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Abstract. We consider one-dimensional Brownian motion conditioned (in a suitable sense) to have
a local time at every point and at every moment bounded by some fixed constant. Our main result
shows that a phenomenon of entropic repulsion occurs: that is, this process is ballistic and has an
asymptotic velocity approximately 4.58. . . as high as required by the conditioning (the exact value
of this constant involves the first zero of a Bessel function). We also study the random walk case
and show that the process is asymptotically ballistic but with an unknown speed.

1. Introduction

The goal of this paper is to describe the macroscopic behaviour of a process which locally
behaves like a Brownian motion, but which is constrained to satisfy a global constraint
of a self-avoiding nature. Informally speaking, we consider one-dimensional Brownian
motion conditioned on the event E that the local time of the process is bounded by a fixed
constant, say 1, at every time and position. The event E has of course zero probability,
so a precise definition is needed—this is deferred to the next section. For the moment, it
suffices to say that it is possible to define a probability measure Q on continuous paths
corresponding to this conditioning, which is obtained by a limiting procedure.

From an intuitive point of view, one expects that, conditionally on E , the process will
be transient and must in fact escape to infinity with a positive velocity. In fact, one expects
the speed to be at least equal to 1, since that is precisely what it means to spend less than
one unit of local time per level. This being a very costly behaviour for Brownian motion,
it is tempting to believe that the process is not likely to satisfy any constraint that would
be even stronger, and hence that the speed of the process will in fact be equal to 1 in the
limit.

Our main finding in this paper is that this intuition turns out to be erroneous. To be
precise, we obtain the following result.
Theorem 1. limt→∞Xt/t = γ0 exists in Q-probability, and furthermore

γ0 =
3

1− 2j−2
0

= 4.5860 . . . (1)
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where j0 = 2.4048 . . . is the first nonnegative zero of the Bessel function J0(x) of the first
kind and of order 0.

A more precise result is stated in Theorem 2 in the next section, after the definitions have
been given. In Theorem 5, we obtain a similar result for the corresponding random walk
problem: given some L0 ≥ 2, a simple symmetric random walk on Z is conditioned to
never visit any site more than L0 times. Under the limiting measure Q, we show that the
particle escapes to infinity with a certain speed γ (L0) and we show that γ (L0) > 1/L0.

We call this phenomenon Brownian entropic repulsion, by analogy with a situation
arising in the study of the harmonic crystal which will be described below (in Section 3).
Roughly speaking, entropic repulsion describes the fact that the easiest way to achieve
a certain global constraint for a random process is to achieve much more than required.
Here, this phenomenon arises due to the fact the local time process has wild oscillations,
and therefore the process must on average have a small local time if it wants to avoid ever
being equal to 1. As discussed in Section 3, the situation in the harmonic crystal is not
much different. We also describe other conditionings of Brownian motion where a similar
entropic repulsion occurs in the paper [1], and recall some results of that paper later on in
Section 3. We expect entropic repulsion to be a general principle in this sort of situations,
even though it seems hard to even formalize this idea precisely.

Our techniques are very different in the continuous and the discrete cases. In the
continuous case, our main tools are the Ray–Knight theorem and some careful coupling
estimates. The existence and uniqueness of the measure Q is obtained by showing that the
approximating sequence forms a Cauchy sequence for a suitable metric (and showing that
this implies weak convergence). The value of the speed is obtained through a connection
to an eigenvalue problem for the Laplacian in the unit disc of the plane (Sturm–Liouville
problem). While it seems possible to adapt these techniques to the discrete case, we have
used here a rather different method which we believe sheds additional light on the prob-
lem. In particular, the notion of regenerating levels plays a significant role in this proof
and we crucially apply the renewal theorem in the spirit of Kesten [10]. This theorem is
here viewed as a purely analytic result on sequences of numbers satisfying certain condi-
tions, and is applied to sequences which do not have obvious probabilistic interpretations.

2. Statement of the results

Let � be the space of continuous, real-valued functions defined on [0,∞). We endow �

with the Skorokhod topology and the Borel σ -field defined by it, and with the Wiener
measure W. (We let Wx be the Wiener measure started at the point x ∈ R). Let (Xt , t ≥ 0)
be the canonical (coordinate) process on �, and let L(t, x) denote a jointly continuous
version of the local times process of X, i.e., W-almost surely for all x ∈ R and all t ≥ 0,

L(t, x) = lim
ε→0

1
2ε

∫ t

0
1{|Xs−x|≤ε} ds. (2)

(We may, occasionally, write L(t, x, ω) to make explicit the dependence of L(t, x) upon
the path ω ∈ �.) In particular, X satisfies the occupation formula: almost surely, for all
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t ≥ 0 and for all nonnegative Borel functions f ,∫ t

0
f (Xs) ds =

∫
R
f (x)L(t, x) dx. (3)

(For this and other basic facts about local times of Brownian motion, we refer the reader to
Chapter VI of [15]. The above statement corresponds to Corollary (1.6) in that reference.)
For all a > 0, let

τa = inf{t > 0 : Xt ≥ a}.

We approximate the event E described in the introduction by conditioning on what hap-
pens up to time τa , and let a tend to infinity. Hence, define

Ea := {sup
t≤τa

sup
x∈R

L(x, t) ≤ 1}. (4)

A more precise statement of Theorem 1 follows. Recall that γ0 = 4.5860 . . . is defined
by (1).

Theorem 2. The family of measures {Pa := W(· | Ea)}a≥0 converges weakly to a mea-
sure Q on � as a→∞. Moreover, limt→∞Xt/t = γ0 in Q-probability.

Roughly speaking, the idea for the proof of this theorem is that, by the Ray–Knight the-
orem, the local times of Brownian motion between the two endpoints 0 and a behave as
the square radius of a two-dimensional Brownian motion. Conditioning by the event Ea
amounts to conditioning this Brownian motion to stay within the unit ball. By well-known
results due to Pinsky [14] on metastability, this has a simple equilibrium distribution, un-
der which the square radius has an average c < 1. The asymptotic speed of the process is
then given by γ0 = 1/c, and thus γ0 > 1.

Remark 3. If one requires the local time to be bounded by C > 0 rather than 1 in the
events E and Ea , it can be shown that the limiting speed of the process becomes γ0/C.
That is, entropic repulsion makes the particle travel 4.5860 . . . as fast as one would expect
from the constraint in the conditioning.

Remark 4. Conditioning on the event Ea drives the process to+∞ because the condition
is imposed at time τa , the hitting time of a > 0. If we replace τa in the definition of Ea
by τ ′a , where

τ ′a = inf{t ≥ 0 : |Xt | = a}

then Theorem 2 easily implies that the same statement is true with limt→∞Xt/t = ±γ0
with probability 1/2 each.

We now turn to the discrete version of the problem, about which we know both more
and less information. As our basic probability space we take� = {−1,+1}Z+ . A generic
point of � is written as ω = {ωt }t≥0. For ω ∈ �, let

Sn(ω) =

n∑
j=1

ωj , n = 0, 1, . . . ,
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be the random walk on Z associated to ω. For t ∈ Z+, x ∈ Z, define

L(t, x) =

t∑
j=1

1{Sj=x}.

Of course, L(t, x) is a function on �. Occasionally it will be useful to write L(t, x, ω)
for the value of L(t, x) at the point ω ∈ �. In fact, L(t, x, ω) depends only on the first
t + 1 coordinates of ω, so we can also regard it as a function on �t := {−1,+1}t+1. If
ωt ∈ �t we shall also use the notation L(t, x, ωt ) for the value of L(t, x) at this point.
Unless otherwise indicated we take S0 = 0. Let us now define the event B which serves
as our constraint: for r ∈ Z+, let

Br = {L(τr , x) ≤ L0 for all x} = {ω ∈ � : L(τr(ω), x, ω) ≤ L0 for all x}

where
τr = inf{k ≥ 1 : Sj = r}.

To formulate our main result for random walks we will need to introduce the notion
of “regenerating levels”, to borrow from the terminology of random walks in random
environments. Define

ν1 = inf{r ≥ 0 : St > r for all t ≥ τr + 1}

and recursively, for all i ≥ 2,

νi = inf{r > νi−1 : St > r for all t ≥ τr + 1}.

The levels νi are those which are visited only once for a given trajectory ω.

Theorem 5. The measures P(· |Br) converge weakly to a limiting measure Q as r →∞.
Then for all j ≥ 1, νj < ∞ Q-a.s. Moreover, the random variables (νj+1 − νj )j≥1 are
i.i.d. and satisfy

EQ(νj+1 − νj ) <∞.

The portions of the path between two successive renewal levels are also independent. In
particular, γ (L0) = limk→∞Xk/k exists Q-almost surely, and is a nonrandom number
satisfying γ (L0) > 1/L0.

3. Related work

3.1. Harmonic crystal with hard wall repulsion

As already mentioned above, the term “entropic repulsion” was introduced to describe a
situation arising in the study of the discrete Gaussian free field on a lattice (also known as
the harmonic crystal) with hard wall repulsion, which presents some strong analogy to the
phenomenon described by Theorems 2 and 5. Indeed, in [3], the following result (among
other things) is proved. Let 8N = (φx)x∈VN be the law of a free field on a box VN =
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{1, . . . , N}2 with zero boundary conditions and covariance cov(φx, φy) = GN (x, y) (the
discrete Green function stopped when the walk reaches the outside of the box). Let DN
be a “nice” domain in the box (essentially, the discrete approximation of a smooth fixed
domain in (0, 1)2 away from the boundary, blown up by a factor of N ), and let �+DN be
the event that φx ≥ 0 for all x ∈ DN . Then, conditionally on �+DN , the value of the field
φx is typically of order logN , in the following strong sense: for all ε > 0,

lim
N→∞

sup
x∈DN

P
(∣∣∣∣φx − 4

π
logN

∣∣∣∣ ≥ ε logN
∣∣∣∣ �+DN) = 0. (5)

The intuitive reason for this behaviour is the same as in Theorem 2 above. To simplify, due
to the wild oscillations of the free field (or the local time field, in our case), the simplest
way to achieve the constraint is a global shift which guarantees that the wild oscillations
do not break the constraint.

3.2. Brownian motion with limited local time

In [1], we have also studied other conditionings of Brownian motion which favour a self-
avoiding behaviour, even though the constraint is much softer than the event E . Namely,
we discuss Brownian motion conditioned on the event K that the growth of the local time
at the origin is slower than some function of time f (t) where f is nondecreasing but
f (t)t−1/2 is nonincreasing. We show that if

∫
∞

1 f (t)t−3/2 dt < ∞ then the process is
transient. We believe this condition to be sharp. In particular, if f (t) ∼ c

√
t(log)−γ for

some c > 0 and γ ≥ 0, then the process is transient as soon as γ > 1. In the regime where
0 ≤ γ ≤ 1, and where we thus anticipate that the process is recurrent, we nonetheless
expect an entropic repulsion phenomenon to occur in the sense that Lt = o(f (t)) with
high probability for t →∞.

3.3. Edwards and Domb–Joyce polymer models

Finally, the present work is closely related to the field of polymer models. The well-
known Domb–Joyce model (and its Brownian analogue—the Edwards model) is a model
where simple random walk measure is penalized by a weight exponential in the number of
self-intersections. More precisely, given an inverse temperature β > 0, the Domb–Joyce
model is defined by looking at the measure µN on nearest-neighbours discrete random
paths of length N obtained by setting

µN (ω) =
1
ZN

exp
(
−β

∑
0≤i<j≤N

1{ωi=ωj }
)

2−N

where ZN is a normalizing constant. Similarly, the Edwards model (in one dimension)
is defined by taking a large T > 0 and considering the measure µT whose density with
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respect to the Wiener measure is

dµT

dW
=

1
ZT

exp
(
−β

∫
R
L(T , x)2 dx

)
. (6)

where L(t, x) is a jointly continuous version of the local time at time t and position x.
It is the limit of the distribution of the position of the endpoint under these measures
(and their dependence on β) as N or T tend to infinity which is of interest. The main
result on this model, proved in [7], is that XT is approximately normally distributed with
a mean c(β)T and variance σ 2(β)T . In the case of the Edwards model, these parameters
have simple dependence on β: in fact, the variance parameter σ 2(β) is independent of
the self-repellency strength β, while c(β) = b∗β1/3 for some 0 < b∗ < ∞. However,
in the discrete Domb–Joyce model, the dependence on β is largely unknown—it is still
an open question to show that c(β) is monotone in β. See [8] and the references therein
for a very interesting account of the theory. See also the paper [13] for a polymer model
related to our work, where explicit calculations on the ballistic behaviour of the process
can be done.

We note that both the present work (in the continuous case) and the papers [7, 13]
use in a fundamental way the Ray–Knight theorem, as well as (for [7]) a connection to an
eigenvalue problem for the Laplacian. However, this is where the analogy stops: while [7]
requires many difficult analytical estimates, we only require careful but simple-minded
probabilistic coupling estimates. Also, in this paper we discuss the full convergence of
the path (Xs, s ≥ 0) (in the sense of weak limits of measure on paths) rather than its
position at a large time. During the revision of this paper we learnt from the referee that
Joseph Najnudel [12] has recently constructed a probability measure on � corresponding
to the whole process in the setup of the Domb–Joyce polymer model. His techniques are
very different from ours. Note also that the discrete case uses entirely different techniques.
Finally, we mention that it is very likely that our techniques would yield a central limit
theorem for the position of the particle in Theorems 2 and 5. We have not tried to pursue
this direction.

A related problem has also been studied by Mörters and Sidorova [11], where they
analyse the order of magnitude of the maximal displacement of a random walk condi-
tioned on the pth moment of its local time profile being unusually small, for some p > 1.
More precisely, let

3n(p) =
∑
z∈Z

L(z, n)p,

where L(z, n) denotes the number of visits by a simple random walk to z by time n. They
consider the simple random walk conditioned on the event that {3n(p) < εnE(3n(p))}

for some sequence εn = o(1). They are able to show that under this conditioning, there
exist constants c1, c2 > 0 such that

c1 ≤
max1≤i≤n |Sn|
√
n ε
−1/(p−1)
n

≤ c2

with high probability as n→∞. Their result is based on a careful large deviation analy-
sis.
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4. Existence and uniqueness of the weak limit

We start the proof of Theorem 2 with the existence and uniqueness of a weak limit for
the measures Pt := W(· | Et ) as t → ∞, for the Skorokhod topology (we refer the
reader to [2] for background on weak convergence). In fact, we are going to prove a
stronger statement and show that for the total variation distance on sets measurable with
respect to Fτa for a fixed arbitrary a > 0, the measures Pt form a Cauchy sequence. For
the convenience of the reader, we first explain precisely what we mean by this and then
prove that this implies weak convergence with respect to the Skorokhod topology. The
remainder of the section will be devoted to the proof that Pt is a Cauchy sequence in that
sense.

Thus, let a > 0, and recall that τa = inf{s > 0 : Xs ≥ a}. For probability mea-
sures µ, ν on (�,Fτa ) define

da(µ, ν) := sup
A∈Fτa

|µ(A)− ν(A)|. (7)

Lemma 6. Let {µt }t≥0 be a sequence of probability measures on F such that for every a,
the restrictions of µt to Fτa form a Cauchy sequence for the distance da , i.e., for every
ε > 0, there exists t0 such that for all s, t ≥ t0,

da(µt , µs) ≤ ε. (8)

Assume also that for all A > 0 fixed,

lim
b→∞

lim sup
t→∞

µt (sup
s<A

|X(s)| > b) = 0. (9)

Then there exists a probability measure µ on (�,F) such that µt → µ weakly as t →∞
for the Skorokhod topology on �.

Proof. The proof is mostly routine manipulations, so we content ourselves with outlin-
ing it. The bottom line is that convergence in total variation distance is typically much
stronger than weak convergence. Fix A ∈ Fτa . Then by (8) and (7), we find that µt (A)
is a Cauchy sequence, so has a limit µa(A) as t → ∞. It is easy to check that µa(A) is
a probability measure on (�,F) (σ -additivity follows from the uniformity over all sets
in (7)). Moreover, for every A ∈ Fτa , µt (A)→ µa(A) as t →∞. From this it is trivial
to check that µa satisfies the conditions of Kolmogorov’s extension theorem, and thus we
may define a unique measure µ such that for all a > 0,

µt (A)
t→∞
−−−→ µ(A) for all A ∈ Fτa . (10)

While it does not seem a priori easy to extend (10) to all setsA ∈ F such that µ(∂A) = 0,
where ∂A is the boundary of the set A with respect to the Skorokhod topology, we claim
that it follows easily from (8) that {µt }t≥0 is a tight family. There are two conditions to
verify, of which the first one (nonexplosion in finite time) is part of the assumption on µt
(see (9)). The second condition to verify is: for all A > 0, and for each η > 0,

lim
ε↓0

lim sup
t→∞

µt
(
sup{|X(s′)−X(s′′)| : 0 ≤ s′, s′′ < A, |s′ − s′′| < ε} > η

)
= 0. (11)
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First observe that by (9) and (10), for all s > 0 and E ∈ Fs , we also have

µt (E)→ µ(E) (12)

uniformly in E ∈ Ft as t → ∞. Therefore, fix δ > 0 and let t0 be such that for all
E ∈ FA, |µt (E) − µs(E)| ≤ δ for all t, s ≥ t0. Thus for t ≥ t0, and Eη,ε the event
in (11), we have

|µt (Eη,ε)− µt0(Eη,ε)| ≤ δ,

from which it follows that

lim sup
t→∞

µt (Eη,ε) ≤ δ + µt0(Eη,ε).

Now, since µt0 is the law of a continuous process, limε→0 µt0(Eη,ε) = 0. Therefore,

lim
ε↓0

lim sup
t→∞

µt (Eη,ε) ≤ δ

where δ > 0 is arbitrary. Then (11) follows by letting δ→ 0. Therefore, {µt }t≥0 forms a
tight family, and so there exists some weak subsequential limit. On the other hand, by (12)
this limit must be µ since the finite-dimensional marginal distributions are specified by
events of the form E ∈ Ft for some finite t > 0. Since the weak subsequential limit is
unique and we have proved tightness, we conclude that µt → µ weakly as t → ∞, for
the Skorokhod topology. ut

For the proof that there exists a weak limit to the sequence W(· | Ea) as a → ∞, we
will use Lemma 6. It turns out that (9) is very easy to verify, and the core of the proof
is to check (8). Crucial to this proof is the Ray–Knight theorem; we start by reminding
the reader the statement of this result, as can be found in [15, Chapter XI.2], or [16, VI.
(52.1)] for the formulation we use here.

A square Bessel process of dimension δ ≥ 0 is the unique strong solution to the
stochastic differential equation

Zt = z0 + 2
∫ t

0

√
|Zs | dBs + δt, z0 ≥ 0. (13)

In the special case where δ = 0 this process is known as the Feller diffusion. When δ
is an integer ≥ 1, Z can be interpreted as the square Euclidean norm of a δ-dimensional
Brownian motion.

Let (Bt , t ≥ 0) be a one-dimensional Brownian motion with joint local time process
{L(t, x)}t≥0, x∈R, and let τa = inf{t ≥ 0 : Bt = a} be the hitting time of a fixed level
a > 0.

Theorem 7 (Ray, Knight). For all a > 0, the law of L(τa, a − x) is specified by:

1. {L(τa, a − x)}0≤x≤a is a square Bessel process of dimension 2, started at 0.
2. Conditionally given L(τa, 0) = z0 ≥ 0, {L(τa,−x)}x≥0 is a Feller diffusion started at
z0 and is independent of {L(τa, a − x)}0≤x≤a .
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We now state a lemma which allows us to compare different constraints on a 2-dimension-
al square Bessel process, which will be used repeatedly throughout the proof. It should
be noted that in general there is no known way to compare the effect of two different
constraints, even when one is intuitively stronger than the other. Lemma 8 shows however
that making comparisons is possible when, in some sense, the constraint only deals with
the position of the process.

Let (Yt , t ≥ 0) denote a square Bessel process of dimension 2. We may view Y as
a random element of (�,F) under the probability measure Y, which is (as explained
above) the law on (�,F) of the squared Euclidean norm of a two-dimensional Brownian
motion. As we work with many different processes it will at times be convenient to use
a generic symbol P for the underlying probability space of different random processes.
The notations {X(t)}t≥0, {Y (t)}t≥0 then serve to differentiate these processes, and from
the context it should be clear to which processes they refer.

For a given T > 0 and a positive measurable function f : [0, T ] → [0,∞), let
{Y f (t)}t≥0 denote a version of Y conditionally given A(0, x) = {ω ∈ � : ωs ≤ f (s) for
all s ≤ T ; and ω0 = x}. For 0 ≤ u ≤ T , we also define the event

A(u, x) = {ω ∈ � : ωs ≤ f (u+ s) for all s ≤ T − u; and ω0 = x}. (14)

Lemma 8. {Y f (t), 0 ≤ t ≤ T } is an inhomogeneous diffusion on R+ which satisfies

dY f (t) =
√
Y f (t)dBt + {2− δf (t, Y f (t))}dt (15)

where δf (t, y) ≥ 0 for all 0 ≤ t ≤ T and for all 0 < y < f (t). Moreover, if g is another
function such that g(t) ≤ f (t) for all 0 ≤ t ≤ T , then

δg(t, y) ≥ δf (t, y) (16)

for all 0 < y < g(t). As a result, Y � Y f � Y g , where � stands for stochastic domina-
tion.

Proof. It is a well-known fact the conditioned process Y f can be realized as an h-
transform of the original process Y : more precisely, by Girsanov’s theorem, Y f is an
inhomogeneous diffusion having the form (15) where

δf (t, y) = −
∂

∂y
logh(t, y) (17)

with
h(t, y) = Y(A(t, y)). (18)

(Details can be found for instance in [16, IV.39] in the case where the process Y is Brown-
ian motion. Generalization to weak solutions of stochastic differential equations presents
no difficulty and we do not give the details here.) For the first part of Lemma 8 it thus
suffices to prove that

∂h(t, y)

∂y
≤ 0. (19)
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Let ε > 0, and let y = x + ε. It suffices to prove that for all ε > 0 small enough,

Y(A(t, x)) ≥ Y(A(t, y)). (20)

We use a coupling technique to prove this. Let Y1 denote a square Bessel process of
dimension 2 started from x and let Y2 denote an independent square Bessel process of
dimension 2, but started from y. Let t > 0 and let

f̂ (s) = f (T − t + s) for all s ≤ T̂ := T − t. (21)

Let τ = inf{t > 0 : Y1(t) = Y2(t)}, and let

Y3(t) =

{
Y1(t) if t < τ,

Y2(t) else.
(22)

Then by the strong Markov property, Y3 has the same distribution as Y1 and moreover
Y3(s) ≤ Y2(s) for all s ≥ 0 almost surely. It follows that if

Y2(s) ≤ f̂ (s) for all s ≤ T̂

then automatically
Y3(s) ≤ f̂ (s) for all s ≤ T̂ .

The desired (20) follows.
The second part of Lemma 8 is an easy consequence of the first part. Indeed, Y g

can be obtained by conditioning further the process Y f to stay below the function g. We
conclude again by Girsanov’s theorem that there exists an additional drift term δf,g(t, y)

such that

dY g(t) =
√
Y g(t)dBt + {2− δf (t, Y g(t))− δf,g(t, Y g(t))}dt (23)

and that δf,g(t, y) satisfies

δf,g(t, y) =
∂

∂y
loghf,g(t, y). (24)

This time,
hf,g(t, y) = P(Y f̂ (s) ∈ A′(t, y)) (25)

where f̂ is defined in (21) and A′(t, y) has the same definition as A(t, y) except that f
is replaced with g. Since Y f̂ is a strong Markov process by the first part, the coupling
argument works equally well to show that

∂

∂y
hf,g(t, y) ≤ 0. (26)

As above, this implies δf,g(t, y) ≥ 0 for all t ≤ T , 0 < y < g(t), and thus δg(t, y) ≥
δf (t, y). To get the final statement of the lemma, we note that it is easy to show that (15)
admits strong and pathwise unique solutions, since the coefficients are locally Lipschitz.
From this and Theorem 3.7 in [15], the desired stochastic dominations follow directly.

ut
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We now show that if Pt := W(· | Et ) for t > 0, then Pt satisfies the assumptions of
Lemma 6. Let s, t > 0 with s < t and let 0 < a < s. First note that if A ∈ Fτa , then by
elementary manipulations we have

Pt (A) = Ps(A)
W(Et |A ∩ Es)

W(Et | Es)
(27)

so it suffices to prove that the ratio is arbitrarily close to 1, uniformly in s, t large enough,
andA ∈ Fτa . We will show the existence of a coupling P between two processesX and Y ,
having respectively the law of W(· | Es) and W(· | Es ∩ A) such that P -almost surely,

L(τs, x,X) = L(τs, x, Y ) for all x ≥ a +1 (28)

where 1 < ∞ P -almost surely, and in fact there exists a random variable 1∗ whose
distribution does not depend on any parameter, and such that 1 � 1∗, and 1∗ < ∞
almost surely. For the moment, let us admit these facts and see how we proceed with
them. Let (Zu, u ≥ 0) be a square Bessel-0 process started at an unspecified point Z0 =

x ∈ (0, 1). We claim that there exist C, α > 0 independent of x such that for all t > 0,

P(Zt > 0 | sup
0≤u

Zu ≤ 1;Z0 = x) ≤ Ce
−αt . (29)

This follows easily from the Markov property and the fact in any period of duration 1, Z
started from position 1 has a positive probability p0 to reach zero. If not, then at the next
iteration the process is still below 1 and again has a probability bigger than p0 to die out
in the next interval. Using Lemma 8, we conclude that (29) holds with α = − log(1−p0).

To ease notations, let F1(u) = 1 − L(τs, t − u,X) for all u ≥ 0, and similarly let
F2(u) = 1−L(τs, t − u, Y ) for all u ≥ 0. In particular, note that F1(u) = F2(u) = 1 for
all u ≤ t − s, P -almost surely. Note that our assumption (28) implies that F1(u) = F2(u)

for all u ≤ t − (a + 1). If now (Zu, u ≥ 0) is the Ray–Knight diffusion changing
dimension at time u = t − s, then we have

W(Et | Es) = P(Zs ≤ F1(s) for all s ≥ 0)

and
W(Et |A ∩ Es) = P(Zs ≤ F2(s) for all s ≥ 0).

Let E1, E2 be the two events in the above equations. It follows that if p :=W(Et | Es) =
P(E1) and q :=W(Et |A ∩ Es) = P(E2), we have

p = P(E1;Zt−a−1 = 0)+ P(E1;Zt−a−1 > 0)

while
q = P(E2;Zt−a−1 = 0)+ P(E2;Zt−a−1 > 0).

By definition of 1, we must have P(E1;Zt−a−1 = 0) = P(E2;Zt−a−1 = 0), so it
follows that

|p − q| = P(E1;Zt−a−1 > 0)+ P(E2;Zt−a−1 > 0).



830 Itai Benjamini, Nathanaël Berestycki

and thus ∣∣∣∣1− q

p

∣∣∣∣ = P(Zt−a−1 > 0 |E1)+
P(E2;Zt−a−1 > 0)

p
. (30)

We study the two terms on the right hand side separately. For the first term, we note that
by (29) and Lemma 8, we get

P(Zt−a−1 > 0 |E1) ≤ E(Ce
−α(s−a−1)+) ≤ C E(e−α(s−a−1

∗)+)

where x+ = sup(x, 0) is the positive part of x. Similarly, the second term in (30) satisfies

P(E2;Zt−a−1 > 0)
p

=
P(E2;Zt−a−1 > 0)

q

q

p
= P(Zt−a−1 > 0 |E2)

q

p

≤ CE(e−α(s−a−1
∗)+)

q

p

by another application of Lemma 8. To put these two things together, define ε :=
CE(e−α(s−a−1

∗)+) <∞ and let x = q/p. Thus we have proved

|1− x| ≤ ε + εx.

Thus x − 1 ≤ ε + εx and solving this inequality we find x ≤ (1 + ε)/(1 − ε) =
1+ 2ε/(1− ε). Note that by the Lebesgue convergence theorem, ε→ 0 as s →∞. Thus
if s is large enough that ε/(1− ε) ≤ 2ε, we have proved that

x ≤ 1+ 4ε

and a similar lower bound follows without any difficulty. From this and (27), we see that
for any η > 0, there exists s0 > a large enough that for all s0 < s < t ,

|Pt (A)− Ps(A)| ≤ η

for all eventsA ∈ Fτa . In other words, we have proved that ifµt is the law of (Xr , r ≤ τa)
under Pt , then

da(µt , µs) ≤ η

for all s, t ≥ s0. That is, {µt }t≥0 forms a Cauchy sequence for the total variation distance.
Condition (9) is a direct consequence of Lemmas 15 and 12, so the proof is deferred to
the next section. Thus, provided (28) holds, µt satisfies the assumptions of Lemma 6 and
therefore has a (unique) weak limit µ.

We now turn to the proof of (28). This is based on a time-reversal argument and
coupling. Note first that it suffices to construct a coupling of {L(τs, x,X)}x∈R and
{L(τs, x, Y )}x∈R which achieves (28). Combining the Markov property at time τa for X
with the Ray–Knight theorem, we find that if Zx = L(τs, x,X), then conditionally on
{Za = z ∈ (0, 1)}, the process {Zs−x}0≤x≥s−a is a square Bessel-2 process conditioned
to never exceed 1 and to be at z at time s. In other words, it is a square Bessel bridge of
dimension 2 from 0 to z of duration s − a, conditioned never to exceed 1 on that interval.
There is naturally a similar description for Y : if Z′x = {L(τs, x, Y )}, then conditionally
on {Z′a = z′ ∈ (0, 1)}, the process (Z′s−x, 0 ≤ x ≥ s − a) is a square Bessel bridge
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from 0 to z′ in duration s − a, conditioned never to exceed 1 during that interval. We
can now return time and say that, conditionally on {Za = z ∈ (0, 1)} (resp. {Z′a = z

′
}),

the process (Zx, a ≤ x ≥ s) (resp. (Z′x, a ≤ x ≤ s)) is a square Bessel bridge from z

(resp. z′) to 0 in duration s − a, conditioned never to exceed 1 during that interval. This
being an (inhomogeneous) Markov processes, we can couple the processes Z and Z′ after
the first time (above level a) that they meet. That is, let z < z′ ∈ (0, 1) without loss of
generality, and let (Zx, s ≤ x ≤ a) and (Z′x, s ≤ x ≤ a) be two independent square
Bessel bridges conditioned never to exceed 1, started respectively from z and z′. Consider
1 = inf{x ≥ a : Zx = Z′x}. Then the process Ẑ defined by

Ẑx =

{
Z′x if x ≤ 1,
Zx if x > 1,

has the same distribution as Z′ and satisfies (28). It thus suffices to show that there ex-
ists 1∗ independent of z, z′, and a, s and t , such that

1 � 1∗ (31)

and 1∗ < ∞ almost surely. We will show that in any interval of duration 1, the two
processes have a positive probability p to meet, independently of anything in their past.
This will show the inequality (31) holds with 1∗ a certain geometric random variable.
By Lemma 8, Z′ is stochastically dominated by an unconditional square Bessel-2 process
started from 1, so for any s ≤ x ≤ a, and any η > 0,

P( inf
y∈[x,x+1]

Z′y ≤ η | σ(Z
′
y, y ≤ x)) ≥ p1 a.s.

for some p1 > 0 (note that p1 = p1(η) depends only on η). This provides an upper
bound for Z′ and it remains to give a similar lower bound for Z. This takes a few more
steps: indeed, it is not hard to see that by the second part of Lemma 8, for any x ∈
[s, a], (Zy, x ≤ y ≤ x + 1) dominates stochastically a square Bessel bridge (by, x ≤
y ≤ x + 1) of dimension 2 from 0 to 0 in duration 1, conditioned on the event E =
{supx≤y≤x+1 by ≤ 1}. This event E has positive probability, p2 say. It follows that

P( sup
y∈[x,x+1]

Zy ≤ η | σ(Z
′
y, y ≤ x)) ≤ P( sup

x≤y≤x+1
by ≤ η |E) a.s.

≤ P(bx+1/2 ≤ η)/p2.

Now, as η → 0, the right hand side tends to 0, so we can find η > 0 small enough (and
universal) such that the right hand side is smaller than 1/2 say. Taking the corresponding
p1(η), it follows from the above considerations that

P(1 ≤ x + 1 |1 ≥ x) ≥ p1(η)/2,

so taking1∗ a geometric random variable with success probability p1(η)/2 gives us what
we were looking for. ut
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5. Ballistic behaviour

We start with the identification of the value of the limiting speed, which is obtained by
solving a certain eigenvalue problem for the Laplacian in two dimensions. Here again our
main tools are the Ray–Knight theorem and some careful comparisons obtained through
coupling arguments.

Let YT be the law of a square Bessel process (Yt , t ≥ 0) of dimension 2, conditioned
on {sups≤T Ys ≤ 1}. The expectation under this probability measure will be denoted by
EYT (X) for a random variable X ≥ 0.

Lemma 9. We have

lim
t→∞

lim
T→∞

EYT (Yt ) = m0 = γ
−1
0 =

1− 2j−2
0

3
. (32)

Proof. Step 1. We start by observing that the measure YT0 is the law of (|ZT (t)|2, t ≥ 0),
where ZT is a 2-dimensional Brownian motion conditioned not to exit the unit disc D by
time T . By a theorem of Pinsky [14], the distribution of {Z(t)}t≥0 converges as T →∞
to a diffusion {Z∞(t)}t≥0, which can be determined explicitly. We will not be interested
in the precise form of the generator of Z∞. However, we will need to focus on the long
term behaviour of the process Z∞. From the same paper, it is known that Z∞ admits an
invariant nontrivial probability measure measure π on D whose density is equal to

π(dx) =
1
C
ϕ(x)2dx (33)

where ϕ is the principal eigenfunction associated with the smallest eigenvalue of the
operator L = − 1

21 with Dirichlet boundary conditions on D, and C =
∫

D ϕ(x)
2 dx.

(Note that it does not matter how we have normalised ϕ here.) That is,{
1
21ϕ = −λϕ,

ϕ|∂D = 0.
(34)

It is well-known that the problem (34) has solutions only for a discrete set of values
{λ0 < λ1 < · · · }where the lowest eigenvalue is simple, i.e., the corresponding eigenspace
is one-dimensional, generated by an eigenfunction denoted by ϕ0, the principal eigenfunc-
tion. Thus ϕ = ϕ0, which is well-known to be rotationally invariant (a good reference at
this level of generality is Jost [9, Chapter 9.5]). Hence ϕ(x) takes the same value over the
entire circle of radius 0 < r < 1. We may thus define a function φ(r) on (0, 1) such that
φ(r) = ϕ(x) for all x ∈ D such that |x| = r . By the ergodic theorem ([16, V.54]) applied
to the diffusion (Z∞t , t ≥ 0), it follows that

lim
t→∞

E(|Z∞t |
2) = m0 :=

1
C

∫
D
|x|2ϕ(x)2 dx. (35)

Therefore, limt→∞ limT→∞ EYT0
(Yt ) exists and is equal tom0 = (1/C)

∫
D |x|

2ϕ(x)2 dx.
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Step 2. It turns out that this integral can be evaluated explicitly. The principal eigenfunc-
tion can be identified explicitly as (see, e.g., Courant and Hilbert [4, (29) in Chapter V])

φ(r) = J0(j0r) (36)

where J0 is the Bessel function of the first kind of order ν = 0, j0 = 2.4048 . . . is the
first nonnegative zero of J0. Having chosen this normalisation of φ, C is given by

C =

∫ 1

0
J0(j0r)

22πr dr. (37)

It follows that

m0 =
2π
∫ 1

0 r
3J0(j0r)

2 dr

2π
∫ 1

0 rJ0(j0r)2 dr
= j−2

0

∫ j0
0 x3J0(x)

2 dx∫ j0
0 xJ0(x)2 dx

. (38)

We turn to the following result which can be found in [17, p. 137], known as Schafheitlin’s
reduction formula: for all z ≥ 0, and all µ ≥ 0,

(µ+ 2)
∫ z

0
xµ+2J0(x)

2 dx = −
1
4
(µ+ 1)3

∫ z

0
xµJ0(x)

2 dx

+
1
2

[
xµ+1

(
xJ ′0(x)−

1
2
(µ+ 1)J0(x)

)2

+ xµ+1
(
x2
+

1
4
(µ+ 1)2

)
J0(x)

2
]z

0
. (39)

Taking µ = 1 and z = j0 and recalling that J0(j0) = 0, we obtain

3
∫ j0

0
x3J0(x)

2 dx = −2
∫ j0

0
xJ0(x)

2 dx +
1
2
j4

0 J
′

0(j0)
2. (40)

Thus

3

∫ j0
0 x3J0(x)

2 dx∫ j0
0 xJ0(x)2 dx

= −2+
j4

0 J
′

0(j0)
2

2
∫ j0

0 xJ0(x)2 dx
. (41)

It also turns out that ∫ j0

0
xJ0(x)

2 dx =
1
2
j2

0 J
′

0(j0)
2. (42)

(This is a consequence of the fact that the Bessel functions are orthonormal for the
weight x: this is a classical property which can be found in [17, p. 576] for instance.)
Thus, using (38) together with (41) and (42) we obtain

m0 = j
−2
0 (1/3)[−2+ j2

0 ] = (1/3)[1− 2j−2
0 ]. (43)

This completes the proof of Lemma 9. ut

For 0 ≤ x < 1 and T > 0, let YTx denote the law

YTx (·) = Y(· |Y0 = x; sup
0≤s≤T

Ys ≤ 1) (44)
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and let

Y∞x = lim
T→∞

YTx (45)

be the weak limit of YTx , which may be described with Pinsky’s result [14].

Lemma 10. For any ε, η > 0, there exists t0 such that for all t ≥ t0, and for all large
enough T > 0,

YT1/2

(∣∣∣∣1t
∫ t

0
Ys ds −m0

∣∣∣∣ > ε

)
≤ η. (46)

Proof. Let t > 0. As t → ∞, we know by the ergodic theorem for one-dimensional
diffusions (Theorem V.53.1 in [16]) and the above calculations that, Y∞1/2-almost surely,

lim
t→∞

1
t

∫ t

0
Ys ds = m0. (47)

Thus this convergence holds in Y∞1/2-probability as well, and we may choose t0 large
enough that

Y∞1/2

(∣∣∣∣1t
∫ t

0
Ys ds −m0

∣∣∣∣ > ε

)
≤ η/2 (48)

for all t ≥ t0. Let us fix any t ≥ t0. Since YT1/2 converges weakly towards Y∞1/2, and since
integration over the compact interval [0, t] is a continuous functional, we conclude that

YT1/2

(∫ t

0
Ys ds ∈ B

)
→ Y∞1/2

(∫ t

0
Ys ds ∈ B

)
for all Borel sets B ⊂ R, as T → ∞. Taking B = [(m0 − ε)t, (m0 + ε)t], we may
choose T0 large enough that for all T ≥ T0,∣∣∣∣Y∞1/2(∣∣∣∣1t

∫ t

0
Ys ds −m0

∣∣∣∣ > ε

)
− YT1/2

(∣∣∣∣1t
∫ t

0
Ys ds −m0

∣∣∣∣ > ε

)∣∣∣∣ ≤ η/2. (49)

Combining (48) and (49) gives the result. ut

The next step is to extend Lemma 10 to a similar convergence type of result, but where
the starting point x is not necessarily equal to 1/2, while keeping the estimates uniform
in x.

Lemma 11. For any ε, η > 0, there exists t0 such that for all t ≥ t0, for all x ∈ [0, 1),
and for all T large enough,

YTx
(∣∣∣∣1t

∫ t

0
Ys ds −m0

∣∣∣∣ > ε

)
≤ η. (50)
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Proof. We prove this by coupling. Consider two independent processes Y 1 and Y 2 sam-
pled respectively from YT1/2 and YTx . Let τ = τ(x, T ) = inf{s > 0 : Y 1

s = Y 2
s }, and

define

Y 3
s = Y

2
s 1{s≤τ } + Y 1

s 1{s≥τ }. (51)

It is easy to show that Y 3 has the same distribution as Y 2, i.e., its law is YTx . Moreover, an
application of Lemma 8 shows that the random variable τ is bounded above stochastically,
uniformly in T and x ∈ [0, 1). That is, for any η, there exists t1 > 0 such that for all T
large enough and for all x ∈ [0, 1),

P(τ > t1) ≤ η. (52)

Indeed, the coupling time τ is smaller than the meeting time of two independent processes
given by an unconditional square Bessel process of dimension 2 started at 1, with the
diffusion Y∞0 . This meeting time is finite almost surely, which proves (52). Let ε, η > 0.
If we now choose t large enough that t1/t ≤ ε and t > t0 from Lemma 10, we obtain

YTx
(∣∣∣∣1t

∫ t

0
Ys ds −m0

∣∣∣∣ > 2ε
)
≤ P(τ > t1)+ P

(∣∣∣∣1t
∫ t

0
Y 1
s ds −m0

∣∣∣∣ > ε

)
≤ η + Yx1/2

(∣∣∣∣1t
∫ t

0
Ys ds −m0

∣∣∣∣ > 2ε
)
.

Taking the limsup as T →∞, and using Lemma 10, we obtain

lim sup
T→∞

YTx
(∣∣∣∣1t

∫ t

0
Ys ds −m0

∣∣∣∣ > 2ε
)
≤ 2η (53)

for all t ≥ max(t0, t1/ε). Lemma 11 is now easily deduced from (53). ut

Our next lemma shows that, given Ea , we are unlikely to spend a large amount of time
below 0, and this amount can be controlled uniformly over a. In fact, the lemma states
that once we reach a given level we are unlikely to spend more than a certain amount of
time z below it.

Lemma 12. For any ε > 0, there exists z > 0 such that for all a > 0, and for all
0 ≤ y < a,

W0

(∫ τa

τy

1{Xs≤y} ds > z

∣∣∣∣ Ea) ≤ ε (54)

where τy = inf{s > 0 : Xs = y}. Similarly, there is b > 0 such that for all a > b, and all
y ∈ (b, a),

W0( inf
τy≤s≤τa

Xt < y − b) ≤ η. (55)
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Proof. For s ≥ 0, let X̃s = Xτy+s − y and L̃(s, w) = L(τy + s, y + w). By the Markov
property, it is easy to check that, given Ea and Fτy , the process X̃ has the law W0(· | Ẽ),
where

Ẽ = {L̃(s, w) ≤ f (w) for all 0 ≤ s ≤ τ̃a−y} (56)

with
f (w) := 1− L̃(0, w) = 1− L(τy, y + w). (57)

For s ≥ 0, let
Zs = L̃(τ̃a−y,−s)− L̃(0,−s) (58)

be the local time at level y − s accumulated by X̃ after hitting y. Then note that by the
occupation formula,∫ τa

τy

1{Xs≤y} ds =
∫ τ̃y−a

0
1
{X̃s≤0} ds =

∫
∞

0
Zs ds. (59)

By the Ray–Knight theorem, given Ẽ and Z0 = x ∈ [0, 1), (Zs, s ≥ 0) has the law

Zfx := Zx(· | {Zw ≤ f (w) for all w ≥ 0}), (60)

where Zx denotes the law of a Bessel process of dimension 0 started from Z0 = x,
i.e., Zx is the Feller diffusion started from x. (Note that the event on the right hand side
of (60) is an event of positive probability for any given x < f (0), since Feller diffusions
become extinct almost surely.) By Lemma 8 applied to the diffusion Z rather than Y ,
for any x < f (0), the conditional law Zfx is stochastically dominated by Zx . Using for
instance the branching property of Feller diffusions, this is itself dominated by Z1, since
x < f (0) ≤ 1. Thus, letting µ(dx) denote the law on [0, f (0)] of Z0,

W0

(∫ τa

τy

1{Xs≤y} ds > z

∣∣∣∣Fτy ; Ea) =W0

(∫ τ̃y−a

0
1
{X̃s≤0} ds > z

∣∣∣∣ Ẽ)
=

∫ 1

0
µ(dx)W0

(∫
∞

0
Zs ds > z

∣∣∣∣Z0 = x; Ẽ
)

≤

∫ 1

0
µ(dx)Zfx

(∫
∞

0
Zs ds > z

)
≤

∫ 1

0
µ(dx)Z1

(∫
∞

0
Zs ds > z

)
≤ Z1

(∫
∞

0
Zs ds > z

)
.

Now, under Z1, (Zs, s ≥ 0) is almost surely continuous and becomes extinct in finite
time, thus

∫
∞

0 Zs ds < ∞ almost surely, and the right hand side in the above inequality
can be made arbitrarily small for large enough z. Taking the expectation to average out the
conditioning of Fτy finishes the proof of the first part of Lemma 12. The second part (55)
also follows from the same method; the details are left to the reader. ut
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We now show how Lemma 12 can be applied to prove a first piece of the result in The-
orem 2: it is shown that if y < a is given (we want to think of y large but fixed, and
a → ∞), then given Ea it has taken no more than approximately m0y units of time to
reach y.

Lemma 13. For any ε, η > 0 there exists y0 large enough that if y ≥ y0, and for all
sufficiently large a > 0,

W0(τy > m0y(1+ ε) | Ea) ≤ η (61)

where τy = inf{s > 0 : Xs = y}.

Proof. We start by noticing that for any z ≥ 0,

W0(τy > m0y(1+ ε) | Ea) ≤W0

(∫ y

0
L(τy, w) dw > m0y(1+ ε)− z

∣∣∣∣ Ea)
+W0

(∫ τa

0
1{Xs≤0} ds > z

∣∣∣∣ Ea).
Thus if we choose z as in Lemma 12 applied to y = 0, we have, for any a > 0, and for
any y ≥ y1 := 2z/(m0ε)

W0(τy > m0y(1+ ε) | Ea) ≤ η +W0

(∫ y

0
L(τy, w) dw > m0y(1+ ε/2)

∣∣∣∣ Ea)
≤ η +W0

(∫ y

0
L(τa, w) dw > m0y(1+ ε/2)

∣∣∣∣ Ea). (62)

For w ≥ 0, let Yw = L(τa, a − w). Under W0, recall that by the Ray–Knight theorem,
(Yw, w ≥ 0) is a strong Markov process which has the law of a square planar Bessel
process for (0 ≤ w ≤ a) and a Feller diffusion for w ≥ a. Now, conditionally on Ea , and
conditionally on Ya = x ∈ (0, 1), it follows easily from the strong Markov property at
time a that (Ys, 0 ≤ s ≤ a) has the law of a square planar Bessel bridge conditioned on
{sups≤a Ys ≤ 1}. That is, if we further condition on the position Ya = x, the part of the
constraint on Yw for w ≥ a becomes irrelevant.

We now appeal to the following time-reversal argument: let (Ys, s ≥ 0) be a square
Bessel bridge of dimension 2 with Y0 = 0 and Ya = x, and let

Y←w = Ya−w, 0 ≤ w ≤ a, (63)

be the time-reversed process. Then (Y←w , 0 ≤ w ≤ a) is itself a square Bessel bridge of
dimension 2 with Y←0 = x and Y←a = 0. (This follows quite easily from the rotational
invariance of Brownian motion and from the fact that a Brownian bridge presents the same
time-reversibility.) Furthermore, note that by Lemma 8, a square Bessel bridge from x

to 0, conditioned on {Ys ≤ 1 for all s ≤ a}, can be related to the measure Yax in the
following fashion:

Yax(· |Ya = 0) = lim
δ→0

Yax(· |Ya ≤ δ) � Yax(·) (64)



838 Itai Benjamini, Nathanaël Berestycki

where � stands for stochastic domination. Therefore, taking Yw = L(τa, a − w),

W0

(∫ y

0
L(τa, w) dw > m0y(1+ ε/2)

∣∣∣∣ Ea, Ya = x)
= Ya0

(∫ a

a−y

Yw dw > m0y(1+ ε/2)
∣∣∣∣Ya = x)

= Yax
(∫ y

0
Yw dw > m0y(1+ ε/2)

∣∣∣∣ |Ya = 0
)

≤ Yax
(

1
y

∫ y

0
Yw dw > m0(1+ ε/2)

)
. (65)

By Lemma 11, we may choose y2 large enough that if y ≥ y2 and for all large enough a,
the right hand side of (65) is smaller than η. Thus for y ≥ y1 ∨ y2, and for all large
enough a, we have by (62) and unconditioning on the position Ya in (65),

W0(τy > m0y(1+ ε) | Ea) ≤ 2η (66)

as required. ut

We now prove a bound in the other direction for the hitting times of certain levels. To
start, we need an a priori bound that says that it is unlikely for L(τa, 0) to be close to 1
when we condition on Ea .

Lemma 14. For any η > 0, there is a δ > 0 such that

W0(L(τa, 0) ≥ 1− δ | Ea) ≤ η (67)

for all large enough a > 0.
Proof. By Lemma 8 and the Ray–Knight theorem, we observe that the random variable
L(τa, 0), conditionally given Ea , is stochastically dominated by the squared modulus of a
two-dimensional Brownian motion at time a, conditioned to be smaller than 1. However,
the modulus at time a is an exponential random variable with mean

√
a, so (67) follows

easily. ut

Lemma 15. For any ε, η > 0 there exists y3 large enough that if y ≥ y3, and for all
sufficiently large a > 0,

W0(τy < m0y(1− ε) | Ea) ≤ η. (68)
Proof. The proof proceeds basically through the same steps as Lemma 13, but there are a
few changes. Let z be as in Lemma 12, and let 2z/ε =: y4 < y < a. On the event E(y, z)
that X does not spend more than z units of time after τy below level y, we get

E(y, z) ∩ {τy < m0y(1− ε)} = E(y, z) ∩
{∫ y

−∞

L(τy, w) dw < m0y(1− ε)
}

⊂

{∫ y

0
L(τa, w) dw < m0y(1− ε)+ z

}
⊂

{∫ y

0
L(τa, w) dw < m0y(1− ε/2)

}
.
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Define (Yw, w ≥ 0) to be, as usual, Yw = L(τa, a − w), for any w ≥ 0. Recall that Y is
an inhomogeneous diffusion, or more precisely, a square Bessel process of dimension 2
on [0, a], and a Feller diffusion on [a,∞). Fix δ > 0 as in Lemma 14, and note that by
optional stopping, since Z is a Z1−δ-martingale,

Z1−δ(sup
s>0

Zs < 1) = δ.

Now, by Lemma 11, we can choose y0 such that if y ≥ y0, for all x ∈ (0, 1) and all b > 0
large enough,

Ybx
(

1
y

∫ y

0
Ys ds < m0y(1− ε/2)

)
≤ ηδ. (69)

Therefore,

W0

(∫ y

0
L(τa, w) dw < m0y(1− ε/2)

∣∣∣∣ Ea)
≤ η +W0

(∫ y

0
L(τa, w) dw < m0y(1− ε/2);Ya ≤ 1− δ

∣∣∣∣ Ea)
≤ η +

1
δ

Ya0

(∫ a

a−y

Ys ds < m0y(1− ε/2);Ya ≤ 1− δ
)

≤ η +
1
δ

Ya0

(∫ a

a−y

Ys ds < m0y(1− ε/2)
)
. (70)

The idea is now to condition upon the position Ya−y = x. Conditionally on this event,

Ya0

(∫ a

a−y

Ys ds < m0y(1− ε/2)
∣∣∣∣Ya−y = x) = Yyx

(
1
y

∫ y

0
Ys ds ≤ m0(1− ε/2)

)
.

However, by Lemma 8, Yy0 � Yb0 for any b > y. Thus

Ya0

(∫ a

a−y

Ys ds < m0y(1− ε/2)
∣∣∣∣Ya−y = x) ≤ Ybx

(
1
y

∫ y

0
Ys ds ≤ m0(1− ε/2)

)
≤ ηδ

by our choice of y ≥ y0 and by taking b sufficiently large that (69) holds. Plugging this
into (70), we obtain

W0

(∫ y

0
L(τa, w) dw < m0y(1− ε/2)

∣∣∣∣ Ea) ≤ η + 1
δ
ηδ = 2η.

This completes the proof of Lemma 15. ut

We are now ready to finish the proof of Theorem 2.

Proof of Theorem 2. The proof is divided into two steps, a lower bound and an upper
bound. We start with the lower bound. We want to show that for any ε, η > 0, there
exists t3 large enough that for all t ≥ t3, and for all a > 0 sufficiently large,

W0(Xt < γ0t (1− ε) | Ea) ≤ η. (71)
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Indeed, if this holds, then it follows by weak convergence that any subsequential limit Q
of W0(·|Ea) satisfies: for any ε, η > 0, there exists t3 such that for all t ≥ t3,

Q(Xt < γ0t (1− ε)) ≤ η (72)

because the canonical projection map X 7→ Xt is a continuous map for the Skorokhod
topology. Hence Q(Xt/t − γ0 < −ε) ≤ η, and we conclude that

Q(Xt/t − γ0 < −ε) −−−→
t→∞

0,

which is, as claimed, the lower bound required for the proof of Theorem 2. Let us thus
turn to (72), fix ε, η > 0 with ε < 1, and choose y0 as in Lemma 13. For t4 = 4y0m0 and
t ≥ t4, let y = γ0t (1− ε/2) ≥ y0. Thus, for all a sufficiently large,

W0(τy ≤ t (1− ε/4) | Ea) ≤ η.

Having reached level y = γ0t (1 − ε/2) by time t (1 − ε/4), the only way Xt can be
below γ0(1− ε)t is if X reaches again γ0t (1− ε) after time τy . By (54) in Lemma 12, if
t ≥ t5 = 4b/ε (where z is as in Lemma 12), then this occurs with probability at most η
for all large enough a. Thus we conclude, for t ≥ t3 := t4 ∨ t5, for all large enough a,

W0(Xt < γ0t (1− ε) | Ea) ≤ 2η. (73)

This concludes the proof of the lower bound. We now turn to the proof of the upper bound,
where we wish to prove that for all η, ε > 0, there is t6 large enough that for all t ≥ t6,
and all a > 0 large enough,

W0(Xt > γ0t (1+ ε) | Ea) ≤ η. (74)

However, note that the event {Xt > γ0t (1+ ε)} is contained in the event {τy ≤ t} where
y = γ0t (1+ ε). By Lemma 15, if y ≥ y3, in particular if t ≥ t6 := y3m0, then it follows

W0(Xt > γ0t (1+ ε) | Ea) ≤W0(τy ≤ t | Ea) ≤W
(
τy ≤

ym0

1+ ε

∣∣∣∣ Ea) ≤ η,
as desired. This completes the proof of Theorem 2. ut

6. Random walk with bounded local time

Throughout this section we assume

L0 ≥ 2. (75)

We need to introduce some notation. Let

τk := inf{i : Si = k} (76)
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be the first hitting time of k ≥ 0. We then define Bk,B+k to be the events

Bk := Aτk = {L(τk, x, ω) ≤ L0 for all x}, (77)

B+n := Bn ∩ {Si > 0 for 1 ≤ i ≤ τn}. (78)

Thus B+n occurs if the sample path minus its endpoints stays strictly between its initial
point at 0 and its final point at n. Thus the maximum value of the points is n and this is
taken on for the first time at the endpoint and necessarily, the length of the path equals τn.
Moreover, the sample path through time τk visits each value x at most L0 times. The
event B+k will play a major role in our analysis, since it can be interpreted as having a
regenerating level immediately at the starting point. We shall make use of the following
σ -fields:

Fn = σ {Si, i ≤ n}, F∞ =
∨
n≥0

Fn, Gk = Fτk .

Lemma 16. There exists some constant C3 > 0 such that

P(B+k ) ≥ C3P(Bk), k ≥ 1. (79)

Proof. Fix k and let ρ be the last time before τk at which the random walk visits 0, i.e.,

ρ = max{i < τk : Si = 0}.

Note that Sτk = k > 0 for k ≥ 1. Therefore, Si > 0 for ρ < i ≤ τk . Consequently, a
decomposition with respect to the value of ρ shows that

P(Bk) =
∞∑
j=0

P(ρ = j,Bk)

≤

∞∑
j=0

P(Sj = 0, L(j, x) ≤ L0 for all x, τk > j

and Sn − Sj > 0 for 1 ≤ n− j ≤ τk − j, L(τk, x)− L(j, x) ≤ L0 for all x)

=

∞∑
j=0

P(Sj = 0, L(j, x) ≤ L0 for all x, j < τk)P (B+k ). (80)

But for any x, on the event {Sn = y, L(n, x) ≤ L0 for all x} we have

P(L(n+ 2L0 + 2, y) ≥ L0 + 1 | S0, . . . , Sn)

≥ P(Sn+2i+1 = y + 1, Sn+2i+2 = Sn = y for 0 ≤ i ≤ L0) ≥ 2−L0−1 > 0.

It follows easily from this that

P(L(j, x) ≤ L0 for all x) = P(Aj ) ≤ C4e
−C5j (81)
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for some constants 0 < Ci <∞. In turn, this implies

∞∑
j=0

P(Sj = 0, L(j, x) ≤ L0 for all x, j < τk) ≤

∞∑
j=0

P(L(j, x) ≤ L0 for all x) <∞,

so that (79) follows from (80). ut

We need sharper information about possible weak limits of P(· |Br). This will be given
in the following lemma. We define

Ck := {Si > k for all i > τk}. (82)

Remark 1. We are going to study weak limit points of the measures P(· |Br) as r →∞.
Note that each τn < ∞ a.s. [P ], so conditioning on Br is the same as conditioning on
Br ∩ {τn <∞} for any n, including n = r , possibly. This does not automatically say that
for a limit point Q of P(· |Bri ) we have Q(τn < ∞) = 1 for all n. In fact this will be
false for n < 0. But it is correct for n ≥ 0. Indeed, the case n = 0 is trivial, since τ0 = 0
a.s. [P ]. For r > n > 0,

P(τn > t,Br) = E(1{τn>t}P(Br |Ft )) ≤ P(τn > t)P (Br−n). (83)

To see this, note that if the walk is at a position m < n at time t , then for Br to occur the
local time has to be ≤ L0 as the walk moves from m to r , which is an interval of length
at least r −m ≥ r − n: this implies (83). Therefore, by (86) below,

P(τn > t |Br) ≤ P(τn > t)
P (Br−n)
P (Br)

≤ P(τn > t)2n.

For fixed n > 0 we can make the limsup of the right hand side here as r → ∞ as small
as we like by taking t large. Thus Q(τn = ∞) = 0 for each n > 0.

The following lemma is the first of two crucial steps in the proof of Theorem 5.

Lemma 17. There exists a constant 0 ≤ C4 <∞ such that

lim
t→∞

P(Bt )1/t = e−C4 (84)

and for all t ≥ 0,
P(Bt ) ≥ e−C4t . (85)

In addition, for all s, t ≥ 0,
P(Bt ) ≤ 2sP(Bt+s). (86)

Further,
P(B+n ) ∼ C6e

−C4n (87)

for a suitable constant C6 > 0.
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Proof. For (84) and (85), we merely have to observe that

P(Bs+t ) = P(Aτs+t ) ≤ P(Aτs )P (Aτt ) = P(Bs)P (Bt ), (88)

because if the random walk {Sn} reaches level s+t at time τs+t , with supx L(τs+t , x)≤L0,
then the random walk must first reach s at time τs with supx L(τs, x) ≤ L0 and then the
random walk starting at s must reach s + t with supx[L(τs+t , x)− L(τs, x)] ≤ L0. Thus
P(Bt ) forms a submultiplicative sequence, and it follows that limt→∞ P(Bt )1/t = e−C4

exists. It is obvious that C4 ≥ 0, and from (86), proved below, we get C4 ≤ log 2 < ∞.
Moreover it is well-known that by submultiplicativity, −C4 = inft≥1 logP(Bt )/t , hence
P(Bt ) ≥ e−C4t for all t ≥ 1.

As for (86), this follows from the simple fact that (by definition) the random walk
arrives at t for the first time at τt , so that Sτt = t . If then the random walk takes one step
to the right it arrives for the first time at t+1 at time τt+1. Moreover, supx L(τt+1, x) ≤
1 ∨ supx L(τt , x), because the random walk visits a new point at τt + 1. Thus, if Bt
occurred, then also Bt+1 occurs in this case. Hence

P(Bt+1) ≥ P(Bt )P (Sτt+1 = Sτt + 1) =
1
2
P(Bt ).

Induction on s now yields (86).
The proof of (87) is much more involved. However, it is closely related to Lemma 2 in

Kesten [10]. In analogy with the Ln from this reference we introduce the further event Ln
which is roughly speaking the event that B+n occurs (so that 0 is a regeneration level) and
there is no other regeneration level between 0 and n. To give the formal definition, we
define the shift Tn by

(Tnω)j = ωτn+j .

We then take B+0 to be the certain event, L0 the empty event, and L1 = B+1 the event
{S0 = 0, S1 = 1}. Further, for n ≥ 2,

Ln := B+n ∩ {∀k < n, Tkω /∈ B+n−k}. (89)

The last property says that a sample path (ω0, ω1, . . . , ωm) in Ln cannot be decomposed
into two pieces (ω0, . . . , ωj ) and (ωj , . . . , ωm) with the first part minus its endpoint lying
strictly to the left of ωj and the second part lying strictly to the right of ωj (except for its
initial point). The first part in such a decomposition would belong to B+j and the second
part would be a translate of a path in B+n−j .

Of course {Tkω ∈ B+n−k} is the event that B+n−k occurs for the shifted sequence
Tkω = (ωτk , ωτk+1, . . . ). Since B+n−k depends only on (ω0, . . . , ωτn−k ) we shall occa-
sionally abuse notation and write (ωτk , ωτk+1, . . . , ωτn) ∈ B

+

n−k instead of Tkω ∈ B+n−k .
The main step will be to show that

P(B+n ) =
n∑
j=1

P(Lj )P (B+n−j ), n ≥ 1. (90)
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This relation holds by convention if n = 1, so assume n ≥ 2 and that B+n occurs. Then
define k to be minimal so that B+k ∩ {Tkω ∈ B

+

n−k} occurs. This minimal index is well
defined because the event B+n ∩ {Tnω ∈ B

+

0 } = B
+
n occurs. Of course the minimal index

is unique. We claim that for this minimal k the event Lk occurs. Indeed, note that B+k
occurs, so that by the definition (89) with n and k replaced by k and j , if Lk fails, then
it must be that {∀j < k, Tjω /∈ B+k−j } fails, i.e., there is j < k such that Tjω ∈ B+k−j .
Since ω ∈ B+n , this implies that Tjω ∈ B+n−j as well, and it is obvious that B+j must hold
as well since B+n holds. This contradicts the minimality of k, and hence Lk holds. Since
Tkω ∈ B+n−k by definition, it follows immediately that

P(B+n ) ≤
n∑
k=1

P(Lk ∩ {Tkω ∈ B+n−k}).

But Lk ∈ Gk , because the occurrence of Lk depends on (ω0, . . . , ωτk ) only. (Recall that
Gk = Fτk by definition.) Thus, by the strong Markov property,

P(B+n ) ≤
n∑
k=1

P(Lk)P (Tkω ∈ B+n−k) =
n∑
k=1

P(Lk)P (B+n−k). (91)

To prove the opposite inequality fix a k ∈ {1, . . . , n} and assume the following two events
occur:

Lk and ω′ := Tkω = (ωτk , ωτk+1, . . . ) ∈ B+n−k. (92)

Then ω is such that

1 ≤ ω` ≤ k − 1 for 1 ≤ ` < τk, ωτk = k, (93)

and
k + 1 ≤ ωτk+` = ω

′

` ≤ n− 1 for 1 ≤ ` ≤ τn − 1. (94)

Moreover, if τ ′n−k denotes the first hitting time of n− k by the path ω′, then

sup
x
L(τn, x, ω) ≤ sup

x
L(τk, x, ω) ∨ sup

x
L(τ ′n−k, x, ω

′) ∨ 1

= sup
x
L(τk, x, ω) ∨ sup

x
[L(τ, n, x, ω)− L(k, x, ω)] ∨ 1 ≤ L0. (95)

Together these properties show that ω ∈ B+n . Thus the sample sequences for which the
events in (92) occur contribute P(Lk)P (B+n−k) to P(B+n ). In order to prove

P(B+n ) ≥
n∑
j=1

P(Lj )P (B+n−j ) (96)

we therefore merely have to show that (92) can occur only for one k. To see that this is
indeed the case assume that in addition to (92) also

Lj and ω′′ := Tjω = (ωτj , ωτj+1, . . . ) ∈ B+n−j (97)
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occur for some j 6= k, j ∈ [1, n]. For the sake of argument let j < k. But then, on the
one hand, B+j occurs (by definition of Lj or since B+k occurs) and on the other hand, also

Tjω ∈ B+k−j occurs. (98)

But this contradicts the definition of Lk , so that (92) and (97) cannot hold simultaneously.
This, in turn, implies (96) and then finally (90).

We can finally start the proof of (87) proper. Define

fn = e
C4nP(Ln) and un = e

C4nP(B+n ).

By our conventions just before (89),

u0 = 1, f0 = 0, u1 = f1 = (1/2)eC4 .

Moreover, by (90) these quantities satisfy the renewal equation

un =

n∑
j=1

fjun−j , n ≥ 1.

In addition, by Lemma 16 and (85),

un = e
C4nP(B+n ) ≥ C3e

C4nP(Bn) ≥ C3 > 0,

and limn→∞[un]1/n
= 1. By the renewal theorem (see, e.g., Feller [6, Theorems 2 and 3

in 12.3]), these facts imply

∞∑
j=1

fj = 1 and lim
n→∞

un =
1
µ
,

where

0 < µ =

∞∑
j=1

nfn <∞. (99)

Thus,

P(B+n ) ∼
1
µ
e−C4n, (100)

which proves (87). The finishes the proof of Lemma 17. ut

We now move on to the second crucial step in the proof of Theorem 5.

Lemma 18. The limit

C5 := lim
n→∞

P(B+n )
P (Bn)

exists and C5 ≥ C3 > 0. (101)

Also for E an event in Gk ,

lim
n→∞

P(E ∩ Ck |Bn) = C5e
C4kP(E, sup

x
L(τk, x) ≤ L0), (102)
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where Ck = {Si > k for all i > τk} is the event defined in (82). Finally,

lim
n→∞

eC4nP(Bn) = C7 (103)

exists, where 0 < C7 <∞.

Proof. Let R = {0 < r1 < r2 < · · · } be a subsequence along which the weak limit
of P(· |Aτk ) exists, and let Q(·) be the value of this limit. The limit along the subse-
quence R will be denoted as limr∈R. Without loss of generality we may assume that
also limr∈R P(B+r )/P (Br) exists (since it is a bounded sequence) and is at least C3 (by
Lemma 16). (Later on we will prove that this limit does not depend on R and hence
limr→∞ P(B+r )/P (Br) exists.) Now let E ∈ Gk . Then

Q(E ∩ Ck) = Q(E, Si > k for all i > τk) = lim
N→∞

Q(E, Si > k, τk < i ≤ τk+N ). (104)

We want to show that this equals

eC4kP(E, sup
x
L(τk, x) ≤ L0) lim

r∈R

P(B+r )
P (Br)

. (105)

To this end observe first that

Q(E, Si > k for τk < i ≤ τk+N ) = lim
r∈R

P(E, Si > k for τk < i ≤ τk+N ,Br)
P (Br)

,

and secondly that for r ≥ k +N (because Sτk = k)

|P(E, Si > k for τk < i ≤ τk+N ,Br)− P(E, Si > k for τk < i ≤ τr ,Br)|
≤ P(Si = k for some τk+N < i ≤ τr , sup

x
L(τr , x) ≤ L0)

≤ P(there exists some τk+N < i ≤ τr for which Si = k
and sup

x
L(i, x) ≤ L0 as well as sup

x
[L(τr , x)− L(i, x)] ≤ L0)

≤ P(Si = k and sup
x
L(i, x) ≤ L0 for some τk+N < i ≤ τr)P (Br−k)

≤ P(Si = k and sup
x
L(i, x) ≤ L0 for some τk+N < i ≤ τr)2kP(Br)

≤ 2kP(sup
x
L(τk+N , x) ≤ L0)P (Br) = 2kP(Bk+N )P (Br) ≤ C72ke−C4(k+N)P(Br)

for some constantC7 independent of k, r (use Lemma 16 and (100) for the last inequality).
Consequently, using (104),

Q(E, Si > k for all i > τk) = lim
r∈R

P(E, Si > k, τk < i ≤ τr ,Br)
P (Br)

. (106)

But if Si > k for τk < i ≤ τr , then

L(τr , x) =

{
L(τk, x) if x ≤ k,
L(τr , x)− L(τk, x) if x > k.
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Therefore (use E ∈ Gτk and again Sτk = k)

P(E, Si > k, τk < i ≤ τr ,Br) = P(E,Bk)P (B+r−k). (107)

Together with (106) and (100) this proves the desired (105).
We next claim that there exist events Ek ∈ Gk such that

{Ek, Si > k for all i > τk} = Ek ∩ Ck
= {k is the smallest value of n for which Cn occurs}. (108)

To see this, set for j < k,

Dj,k := {Si > j for τj < i ≤ τk}.

Then Cj ∩ Ck = Dj,k ∩ Ck and consequently⋃
0≤j<k

(Cj ∩ Ck) = Ck ∩
⋃

0≤j<k

Dj,k.

The right hand side of (108) equals

Ck \
⋃

0≤j<k

(Cj ∩ Ck) = Ck ∩
[ ⋃

0≤j<k

Dj,k
]c
.

This gives us (108) with Ek equal to the complement of
⋃

0≤j<k Dj,k .
We can now apply (105) with E taken equal to Ek , with the result that

Q(k is the smallest value of n for which Cn occurs) = Q(Ek ∩ Ck)

= eC4kP(Ek, sup
x
L(τk, x) ≤ L0) lim

r∈R

P(B+r )
P (Br)

. (109)

Finally we shall show that

∞∑
k=0

Q(k is the smallest value of n for which Cn occurs)

= Q(Ck occurs for some k ≥ 0) = 1. (110)

From this and (109) we can conclude that

C5 := lim
r∈R

P(B+r )
P (Br)

(111)

exists, is independent of R, and ≥ C3 by virtue of Lemma 16. In view of (106) this will
also show that for all E ∈ Gk the full limit

lim
n→∞

P(E ∩ Ck |Bn) = C5e
C4kP(Ek, sup

x
L(τk, x) ≤ L0)

exists, and has the value given in (102). Also (103) follows from (87) and (111).
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It remains to prove (110). To this end we want to show that Q(Ck |Gk) is bounded
from below. To prove this we note that for each fixed k, any element of Gk is up toQ-null
sets a finite or countable disjoint union of sets of the form

H(η) = {Si = ωi = ηi, 0 ≤ i ≤ m},

where m <∞ and η = (η0, . . . , ηm) runs over the sequences which satisfy

η0 = 0, ηi − ηi−1 = ±1, 1 ≤ i ≤ m, ηj < ηm = k, 0 < j < m. (112)

(Note that the requirements on η in (112) are such that τk = m for any sample point with
(S0, . . . , Sm) = η. We can restrict ourselves to finite m, because Q(τk = ∞) = 0 by
Remark 1.) Now, as before, for any such η,

Q(H(η), Ck)
Q(H(η))

= lim
N→∞

lim
r∈R

P(H(η), Si > k, τk = m < i ≤ τk+N , supx L(τr , x) ≤ L0)

P (H(η), supx L(τr , x) ≤ L0)
.

(113)
This time we use that the denominator on the right hand side here is at most

P(H(η), sup
x
L(τk, x) ≤ L0)P (Br−k)

(compare (107)). As in the lines following (106) the numerator on the right hand side of
(113) is bounded below by

P(H(η), sup
x
L(τk, x) ≤ L0)P (Dk,k+N , sup

x
[L(τr , x)− L(τk, x)] ≤ L0)

= P(H(η), sup
x
L(τk, x) ≤ L0)P (B+r−k) ≥ C3P(H(η), sup

x
L(τk, x) ≤ L0)P (Br−k).

It follows from these estimates that

Q(H(η), Ck)
Q(H(η))

≥ C3.

Since this holds for all atoms η of Gk we conclude that

Q(Ck |Gk) ≥ C3. (114)

The relation (110) is a simple consequence of (114) and the martingale convergence the-
orem. Indeed, set

YN = 1{Ck occurs for some k ≥ N}.

Then, if we write EQ for expectation with respect to Q, we have, for each fixed N ,

lim
k→∞

EQ(YN |Gk) = YN a.s. [Q].

On the other hand, for k ≥ N , EQ(YN |Gk) ≥ Q(Ck |Gk) ≥ C3, from which we deduce
that

YN ≥ C3 a.s. [Q].

Thus Q(YN = 1) = 1 and (110) holds. This finishes the proof of Lemma 18. ut
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Lemma 19. The sequence of measures P(· |Bn) converges weakly to a limit measure Q.

Proof. Because the walk is nearest-neighbour, it is always the case that P(· |Bn) is tight:
it thus suffices to prove uniqueness of the weak subsequential limits. Thus, letQ be a weak
limit along the subsequence R. Let ν0 = 0 and let 0 ≤ ν1 < ν2 < · · · be the successive
values of ν for which Cν occurs. (110) shows that ν1 <∞ a.s. [Q], but the proof of (110)
shows that all νi are a.s. [Q] finite. From this we will see thatQ(E) = limn→∞ P(E |Bn),
with the limit taken along the sequence of all integers, for any cylinder set E . Indeed, let
E ∈ Ft . Since τt ≥ t (because |Si+1 − Si | ≤ 1), we have Ft ⊂ Gt , and so E ∈ Gt . Now
let ρ be the first νi ≥ t . Then E =

⋃
s≥t [E ∩ {ρ = s}] and E ∩ {ρ = s} = Es ∩ Cs for

some Es ∈ Gs (as in (108)). Consequently,

lim
n→∞

P(E ∩ {ρ = s} |Bn) exists (by (102)).

Also, ∣∣∣P(E |Bn)− s=t+N∑
s=t

P(E ∩ {ρ = s} |Bn)
∣∣∣ ≤ P(ρ > t +N |Bn).

Finally,
lim
N→∞

lim sup
n→∞

P(ρ > t +N |Bn) = 0, (115)

because if this fails, then (by the monotonicity in N ) there exists a sequence R = {r1 <
r2 < · · · } and an ε > 0 such that

Q(ρ ≤ t +N) ≤ 1− ε for all N,

where Q is the weak limit of P(· |Bri ). But we have just seen that ρ < ∞ a.s. [Q], so
that (115) must hold. But then

lim
n→∞

P(E |Bn) =
∞∑
s=t

lim
n→∞

P(E ∩ {ρ = s} |Bn).

This proves Lemma 19. ut

From now onQwill be the (weak) limit of the probability measures P(· |Bn) on�. Since
S0 = 0 and Sn+1 − Sn = ±1 with P -probability 1, it is also the case that

Q(S0 = 0) = 1 and Q(Sn+1 − Sn = ±1) = 1. (116)

Also
Q(Sn = y for more than L0 values of n) = 0, (117)

because for each fixed n and all r > n,

P((L0 + 1)th visit of S to y is at time n |Br) = 0.

We remind the reader that Ck is defined in (82). We now come to our main result, which
describes the structure of Q and is a more precise statement than Theorem 5. Define
σ0 = 0,

σ1 := inf{τ` : C` occurs}, σj+1 := inf{τ` > σj : C` occurs},
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and, in agreement with Remark 2, let νj be the unique value of ν for which σj = τν . That
is, σj is the time at which the j th regeneration level occurs. Thus, by definition,

Sn < νj for n < τνj , Sτνj = νj

but
Sn > Sσj = Sτνj = νj for n > τνj .

Moreover, if n = τs but s is not one of the νj , then St ≤ s for some t > τs . Roughly
speaking, the τj are the strict upward ladder epochs for the random walk {Sn}. The σj are
special ladder epochs which make them regeneration times (in a sense to be made precise
in Proposition 5). The σj are those ladder epochs which are visited only once. For τk to
be such a special ladder epoch it is required that after τk the random walk stay strictly
above its value at τk , that is, it is required that Ck occur. The special ladder epochs σs
are regeneration epochs, because they separate the path of the random walk {Sn} into two
pieces which do not overlap (except that the endpoint of one of these pieces coincides
with the initial point of the next piece).

On the event {νj <∞} we define the j th excursion ϒj to be the sequence of random
variables (Sn − Sτνj ) = (Sn − νj ), νj ≤ n < νj+1. We already proved in Remark 2 that
all νj are finite a.s. [Q]. To describe the distribution of the excursions we introduce some
collections of possible finite sequences which can be the value of ϒj . For 1 ≤ m < ∞,
we define M̃m as the collection of sequences η = (η0, η1, . . . , ηm) which satisfy

η0 = 0, ηi − ηi−1 ∈ {+1,−1} for 1 ≤ i ≤ m, (118)
for any x ∈ Z, ηi = x for at most L0 values of i ∈ [0, m], (119)

ηm > ηi for 0 ≤ i < m, (120)

but there is no 0 < j < m such that

Si < Sj < S` < Sm for i < j < ` < m. (121)

These collections will serve to describe the distribution of ϒj when j = 0. For j ≥ 1
we shall use Mm which is defined as the collection of sequences η = (η0, η1, . . . , ηm)

∈ M̃m which in addition satisfy

ηi > 0 for 1 ≤ i ≤ m. (122)

Proposition 20. Under Q all the νj are a.s. finite. Moreover, the excursions ϒj are inde-
pendent, with a distribution specified by

Q(ϒ0 = η = (η0, . . . , ηm)) =
1
Z̃
eC4mP((S0, . . . , Sm) = η) (123)

for any η ∈ M̃m. Here Z̃ is a normalizing factor given by

Z̃ =

∞∑
m=0

eC4m
∑

η∈M̃m

P((S0, . . . , Sm) = η). (124)



Random paths with bounded local time 851

Similarly, the distribution of ϒs with s ≥ 1 is given by

Q(ϒs = η = (η0, . . . , ηm)) =
1
Z
eC4mP((S0, . . . , Sm) = η) (125)

for any η ∈Mm, with Z given by

Z =

∞∑
m=0

eC4m
∑

η∈Mm

P((S0, . . . , Sm) = η). (126)

In particular, the (ϒs, s ≥ 1) are i.i.d. under Q. Moreover, for every s ≥ 0,

EQ(νs+1 − νs) <∞. (127)

Proof. We already know from Remark 2 that all νj are finite a.s. [Q].
Now suppose that H(η) occurs for some η ∈ M̃m. By (120) we then automatically

have m = τs for s = ηm. Therefore, on H(η) ∩ Cs = H(η) ∩ Cηm , τs ∩ Cs occurs and
s = ηm has to equal σr for some r and s has to be one of the νj . In fact, (121) shows that
there can be no j < m such that ηj is an earlier σ , i.e. σt with t < r . Thus, onH(η) ∩ Cs
we have σ1 = τs . Moreover, σ1 = τs can occur only if H(η) for some η ∈ M̃m occurs,
as well as Cs . Thus, ϒ0 = η is possible only if η lies in M̃m for some m. Furthermore

{ϒ0 = η} = {H(η) ∩ Cηm} for η ∈ M̃m.

Also, for η ∈ M̃m, H(η) ∈ Gηm (because m = τηm by (120)). Hence (102), with E
replaced by H(η), shows that

Q(ϒ0 = η) = Q(H(η) ∩ Cηm) = C5e
C4mP((S0, . . . , Sm) = η, sup

x
L(m, x) ≤ L0).

The condition supx L(m, x) ≤ L0 can be dropped here, because this is automatic if
Si = ηi , 0 ≤ i ≤ m for some η ∈ M̃m (by (119)). This implies (123) with (124).

To prove the statements (125) and (126) in Proposition 5 we have to show that for
η(0) ∈ M̃m(0), and η(s) ∈Mm(s) for 1 ≤ s ≤ r , and for some constant C,

Q(ϒs = η(s), 0 ≤ s ≤ r) = C
r∏
s=0

[eC4m(s)P((S0, . . . , Sm(s)) = η(s))]. (128)

Let η(s) = (η
(s)
0 = 0, . . . , η(s)m(s)) and write

q(s) =

s−1∑
j=0

m(j)

(with q(0) = 0). Then the event on the left hand side of (128) will occur if and only if

E (r) :=
{
Sq(s)+i =

s−1∑
j=0

η
(j)

m(j) + η
(s)
i , 0 ≤ i ≤ m(s), 0 ≤ s ≤ r

}
, (129)
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as well as
r⋂
s=0

C
( s∑
j=0

η
(j)

m(j)

)
(130)

occur. Here we have written C(a) for Ca to avoid complicated subscripts. By the defini-
tions of M̃m(0) and the Mm(s), η

(0)
m(0) > 0 and all η(s)j , 0 ≤ j ≤ m(s) are nonnegative.

Therefore
∑s
j=0 η

(j)

m(j) ≥
∑s−1
j=0 η

(j)

m(j), 1 ≤ s ≤ r , and

r−1⋂
s=0

C
( s∑
j=0

η
(j)

m(j)

)
⊂ E (r) ∩ C

( r∑
j=0

η
(j)

m(j)

)
.

Also the event (129) is contained in G(
∑r
s=0 η

(s)
m(s)) (where we have written G(a) for Ga),

since on (129) S. reaches the level
∑r
s=0 η

(s)
m(s) first at the time q(r + 1). It now follows

from the fact that the value of (104) is given by (105) that the left hand side of (128)
equals

C5e
C4q(r+1)P(E (r), sup

x
L(q(r + 1), x) ≤ L0). (131)

Finally,

E (r) =
r⋂
s=0

{Sq(s)+i − Sq(s) = η
(s)
i , 0 ≤ i ≤ m(s)},

and on E (r) the range of {Sq(s)+i, 0 ≤ i ≤ m(s)} consists of the integers in the interval
[
∑s−1
j=0 η

(j)

m(j),
∑s
j=0 η

(j)

m(j)], 1 ≤ s ≤ r . The interiors of these intervals are disjoint and
any value x in those interiors is taken on at most L0 times by {Sq(s)+i, 0 ≤ i ≤ m(s)} if
(Sq(s) − Sq(s), Sq(s)+1 − Sq(s), . . . , Sq(s+1)) − Sq(s)) = η(s), by virtue of (119). More-
over, on E (r), the endpoints

∑s
j=0 η

(j)

m(j), 0 ≤ s ≤ r , are even taken on only once by

the Si , 0 ≤ i ≤ q(r + 1), because
∑s
j=0 η

(j−1)
m(j−1) >

∑s−1
j=0 η

(j)

m(j). Therefore, the con-
dition supx L(q(r + 1), x) ≤ L0 is automatically fulfilled on E (r) and can be dropped
from (131). The result is

Q(ϒr = η(r), 0 ≤ r ≤ s) = C5e
C4q(r+1)P(E (r))

= C5

r∏
s=0

[eC4m(s)P(Si = η
(s)
i , 0 ≤ i ≤ m(s))] (132)

for η(0) ∈ M̃m(0), η(s) ∈Mm(s), 1 ≤ s ≤ r . The fact that the right hand side here is a
product of factors each of which depends on the value of one ϒs only shows that the ϒs
are independent. The actual distribution of the ϒs can also be read off from (132) and is
given by (125) and (126).

Finally, the random variables (νs+1 − νs), s ≥ 1, are i.i.d. under Q, so that by the
renewal theorem,

1
n

n∑
`=1

Q(` equals some νj )→ [EQ(ν2 − ν1)]−1 as n→∞. (133)
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However, by (114), we know that

Q(` equals some νj ) ≥ Q(C`) ≥ C3,

hence

lim inf
n→∞

1
n

n∑
`=1

Q(` equals some νj ) ≥ C3.

Since C3 > 0, this and (133) imply (127). ut

Corollary 21.

EQ(σs+1 − σs) = E
Q(τνs+1 − τνs ) < L0E

Q(νs+1 − νs) <∞. (134)

Proof. By (117), the amount of time spent by the walk in any interval [a, b) ⊂ Z is at
mostL0(b−a). By definition of the τ ’s and the σ ’s the walk stays in the interval [νj , νj+1)

during [τνj , τνj+1) = [σj , σj+1). Thus (134) follows from (127). The strict inequality
in (134) follows from the fact that for every j ≥ 0, every site x between two successive
regeneration levels x ∈ [νj , νj+1) ∩ Z is visited at most L0 times, except x = νj itself
which is visited at most once. It follows that

σj+1 − σj ≤ L0(νj+1 − νj − 1)+ 1

almost surely. Taking expectations leads to the strict inequality in (134). ut

With this in mind, routine manipulations show that under Q, the position Xt satisfies the
law of large numbers:

lim
n→∞

Xn

n
:= γ (L0) (135)

exists almost surely under Q, with

γ (L0) :=
EQ(νs+1 − νs)

EQ(σs+1 − σs)
.

By (134), we see that γ (L0) > 1/L0, which concludes the proof of Theorem 5. ut
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limited local time. Ann. Inst. H. Poincaré Probab. Statist., to appear; arXiv:0806.0597v3

[2] Billingsley, P.: Convergence of Probability Measures. 2nd ed., Wiley (1999) Zbl 0944.60003
MR 1700749

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0944.60003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1700749


854 Itai Benjamini, Nathanaël Berestycki
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