e.

p0 <∞, N ≤ 2 or p0 < pS(N), N ≥ 3. (13)

In this case, we make the following extra global assumption on f :

(p0 + 1)F (s) ≥ sf (s) for all s ∈ R, (14)

where F denotes the antiderivative of f vanishing at 0. Then we have

Theorem 1.23. Assume f ∈ C0(R+) ∩ C2(R+∗ ) is nondecreasing, convex, f > 0 in R∗+
and (7) holds. Assume u ∈ C2(RN ) is a bounded, nonnegative solution of (1), which is
stable outside a compact set. Assume p0 is subcritical (i.e. (13) holds) and f satisfies the
global inequality (14). Then u = 0.

We turn next to the supercritical case. We say that p0 is in the supercritical range if

pS(N) < p0 < +∞, 3 ≤ N ≤ 10 or pS(N) < p0 < pc(N), N ≥ 11. (15)

In this case, we begin by showing that the asymptotic decay estimate (11) can be further
improved. Namely, we show that not only u(x) = O(s(|x|)) but in fact u(x) = o(s(|x|)).
The price we pay is the following set of assumptions near the origin: we require that there
exist constants ε, c1, c2 > 0 such that

f (u) ≥ c1u
p0 for u ∈ (0, ε), (16)

f ′(u) ≤ c2u
p0−1 for u ∈ (0, ε). (17)
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By convexity of f , the above inequalities reduce to one when f (0) = 0:

c2u
p0 ≥ uf ′(u) ≥ f (u) ≥ c1u

p0 for u ∈ (0, ε). (18)

Compare this assumption with the already known estimate given in the proof of Re-
mark 1.22.

Corollary 1.24. Make the same assumptions as in Theorem 1.19. Assume in addition
that f satisfies the local estimates (16), (17). For p0 in the supercritical range (15), any
bounded positive solution u ∈ C2(RN ) of (1) which is stable outside a compact set
satisfies

u(x) = o(|x|−2/(p0−1)) and |∇u(x)| = o(|x|−2/(p0−1)−1) as |x| → ∞. (19)

Finally, to obtain the Liouville theorem in the supercritical range, we assume in addition
that

(p0 + 1)F (s) ≤ sf (s) for all s ∈ R. (20)

Note that the inequality is reversed compared to (14). Also note that since f is nonde-
creasing, we automatically have F(s) ≤ sf (s). (20) can thus be seen as an improved
global convexity assumption on F . We have

Theorem 1.25. Assume f ∈ C2(R+) is nondecreasing, convex, f > 0 in R∗+ and (7)
holds. Assume u ∈ C2(RN ) is a bounded, nonnegative solution of (1) which is stable
outside a compact set. Assume p0 is in the supercritical range (15) and f satisfies the
local bounds (16), (17) as well as the global inequality (20). Then u ≡ 0.

Remark 1.26. As mentioned in Remark 1.6, the above theorem is false for exponents
p0 ≥ pc(N), N ≥ 11 and for p0 = pS(N), N ≥ 3.

Remark 1.27. For the nonlinearity f (u) = |u|p−1u, all the extra assumptions (14), (20),
(16), (17) are automatically satisfied.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.1.
Theorem 1.5 is the object of Section 3. In Section 4, we discuss the extensions given in
Corollaries 1.7, 1.8 and 1.10. Theorem 1.11, which deals with nonlinearities which are not
of power-type, is proved in Section 5. Section 6 is devoted to the proof of Theorem 1.19,
pertaining to the rate of decay of solutions which are stable outside a compact set. The
refined asymptotics obtained in Corollary 1.24 is also derived in that section. Section 7
covers Theorem 1.23, dealing with subcritical nonlinearities, while the supercritical case
is addressed in Section 8.
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2. The case of low dimensions 1 ≤ N ≤ 4: proof of Theorem 1.1

The proof bears resemblance to an argument found in [2] (see also Theorem 6.2 of [1]). It
relies on two simple arguments: a growth estimate of the Dirichlet energy on balls and a
Liouville-type result for certain divergence-form equations (due to Berestycki, Caffarelli
and Nirenberg [3]), which applies to solutions with controlled energy. The specific form
of the aforementioned equation is obtained by linearizing (1) and taking advantage of the
stability assumption. The limitation N ≤ 4 arises from the energy estimate on balls.

Proof of Theorem 1.1. For R > 0, let BR denote the ball of radius R centred at the origin.
We begin by proving that there exists a constant C > 0 independent of R > 0 such that∫

BR

|∇u|2 dx ≤ CRN−2. (21)

Let M ≥ ‖u‖∞, ϕ ∈ C2
c (RN ) and multiply (1) by (u−M)ϕ:∫

RN
−1u(u−M)ϕ dx =

∫
RN
f (u)(u−M)ϕ dx.

Integrating by parts and recalling that f ≥ 0, it follows that∫
RN
|∇u|2ϕ dx +

∫
RN
(u−M)∇u∇ϕ dx =

∫
RN
f (u)(u−M)ϕ dx ≤ 0,

whence ∫
RN
|∇u|2ϕ dx ≤ −

∫
RN

1
2
∇(u−M)2∇ϕ dx =

∫
RN

(u−M)2

2
1ϕ dx

≤ 2M2
∫

RN
|1ϕ| dx.

Let ϕ0 denote any nonnegative test function such that ϕ0 = 1 on B1 and apply the above
inequality with ϕ(x) = ϕ0(x/R). We obtain (21).

Since u is stable, there exists a solution v > 0 of the linearized equation

−1v = f ′(u)v in RN . (22)

Let σj = 1
v
∂u
∂xj

for j = 1, . . . , N . Then since v and ∂u/∂xj both solve the linearized
equation (22), it follows that

−∇ · (v2
∇σj ) = 0 in RN . (23)

It is known that any solution σ ∈ H 1
loc(R

N ) of (23) such that∫
BR

v2σ 2
≤ CR2
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must be constant (see Proposition 2.1 in [2]). By (21), we deduce that if N ≤ 4, then σj
is constant, i.e. there exists a constant Cj such that

∂u

∂xj
= Cjv.

In particular, the gradient of u points in a fixed direction, i.e. u is one-dimensional and
solves

−u′′ = f (u) in R.

Since f ≥ 0 and u is bounded, this is possible only if u is constant and f (u) = 0. ut

3. The Liouville theorem for stable solutions: proof of Theorem 1.5

The proof is split into two separate cases, according to the value of q0. We first consider
the case q0 > N/2. It suffices to prove the following lemma.

Lemma 3.1. Assume f ∈ C2(R+), f > 0 is nondecreasing, convex and

q0 := lim inf
u→0+

q(u) > N/2.

Assume u ∈ C2(RN ), u ≥ 0 and

−1u ≥ f (u) in RN . (24)

Then u ≡ 0.

Remark 3.2. The above lemma is standard (see the earlier work [19], as well as [9]
for the most general result in this direction). We provide a proof of Lemma 3.1 for the
convenience of the reader.

Proof. Assume by contradiction that u 6≡ 0. By the Strong Maximum Principle, u > 0.

Step 1. Since q0 > N/2, there exists q > N/2 such that

f ′′f

f ′2
<

1
q

in a neighborhood of 0. Equivalently, f
′′

f ′
−

1
q
f ′

f
< 0. Hence, the function f ′/f 1/q is

decreasing near 0. In particular, there exists a constant C > 0 such that f ′/f 1/q
≥ C near

0, which implies that for some p < N/(N − 2) and c1 > 0,

f (u) ≥ c1u
p. (25)

The above inequality holds in a neighborhood of 0.
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Step 2. Since p < pS(N), there exists ϕ > 0 solving{
−1ϕ = c1ϕ

p in B1,

ϕ = 0 on ∂B1.
(26)

We are going to prove that a rescaled version of ϕ must lie below u. Let indeed R > 0
and ϕR(x) = R−2/(p−1)ϕ(x/R) for x ∈ BR , ϕR(x) = 0 for |x| ≥ R. Then{

−1ϕR = c1(ϕR)
p in BR,

ϕR = 0 on ∂BR.

Furthermore, since p < N/(N − 2),

‖ϕR‖L∞(BR)

R2−N ≤
R−2/(p−1)

R2−N ‖ϕ‖L∞(B1)→ 0 as R→+∞. (27)

Step 3. Since u > 0 is superharmonic, there exists a constant c > 0 such that

u(x) ≥ c|x|2−N for |x| ≥ 1. (28)

Indeed, the above inequality clearly holds for |x| = 1, with c = min[|x|=1] u. In
addition, the function z = u − c|x|2−N is superharmonic in [1 ≤ |x| ≤ M]. By the
Maximum Principle we have z ≥ min(0,min[|x|=M] z(x)) in [1 ≤ |x| ≤ M]. Hence,
z ≥ lim infM→∞min(0,min[|x|=M] z(x)) = 0, and (28) is established.

Step 4. Collecting (27) and (28), we obtain for R > 0 sufficiently large

u ≥ ϕR.

We conclude using the celebrated sliding method: first, by (27), ‖ϕR‖∞→ 0 as R→∞,
so that by (25), f (ϕR) ≥ c1(ϕR)

p, provided R is sufficiently large. In particular,

−1(u− ϕR) ≥ f (u)− f (ϕR) ≥ 0.

By the Strong Maximum Principle, u > ϕR . Next, we slide ϕR in a given direction, say
ϕ̃R,t (x) = ϕR(x + te1), where e1 = (1, 0, . . . , 0). We want to prove that u ≥ ϕ̃R,t for
all t ≥ 0. If not, there exists t0 ∈ (0,+∞) such that u ≥ ϕ̃R,t0 and u(x0) = ϕ̃R,t0(x0) at
some point x0 ∈ RN . But again we have

−1(u− ϕ̃R,t0) ≥ f (u)− f (ϕ̃R,t0) ≥ 0,

and the Strong Maximum Principle would imply that u ≡ ϕ̃R,t0 . This is not possible since
ϕ̃R,t0 is compactly supported while u is not. The above argument holds if e1 is replaced
by any other direction e ∈ SN−1. In particular, u ≥ maxϕR > 0, which is possible, since
u is superharmonic, only if u is constant. Since f > 0, we obtain a contradiction. Hence,
u ≡ 0. ut
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Remark 3.3. If f (0) 6= 0 or f ′(0) 6= 0, then (25) clearly holds in a neighborhood of 0
and we may work as above to conclude that u is constant. We may therefore assume for
the rest of the proof that f (0) = f ′(0) = 0.

We turn next to the case q0 ≤ N/2, which is a consequence of the following theorem.

Theorem 3.4. Assume f ∈ C2(R+) is nondecreasing, convex, f > 0 in R∗+, (7) holds
and q0 < +∞. Then the differential inequality

−1u ≤ f (u) in RN (29)

does not admit any solution u ∈ C2(RN ) ∩ L∞(RN ) with u > 0 such that (2) holds if
any one of the following conditions holds:

1. 1 ≤ N ≤ 9,
2. N = 10 and p0 < +∞,
3. N ≥ 11 and p0 < pc(N),

Remark 3.5. With no change to the proof, Theorem 3.4 remains true if u is only as-
sumed to be locally Lipschitz continuous. The differential inequality (29) must then be
understood in the weak sense, i.e.∫

RN
∇u∇ϕ dx ≤

∫
RN
f (u)ϕ dx

for all Lipschitz functions ϕ ≥ 0 with compact support.

It remains to prove Theorem 3.4. We begin with the following weighted Poincaré
inequality.

Lemma 3.6. Assume� is an arbitrary open set in RN . Let u ∈ C2(�) with u ≥ 0 satisfy

−1u ≤ f (u) in �.

Assume in addition that for all ϕ ∈ C1
c (�),∫

�

f ′(u)ϕ2 dx ≤

∫
�

|∇ϕ|2 dx. (30)

Let φ ∈ W 1,∞
loc (R;R) denote a convex function and η ∈ C1

c (RN ). Let

ψ(u) =

∫ u

0
φ′2(t) dt.

Then ∫
�

[(f ′φ2
− fψ) ◦ u]η2 dx ≤

∫
�

[φ2
◦ u]|∇η|2. (31)
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Remark 3.7. If φ is not convex, then the following variant of (31) holds:∫
�

[(f ′φ2
− fψ) ◦ u]η2 dx ≤

∫
�

[K ◦ u]1(η2) dx −

∫
�

[φ2
◦ u]η1η dx, (32)

where K(u) =
∫ u

0 ψ(s) ds.

Proof of Lemma 3.6. Multiply (29) by ψ(u)η2 and integrate by parts:∫
�

∇u∇(ψ(u)η2) dx ≤

∫
�

f (u)ψ(u)η2 dx,∫
�

φ′(u)2|∇u|2η2 dx +

∫
�

ψ(u)∇u∇η2 dx ≤

∫
�

f (u)ψ(u)η2 dx,∫
�

φ′(u)2|∇u|2η2 dx −

∫
�

K(u)1η2 dx ≤

∫
�

f (u)ψ(u)η2 dx,

where K(u) =
∫ u

0 ψ(s) ds. Hence,∫
�

φ′(u)2|∇u|2η2 dx ≤

∫
�

K(u)1η2 dx +

∫
�

f (u)ψ(u)η2 dx. (33)

Next, we apply (30) with ϕ = φ(u)η to obtain∫
�

f ′(u)φ(u)2η2 dx ≤

∫
�

|∇(φ(u)η)|2 dx =

∫
�

|φ′(u)η∇u+ φ(u)∇η|2 dx,

≤

∫
�

φ′(u)2η2
|∇u|2 dx +

∫
�

φ(u)2|∇η|2 dx + 2
∫
�

φ(u)φ′(u)η∇η∇u dx

≤

∫
�

φ′(u)2η2
|∇u|2 dx +

∫
�

φ(u)2|∇η|2 dx +
1
2

∫
�

∇η2
∇φ(u)2 dx

≤

∫
�

φ′(u)2η2
|∇u|2 dx +

∫
�

φ(u)2
(
|∇η|2 −

1
2
1η2

)
dx.

Plug (33) in the above. Then∫
�

(f ′(u)φ(u)2 − f (u)ψ(u)2)η2 dx

≤

∫
�

K(u)1η2 dx +

∫
�

φ(u)2
(
|∇η|2 −

1
2
1η2

)
dx.

This proves Remark 3.7. Finally, when φ is convex,

ψ(u) =

∫ u

0
φ′2(s) ds ≤ φ′(u)φ(u).

Integrating, we obtain K ≤ 1
2φ

2 and (31) follows. ut
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Proof of Theorem 3.4. Take α ≥ 1 and φ = f α . In order to take advantage of Lemma
3.6, we need to make sure that the quantity (f ′φ2

− fψ) ◦ u remains nonnegative and
better, bounded below by some positive function of u. Clearly, the best one can hope for
is an inequality of the form

(f ′φ2
− fψ) ◦ u ≥ cf ′φ2

◦ u.

To obtain such an inequality, we apply L’Hôpital’s Rule:

lim
0+

f ′φ2

fψ
= lim

0+

f ′f 2α−1

ψ
= lim

0+

f ′′f 2α−1
+ (2α − 1)f 2α−2f ′2

α2f 2α−2f ′2

=
1
α2 (1/q0 + 2α − 1) > 1,

where the last inequality holds if α ∈ [1, 1+ 1/
√
q0). Note that this interval is nonempty

since we assumed q0 < +∞. Hence, for some constant c > 0,

f ′φ2
− fψ ≥ cf ′φ2 (34)

in a neighbourhood [0, ε] of the origin. Modifying φ, we can extend the above inequality
to a given compact interval [0,M] as follows. Take φ ∈ W 1,∞

loc (R;R) defined by

φ(u) =


f (u)α if 0 ≤ u ≤ ε,

f (ε)α−1f (u) exp
(∫ u

ε

√
f ′′

f
ds

)
if u > ε,

(35)

where ε, α are chosen as before. Then φ ∈ W 1,∞
loc (R;R). For u > ε, we claim that the

quantity f ′

f
φ2
− ψ is constant. Indeed,(

f ′

f
φ2
− ψ

)′
=

(
f ′

f

)′
φ2
+ 2

f ′

f
φφ′ − φ′2 =

(
f ′′

f
−
f ′2

f 2

)
φ2
+ 2

f ′

f
φφ′ − φ′2

=
f ′′

f
φ2
−

(
f ′

f
φ − φ′

)2

= φ2
(
f ′′

f
−

(
f ′

f
−
φ′

φ

)2)
= 0,

where we used the definition of φ in the last equality. So for u > ε,

f ′φ2
− fψ = f

(
f ′

f
φ2
− ψ

)
= f

(
f ′(ε)

f (ε)
φ2(ε)− ψ(ε)

)
≥ f ′(ε)φ2(ε)− f (ε)ψ(ε)

≥ cε > 0,

where we used (34) at u = ε. Since f ′φ2 is bounded above by a constant on any compact
interval of the form [ε,M], we conclude that (34) holds throughout [0,M] for a constant
c > 0 perhaps smaller. We have just proved that given α ∈ [1, 1+1/

√
q0) and a bounded

positive function u, there exists c > 0 such that

[f ′φ2
− fψ] ◦ u ≥ c[f ′φ2] ◦ u. (36)
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Recall that we established the above inequality in order to apply Lemma 3.6. Unfortu-
nately, since the function φ we introduced in (35) may not be convex, we cannot apply
Lemma 3.6 directly. We make use of (32) instead. In order to obtain a meaningful result,
we need to understand how the different functions of u introduced in (32) compare. By
definition of φ, we easily deduce the following set of inequalities:

[f ′φ2
− fψ] ◦ u ≥ cf ′f 2α

◦ u,

φ2
◦ u ≤ Cf 2α

◦ u,

K ◦ u ≤ Cf 2α
◦ u.

(37)

So, we just need to relate f and f ′ to be able to compare all quantities involved in the
estimate. Fix q1 < q0. By definition of q0, there exists a neighbourhood of zero where

ff ′′

f ′2
≤ 1/q1.

In particular, f ′/f 1/q1 is nonincreasing and in a neighbourhood of zero we have

f ′ ≥ cf 1/q1 . (38)

By continuity, up to choosing c > 0 smaller, the above inequality holds in the whole
range of a given bounded positive function u. Recall now (37), (38) and apply (32). The
estimate reduces to∫

RN
[f 1/q1+2α

◦ u]η2 dx ≤ C

∫
RN

[f 2α
◦ u](|∇η|2 + |η1η|) dx.

Choose η = ζm, m ≥ 1, ζ ∈ C2
c (RN ), 1 ≥ ζ ≥ 0:∫

RN
[f 1/q1+2α

◦ u]ζ 2m dx ≤ C

∫
RN

[f 2α
◦ u](ζ 2m−2

|∇ζ |2 + ζ 2m−1
|1ζ |) dx

≤ C

∫
RN

[f 2α
◦ u]ζ 2m−2(|∇ζ |2 + |1ζ |) dx.

Using Hölder’s inequality, it follows that∫
RN

[f 1/q1+2α
◦ u]ζ 2m dx

≤ C

(∫
RN

[f 2αm′
◦ u]ζ 2m dx

)1/m′(∫
RN
(|∇ζ |2 + |1ζ |)m dx

)1/m

.

Assume temporarily that
f 1/q1+2α

◦ u ≥ cf 2αm′
◦ u. (39)

Then the inequality simplifies to∫
RN

[f 2αm′
◦ u]ζ 2m dx ≤ C

∫
RN
(|∇ζ |2 + |1ζ |)m dx.
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Choose now ζ such that ζ ≡ 1 in BR and |∇ζ | ≤ C/R, |1ζ | ≤ C/R2:∫
RN

[f 2αm′
◦ u]ζ 2m dx ≤ CRN−2m. (40)

The above inequality is true as soon as (39) holds, which itself reduces to choosing the
exponents such that

2αm′ ≥ 1/q1 + 2α.

This holds for some q1 < q0 provided 2α(m′ − 1) > 1/q0. For N ≤ 2, fix such an
m′ ∈ (1,+∞) and let R→ +∞ in (40). We conclude that f ◦ u = u = 0. In dimension
N ≥ 3, since α can be chosen arbitrarily close to 1 + 1/

√
q0 and restricting to m′ less

than but as close as we wish to N/(N − 2), we finally need only assume

4
N − 2

(1+ 1/
√
q0) > 1/q0 if N ≥ 3. (41)

Since m′ < N/(N − 2), we have N − 2m < 0. So, the right-hand side of (40) converges
to 0 as R →∞, whence f ◦ u = 0 and u = 0, as desired. Solving (41) for q0 yields the
conditions stated in Theorem 3.4. ut

4. Extensions to unbounded and sign-changing solutions

We deal first with possibly unbounded solutions.

Proof of Corollary 1.7. Note that by Lemma 3.1, we need only consider the case q0 <

+∞. We modify the rest of the proof of Theorem 3.4 as follows: take φ ∈ W 1,∞
loc (R;R)

defined by

φ(u) =


f (u)α if 0 ≤ u ≤ ε,

f (ε)α−1f (u) exp
(∫ u

ε

√
f ′′

f
ds

)
if ε < u ≤ 1/ε,

f (u)β + A if u > 1/ε,

where α is chosen in [1, 1+ 1/
√
q0) as previously, β in [1, 1+ 1/

√
q∞) and A such that

φ is W 1,∞
loc (R;R). Then (36) holds if in addition

lim inf
u→+∞

f ′φ2

fψ
(u) > 1.

We leave to the reader the check that this is true under assumption (9), for β ∈
[1, 1+ 1/

√
q∞). Apply (32) with η = ζm, m ≥ 1, ζ ∈ C2

c (RN ), 0 ≤ ζ ≤ 1:∫
RN

[f ′φ2
◦ u]ζ 2m dx ≤ C

∫
RN

[(φ2
+K) ◦ u]ζ 2m−2(|∇ζ |2 + |1ζ |) dx

≤ C

(∫
RN

[(φ2
+K)m

′

◦ u]ζ 2m dx

)1/m′(∫
RN
(|∇ζ |2 + |1ζ |)m dx

)1/m

. (42)
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By definition of φ and (38), there exist constants c, c′ > 0 such that for u ∈ [0, 1],
f ′φ2(u) ≥ cf ′f 2α(u) ≥ c′f 2α+q1(u), where q1 < q0. We also clearly have the estimate
(φ2
+K)m

′

(u) ≤ Cf 2αm′ for u ∈ [0, 1]. So,

f ′φ2
≥ c(φ2

+K)m
′

on [0, 1],

provided that 2αm′ ≥ 1/q1 + 2α. Similarly, the reader will easily check using (9) that
given q2 < q∞, there exists c > 0 such that

f ′ ≥ cf 1/q2 in [1,+∞),

whence f ′φ2
≥ c(φ2

+K)m
′

in [1,+∞) provided that 2βm′ ≥ 1/q2+ 2α. We conclude
that

f ′φ2
◦ u ≥ c(φ2

+K)m
′

◦ u, (43)

provided that 2αm′ ≥ 1/q1+2α and 2βm′ ≥ 1/q2+2α. Since α can be chosen arbitrarily
close to 1+ 1/

√
q0, β to 1+ 1/

√
q∞, q1 to q0, q2 to q∞ and m′ to N/(N − 2) for N ≥ 3

(respectively m′ ∈ (1,+∞) for N ≤ 2), we conclude that suitable parameters can be
chosen provided (41) holds and either N ≤ 2 or

4
N − 2

(1+ 1/
√
q∞) > 1/q∞ if N ≥ 3.

These inequalities are true under the assumptions of Corollary 1.7. So, collecting (42)
and (43), we obtain for some m > N/2,∫

RN
[(φ2
+K)m

′

◦ u]ζ 2m dx ≤ C

∫
RN
(|∇ζ |2 + |1ζ |)m

′

dx. (44)

Finally, choose ζ such that ζ ≡ 1 in BR and |∇ζ | ≤ C/R, |1ζ | ≤ C/R2: the right-hand
side of (44) converges to 0 as R→∞ and the conclusion follows. ut

We work next with sign-changing solutions.

Proof of Corollaries 1.8 and 1.10. We simply remark that if u ∈ C2(RN ) is a solution
of (1), then u+ (respectively u−) is locally Lipschitz continuous and solves the differen-
tial inequality (29) (respectively −1u− ≤ f̃ (u−) in RN , where f̃ (t) := −f (−t) for
t ∈ R−). Since we assumed q0 < +∞, we may then apply Theorem 3.4 and Remark 3.5,
and Corollary 1.8 follows. For Corollary 1.10, we replace Theorem 3.4 by the adaptation
presented in the proof of Corollary 1.7. ut

5. Beyond power-type nonlinearities

Proof of Theorem 1.11. Case 1 of the theorem was proved in Theorem 1.1, while case 2
was proved in Lemma 3.1. For cases 3 and 4 take α ≥ 1 and φ = f α . Let L =
lim inf0+ f

′φ2/fψ and let (un) denote a sequence along which f ′φ2/fψ converges toL.
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By Remark 3.3, we may always assume that f (0) = 0. So, applying Cauchy’s mean value
theorem, there exists vn ∈ (0, un) such that

f ′φ2

fψ
(un) =

f ′f 2α−1

ψ
(un) =

f ′′f 2α−1
+ (2α − 1)f 2α−2f ′2

α2f 2α−2f ′2

∣∣∣∣
u=vn

.

Passing to the limit, we obtain

L = lim inf
0+

f ′φ2

fψ
≥

1
α2

(
1
q0
+ 2α − 1

)
> 1, (45)

where the last inequality holds if α ∈ [1, 1+ 1/
√
q0). Note that this interval is nonempty

since we assumed q0 <∞. At this point, we repeat the steps performed in the proof of
Theorem 3.4: from (45), we deduce that (34) holds in a neighborhood [0, ε] of the origin.
Modifying φ as in (35), the verbatim arguments lead to (36) and (37). For the rest of the
proof, we argue slightly differently according to the case considered.

Case 2 of Theorem 1.11. In place of (38), we simply use the convexity of f . Since u is
bounded, there exists a constant c > 0 such that

f ′(u) ≥ f (u)/u ≥ cf (u).

So, (40) holds for some m > N/2 whenever 4
N−2 (1 + 1/

√
q0) > 1, which is true for

N ≤ 6, provided q0 < ∞. Following the proof of Theorem 3.4, we obtain case 2 of
Theorem 1.11.

Case 3 of Theorem 1.11. By definition of q0, (38) now holds for q1 < q0. Resuming
our inspection of the proof of Theorem 3.4, we see that (40) holds under assumption 3 of
Theorem 1.11, and the desired conclusion follows. ut

6. Speed of decay: proof of Theorem 1.19

In this section, we characterize the speed of decay of solutions which are stable outside a
compact set. To do so, we shall again take advantage of Lemma 3.6 or actually its general
form (32), with a different choice of test function φ ◦ u. We divide the proof into several
steps.

Step 1. We begin by proving the usual estimate

[f ′φ2
− fψ](u) ≥ c[f ′φ2](u)

where this time φ(u) = (f (u)/u)α and α is chosen in a suitable range.
First, by Lemma 3.1 and Remark 3.3, we may restrict to the case where q0 < +∞,

whence p0 > 1, and we may also assume f (0) = f ′(0) = 0. By Proposition 1.14,
lim|x|→∞ u(x) = 0. For u ∈ R∗+, take φ ∈ W 1,∞

loc (R;R) defined by

φ(u) = (f (u)/u)α, (46)
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where α > 1/2. We begin by computing

L = lim inf
u→0+

f ′φ2

fψ
(u). (47)

Let (un) denote a sequence along which f ′φ2/fψ converges to L. Observe that since
f (0) = f ′(0) = 0, we have ψ(0) = 0 and

lim
u→0

f ′f 2α−1u−2α
= lim
u→0

f ′(u)

u

(
f (u)

u

)2α−1

= 0 (48)

if α > 1/2. So, by Cauchy’s mean value theorem, there exists vn ∈ (0, un) such that

f ′φ2

fψ
(un) =

f ′f 2α−1u−2α

ψ

∣∣∣∣
u=un

=
f ′′f 2α−1u−2α

+ (2α − 1)f ′2f 2α−2u−2α
− 2αf ′f 2α−1u−2α−1

α2u−2α−2f 2α(−1+ uf ′/f )2

∣∣∣∣
u=vn

=
f ′′u2/f + (2α − 1)f ′2u2/f 2

− 2αuf ′/f
α2(−1+ uf ′/f )2

∣∣∣∣
u=vn

=
ff ′′/f ′2 + (2α − 1)− 2αf/(uf ′)

α2(1− f/(uf ′))2

∣∣∣∣
u=vn

.

For u ∈ R∗+, let

p(u) =
uf ′(u)

f (u)
. (49)

It follows that

f ′φ2

fψ
(un) =

1/q + 2α − 1− 2α/p
α2(1− 1/p)2

∣∣∣∣
u=vn

= 1+
1/q − (α(1− 1/p)− 1)2

α2(1− 1/p)2

∣∣∣∣
u=vn

. (50)

We claim that (7) implies
p0 = lim

u→0+
p(u), (51)

where p0 is the conjugate exponent of q0, i.e. (8) holds. Take indeed any cluster point
p1 of p and a sequence (un) such that p converges to p1 along (un). By Cauchy’s mean
value theorem, there exists vn ∈ (0, un) such that

p(un) =
f ′ + uf ′′

f ′

∣∣∣∣
u=vn

= 1+ p/q(vn).

Let p0 = lim infu→0+ p(u) and p0 = lim supu→0+ p(u). Pass to the limit as n→+∞:

1+ p0/q0 ≤ p1 ≤ 1+ p0/q0.
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Applying the above inequality to p1 = p0, p0, we obtain

p0(1− 1/q0) ≤ 1 ≤ p0(1− 1/q0)

and (51) follows. Next, we apply (51) in (50). Thus,

L = 1+
1/q0 − (α/q0 − 1)2

α2/q2
0

.

So, L > 1 if
α ∈ (q0 −

√
q0, q0 +

√
q0). (52)

We conclude that given α > 1/2 in the range (52), there exists c > 0 such that for u small
enough,

[f ′φ2
− fψ](u) ≥ c[f ′φ2](u) ≥ c(f (u)/u)2α+1, (53)

where we used the convexity of f in the last inequality. Note that since u(x) → 0 as
|x| → +∞, the above inequality holds for u = u(x) and x in the complement of a ball
of large radius.

Step 2. Next, we need to estimate the other functions of u appearing in (32). We claim
that for small values of u,

K(u) ≤ C(f (u)/u)2α. (54)

To see this, it suffices to prove that lim supu→0+ K(u)/φ
2(u) <∞. Take a sequence (un)

converging to zero and apply Cauchy’s mean value theorem: there exists vn ∈ (0, un)
such that

K

φ2 (un) =
ψ

2φφ′
(vn).

It follows from (53) that f ′φ2
− fψ ≥ 0 for small u. So, ψ(vn) ≤ [f ′φ2/f ](vn) for

large n, so that

K

φ2 (un) ≤
f ′φ

2f φ′
(vn) =

1
2α(1− 1/p(vn))

.

Recalling (51) and since we assumed that p0 > 1, (54) follows.

Step 3. In this step, we prove an estimate of the form∫
BR(x0)

(
f (u)

u

)2α+1

dx ≤ CRN−2m,

where m = 2α + 1 and BR(x0) is a suitably chosen ball shifted towards infinity.
Choose ζ ∈ C2

c (RN ), 0 ≤ ζ ≤ 1, supported outside a ball BR0(0) of large radius,
so that (2) holds for functions supported outside BR0(0) and that (53) and (54) hold for
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u = u(x), x ∈ supp ζ . By Lemma 3.6, we may apply (32) with η = ζm, m ≥ 1. Using
(53), (54) and the convexity of f , we obtain, for α > 1/2 in the range (52),∫

RN

(
f (u)

u

)2α+1

ζ 2m dx ≤

∫
RN
f ′(u)

(
f (u)

u

)2α

ζ 2m dx

≤ C

∫
RN

(
f (u)

u

)2α

ζ 2m−2(|∇ζ |2 + |1ζ |) dx.

Fix m = 2α + 1 and apply Hölder’s inequality. It follows that∫
RN

(
f (u)

u

)2α+1

ζ 2m dx ≤ C

∫
RN
(|∇ζ |2 + |1ζ |)2m dx. (55)

We work on balls shifted towards infinity. More precisely, we take a point x0 ∈ RN such
that |x0| > 10R0 and set R = |x0|/4. Then B2R(x0) ⊂ {x ∈ RN : |x| ≥ R0} and we may
apply (55) with ζ = ϕ(|x − x0|/R) and ϕ ∈ C2

c (R) given by

ϕ(t) =

{
1 if |t | ≤ 1,
0 if |t | ≥ 2.

We get ∫
BR(x0)

(
f (u)

u

)2α+1

dx ≤ C3R
N−2m. (56)

Step 4. In this step, we prove the estimate

Rε‖f (u)/u‖LN/(2−ε)(BR(x0))
≤ C.

By Lemma 1.4, q0 ≥ 1. Under the assumptions of Theorem 1.19, we can choose the
exponent m so large that for small ε > 0, m > N/(2 − ε) (recall that m = 2α + 1 and
α > 1/2 can be chosen freely in the range (52)). Furthermore, by Hölder’s inequality and
(56), we obtain

Rε‖f (u)/u‖LN/(2−ε)(BR(x0))
≤ Rε‖f (u)/u‖Lm(BR(x0))|BR|

(2−ε)/N−1/m

≤ CRε(RN−2m)1/mR2−ε−N/m
= C. (57)

Step 5. Now, we think of u as a solution of a linear problem, namely

−1u =
f (u)

u
u =: V (x)u in RN . (58)

According to classical results of J. Serrin [18] and N. Trudinger [20] (see also Theorem
7.1.1 on page 154 of [17]), for any p ∈ (1,+∞) and any x0 ∈ RN , there exists a constant

CS = CS(R
ε
‖V ‖LN/(2−ε)(B2R(x0))

, N, p) > 0

such that
‖u‖L∞(BR(x0)) ≤ CSR

−N/p
‖u‖Lp(B2R(x0)). (59)
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Note that for our choice of x0, (57) holds and so CS is a true constant, independent of R
and x0.

Step 6. The inequality (59) gives a pointwise estimate in terms of an integral average of
u. In order to control the latter, we consider the average ũ of u over the sphere ∂Br(x0),
defined for r > 0 by ũ(r) = −

∫
∂Br (x0)

u dσ . We claim that there exists C = C(N) > 0
such that

f (ũ(r))

ũ(r)
≤
C

r2 . (60)

To prove this, we first observe that since f is convex, ũ satisfies the differential inequality

−ũ′′ −
N − 1
r

ũ′ ≥ f (ũ).

Now, since f ≥ 0, we have ũ′ ≤ 0. In particular r 7→ f (ũ(r)) is nonincreasing. Fix
λ ∈ (0, 1) and integrate the differential inequality between 0 and r:

−ũ′(r) ≥ r1−N
∫ r

0
sN−1f (ũ(s)) ds ≥ r1−N

∫ λr

0
sN−1f (ũ(s)) ds ≥

λN rf (ũ(λr))

N
.

Integrate a second time between r and r/λ to obtain

ũ(r) ≥ ũ(r/λ)+
λN

N

∫ r/λ

r

sf (ũ(λs)) ds ≥ r2f (ũ(r))
λN

2N

(
1
λ2 − 1

)
.

If we take λ = (N − 2)/N , (60) follows with C = 1
2N

(
N−2
N

)N (( N
N−2

)2
− 1

)
.

Step 7. Recall that we are trying to establish an Lp estimate, p > 1, in order to use (59).
To start, we use (60) to obtain an L1 estimate of f (u). Namely, we prove that there exist
constants C1, C2 > 0, depending on N only, such that

−

∫
BR(x0)

f (u) dx ≤ C1R
−2g(C2/R

2), (61)

where g is the inverse function of t 7→ f (t)/t , which exists for small values of t by
Remark 1.20. For simplicity, we write BR in place of BR(x0) in what follows. To prove
(61), observe that for r ∈ (R, 2R),∫
BR

f (u) dx = cNR
N−2

∫ 2R

R

r1−N dr

∫
BR

f (u) dx

≤ cNR
N−2

∫ 2R

R

r1−N dr

∫
Br

f (u) dx = cNR
N−2

∫ 2R

R

r1−N dr

∫
Br

−1udx

≤ −cNR
N−2

∫ 2R

R

r1−N dr

∫
∂Br

∂u

∂n
dσ = − cNR

N−2
∫ 2R

R

ũ′ dr ≤ cNR
N−2ũ(R).

Estimate (61) follows, using (60).
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Step 8. The assumptions on f allow us to convert (61) into an Lp estimate. Indeed, since
q0 < ∞ (in fact, one only needs q0 < ∞), one can easily check that there exists p > 1
such that the function h(t) = f (t1/p) is convex for small t . By Jensen’s inequality,

h

(
−

∫
BR

up dx

)
≤ −

∫
BR

f (u) dx ≤ C1R
−2g(C2/R

2).

By Remark 1.20, f is invertible and so too is h. Composing with h−1, we obtain∫
BR

up dx ≤ CRNh−1(C1R
−2g(C2/R

2)).

Combining this with (59), we finally obtain

‖u‖L∞(BR) ≤ CR
−N/p(RNh−1(C1R

−2g(C2/R
2)))1/p

= Cf−1(C1R
−2g(C2/R

2)) = Cs(R). ut

We conclude this section by proving Corollary 1.24. Namely, we improve the rate of decay
from O(s(|x|)) to o(s(|x|)) when additional information on the nonlinearity is available.

Proof of Corollary 1.24. To start, observe that under assumption (18), there exists a con-
stant C > 0 such that

s(R) ≤ CR−2/(p0−1). (62)

Recall now (55). We choose a suitable cut-off function ζ ∈ C2
c (RN ) as follows. Let

ϕ ∈ C2
c (R) satisfy 0 ≤ ϕ ≤ 1 everywhere on R and

ϕ(t) =

{
1 if |t | ≤ 1,
0 if |t | ≥ 2.

For s > 0, let θs ∈ C2
c (R) satisfy 0 ≤ θs ≤ 1 everywhere on R and

θs(t) =

{
0 if |t | ≤ s + 1,
1 if |t | ≥ s + 2.

Given R > R0 + 3, we define ζ at last by

ζ(x) =

{
θR0(|x|) if |x| ≤ R0 + 3,
ϕ(|x|/R) if |x| ≥ R0 + 3.

Applying (55) with ζ as above, we deduce that for some constants C1, C2 > 0,∫
BR\BR0+2

(
f (u)

u

)2α+1

dx ≤ C1 + C2R
N−2m. (63)

Recall that (63) holds for m = 2α + 1 and any α > 1/2 such that q0 −
√
q0 < α <

q0 +
√
q0. In fact, the restriction α > 1/2 can be lifted and replaced by α > 0. Indeed,
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the restriction α > 1/2 was used for the sole purpose of proving (48). But (48) clearly
holds under the finer assumption (18) for any α > 0.

We would like to choose α such thatm := 2α+1 = N/2. Since p0 is in the supercrit-
ical range (15), straightforward algebraic computations show that such a choice is indeed
possible in the range q0 −

√
q0 < α < q0 +

√
q0. By (63), we deduce that∫

RN
u(p0−1)N/2 <∞.

In particular, given η > 0 small, there exists R > 0 so large that given any point x0 ∈ RN
such that |x0| = 4R, ∫

BR(x0)
u(p0−1)N/2 < η.

We apply again (59), this time with p = (p0 − 1)N/2, to obtain

‖u‖L∞(BR(x0)) ≤ CSR
−N/p
‖u‖Lp(B2R(x0)) ≤ CSηR

−2/(p0−1). (64)

This shows that u(x) = o(|x|−2/(p0−1)). It remains to prove the estimate on |∇u|. Observe
that any partial derivative v = ∂u/∂xi solves the linearized equation

−1v = f ′(u) v in RN .

Apply again the Serrin inequality (59), this time with potential Ṽ (x) = f ′(u) and solu-
tion v. Since 0 ≤ f ′(u) ≤ Cup0−1, the potential Ṽ is equivalent to V (x) = f (u)/u and
so the Serrin constant CS is again independent of R and x0 under our assumptions. We
get

‖v‖L∞(BR(x0)) ≤ CSR
−N/p
‖v‖Lp(B2R(x0)).

Serrin’s Theorem (cf. Theorem 1 on page 256 of [18]) also gives the estimate

‖∇u‖Lp(BR(x0)) ≤ CSR
−1
‖u‖Lp(B2R(x0))

for solutions of (58). Collecting these inequalities, we obtain

‖∇u‖L∞(BR(x0)) ≤ CSR
−N/p−1

‖u‖Lp(B2R(x0)).

Using that u(x) = o(|x|−2/(p0−1)), we obtain the desired estimate. ut

7. Proof of Theorem 1.23: the subcritical case

By Remark 1.22, since p0 is subcritical, we have∫
RN
f (u)u dx < +∞ and

∫
RN
F(u) dx < +∞. (65)
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Multiply equation (1) by uζ , where ζ is a standard cut-off, i.e. ζ ≡ 1 in BR , ζ ≡ 0 in
B2R and |∇ζ | ≤ C/R, |1ζ | ≤ C/R2. Then integrate:∫

RN
|∇u|2ζ dx +

∫
RN
u∇u∇ζ dx =

∫
RN
f (u)uζ dx,∫

RN
|∇u|2ζ dx −

1
2

∫
RN
u21ζ dx =

∫
RN
f (u)uζ dx.

By Remark 1.22, the second term on the left-hand side of the above equality converges
to 0 as R→+∞. Hence, by monotone convergence we have∫

RN
|∇u|2 dx =

∫
RN
uf (u) dx < +∞. (66)

As in the classical Pokhozhaev identity, we may now multiply the equation by x · ∇uζ to
obtain ∫

RN
|∇u|2 dx =

2N
N − 2

∫
RN
F(u) dx. (67)

We now collect (66) and (67). By assumption (14), if u is not identically zero, then∫
RN
|∇u|2 dx =

∫
RN
uf (u) dx ≤ (p0 + 1)

∫
RN
F(u) dx <

2N
N − 2

∫
RN
F(u) dx

=

∫
RN
|∇u|2 dx,

a contradiction. ut

8. Proof of Theorem 1.25: the supercritical case

In what follows, we prove Theorem 1.25 in the supercritical case, i.e. when p0 is in the
range (15) and f satisfies (16), (17) and (20). In polar coordinates, a function u takes the
form u = u(r, σ ), where r ∈ R∗+, σ ∈ SN−1, N ≥ 2, while its Laplacian is given by

1u = urr +
N − 1
r

ur +
1
r21SN−1u.

Recall the classical Emden change of variables and unknowns t = ln r and u(r, σ ) =
r−αv(t, σ ), where α = 2/(p0 − 1). Then

v(t, σ ) = eαtu(et , σ ),

vt (t, σ ) = e
αt (etur + αu) = e

(α+1)tur + e
αtαu, (68)

vt t (t, σ ) = e
αt (e2turr + (2α + 1)etur + α2u),

1SN−1v = e
αt1SN−1u.

Writing

α =
2

p0 − 1
, A = (N − 2− 2α), B = α2

+ αA, (69)
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we obtain

vt t + Avt = e
(α+2)t

(
urr +

N − 1
r

ur

)
+ Beαtu

= e(α+2)t (−e−2t1SN−1u− f (u))+ Be
αtu

= −e(α+2)tf (e−αtv)− eαt1SN−1v + Bv.

To summarize, v solves

vt t + Avt + Bv +1SN−1v + f (e
−αtv)e(α+2)t

= 0 for t ∈ R, σ ∈ SN−1. (70)

Multiply the above equation by vt and integrate over SN−1. For t ∈ R, we find

∫
SN−1

(
v2
t

2

)
t

dσ + A

∫
SN−1

v2
t dσ + B

∫
SN−1

(
v2

2

)
t

dσ

−

∫
SN−1

(
|∇SN−1v|2

2

)
t

dσ +

∫
SN−1

f (ve−αt )vte
(α+2)t dσ = 0. (71)

Let F denote the antiderivative of f such that F(0) = 0. Then

d

dt
[F(ve−αt )e(p0+1)αt ]

= f (ve−αt )(vte
−αt
− αve−αt )e(p0+1)αt

+ F(ve−αt )α(p0 + 1)e(p0+1)αt .

So,

f (ve−αt )vte
p0αt

=
d

dt
[F(ve−αt )e(p0+1)αt ]+ αf (ve−αt )veαp0t − αF(ve−αt )(p0 + 1)e(p0+1)αt .

Applying (20), we conclude that

f (ve−αt )vte
p0αt ≥

d

dt
[F(ve−αt )e(p0+1)αt ].

Using this inequality in (71), we obtain

∫
SN−1

(
v2
t

2

)
t

dσ + A

∫
SN−1

v2
t dσ + B

∫
SN−1

(
v2

2

)
t

dσ

−

∫
SN−1

(
|∇SN−1v|2

2

)
t

dσ +

∫
SN−1

d

dt
[F(ve−αt )e(p0+1)αt ] dσ ≤ 0.
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Integrating for t ∈ (−s, s), s > 0, we then derive

1
2

[∫
SN−1

v2
t dσ

]t=s
t=−s

+ A

∫ t=s

t=−s

∫
SN−1

v2
t dσ dt +

B

2

[∫
SN−1

v2 dσ

]t=s
t=−s

−
1
2

[∫
SN−1
|∇SN−1v|

2 dσ

]t=s
t=−s

+

[∫
SN−1

F(ve−αt )e(p0+1)αt dσ

]t=s
t=−s

≤ 0. (72)

Recall the definition of v given in (68) and use the improved decay estimates (19): we see
that v(t, ·), vt (t, ·), |∇SN−1v(t, ·)| converge to 0 as t → ±∞, uniformly in σ ∈ SN−1.
Passing to the limit as s →+∞ in (72), we finally obtain

A

∫
R

∫
SN−1

v2
t dσ dt + lim sup

s→+∞

∫
SN−1

F(ve−αs)e(p0+1)αs dσ ≤ 0. (73)

Since p0 > (N + 2)/(N − 2), it follows from (69) that A > 0. So, both terms in (73)
are nonnegative. In particular, vt ≡ 0 and v is a function depending only on σ . Since
limt→+∞ v(t, σ ) = 0 by (19), we deduce that v ≡ 0 and u ≡ 0 as claimed.
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