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Abstract. Let M and M̄ be n-dimensional manifolds equipped with suitable Borel probability
measures ρ and ρ̄. For subdomains M and M̄ of Rn, Ma, Trudinger & Wang gave sufficient condi-
tions on a transportation cost c ∈ C4(M×M̄) to guarantee smoothness of the optimal map pushing
ρ forward to ρ̄; the necessity of these conditions was deduced by Loeper. The present manuscript
shows the form of these conditions to be largely dictated by the covariance of the question; it ex-
presses them via non-negativity of the sectional curvature of certain null-planes in a novel but nat-
ural pseudo-Riemannian geometry which the cost c induces on the product space M × M̄ . We also
explore some connections between optimal transportation and spacelike Lagrangian submanifolds
in symplectic geometry.

Using the pseudo-Riemannian structure, we extend Ma, Trudinger and Wang’s conditions to
transportation costs on differentiable manifolds, and provide a direct elementary proof of a maxi-
mum principle characterizing it due to Loeper, relaxing his hypotheses even for subdomainsM and
M̄ of Rn. This maximum principle plays a key role in Loeper’s Hölder continuity theory of optimal
maps. Our proof allows his theory to be made logically independent of all earlier works, and sets
the stage for extending it to new global settings, such as general submersions and tensor products
of the specific Riemannian manifolds he considered.

Keywords. Optimal transportation, regularity of optimal maps, Hölder continuity, curvature, co-
variance, pseudo-Riemannian, semi-Riemannian, para-Kähler, spacelike Lagrangian, lightlike sub-
manifold, signature (n, n), Monge–Kantorovich, measure-preserving homeomorphism

1. Introduction

LetM and M̄ be Borel subsets of compact separable metric spaces, in which their closures
are denoted by clM and cl M̄ . Suppose M and M̄ are equipped with Borel probability
measures ρ and ρ̄, and let c : cl(M × M̄) → R ∪ {+∞} be a lower semicontinuous
transportation cost defined on the product space. The optimal transportation problem of
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Kantorovich [25] is to find the measure γ ≥ 0 on M × M̄ which achieves the infimum

Wc(ρ, ρ̄) := min
γ∈0(ρ,ρ̄)

∫
M×M̄

c(x, x̄) dγ (x, x̄). (1.1)

Here 0(ρ, ρ̄) denotes the set of joint probabilities having the same left and right marginals
as ρ ⊗ ρ̄. It is not hard to check that this minimum is attained; any minimizing measure
γ ∈ 0(ρ, ρ̄) is then called optimal. Each feasible γ ∈ 0(ρ, ρ̄) can be thought of as
a weighted relation pairing points x distributed like ρ with points x̄ distributed like ρ̄;
optimality implies this pairing also minimizes the average value of the specified cost
c(x, x̄) of transporting each point x to its destination x̄.

The optimal transportation problem of Monge [38] amounts to finding a Borel map
F : M → M̄ , and an optimal measure γ vanishing outside Graph(F ) := {(x, x̄) ∈
M × M̄ | x̄ = F(x)}. When such a map F exists, it is called an optimal map between ρ
and ρ̄; in this case, the relation γ is single-valued, so that ρ-almost every point x has a
unique partner x̄ = F(x), and optimality can be achieved in (1.1) without subdividing the
mass at such points x between different destinations. Although Monge’s problem is more
subtle to solve than Kantorovich’s, whenM is a smooth manifold and ρ vanishes on every
Lipschitz submanifold of lower dimension, a twist condition ((A1), Definition 2.1 below)
on the cost function c(x, x̄) guarantees existence and uniqueness of an optimal map F , as
well as uniqueness of the optimal measure γ ; see Gangbo [21], Levin [30], Carlier [9],
and Ma, Trudinger & Wang [34] for statements of comparable generality, and the works
of Brenier, Caffarelli, Gangbo, McCann and others cited in [10], [50]. One can then ask
about the smoothness of the optimal map F : M → M̄ .

For Euclidean distance squared c(x, x̄) = |x − x̄|2/2, this regularity question was
resolved using geometric ideas by Caffarelli [5]–[7], and also by Delanoë in the plane [13]
and by Urbas in higher dimensions [44], who formulated it as an oblique boundary value
problem and applied the continuity method with a priori estimates. Convexity of M̄ ⊂ Rn
necessarily plays a crucial role. Delanoë investigated regularity of optimal transport with
respect to Riemannian distance squared on a compact manifold [36], but completed his
program only for nearly flat manifolds [14], an improvement on Cordero-Erausquin’s
result from the torus [11], though his criterion for nearness to flat depends on the measures
ρ and ρ̄. Under suitable conditions on ρ and ρ̄ and domains M and M̄ ⊂ Rn, Ma,
Trudinger & Wang [34], [42] developed estimates and a continuity method approach to
a class of cost functions c ∈ C4(M × M̄) which satisfy a mysterious structure condition
comparing third and fourth derivatives. Adopting the notation defined in the following
section, they express this condition in the form∑

1≤i,j≤n

(−cij k̄l̄ + cij āc
ābck̄l̄b)c

k̄ecl̄fpipjqeqf ≥ C|p|
2
|q|2 if p ⊥ q, (1.2)

for some constant C ≥ 0 and each pair of orthogonal vectors p, q ∈ Rn. Here summation
on ā, b, e, f, k̄, l̄ is implicit but the sum on i, j is written explicitly for consistency with
our later notation. Loeper [31] confirmed their structure condition to be necessary for con-
tinuity of F , as well as being sufficient for its smoothness [34], [42], [43]. Loeper further-
more offered a direct argument giving an explicit Hölder exponent for F , largely avoiding
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the continuity method, except that he relied on central results of Delanoë, Loeper, Ma,
Trudinger and Wang, to establish a kind of maximum principle characterizing (1.2) on
certain Riemannian manifolds [14], [34] such as the sphere [16], [32], and on Euclidean
domains [42].

Although the tensorial nature of condition (1.2) is in some sense implicit in the works
of Ma, Trudinger, Wang and Loeper,1 its full implications have not previously been ar-
ticulated or explored. In fact, since smoothness of the optimal map is a question whose
answer is independent of coordinates on M and M̄ , it follows that any necessary and
sufficient condition for this smoothness should be expressible in terms of coordinate in-
dependent quantities such as geodesics and curvature—but geodesics and curvature with
respect to what? One of the purposes of this article is to answer this question. We extend
the theory of Loeper (and in principle, of Ma, Trudinger & Wang) to the transportation
problem set on a pair of smooth manifoldsM and M̄ , by finding a manifestly covariant ex-
pression of Ma, Trudinger & Wang’s structure condition (1.2), as the sectional curvature
non-negativity of certain null planes in a pseudo-Riemannian metric on M × M̄ explored
here for the first time. In Theorem 3.1, we use this framework to give an elementary
and direct geometrical proof of a more general version of the maximum principle which
Loeper required to prove Hölder continuity of optimal maps. Our proof is logically inde-
pendent of the methods and results of Delanoë [14], Delanoë & Loeper [16], Loeper [31],
[32], Ma, Trudinger & Wang [34], Trudinger & Wang [42], or their subsequent work [43].
As detailed elsewhere [27], this allows us to make Loeper’s proof of Hölder continuity of
optimal maps self-contained, including maps minimizing distance squared between mass
distributions whose Lebesgue densities satisfy bounds above for ρ(·) and below for ρ̄(·)
on the round sphere M = M̄ = Sn. As a byproduct of our approach, we are able to relax
various geometric hypotheses on M, M̄ and the cost c required in previous works; a few
of these relaxations were also obtained simultaneously and independently by Trudinger
& Wang using a different approach [43], which we learned of while this paper was still in
a preliminary form [28].

An important feature of our theory is in its geometric and global nature. In combina-
tion with our results from [29], this allows us to extend the conclusions of the key The-
orem 3.1 to new global settings, including for example the Riemannian distance squared
on the productM = M̄ = Sn1 ×· · ·×Snk ×Rl of round spheres, or Riemannian submer-
sions thereof. This is a genuine advantage of our work over other approaches [42], [43],
[31], [32] (see Example 3.9 and Remark 3.10). It has been further exploited by several
subsequent authors, as we note in Remark 4.13.

1 Tensoriality was observed en passant in [40], while an assertion and proof of this fact has been
included in the revised version of [31], which was communicated to Villani and recorded by him
independently of the present work; see notes to Chapter 12 in [50]. Loeper was motivated to call
the expression appearing in (1.2) a cost-sectional curvature by his discovery of its coincidence with
ordinary Riemannian sectional curvature along the diagonal in the special case (M×M, c = d2/2)
of Example 3.6. However, it is only in the present article that the same expression was revealed
quite generally to be a pseudo-Riemannian sectional curvature with respect to a metric induced by
the cost function. In hindsight, this could have been anticipated from the fact that curvatures arise
whenever diffeomorphism invariance is present, as in Einstein’s theory of gravity [51].
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Since terms like c-convex, c-subdifferential, and notations like ∂cu are used inconsis-
tently through the literature, and because we wish to recast the entire conceptual frame-
work into a pseudo-Riemannian setting, we often depart from the notation and termi-
nology developed by Ma, Trudinger, Wang and Loeper. Instead, we have tried to make
the mathematics accessible to a different readership, by choosing language intended to
convey the geometrical structure of the problem and its connection to classical concepts
in differential geometry not overly specialized to optimal transportation or fully nonlin-
ear differential equations. This approach has the advantage of inspiring certain intuitions
about the problem which are quite distinct from those manifested in the previous ap-
proaches, and has a structure somewhat reminiscent of symplectic or complex geometry.
Although we were initially surprised to discover that the intrinsic geometry of optimal
transportation is pseudo-Riemannian, with hindsight we explain why this must be the
case, and make some connections to symplectic geometry and Lagrangian submanifolds
in the concluding remarks and appendix.

The outline of this paper is as follows. In the next section we introduce the pseudo-
Riemannian framework and use it to adapt the relevant concepts and structures from
Ma, Trudinger & Wang’s work on Euclidean domains to manifolds whose only geo-
metric structure arises from a cost function c : M × M̄ → R ∪ {+∞}. Since Morse
theory prevents a smooth cost from satisfying the desired hypothesis (A1) on a com-
pact manifold, we deal from the outset with functions which may fail to be smooth
on a small set—such as the cut locus in the Riemannian setting [36], [32] (see Ex-
ample 3.6), or the diagonal in the reflector antenna problem [24], [53], [8] (see Ex-
ample 3.5). This is followed by Section 3, where we motivate and state the main theo-
rem proved here: a version of Loeper’s geometric characterization of (1.2) which we call
the double-mountain above sliding-mountain maximum principle. In the same section
we illustrate how this theorem and the pseudo-Riemannian framework shed new light
on a series of variations of familiar examples from Ma, Trudinger, Wang and Loeper,
including those discussed above, and new ones formed from these by quotients and ten-
sor products of, e.g., round spheres of different sizes, in Example 3.9. Section 4 con-
tains the proofs which relate our definitions to theirs and establish the main theorems.
A level set argument is required to handle the more delicate case in which the pos-
itivity in (1.2) is not strict. The last section offers some perspective on these results
and their connection to optimal transportation, and is followed by an appendix giving
a differential-geometric characterization of optimality among differentiable maps. In a
separate work which originated as a series of appendices to the present manuscript, we
give a complete account of Loeper’s theory of Hölder continuity of optimal mappings,
illustrating how our main result makes this theory self-contained, and simplifying the ar-
gument at a few points [27]: in particular, we give a unified treatment of the Riemannian
sphere and reflector antenna problems, using the fact that the mapping is continuous in
the former to deduce the fact that it avoids the cut locus [16], instead of the other way
around.
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2. Pseudo-Riemannian framework

Fix manifolds M and M̄ which, if not compact, are continuously embedded in separable
metrizable spaces where their closures clM and cl M̄ are compact. Equip M and M̄ with
Borel probability measures ρ and ρ̄, and a lower semicontinuous cost function c : cl(M×
M̄)→ R∪ {+∞}, and a subdomain N ⊂ M × M̄ of the product manifold. Visualize the
relation N as a multivalued map and denote its inverse by Ň := {(x̄, x) | (x, x̄) ∈ N}.
We call N̄(x) := {x̄ ∈ M̄ | (x, x̄) ∈ N} the set of destinations visible from x, and
N(x̄) := {x ∈ M | (x, x̄) ∈ N} the set of sources visible from x̄. We define the reflected
cost č(x̄, x) := c(x, x̄) on M̄ ×M . In local coordinates x1, . . . , xn on M and x 1̄, . . . , xn̄

on M̄ , we use the notation such as ci = ∂c/∂xi and cī = ∂c/∂x ī to denote the partial
derivatives Dc = (c1, . . . , cn) and D̄c = (c1̄, . . . , cn̄) of the cost, and cij̄ = ∂

2c/∂x j̄∂xi

to denote the mixed partial derivatives, which commute with each other and form the
coefficients in the n × n matrix D̄Dc. When cij̄ is invertible its inverse matrix will be

denoted by cj̄ k . The same notation is used for tensor indices, with repeated indices being
summed from 1 to n (or n+1 to 2n in the case of barred indices), unless otherwise noted.

Let TxM and T ∗xM denote the tangent and cotangent spaces toM at x. Since the man-
ifold N ⊂ M × M̄ has a product structure, its tangent and cotangent spaces split canon-
ically: T(x,x̄)N = TxM ⊕ Tx̄M̄ and T ∗(x,x̄)N = T ∗xM ⊕ T

∗

x̄ M̄ . For c(x, x̄) sufficiently
smooth, this canonical splitting of the one-form dc will be denoted by dc = Dc ⊕ D̄c.
Similarly, although the Hessian of c is not uniquely defined until a metric has been se-
lected on N , the cross partial derivatives D̄Dc at (x, x̄) ∈ N define an unambiguous
linear map from vectors at x̄ to covectors at x; the adjoint (D̄Dc)† = DD̄c of this map
takes TxM to T ∗x̄ M̄ . Thus

h :=
1
2

(
0 −D̄Dc

−DD̄c 0

)
(2.1)

gives a symmetric bilinear form on the tangent space T(x,x̄)N to the product. Let us now
adapt the assumptions of Ma, Trudinger & Wang [34], [42] to manifolds:

(A0) (Smoothness) c ∈ C4(N).

Definition 2.1 (Twist condition). A cost c ∈ C1(N) is called twisted if

(A1) for all x ∈ M the map x̄ 7→ −Dc(x, x̄) from N̄(x) ⊂ M̄ to T ∗xM is injective.

If c is twisted on N ⊂ M × M̄ and also č(x̄, x) = c(x, x̄) is twisted on Ň = {(x̄, x) |
(x, x̄) ∈ N} we say c is bi-twisted.

Definition 2.2 (Non-degeneracy). A cost c ∈ C2(N) is non-degenerate if

(A2) for all (x, x̄) ∈ N the linear map D̄Dc : Tx̄M̄ → T ∗xM is bijective.

Though (A1) will not really be needed hereafter, for suitable probability measures ρ
and ρ̄ onM and M̄ the twist condition alone is enough to guarantee the Kantorovich infi-
mum (1.1) is uniquely attained, as well as existence of an optimal map F : M → M̄ [21],
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[30], [34], as reviewed in [50], [10]. It implies the dimension of M̄ cannot exceed that of
M , while (A2) forces these two dimensions to coincide. The non-degeneracy condition
(A2) ensures the map x̄ 7→ −Dc(x, x̄) acts as a local diffeomorphism from N̄(x) ⊂ M̄

to a subset of T ∗xM (which becomes global if the cost is twisted, in which case its in-
verse is called the cost-exponential, [31], Definition 4.3 below), and that h(·, ·) defined
by (2.1) is a non-degenerate symmetric bilinear form on T(x,x̄)N . Although h is not pos-
itive definite, it defines a pseudo-Riemannian metric on N , which might also be denoted
by d`2

= −cij̄dx
idx j̄ . The signature of this metric is zero, since in any choice of coor-

dinates on M and M̄ , the eigenvalues of h come in ±λ pairs due to the structure (2.1);
the corresponding eigenvectors are p ⊕ p̄ and (−p) ⊕ p̄ in T(x,x̄)N = TxM ⊕ Tx̄M̄ .
Non-degeneracy ensures there are no zero eigenvalues. A vector p ⊕ p̄ is called null if
h(p⊕p̄, p⊕p̄) = 0. A submanifold6 ⊂ N is called null if all its tangent vectors are null
vectors, and totally geodesic if each geodesic curve tangent to6 at a point is contained in
6 locally. The submanifolds {x} × N̄(x) and N(x̄)× {x̄} are examples of null submani-
folds in this geometry, and will turn out to be totally geodesic. Assuming c ∈ C4(N), we
can use the Riemann curvature tensor Ri′j ′k′l′ induced by h on N to define the sectional
curvature of a two-plane P ∧Q at (x, x̄) ∈ N :

sec(x,x̄) P ∧Q = sec(N,h)(x,x̄) P ∧Q =

2n∑
i′=1

2n∑
j ′=1

2n∑
k′=1

2n∑
l′=1

Ri′j ′k′l′P
i′Qj ′P k

′

Ql′ . (2.2)

In this geometrical framework, we reformulate the mysterious structure condition (1.2)
of Ma, Trudinger & Wang [34], [42] from the Euclidean setting, which was necessary for
continuity of optimal maps [31] and sufficient for regularity [34], [42]. The reader is able
to recover their condition from ours by computing the Riemann curvature tensor (4.2).
Note that we do not normalize our sectional curvature definition (2.2) by dividing by the
customary quantity h(P, P )h(Q,Q)−h(P,Q)2, since this quantity vanishes in the case
of most interest to us, namely P = p ⊕ 0 orthogonal to Q = 0⊕ p̄, which means p ⊕ p̄
is null.

Definition 2.3 (Regular costs and cross-curvature). A cost c ∈ C4(N) is weakly regular
on N if it is non-degenerate and for every (x, x̄) ∈ N ,

(A3w) sec(x,x̄) (p ⊕ 0) ∧ (0⊕ p̄) ≥ 0 for all null vectors p ⊕ p̄ ∈ T(x,x̄)N .

A weakly regular cost function is strictly regular onN if equality in (A3w) implies p = 0
or p̄ = 0, in which case we say (A3s) holds on N . We refer to the quantity appearing in
(2.3) as the cross-curvature, and say a weakly regular cost—and the pseudo-metric (2.1)
it induces on N—are non-negatively cross-curved if

sec(x,x̄) (p ⊕ 0) ∧ (0⊕ p̄) ≥ 0 (2.3)

for all (x, x̄) ∈ N and p ⊕ p̄ ∈ T(x,x̄)N , not necessarily null. The cost c and geometry
(N, h) are said to be positively cross-curved if, in addition, equality in (2.3) implies p = 0
or p̄ = 0.
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If clM ⊂⊂ M ′ and cl M̄ ⊂⊂ M̄ ′ are contained in larger manifolds and (A0), (A2)
and (A3s/w) all hold on some neighbourhood N ′ ⊂ M ′ × M̄ ′ containing N ⊂⊂ N ′

compactly, we say c is strictly/weakly regular on clN . If, in addition (A1) holds on N ′,
we say c is twisted on clN .

The nullity condition on p ⊕ p̄ distinguishes weak regularity of the cost from non-
negative cross-curvature: this distinction is important in Examples 3.5 and 3.9 among
others; see also Trudinger & Wang [42]. Non-negative cross-curvature is in turn a weaker
condition than sec(N,h) ≥ 0, which means sec(x,x̄) (p⊕q̄)∧(q⊕p̄) ≥ 0 for all (x, x̄) ∈ N
and p ⊕ q̄, q ⊕ p̄ ∈ T(x,x̄)N . As a consequence of Lemma 4.1, and due to the special
form of the pseudo-metric, sec(N,h) ≥ 0 is equivalent to requiring non-negativity of the
cross-curvature operator as a quadratic form on the vector space TxM ∧ Tx̄M̄ , i.e.,

Rij̄ kl̄(p
ipj̄ − qiq j̄ )(pkpl̄ − qkq l̄) ≥ 0. (2.4)

Example 2.4 (Strictly convex boundaries). Let � ⊂ Rn+1 and 3 ⊂ Rn+1 be bounded
convex domains with C2-smooth boundaries. Set M = ∂�, M̄ = ∂3, and c(x, x̄) =
|x − x̄|2/2. We claim the pseudo-metric (2.1) is non-degenerate and that sec(N,h) ≥ 0 on
N := {(x, x̄) ∈ ∂� × ∂3 | n̂�(x) · n̂3(x̄) > 0}, where n̂�(x) denotes the outer normal
to � at x. Indeed, fixing (x, x̄) ∈ N , parameterize M near x as a graph X ∈ Rn 7→
(X, f (X)) ∈ ∂� over the hyperplane orthogonal to n̂�(x) + n̂3(x̄), and M̄ near x̄ by a
convex graph X̄ ∈ Rn 7→ (X̄, g(X̄)) over the same hyperplane. This choice of hyperplane
guarantees |∇f (X)| < 1 and |∇g(X̄)| < 1 nearby, so in the canonical coordinates and
inner product on Rn, (A2)–(A3w) follow from a computation of Ma, Trudinger & Wang
[34] which yields the cross-curvature

sec(N,h)(x,x̄) (p ⊕ 0) ∧ (0⊕ p̄) = (pifikpk)(pj̄gj̄ l̄p
l̄)/(2+ 2∇f · ∇g) ≥ 0. (2.5)

In fact, we can also deduce the stronger conclusion sec(N,h) ≥ 0 as in (2.4):

(2+ 2∇f · ∇g) sec(N,h)(x,x̄) (p ⊕ q̄) ∧ (q ⊕ p̄)

= 〈pD2fp〉〈p̄D2gp̄〉 + 〈qD2f q〉〈q̄D2gq̄〉 − 2〈pD2f q〉〈p̄D2gq̄〉

≥

(√
〈pD2fp〉〈p̄D2gp̄〉 −

√
〈qD2f q〉〈q̄D2gq̄〉

)2
. (2.6)

Noting n̂�((X, f (X))) = (∇f (X),−1), Ma, Trudinger & Wang’s computation shows
nondegeneracy (A2) fails at the boundary of N where n̂�(x) · n̂3(x̄) = 0 implies the de-
nominator of (2.5) is zero. Gangbo & McCann [23] showed the cost is twisted on N pro-
vided3 is strictly convex, but cannot be twisted on any larger domain inM×M̄ . If both�
and3 are 2-uniformly convex, meaning that the HessiansD2f andD2g are positive def-
inite, the conditions for equality in (2.6) show the sectional curvature of (N, h) to be pos-
itive. The resulting strict regularity (A3s) underlies Gangbo & McCann’s proof of conti-
nuity for each of the multiple mappings which—due to the absence of twisting (A1)—are
required to support the unique optimizer γ ∈ 0(ρ, ρ̄) in this geometry. Here the proba-
bility measures ρ and ρ̄ are assumed to be mutually absolutely continuous with respect to
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surface measure on � and3, both having densities bounded away from zero and infinity.
For contrast, observe in this case that the same computations show that although non-
degeneracy (A2) also holds on the set N− := {(x, x̄) ∈ ∂�× ∂3 | n̂�(x) · n̂3(x̄) < 0},
this time both surfaces can be expressed locally as graphs over n̂�(x)− n̂3(x̄) but (A3w)
fails at each point (x, x̄) ∈ N−: indeed, the cross-curvatures of N− are all negative be-
cause D2f > 0 > D2g have opposite signs.

Let us now exploit the geodesic structure which the pseudo-metric h induces on N ⊂
M × M̄ to recover Ma, Trudinger & Wang’s notions concerning c-convex domains [34]
in our setting.

Definition 2.5 (Notions of convexity). A subset W ⊂ N ⊂ M × M̄ is geodesically
convex if each pair of points in W is linked by a curve in W satisfying the geodesic equa-
tion on (N, h). This definition is extended to subsets W ⊂ clN by allowing geodesics
in N which have endpoints on ∂N . We say �̄ ⊂ cl M̄ appears convex from x ∈ M if
{x} × �̄ is geodesically convex and �̄ ⊂ cl N̄(x). We say W ⊂ M × M̄ is vertically
convex if W̄ (x) := {x̄ ∈ M̄ | (x, x̄) ∈ W } appears convex from x for each x ∈ M . We say
� ⊂ clM appears convex from x̄ ∈ M̄ if�×{x̄} is geodesically convex and� ⊂ clN(x̄).
We say W ⊂ M × M̄ is horizontally convex if W(x̄) := {x ∈ M | (x, x̄) ∈ W } appears
convex from x̄ for each x̄ ∈ M̄ . If W is both vertically and horizontally convex, we say it
is bi-convex.

For a non-degenerate twisted cost (A0)–(A2), Lemma 4.4 shows �̄ ⊂ N̄(x) appears
convex from x if and only if Dc(x, �̄) is convex in T ∗xM; similarly for a bi-twisted
cost � ⊂ N(x̄) appears convex from x̄ if and only if D̄c(�, x̄) is convex in T ∗x̄ M̄ . This
leads immediately to notions of apparent strict convexity, and apparent uniform convexity
for such sets, and shows our definition of apparent convexity is simply an adaptation to
manifolds of the c-convexity and č-convexity of Ma, Trudinger & Wang [34]: � is č-
convex in their language with respect to x̄ if it appears convex from x̄; �̄ is c-convex
with respect x if it appears convex from x; and � and �̄ are č- and c-convex with respect
to each other if N = � × �̄ ⊂ R2n is bi-convex, meaning Dc(x, N̄(x)) ⊂ T ∗xM and
D̄c(N(x̄), x̄) ⊂ T ∗x̄ M̄ are convex domains for each (x, x̄) ∈ N .

Remark 2.6. In dimension n = 1, strict regularity (A3s) follows vacuously from non-
degeneracy (A2), since p ⊕ p̄ null implies p = 0 or p̄ = 0. For this reason we generally
discuss n ≥ 2 hereafter. Note, however, that for n = 1 and c ∈ C4(N) non-degenerately
twisted, N is bi-convex if and only if N(x̄) and N̄(x) are homeomorphic to intervals. In
local coordinates x1 and x̄1 onN , non-degeneracy implies c11̄ = ∓e

±λ(x1,x̄1). Comparing
−c111̄1̄ + c111̄c

1̄1c11̄1̄ = λ11̄|c11̄| with (4.2) shows

c(x1, x̄1) = ∓

∫ x1

x0

∫ x̄1

x̄0

e±λ(s,t) ds dt (2.7)

induces a pseudo-metric h on N for which sec(x,x̄)(p⊕ 0̄)∧ (0⊕ p̄) has the same sign as
∂2λ/∂x1∂x̄1 whenever p 6= 0 6= p̄. If (N, h) is connected its cross-curvature will there-
fore have a definite sign if λ(x, x̄) is non-degenerate, and a semidefinite sign if λ(x, x̄)
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is twisted. Moreover, the sign of the cross-curvature, sectional curvature, and curvature
operator all coincide on a product of one-dimensional manifolds, although this would not
necessarily be true on a product of surfaces or higher-dimensional manifolds.

Definition 2.7 (c-contact set). Given � ⊂ clM , u : � → R ∪ {+∞}, and c : cl(M ×
M̄) → R ∪ {+∞}, we define Dom c := {(x, x̄) ∈ cl(M × M̄) | c(x, x̄) < ∞}, the
c-contact set ∂c�u(x) := {x̄ ∈ cl M̄ | (x, x̄) ∈ ∂c�u}, and ∂cu = ∂cclMu, where

∂c�u := {(x, x̄) ∈ Dom c | u(y)+ c(y, x̄) ≥ u(x)+ c(x, x̄) for all y ∈ �}. (2.8)

We define Dom ∂c�u := {x ∈ � | ∂c�u(x) 6= ∅} and Dom ∂cu := Dom ∂cclMu.

3. Main results and examples

A basic result of Loeper [31] states that a cost satisfying (A0)–(A2) on a bi-convex domain
N = M × M̄ ⊂ Rn × Rn is weakly regular (A3w) if and only if ∂cu(x) appears convex
from x for each function u : M → R ∪ {+∞} and each x ∈ M . His necessity argument
is elementary and direct, but for sufficiency he appeals to a result of Trudinger & Wang
which required c-boundedness of the domains M and M̄ in the original version of [42].
The same authors gave another proof of sufficiency for strictly regular costs in [43], and
removed the c-boundedness restriction in the subsequent revision of [42]. Our main result
is a direct proof of this sufficiency, found independently but simultaneously with [43],
under even weaker conditions on the cost function and domain geometry. In particular, the
manifolds M and M̄ in Theorem 3.1 need not be equipped with global coordinate charts
or Riemannian metrics, the open set N ⊂ M × M̄ need not have a product structure, and
the weakly regular cost need neither be twisted nor strictly regular. This freedom proves
useful in Examples 2.4 and 3.9 and Remark 3.10.

Theorem 3.1 (Weak regularity connects c-contact sets). Use a cost c : cl(M × M̄) →
R∪ {+∞} with non-degenerate restriction c ∈ C4(N) to define a pseudo-metric (2.1) on
a horizontally convex domainN ⊂ M×M̄ . Fix� ⊂ clM , x ∈ M , and a set �̄ ⊂ cl N̄(x)
which appears convex from x. Suppose

⋂
0≤t≤1N(x̄(t)) is dense in � for each geodesic

t ∈ [0, 1] 7→ (x, x̄(t)) ∈ {x} × �̄, and c : cl(N) → R ∪ {+∞} is continuous. If c is
weakly regular (A3w) on N , then �̄ ∩ ∂c�u(x) is connected (and in fact appears convex
from x) for each u : �→ R ∪ {+∞} with x ∈ Dom u.

To motivate the proof of this theorem and its relevance to the economics of transportation,
consider the optimal division of mass ρ(·) between two target points ȳ, z̄ ∈ M̄ in ratio
(1−ε)/ε. This corresponds to the minimization (1.1) with ρ̄(·) = (1−ε)δȳ(·)+εδz̄(·). If
c(x, x̄) is the cost of transporting each commodity unit from x to x̄, a price differential λ
between the fair market value of the same commodity at z̄ and ȳ will tend to balance
demand ε and 1 − ε with supply ρ(·), given the relative proximity of z̄ and ȳ to the
producers ρ(·) distributed throughout M . Here proximity is measured by transportation
cost. Since each producer will sell his commodity at z̄ or ȳ, depending on which of these
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two options maximizes his profit, the economic equilibrium and optimal solution will be
given, e.g. as in [22], by finding the largest λ ∈ R such that

u(x) = max{λ−c(x, ȳ),−c(x, z̄)} yields ε ≤ ρ[{x ∈ M | u(x) = −c(x, z̄)}]. (3.1)

Producers in the region {x ∈ M | λ − c(x, ȳ) > −c(x, z̄)} will choose to sell their
commodities at ȳ, while producers in the region where the opposite inequality holds will
choose to sell their commodities at z̄; points x0 ∈ M on the hypersurface c(x0, ȳ) −

c(x0, z̄) = λ of equality are indifferent between the two possible sale destinations ȳ
and z̄. We call this hypersurface the valley of indifference, since it corresponds to a crease
in the graph of the function u. Loeper’s observation is that for optimal mappings to be
continuous, each point x0 in the valley of indifference between ȳ and z̄ must also be
indifferent to a continuous path of points x̄(t) linking ȳ = x̄(0) to z̄ = x̄(1); otherwise,
he constructs a measure ρ concentrated near x0 for which the optimal map to a mollified
version of ρ̄ exhibits a discontinuous jump, since arbitrarily close producers will choose
to supply very different consumers. Indifference means one can choose λ(t) such that

u(x) ≥ max
0<t<1

(λ(t)− c(x, x̄(t))) (3.2)

for all x ∈ M , with equality at x0 for each t ∈ [0, 1]. When the path connecting ȳ to
z̄ exists, this equality forces λ(t) = c(x0, x̄(t)) − c(x0, z̄); it also forces the path t ∈
[0, 1] 7→ (x0, x̄(t)) to be a geodesic for the pseudo-metric (2.1) on (N, h), so the path
{x̄(t) | 0 ≤ t ≤ 1} appears convex from x0.

We think of a function of the form x 7→ λ − c(x, ȳ) as defining the elevation of
a mountain on M , focused at (or indexed by) ȳ ∈ M̄ . The function u(x) of (3.1) may
be viewed as a double mountain, while the maximum (3.2) may be viewed as the upper
envelope of a one-parameter family of mountains which slide as their foci x̄(t) move
from ȳ to z̄. The proof of the preceding theorem relies on the fact that the sliding mountain
stays beneath the double mountain (while remaining tangent to it at x0), if the cost is
weakly regular. In the applications below, we take � = clM and �̄ = cl N̄(x) = cl M̄
tacitly.

Proof of Theorem 3.1. Let c ∈ C4(N) be weakly regular on some horizontally convex
domain N ⊂ M × M̄ . Fix u : �→ R ∪ {+∞} and x ∈ Dom u with ȳ, z̄ ∈ �̄ ∩ ∂c�u(x).
This means u(y) ≥ u(x) − c(y, z̄) + c(x, z̄) for all y ∈ �, the right hand side takes an
unambiguous value in R ∪ {−∞}, and the same inequality holds with ȳ in place of z̄.
Apparent convexity of �̄ from x implies there exists a geodesic t ∈ ]0, 1[ 7→ (x, x̄(t)) in
(N, h) with x̄(t) ∈ �̄ which extends continuously to x̄(0) = ȳ and x̄(1) = z̄. The desired
connectivity can be established by proving x̄(t) ∈ ∂c�u(x) for each t ∈ ]0, 1[, since this
means �̄ ∩ ∂c�u(x) appears convex from x.

Horizontal convexity implies N(x̄(t)) appears convex from x̄(t) for each t ∈ [0, 1],
so agrees with the illuminated set V (x, x̄(t)) = N(x̄(t)) of Definition 4.7. For any y ∈⋂

0≤t≤1N(x̄(t)), the sliding mountain lies below the double mountain, i.e., f (t, y) :=
−c(y, x̄(t)) + c(x, x̄(t)) ≤ max{f (0+, y), f (1−, y)}, according to Theorem 4.10 and
Remark 4.12. Note that f : [0, 1] × � → R ∪ {−∞} is a continuous function, since
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t ∈ [0, 1] 7→ (x, x̄(t)) ∈ clN and c : cl(N) → R ∪ {+∞} are continuous and their
composition is real-valued. We therefore replace 0+ by 0 and 1− by 1 and extend the
inequality to all y ∈ � using the density of

⋂
0≤t≤1N(x̄(t)). On the other hand, x̄(t) ∈

∂c�u(x) if and only if u(y) ≥ u(x)+ f (t, y) for each y ∈ � and t ∈ [0, 1]. Since u(y) ≥
u(x) + max{f (0, y), f (1, y)} by hypothesis, we have established apparent convexity of
�̄ ∩ ∂c�u(x) from x and the proof is complete. ut

Remark 3.2 (Hölder continuity). Since connectedness and apparent convexity survive
closure, we may replace �̄ ∩ ∂c�u(x) by its closure (often ∂cu(x)) without spoiling the
result. The apparent convexity of ∂cu(x) from x hints at a kind of monotonicity for the
correspondence x ∈ M 7→ ∂cu(x). A strict form of this monotonicity can be established
when the cost is strictly regular (A3s), and was exploited by Loeper to prove Hölder
continuity F ∈ C1/(4n−1)(M; cl M̄) of the optimal map between densities ρ ∈ L∞(M)
and ρ̄ with 1/ρ̄ ∈ L∞(M) for costs which are strictly regular and bi-twisted on the
closure of a bi-convex domainM × M̄ ⊂⊂ R2n. Details of his argument and conclusions
can be found in [31], [32] or [27].

Remark 3.3 (On the relevance of twist and apparent convexity to the converse). In the
absence of the twist condition, we have defined apparent convexity by the existence of a
geodesic, which need not be extremal or unique. When (A3w) fails in this general setting,
Loeper’s converse argument shows the existence of a geodesic segment with endpoints in
({x} × N̄(x)) ∩ ∂cu but which departs from this set at some points in between. Since the
twist condition and apparent convexity imply the existence and uniqueness of geodesics
linking points in {x}×N̄(x), for a twisted cost the “if” statement in Theorem 3.1 becomes
necessary as well as sufficient, a possibility which was partly anticipated in Ma, Trudinger
& Wang [34].

Remark 3.4 (Product domains). IfN = M×M̄ the hypotheses and conclusions become
simpler to state because N(x̄) = M and N̄(x) = M̄ for each (x, x̄) ∈ N . If, in addition
the product N = M × M̄ ⊂ R2n is a bounded Euclidean domain, we recover the result
proved by Loeper [31] based on the regularity results of Trudinger & Wang [42], whose
hypotheses were relaxed after [43].

Example 3.5 (The reflector antenna and conformal geometry). The restriction of the
cost function c(x, x̄) = − log |x − x̄| from Rn × Rn to the unit sphere M = M̄ =

Sn−1 := ∂Bn1(0) arises in conjunction [53], [24] with the reflector antenna problem stud-
ied by Caffarelli, Glimm, Guan, Gutierrez, Huang, Kochengin, Marder, Newman, Oliker,
Waltmann, Wang, and Wescott, among others. It induces a pseudo-metric h known to
satisfy (A0)–(A3s) with N = (M × M̄) \ 1. Note, however, that c(x, x̄) actually de-
fines a pseudo-metric h(∞,∞) on the larger space Rn × Rn \ 1 which is almost but not
quite bi-convex. Here 1 := {(y, y) | y ∈ Rn ∪ {∞}} denotes the diagonal. For fixed
a 6= ā ∈ Rn,

c̃(a,ā)(x, x̄) := −
1
2

log
|x − x̄|2|a − ā|2

|x − ā|2|a − x̄|2
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induces a pseudo-metric h(a,ā) which coincides with h(∞,∞) on the set where both can be
defined. Moreover, c̃(a,ā) extends smoothly to (M̃a × M̃ā) \1 where M̃ = Rn ∪ {∞} is
the Riemann sphere and M̃a = M̃ \ {a}. Furthermore h(a,ā) is independent of (a, ā), so
has a (unique) extension h̃ to Ñ := (M̃ × M̃) \1 which turns out to satisfy (A2)–(A3s)
on the bi-convex set Ñ ; as in [31], [34], [42], this can be verified using the alternative
characterization of (A3w/s) via concavity (/ 2-uniform concavity) of the restriction of the
function

q∗ ∈ T ∗x M̃ 7→ pipj cij (x, c-Expx q
∗) (3.3)

to the nullspace of p ∈ TxM̃ in Dom c-Expx ; here the c-Exp map is defined at (4.3). The
nullspace condition is crucial, since the value of this function is given by

pipjfij |(Df )−1(−q∗) = 2(q∗i p
i)2 − |p|2|q∗|2, (3.4)

where the left hand expression in (3.4) coincides with the right hand expression in (3.3)
for general costs of the form c(x, x̄) = f (x − x̄). Homogeneity of the resulting manifold
(Ñ, h̃) follows from the symmetries Ñ = (F × F)(Ñ) and

c̃(a,ā)(x, x̄) = c̃(F (a),F (ā))(F (x), F (x̄))

under simultaneous translation F(x) = x − y by y ∈ Rn or inversion F(x) = x/|x|2

of both factor manifolds; note the identity |x − x̄| = |x| |x̄| | |x|−2x − |x̄|−2x̄|. This
simplifies the verification of (A2)–(A3s), since it means infinity plays no distinguished
role. Bi-convexity of Ñ follows from the fact that the projection of the null geodesic
through (z, x̄) and (y, x̄) onto M is given by a portion of the circle in Rn ∪ {∞} passing
through z, y and x̄—the unique arc of this circle (or line) stretching from z to y which
does not pass through x̄. From homogeneity it suffices to compute this geodesic in the
case (z, x̄) = (∞, 0); we may further take y = (1, 0, . . . , 0) using invariance under si-
multaneous rotations F(x) = 3x by 3 ∈ O(n) and dilations F(x) = λx by λ > 0.
This calculation demonstrates that

⋂
0≤t≤1 Ñ(x̄(t)) is the complement of a circular arc—

hence a dense subset of M̃—for each geodesic t ∈ [0, 1] 7→ (x, x̄(t)) ∈ Ñ . Notice
that if x, x̄(0), x̄(1) all lie on the sphere M = M̄ , then so does x̄(t) for each t ∈ [0, 1].
After verifying that h coincides with the restriction of h̃ to the codimension-2 subman-
ifold N , we infer for x̄ ∈ ∂Bn1(0) that N(x̄) × {x̄} is a totally geodesic hypersurface in
Ñ(x̄) × {x̄}, so the horizontal and vertical geodesics, bi-convexity, and strict regularity
of (N, h) are inherited directly from the geometry of (Ñ, h̃), and the strict regularity
via Lemma 4.5. Although we lack a globally defined smooth cost on Ñ , we have one
on N , so the hypotheses and hence the conclusions of Theorems 3.1 and 4.10 are directly
established in the reflector antenna problem, whose geometry is also clarified: the verti-
cal geodesics are products of points on M with circles on M̄ , where by circle we mean
the intersection of a two-dimensional plane with M̄ = ∂Bn1(0). The geodesics would be
the same for the negation c+(x, y) = + log |x − y| of this cost, which satisfies (A0)–
(A2) on the bi-convex domain N , but violates (A3w) for the same reason that c satisfies
(A3s). Using the Euclidean norm on our coordinates, the c-exponential (4.3) is given by
x̄ = c-Expx(q

∗) := x−q∗/|q∗|2, the optimal map takes the form F(x) = c-Expx Du(x),
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and the resulting degenerate elliptic Monge–Ampère type equation (5.1)–(5.2) on Rn, ex-
pressed in coordinates, is

det[uij (x)+ 2ui(x)uj (x)− δij |Du(x)|2] =
|Du(x)|2nρ(x)

ρ̄(x −Du(x)/|Du(x)|2)
. (3.5)

Here ρ̄(x̄) = O(|x̄|−2n) as x̄ → ∞ since ρ̄ transforms like an n-form under coordinate
changes. Using the isometries above to makeDu(x0) = 0 at a point x0 of interest, a slight
perturbation of the standard Monge–Ampère equation is recovered nearby. The operator
under the determinant (3.5) is proportional to the Schouten tensor of a conformally flat
metric ds2

= e−4u∑n
i=1(dx

i)2, so a similar equation occurs in Viaclovsky’s σn-version
of the Yamabe problem [45], [46], which has been studied by the many authors in confor-
mal geometry surveyed in [47] and [40].

Example 3.6 (Riemannian manifolds). Consider a Riemannian manifold (M = M̄, g).
Taking the cost function to be the square of the geodesic distance c(x, x̄) = d2(x, x̄)/2
associated to g, induces a pseudo-metric tensor (2.1) on the domain N where c(x, x̄) is
smooth, i.e. the complement of the cut locus. Moreover, the cost exponential (Definition
4.3) reduces [36] to the Riemannian exponential

c-Expx p
∗
= expx p (3.6)

with the metrical identification p∗ = g(p, ·) of tangent and cotangent space. A curve
t ∈ [0, 1] 7→ x(t) ∈ N(x̄) through x̄ is a geodesic in (M, g) if and only if the curve
τ(t) = (x(t), x̄) is a (null) geodesic in (N, h), according to Lemma 4.4. On the diagonal
x = x̄, we compute h(p ⊕ p̄, p ⊕ p̄) = g(p, p̄), meaning the pseudo-Riemannian space
(N, h) contains an isometric copy of the Riemannian space (M, g) along its diagonal
1 := {(x, x) | x ∈ M}. The symmetry c(x, x̄) = c(x̄, x) shows 1 to be embedded in N
as a totally geodesic submanifold, and nullity of p⊕p̄ ∈ T(x,x)N reduces to orthogonality
of p with p̄. This perspective illuminates Loeper’s observation [31] that negativity of one
Riemannian sectional curvature at any point on (M, g) violates weak regularity (A3w) of
the cost. Indeed, the comparison of (4.9) with Lemma 4.5 allows us to recover the fact that
along the diagonal, cross-curvatures in (N, h) are proportional to Riemannian curvatures
in (M, g):

sec(N,h)(x,x) (p ⊕ 0) ∧ (0⊕ p̄) =
4
3

sec(M,g)x p ∧ p̄. (3.7)

Example 3.7 (The round sphere). In the case of the sphere M = M̄ = Sn equipped
with the standard round metric, the cut locus consists of pairs (x, x̄) of antipodal points
d(x, x̄) = DiamM . Denote its complement byN = {(x, x̄) | d(x, x̄) < DiamM}, where
c(x, x̄) = d2(x, x̄)/2 is smooth. In this case, the identification (3.6) of cost exponential
with Riemannian exponential implies bi-convexity ofN , since the cut locus forms a circle
(hypersphere if n > 2) in the tangent space TxSn, and the verification of (A3s) both
on and off the diagonal was carried out by Loeper [32]. In fact more is true: (N, h) is
non-negatively cross-curved, as we verify in [29]. Given an h-geodesic t ∈ [0, 1] 7→
(x, x̄(t)) ∈ N , we find

⋂
0≤t≤1N(x̄(t)) exhausts Sn except for the antipodal curve to the
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exponential image t ∈ [0, 1] 7→ x̄(t) of a line segment in TxSn. Although this curve does
not generally lie on a great circle or even a circle, its complement is dense in Sn, whence
the double-mountain above sliding-mountain property and Theorem 3.1 follow.

Example 3.8 (Positive versus negative curvature). To provide more insight into Loeper’s
results—continuity of optimal maps on the round sphere versus discontinuous optimal
maps on the saddle or hyperbolic plane— consider dividing a smooth positive density
ρ (say uniform on some disk of volume

∑3
i=1 εi = 1) optimally between three points

x̄1, x̄2, x̄3 on a geodesic through its centre: ρ̄(·) =
∑3
i=1 εiδx̄i (·). The solution to this

problem is given, e.g. [22], by finding constants λ1, λ2, λ3 ∈ R for which the function

u(x) = max
1≤i≤3
{ui(x)} given by ui(x) := −λi − c(x, x̄i) (3.8)

solves

εi = ρ[�i] with �i := {x ∈ M | u(x) = ui(x)}

for i = 1, 2, 3. The regions �i are illustrated in Figure 1 for the case where the cost
c(x, x̄) = d2(x, x̄)/2 is proportional to Riemannian distance squared on the (a) round
sphere, (b) Euclidean plane, (c) hyperbolic disc.

3

(c)(b)(a)

2

2

2

2

1 3 1 3 1
 xx x x x   x  x  x  x

Fig. 1

Notice that only in case (c) is one of the regions �2 disconnected; in cases (a) and (b)
all regions �i must be connected by the preceding result and example. Now consider
transporting a smoothly smeared and positive approximation ρ̄η(·) of the discrete source
ρ̄(·), obtained by mollifying on scale η > 0, to the uniform measure ρ(·). For η > 0
sufficiently small, points x̄ near x̄2 will need to map into a δ-neighbourhood of �2. In
case (c), recalling Loeper’s argument we can now assert that if η > 0 is small the optimal
map Gη from ρ̄η(·) to ρ(·) will have a discontinuity near x̄2 separating the regions which
map into disjoint δ-neighbourhoods separating the two disconnected components of �2.
If this were not the case, mass balance implies for small η this map Gη = č-Exp ◦ Dūη
would need to cross the horizontal midline in Figure 1(c) at some xη = Gη(x̄η) with x̄η
near x̄2. Here č(x̄, x) := c(x, x̄). Since the potentials ūη have a semiconvexity constant
independent of η > 0, taking a limit implies ∂ čū(x2) intersects the midline of the closure
of our unit volume hyperbolic disk at some subsequential limit point x0 = limηk→0 xηk .
This contradicts a direct calculation starting from (3.8), which shows the horizontal axis
remains disjoint from region �2 in case (c).
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Example 3.9 (New examples from old: perturbations, submersions, and products). It re-
mains interesting to find more general sufficient conditions on a Riemannian manifold
(M, g) and function f for the pseudo-metric h induced on the complement of the cut
locus N ⊂ M ×M by c(x, x̄) = f (d(x, x̄)) to be strictly or weakly regular. It is clear
that slight perturbations of an (A3s) cost remain strictly regular locally if the perturba-
tion is smooth and small enough. Delanoë & Ge have quantified this observation away
from the cut locus on the round sphere [15], while the subtleties associated with the cut
locus have been resolved on S2 by Figalli & Rifford [19]; see also Loeper & Villani [33].
It is also possible to deduce that the local properties such as (A3s/w) and non-negative
cross-curvature and the global property such as the conclusion of Theorem 3.1 all survive
Riemannian submersion [29], holding for example on quotients of the round sphere under
discrete [15], [29] or continuous [29] group actions, including in particular all spaces of
constant positive curvature [15], and the Fubini–Study metric on CPn [29]. On the other
hand, an example constructed by one of us shows that positive but non-constant sectional
curvature of the underlying manifold (M = M̄, g) does not guarantee weak regularity of
the cost c = d2/2 away from the diagonal in N ⊂ M × M [26]. As a final important
example, consider two manifolds N+ ⊂ M+ × M̄+ and N− ⊂ M− × M̄− equipped
with cost functions c± ∈ C4(N±) inducing pseudo-metrics d`2

± = −cij̄dx
i
±dx

j̄
±. As

a consequence of Lemma 4.5, the product metric d`2
= d`2

+ + d`
2
− corresponding to

the cost function c+(x+, x̄+) + c−(x−, x̄−) on N = N+ × N− is non-negatively cross-
curved (2.3) if both (N±, h±) are. Although it is not true that weak regularity of the
factors implies the same for the product, many of the known examples of weakly regu-
lar costs (including those of Examples 2.4, 3.7 and the sumbersions above) actually turn
out to be non-negatively cross-curved [29], so this product construction becomes a fruit-
ful source of new examples. Furthermore, since geodesics in the product are products of
geodesics, bi-convexity of the factors (N±, h±) implies bi-convexity of the product man-
ifold (N, h). Because a product geodesic may have constant factors, it is not hard to show
that the non-negatively curved product manifolds (N, h) always fail to be strictly regu-
lar even when both factor manifolds (N±, h±) are positively cross-curved. Thus tensor
products of positively cross-curved costs yield a new source of weakly regular costs that
fail to be strictly regular—the very simplest example of which is given by arbitrary sums
c(x, x̄) =

∑n
k=1 c(x

k, x k̄; k) of k = 1, . . . , n positively cross-curved costs c(s, t; k) as in
(2.7) on bi-convex subdomains N1, . . . , Nn ⊂ R2.

Remark 3.10 (Products Sn1 × · · · × Snk ×Rl and their Riemannian submersions). The
conclusion of Theorem 3.1 holds for the distance squared cost on the Riemannian product
M = M̄ of round spheres Sn1 × · · · × Snk × Rl—or its Riemannian submersions—by
combining the preceding example with the result of [29]. The weak regularity (A3w)
of the cost on N = M × M̄ \ {cut locus} and the biconvexity of N are satisfied as in
Example 3.9. The density condition of

⋂
0≤t≤1N(x̄(t)) also follows easily since the cut

locus of one point in this example is a smooth submanifold of codimension greater than
or equal to 2. This new global result illustrates an advantage of our method over other
approaches [42], [43], [31], [32], which would require a regularity result for optimal maps
(or some a priori estimates) to obtain the conclusion of Theorem 3.1. To implement such
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approaches for the manifolds of this example, one would need to establish that an optimal
map remains uniformly away from the cut locus, as is currently known only for a single
sphere M = M̄ = Sn from work of Delanöe & Loeper [16] (and can also be obtained
[27] by an approach based on [31] instead). To the best of our knowledge, no one has yet
succeeded in establishing regularity results for this product example, though one could
try to obtain them from Theorem 3.1, by extending the approach we develop successfully
in [27] for a single sphere M = M̄ = Sn.

4. Proof of main results

Let us begin by establishing coordinate representations of the Christoffel symbols and
Riemann curvature tensor for the pseudo-metric (2.1). Standard references for pseudo-
Riemannian geometry include the books of Wald [51] and O’Neill [39], though it is called
semi-Riemannian geometry there.

Lemma 4.1 (Riemann curvature tensor and Christoffel symbols). Use a non-degenerate
cost c ∈ C4(N) to define a pseudo-metric (2.1) on the domain N ⊂ M × M̄ . In local
coordinates x1, . . . , xn on M and x 1̄, . . . , xn̄ on M̄ , the only non-vanishing Christoffel
symbols are

0ij
m
= cmk̄ck̄ij and 0ī j̄

m̄
= cm̄kckīj̄ . (4.1)

Furthermore, the components of the Riemann curvature tensor (2.2) vanish except when
the number of barred and unbarred indices is equal, in which case the value of the com-
ponent can be inferred from Rij k̄l̄ = 0 and

2Rij̄ k̄l = cij̄ k̄l − clif̄ c
af̄ caj̄ k̄. (4.2)

Proof. Following (3.1.3) and (3.4.4) of e.g. [51],

0ij
m :=

1
2
hmk(hkj,i + hik,j − hij,k)+

1
2
hmk̄(hk̄j,i + hik̄,j − hij,k̄),

and the analogous definition with i, j, and/or m replaced by ī, j̄ and m̄ respectively, the
off-diagonal form (2.1) of the pseudo-metric and the equality of mixed partials implies
the only non-vanishing Christoffel symbols are given by

0ij
m
= −

1
2
cmk̄(−ck̄j i − cik̄j + 0) = cmk̄ck̄ij

and 0k̄
īj̄
= cm̄kckīj̄ . Since the only non-vanishing Christoffel symbols are given by (4.1),

it is not hard to compute the relevant components of Riemann’s curvature tensor in the
coordinates we have chosen:

Rij̄ k̄
m̄
= −

∂

∂xi
0m̄
j̄ k̄
+

∂

∂x j̄
0m̄
ik̄
+ 0

f

k̄i
0m̄
j̄f
− 0

f

k̄j̄
0m̄if + 0

f̄

k̄i
0m̄
j̄ f̄
− 0

f̄

k̄j̄
0m̄
if̄

= −
∂

∂xi
(cm̄acaj̄ k̄) = −c

m̄bcij̄ k̄b + c
m̄bcbif̄ c

af̄ caj̄ k̄.



Continuity, curvature, and optimal transportation 1025

Using the pseudo-metric (2.1) to lower indices yields (4.2), and the other non-vanishing
components of the Riemann tensor can then be deduced from the well-known symmetries
−Rj̄ ik̄l = Rij̄ k̄l = Rk̄lij̄ = −Rlk̄ij̄ . To see that the remaining components all vanish,
it suffices to repeat the analysis starting from the analogous definitions of Rij k̄

m̄, Rij k̄
m,

and Rijkm̄ . ut

Remark 4.2 (Vanishing curvatures). The vanishing of Rijkl , Rijkl̄ , Rij̄ k̄l̄ , Rī j̄ k̄l̄ , and

Rij k̄l̄ = 0 imply that (
∧2

TM) ⊕ (
∧2

TM̄) lies in the null space of curvature operator

viewed as a quadratic form on
∧2

TN = (
∧2

TM)⊕(
∧2

TM̄)⊕(TM∧TM̄). Strict/weak
regularity of the cost, and the signs of the cross-curvature (2.3), and sectional curvature
(2.4) are therefore all determined by the action of this operator on the n2-dimensional
vector bundle TM ∧ TM̄ . Since the cone of null vectors is non-linear, it is not obvious
whether (A3w) implies non-negativity of all cross-curvatures of (N, h), but Trudinger &
Wang [42] prove, as in Example 3.5, that this is not so.

We next recall an important map of Ma, Trudinger & Wang [34], called the cost-
exponential by Loeper [31].

Definition 4.3 (Cost exponential). If c ∈ C2(N) is twisted (A1), we define the c-expo-
nential on

Dom(c-Expx) := −Dc(x, N̄(x))

= {p∗ ∈ T ∗xM | p
∗
= −Dc(x, x̄) for some x̄ ∈ N̄(x)} (4.3)

by c-Expx p
∗
= x̄ if p∗ = −Dc(x, x̄). Non-degeneracy (A2) then implies the c-expo-

nential is a diffeomorphism from Dom(c-Expx) ⊂ T
∗
xM onto N̄(x) ⊂ M̄ . If c ∈ C2(N)

is non-degenerate but not twisted and q∗ = −Dc(x, ȳ), the implicit function theorem
implies a single-valued branch of c-Expx taking values near ȳ is defined by the same
formula in a small neighbourhood of q∗, though it no longer extends to be a global dif-
feomorphism of Dom(c-Expx) onto N̄(x).

Lemma 4.4 (The c-segments of [34] are geodesics). Use a non-degenerate cost c ∈
C4(N) to define a pseudo-metric (2.1) on the domainN ⊂ M×M̄ . Fix x ∈ M . If p∗, q∗ ∈
Dom(c-Expx) ⊂ T

∗
xM are close enough, there is a branch of c-Expx defined on the line

segment joining p∗ to q∗. Then the curve s ∈ [0, 1] 7→ σ(s) := (x, c-Expx((1− s)p
∗
+

sq∗)) is an affinely parameterized null geodesic in (N, h). Conversely, every geodesic
segment in the totally geodesic submanifold {x} × N̄(x) can be parameterized locally in
this way.

Proof. Given s0 ∈ [0, 1], introduce coordinates onM and M̄ around σ(s0) so that nearby,
the curve σ(s) can be represented in the form (x1, . . . , xn, x 1̄(s), . . . , xn̄(s)). Differenti-
ating the definition of the cost exponential

0 = (1− s)p∗i + sq
∗

i + ci(σ (s)) (4.4)

twice with respect to s yields

0 = cij̄ ẍ
k̄
+ cij̄ k̄ ẋ

j̄ ẋ k̄ (4.5)
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for each i = 1, . . . , n. Multiplying by the inverse matrix cm̄i to cij̄ yields

0 = ẍm̄ + cm̄icij̄ k̄ ẋ
j̄ ẋ k̄, (4.6)

always summing on repeated indices. Together with ẍm = 0 = ẋm, we claim these reduce
to the geodesic equations (e.g. (3.3.5) of [51]),

0 = ẍm + 0ij mẋi ẋj + 0īj
mẋ ī ẋj + 0ij̄

mẋi ẋ j̄ + 0ī j̄
mẋ ī ẋ j̄ ,

0 = ẍm̄ + 0ij m̄ẋi ẋj + 0īj
m̄ẋ ī ẋj + 0ij̄

m̄ẋi ẋ j̄ + 0ī j̄
m̄ẋ ī ẋ j̄ ,

(4.7)

on (N, h). Indeed, this follows since the only non-vanishing Christoffel symbols are given
by (4.1). Comparing (4.6) with (4.7), we see σ(s) is an affinely parameterized geodesic
near σ(s0); it is null since h(σ̇ , σ̇ ) = 0 from the off-diagonal form of (2.1).

Conversely, any geodesic segment in (N, h) which lies in x × N̄(x) can be parame-
terized affinely on s ∈ [0, 1]. Near s0 ∈ [0, 1] it then satisfies (4.5), whence

0 =
d2

ds2 ci(x, x̄(s)). (4.8)

Integrating twice, the constants of integration determine p∗, q∗ ∈ T ∗xM such that (4.4)
holds locally. Thus (1 − s0)p∗ + s0q∗ ∈ Dom(c-Expx). Choosing a branch of the cost
exponential defined near this point and equallingDic(x, x̄(s0)) there, we deduce (x, x̄(s))
= c-Expx((1− s)p

∗
+ sq∗) for s near s0 from the definition of this branch.

Finally, to see that {x} × N̄(x) is totally geodesic, take any point x̄ ∈ N̄(x) and
tangent vector p̄ ∈ Tx̄M̄ . Setting xm(s) = xm to be constant solves half of the geodesic
equations, since 0m

īj
= 0 = 0m

īj̄
. we can still solve the remaining n components of the

geodesic equation (4.6) for small s ∈ R, subject to the initial conditions x̄(0) = x̄ and
˙̄x(0) = q, to find a geodesic which remains in the n-dimensional submanifold {x}×N̄(x)
for short times. ut

The next lemma gives a non-tensorial expression of the sectional curvature in our pseudo-
Riemannian geometry (N, h). In the context of Example 3.6, it can be viewed as a gen-
eralization of the asymptotic formula for the Riemannian distance between two arclength
parameterized geodesics x(s) and x̄(t) near a point of intersection x(0) = x̄(0) at angle θ :

d2(x(s), x̄(t)) = s2
+ t2 − 2st cos θ −

k

3
s2t2 sin2 θ +O((s2

+ t2)5/2) (4.9)

where the Riemannian curvature k of the two-plane ẋ(0) ∧ ˙̄x(0) on (M = M̄, g) gives
the leading order correction to the law of cosines. Though we do not need it here, the
proof of the next lemma can also be adapted to establish an expansion analogous to (4.9)
for general costs c(x(s), x̄(t)); the zeroth and first order terms do not vanish, but the
coefficients of s2t and s3t are zero due to the geodesy of s ∈ [0, 1] 7→ σ(s). Remarkably
however, to determine the coefficient of s2t2 in the lemma below requires only one (in
fact, either one) and not both of the two curves to be geodesic.
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Lemma 4.5 (Non-tensorial expression for curvature). Use a non-degenerate cost c ∈
C4(N) to define a pseudo-metric (2.1) on the domain N ⊂ M × M̄ . Let (s, t) ∈ [−1, 1]2

7→ (x(s), x̄(t)) ∈ N be a surface containing two curves σ(s) = (x(s), x̄(0)) and τ(t) =
(x(0), x̄(t)) through (x(0), x̄(0)). Note 0⊕ ˙̄x(0) defines a parallel vector field along σ(s).
If s ∈ [−1, 1] 7→ σ(s) ∈ N is a geodesic in (N, h) then

−2
∂4

∂s2∂t2

∣∣∣∣
s=0=t

c(x(s), x̄(t)) = sec(x(0),x̄(0))
dσ

ds
∧
dτ

dt
. (4.10)

Proof. Introduce coordinates x1, . . . , xn in a neighbourhood of x(0) onM and x 1̄, . . . , xn̄

in a neighbourhood of x̄(0) on M̄ , so the surface (x(s), x̄(t)) ∈ N has coordinates
(x1(s), . . . , xn(s), x 1̄(t), . . . , xn̄(t)) locally. To see 0⊕ ˙̄x(0) defines a parallel vector field
along σ(s), we use the Levi-Civita connection to compute

σ̇ i∇i ẋ
k̄
+ σ̇ ī∇ī ẋ

k̄
= ẋi

∂ẋ k̄

∂xi
+ ẋi0k̄ij ẋ

j
+ ẋi0k̄

ij̄
ẋ j̄ + 0 = 0

since the only non-vanishing Christoffel symbols are given by (4.1).
Computing the fourth mixed derivative yields

∂4

∂s2∂t2

∣∣∣∣
s=0=t

c(x(s), x̄(t)) = cij k̄l̄ ẋ
i ẋj ẋ k̄ ẋ l̄ + cak̄l̄ ẍ

a ẋ k̄ ẋ l̄ + (cij b̄ẋ
i ẋj + cab̄ẍ

a)ẍ b̄

= (cik̄l̄j − ck̄l̄ac
ab̄cb̄ij )ẋ

i ẋj ẋ k̄ ẋ l̄ (4.11)

where the form (4.6) of the geodesic equation has been used to eliminate the coefficient
of ẍ b̄ and express ẍa in terms of ẋi . Comparing (4.11) with (4.2) and (2.2) yields the
desired conclusion (4.10). The minus sign comes from antisymmetry Rik̄l̄j = −Rik̄j l̄ of
the Riemann tensor. ut

Our next contribution culminates in Theorem 4.10, which generalizes the result that
Loeper [31], [32] deduced from Trudinger & Wang [42]. As mentioned above, it can
be interpreted to mean that if a weakly regular function c ∈ C4(N) governs the cost of
transporting a commodity from the locations where it is produced to the locations where it
is consumed, a shipper indifferent between transporting the commodity from y to the con-
sumer at either endpoint x̄(0) and x̄(1) of the geodesic t ∈ [0, 1] 7→ (y, x̄(t)) in (N, h),
will also be indifferent to transporting goods from y to the consumers at each of the inter-
mediate points x̄(t) along this geodesic. As was also mentioned, for non-degenerate costs
Loeper showed this conclusion fails unless the cost is weakly regular.

Proposition 4.6 (Maximum principle). Use a weakly regular cost c ∈ C4(N) to define
a pseudo-metric (2.1) on the domain N ⊂ M × M̄ . Given x 6= y ∈ M , let t ∈ ]0, 1[ 7→
(x, x̄(t)) ∈ N be a geodesic in (N, h) with ˙̄x(1/2) 6= 0 and set f (t) = −c(y, x̄(t)) +
c(x, x̄(t)). If ḟ (t0) = 0 for some t0 ∈ ]0, 1[ with a geodesic linking (x, x̄(t0)) to (y, x̄(t0))
lying in N(x̄(t0)) × {x̄(t0)}, then f̈ (t0) ≥ 0. Strict inequality holds if the relevant cross-
curvature of c is positive at some point on the second geodesic.
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Proof. Suppose f (t) has a critical point at some 0 < t0 < 1, so

0 = ḟ (t0) = (∂īc(x, x̄(t0))− ∂īc(y, x̄(t0)))ẋ
ī(t0); (4.12)

we then claim f̈ (t0) ≥ 0.
Let s ∈ [0, 1] 7→ (x(s), x̄(t0)) be a geodesic in N(x̄(t0)) × {x̄(t0)} with endpoints

x(0) = x and x(1) = y. Set g(s, t) = −c(x(s), x̄(t))+ c(x, x̄(t)). Lemma 4.5 yields

∂4g

∂s2∂t2

∣∣∣∣
(s,t0)

=
1
2

sec(x(s),x̄(t0)) (ẋ(s)⊕ 0) ∧ (0⊕ ˙̄x(t0)) ≥ 0, (4.13)

with the inequality following from weak regularity (A3w) of the cost c ∈ C4(N), as
long as ẋ(s)⊕ 0x̄(t0) and 0x(s) ⊕ ˙̄x(t0) are orthogonal vectors on (N, h), or equivalently,
as long as ẋ(s) ⊕ ˙̄x(t0) is null. These vectors are non-vanishing since x(0) 6= x(1) and
˙̄x(0) 6= 0; we now deduce their orthogonality from (4.12), using subscripts to distinguish
which tangent space the zero vectors reside in.

Along the geodesic s ∈ [0, 1] 7→ (x(s), x̄(t0)), the vector field 0x(s)⊕ ˙̄x(t0) is parallel
transported according to Lemma 4.5. Thus the inner product λ of this vector field with the
tangent vector is independent of s ∈ [0, 1]. Define q∗

ī
(s) := ∂īc(x(s), x̄(t0)) ∈ T

∗

x̄(t0)
M̄ ,

so q̇∗
ī
(s) = ∂j∂īc(x(s), x̄(t0))ẋ

j (s). From the form (2.1) of the pseudo-metric we discover

λ = h(0x(s) ⊕ ˙̄x(t0), ẋ(s)⊕ 0x̄(t0)) = −ẋ
ī(t0)q̇

∗

ī
(s).

Integrating this constant over 0 < s < 1, (4.12) yields the desired orthogonality

λ = ẋ ī(t0)(q
∗

ī
(0)− q∗

ī
(1)) = 0.

Now (4.13) shows ∂2g/∂t2|t=t0 to be a convex function of s ∈ [0, 1]. We shall prove
this convex function is minimized at s = 0, where it vanishes. Introducing coordinates
x1, . . . , xn around x = x(0) on M and x 1̄, . . . , xn̄ around x̄(t0) on M̄ , we compute

∂2g

∂t2

∣∣∣∣
(s,t0)

= −
[
cī(x(s), x̄(t))ẍ

ī
+ cī j̄ (x(s), x̄(t))ẋ

ī ẋ j̄
](s,t0)
(0,t0)

,

∂3g

∂s∂t2

∣∣∣∣
(s,t0)

= −(cīk(x(s), x̄(t0))ẍ
ī
+ cī j̄ k(x(s), x̄(t0))ẋ

ī ẋ j̄ )ẋk.

When s = 0, the last line vanishes by the geodesic equation for t ∈ [0, 1] 7→ (x(0), x̄(t)),
and the preceding line is manifestly zero. Thus the strictly convex function ∂2g/∂t2|t=t0
must be non-negative for s ∈ [0, 1] and, as initially claimed, f̈ (t0) = ∂2g/∂t2|(s,t)=(1,t0)
is non-negative at any t0 ∈ ]0, 1[ where ḟ (t0) = 0.

If the relevant cross-curvature of the cost is positive at one point (x(s0), x̄(t0)), then
the non-negative function ∂2g/∂t2|t=t0 is strictly convex (4.13) on an interval around
s0 ∈ [0, 1]; since ∂2g/∂t2|t=t0 is minimized at s = 0 it must then be positive at s = 1, to
conclude the proof. ut
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Definition 4.7 (Illuminated set). Given (x, x̄) ∈ N , let V (x, x̄) ⊂ M denote those
points y ∈ N(x̄) for which there exists a curve from (x, x̄) to (y, x̄) in N(x̄) × {x̄}
satisfying the geodesic equation on (N, h).

As a corollary to Proposition 4.6 and warm up to the double mountain above sliding
mountain Theorem 4.10, let us derive a strong version of this result under the simplifying
hypothesis that the cost is strictly (A3s) and not merely weakly regular (A3w).

Corollary 4.8 (Strict maximum principle). Use a strictly regular cost c ∈ C4(N) to
define a pseudo-metric (2.1) on the domain N ⊂ M× M̄ . Let t ∈ [0, 1] 7→ (x, x̄(t)) ∈ N

be a geodesic in (N, h) with ˙̄x(0) 6= 0. Then for all y ∈
⋂
t∈[0,1] V (x, x̄(t)) the function

f (t) = −c(y, x̄(t))+ c(x, x̄(t)) satisfies f (t) < max{f (0), f (1)} on 0 < t < 1.

Proof. Given y ∈
⋂
t∈[0,1] V (x, x̄(t)) we have y, x ∈ N(x̄(t)) so f is C4 smooth on

[0, 1]. Proposition 4.6 asserts f̈ (t0) > 0 at each interior critical point ḟ (t0) = 0. Any
critical point of f in ]0, 1[ is therefore a local minimum, and f is strictly monotone away
from this point. Thus f (t) < max{f (0), f (1)} for 0 < t < 1, as desired. ut

If N is horizontally convex then V (x, x̄(t)) = N(x̄(t)), which motivates the relation
of this corollary to Theorem 3.1. Let us now show a weak version of this maximum
principle survives as long as the cost is weakly regular. To handle this relaxation we use
a level set approach.

Lemma 4.9 (Level set evolution). Let g ∈ C2(]ε, ε[ × U) where U ⊂ Rn is open.
Suppose Dg = (∂1g, . . . , ∂ng) is non-vanishing on ]ε, ε[ × U . Then the zero set S(t) =
{x ∈ U | g(t, x) = 0} is aC2-smooth (n−1)-dimensional submanifold ofU which can be
parameterized locally for small enough t by {X(t, z) | z ∈ S(0)}, where the Lagrangian
variable X(t, x) solves the ordinary differential equation

∂X(t, x)

∂t
= −

[
∂g

∂t

Dg

|Dg|2

]
(t,X(t,x))

(4.14)

subject to the initial conditionX(t, x) = x. Moreover, the positivity set S+(t) = {x ∈ U |
g(t, x) ≥ 0} has S(t) as its boundary, and expands with an outward normal velocity given
by

v = −
∂X

∂t

∣∣∣∣
(t,z)

·
Dg

|Dg|

∣∣∣∣
(t,X(t,z))

=
∂g/∂t

|Dg|

∣∣∣∣
(t,X(t,z))

. (4.15)

Proof. Clearly the boundary of S+(t) is contained in S(t). Since Dg 6= 0, the im-
plicit function theorem implies S(t) is a C2-smooth hypersurface and separates regions
where g(t, x) takes opposite signs. Thus S(t) is contained in and hence equal to the
boundary in U of the positivity set. If the desired parameterization exists it must satisfy
0 = g(t, X(t, z)). Differentiation in time yields an equation

0 =
∂g

∂t
(t, X(t, z))+Dg(t,X(t, z)) ·

∂X

∂t

∣∣∣∣
(t,z)

,
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easily seen to be equivalent to (4.14). Conversely, near a point (0, z) ∈ ]−ε, ε[ × S(0),
the C1 vector field (4.14) can be integrated for a short time (depending on z) to yield the
desired parameterization. ut

Theorem 4.10 (Double mountain above sliding mountain). Use a weakly regular cost
c ∈ C4(N) to define a pseudo-metric (2.1) on the domain N ⊂ M × M̄ . Let t ∈ ]0, 1[ 7→
(x, x̄(t)) ∈ N be a geodesic in (N, h). If ]t0, t1[× {y} lies in the interior of

3 := {(t, y) ∈ [0, 1]×M | y ∈ V (x, x̄(t))}, (4.16)

then f (t) = −c(y, x̄(t)) + c(x, x̄(t)) ≤ max{f (t+0 ), f (t
−

1 )} on 0 ≤ t0 < t < t1 ≤ 1,
where

f (t+0 ) = lim
ε↘0

f (t0 + ε), f (t−1 ) = lim
ε↘0

f (t − ε). (4.17)

Proof. Fix a geodesic t ∈ ]0, 1[ 7→ (x, x̄(t)) ∈ N with ˙̄x(1/2) 6= 0, since otherwise the
conclusion is obvious. Note that c-Expx and hence t ∈ ]0, 1[ 7→ x̄(t) are C3 smooth,
from Lemma 4.4 and (A0). For all y ∈ M and t ∈ ]0, 1[ set

f (t, y) = −c(y, x̄(t))+ c(x, x̄(t))

and note that f (t, y) is C3-smooth on the interior of 3 ⊂ [0, 1]×M . Define

S+ :=
{
(t, y) ∈ int3

∣∣∣∣ ∂f∂t ≥ 0
}
,

S :=
{
(t, y) ∈ int3

∣∣∣∣ ∂f∂t = 0
}
.

For each t ∈ ]0, 1[, we think of f (t, y) as defining the elevation of a landscape over M ,
which evolves from f (y, 0) to f (y, 1) as t increases, and is normalized so that f (x, t)
= 0. We picture f (y, t) as a sliding mountain, with S+(t) := {y ∈ M | (t, y) ∈ S+}
denoting the rising region, and S(t) := {y ∈ M | (t, y) ∈ S} the region at the boundary
of S+(t) which—instantaneously—is neither rising nor sinking.

We claim the rising region S+(t) ⊂ M is a non-decreasing function of t ∈ ]t0, t1[. To
see this, we plan to apply Lemma 4.9 to the C2 function

g(t, y) :=
∂f

∂t
= −D̄c(y, x̄(t)) ˙̄x(t)+ D̄c(x, x̄(t)) ˙̄x(t) (4.18)

on 3. Differentiating this function with respect to y ∈ M yields

Dg(t, y) = −DD̄c(y, x̄(t)) ˙̄x(t) 6= 0

because of (A2). Applying Lemma 4.9 on any coordinate chart in M shows S(t) is the
boundary of S+(t), and the question of whether S+(t) is expanding or contracting along
its boundary is determined by the sign of ∂g/∂t on S(t).
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From the definition of V (x, x̄(t ′)) observe y ∈ S(t ′) ⊂ V (x, x̄(t ′)) implies (y, x̄(t ′))
is linked to (x, x̄(t ′)) by a curve in N(x̄(t ′))×{x̄(t ′)} which is geodesic in (N, h). Propo-
sition 4.6 asserts ∂2f/∂t2|(t ′,y) ≥ 0, so from Lemma 4.9 there is a neighbourhood of
y on which the rising region S+(t) does not shrink for a short time interval around
t ′ ∈ ]0, 1[.

Finally, fix y ∈ M and 0 ≤ t0 < t1 ≤ 1 such that ]t0, t1[ × {y} ⊂ int3 and let
U ⊂ ]t0, t1[ denote the open set of times at which y 6∈ S+(t). If U is non-empty, we
claim any connected component of U has t = t0 in its closure. If not, let t ′ ∈ ]t0, t1[
denote the left endpoint of a connected component in U . This means y ∈ S+(t ′) but
y 6∈ S+(t ′+ δ) for any δ > 0, in violation of the non-shrinking property of S+(t) derived
above. Thus t ∈ ]t0, t1[ 7→ f (t, y) is decreasing on an interval U = ]t0, t (y)[ for some
t (y) ∈ [t0, t1] and non-decreasing on the complementary interval ]t (y), t1[. The limits
(4.17) exist and the proof that f (t, y) ≤ max{f (t+0 ), f (t

−

1 )} is complete. ut

Remark 4.11 (A geodesic hypersurface bounds the rising region). Lemma 4.4 implies
S(t) × {x̄(t)} is a totally geodesic submanifold for each t ∈ ]0, 1[ of the preceding
proof. Indeed, (4.18) shows q̄∗ ∈ Dom(č-Expx̄(t)) ⊂ T ∗x̄(t)M̄ belongs to the hyperplane
(D̄c(x, x̄(t))+ q̄∗) ˙̄x(t) = 0 if and only if y := č-Expx̄(t) q̄

∗ lies on S(t).

Remark 4.12. If the domain N is horizontally convex then V (x, x̄) = N(x̄) and3 from
(4.16) are open sets. Then ]0, 1[×{y} ∈ 3 if and only if y ∈

⋂
0<t<1N(x̄(t)).

Remark 4.13 (Enhancements and further developments). At the time of our original
submission, Villani had incorporated a version of our proof into [50], modifying it to
allow him to avoid the use of the level set method. He further developed our technique
to prove stronger results: contrast Theorem 3.1 above (and the first theorem in [27]) with
Villani’s Theorem 12.36, which extends Loeper’s maximum principle to new Riemannian
manifolds. Since our original submission, many further developments have appeared, due
to Figalli & ourselves [17], Figalli & Loeper [18], Figalli & Rifford [19], Figalli & Villani
[20], Loeper & Villani [33], Trudinger & Wang [41], Villani [48], and ourselves [29],
stimulated in part by the present manuscript and its precursor [28]. These include Hölder
continuity results for maps between rough measures which optimize weakly regular costs
in two dimensions [18] and continuity results for such maps for non-negatively cross-
curved costs in higher dimensions [17], regularity of optimal maps on strictly regular
Riemannian manifolds with no purely-focal points [33], stability of the strong regularity
hypothesis [48], and regularity results for optimal maps with respect to perturbations of
the spherical metric [19].

5. Perspective and conclusions

Before concluding this paper, let us briefly review the connection of the transportation
problem (1.1) we study with fully non-linear partial differential equations. Although this
connection goes almost back to Monge [38], it has developed dramatically since the work
of Brenier [3]. When an optimal mapping F : M → M̄ exists and happens to be a
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diffeomorphism, it provides a change of variables between (M, ρ) and (M̄, ρ̄), hence its
Jacobian satisfies the equation

ρ̄(F (x))|detDF(x)| = ρ(x). (5.1)

Often when F is not smooth, (5.1) remains true almost everywhere [35], [12], [1].
Optimality implies that F(·) can be related to a pair of scalar functions u : M →

R ∪ {+∞} and ū : M̄ → R ∪ {+∞}, which arise from the linear program dual to (1.1),
and represent Lagrange multipliers for the prescribed densities ρ and ρ̄. Moreover, u can
be taken to belong to the class of c-convex functions, meaning it can be obtained as the
upper envelope of a family of mountains—analogous to (3.1) and (3.8) but with i ranging
over ρ̄-almost all of M̄; similarly, ū is a č-convex function, meaning ū = (ūc)č in (A.1)
(see Appendix). When the twist condition holds, F = c-Exp ◦ Du. If non-degeneracy
(A2) also holds, then (5.1) becomes an equation of Monge–Ampère type expressed as in
[34] using local coordinates around (x′, F (x̄′)) by

det[uij + cij ](x,c-ExpxDu(x)) =
ρ(x)

ρ̄(c-Expx Du(x))
|det cik̄|(x,c-ExpxDu(x)); (5.2)

c-convexity of u implies non-negative definiteness of the matrix uij + cij of second
derivatives, hence the equation is degenerate elliptic [22]. Without further assumptions
on (M, ρ) and the geometry of (M̄, ρ̄) we can expect neither strict ellipticity nor regular-
ity of solutions: if the support of ρ is connected but the support of ρ̄ is not, this will force
F to be discontinuous and u 6∈ C1(M). The equation is therefore not locally smoothing,
and the best one can hope is for solutions to inherit regularity from the boundary data
(M, ρ) and (M̄, ρ̄).

For the cost function c(x, x̄) = |x − x̄|2/2 on M, M̄ ⊂ Rn, (5.2) becomes the fa-
miliar Monge–Ampère equation for the convex function u(x) + |x|2/2 [3]. In this case
Caffarelli [5] was able to show convexity of M̄ implies local Hölder continuity of F if the
densities dρ/dvol ∈ L∞(M) and dvol/dρ̄ ∈ L∞(M̄) are bounded, and smoothness of F
on the interior of M if the densities log |dρ/dvol| and log |dρ̄/dvol| are bounded and
smooth; see also Delanoë [13] for the case n = 2, and Wang [52] for analogous results
in the context of Example 3.5, the reflector antenna problem. The results of Loeper and
Ma, Trudinger & Wang extend the Hölder [31] and smooth [34], [43] theories to general
bi-twisted, strictly regular costs on cl(M × M̄). Loeper in particular achieves stronger
results such as a global Hölder estimate with explicit exponent under weaker restrictions
on ρ and ρ̄ by exploiting strict regularity of the cost [31]. Trudinger & Wang extended
the up-to-the-boundary regularity results of Caffarelli [4] and Urbas [44]—which require
convexity and smoothness ofM ⊂ Rn as well as M̄—to bi-twisted costs which are merely
weakly regular [42]. For bounded and sufficiently smooth densities, horizontal and verti-
cal convexity ofN = M×M̄ takes the place of the convexity assumptions on the target M̄
and domain M in these theories.

Since we had not previously encountered pseudo-Riemannian geometry of any signa-
ture other than the Lorentzian one (n, 1) in applications, much less as the necessary and
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sufficient condition for degenerate elliptic partial differential equations to possess smooth
solutions, a few words of explanation seem appropriate.2

The regularity of optimal maps F : M → M̄ is a question whose answer should
depend only on the cost function c(x, x̄) and the probability measures ρ and ρ̄. It should
not depend on which choice of smooth coordinates onM and M̄ are used to represent this
data or the solution. Any necessary and sufficient condition on c(x, x̄) guaranteeing regu-
larity of F should therefore be geometrically invariant, meaning coordinate independent.
Thus pseudo-Riemannian geometry and curvatures arise in the theory of optimal trans-
portation for the same reason they arise in Einstein’s theory of gravity, general relativity:
they provide the natural language for describing phenomena—in this case regularity—
which exhibit invariance under the general group of diffeomorphisms. Put another way,
the underlying physical reality is independent of which coordinates are used to describe
it. Moreover, this invariance places severe restrictions on the form which necessary and
sufficient conditions for regularity can take: since the pseudo-metric h is equivalent to
knowing the cost function c(x, x̄)—up to null Lagrangians v(x)+ v̄(x̄) which are irrele-
vant to the optimization at hand (1.1)— any such conditions on the cost function must be
expressible via the curvature tensor of h.

Let us now turn to the question of why the intrinsic geometry of optimal transporta-
tion should be pseudo-Riemannian rather than Riemannian. Dimensional symmetry be-
tween the domain M and target M̄ suggests that the number of time-like directions in
the theory—if any—should equal the number of space-like directions. But why signature
(n, n) rather than the signature (2n, 0), which is more frequently associated to elliptic and
extremal problems? And why the nullity of p ⊕ p̄ in (A3w)?

The Riemannian notion of length allows us to associate a magnitude to any sectional
curvature. However, null vectors have no length and cannot be normalized; because the
plane (p ⊕ 0) ∧ (0 ⊕ p̄) is generated by orthogonal null vectors, we can decide the
sign (positive, negative, or zero) of its sectional curvature, but not the magnitude. On the
other hand, the results of Loeper reveal that the size of the constant C > 0 in hypothesis
(1.2) controls the Hölder constant of the mapping F : M → M̄ . Unlike the exponent,
which is coordinate-independent, the Hölder constant of F obviously depends on the
choice of coordinates. We are therefore relieved to find the cross-curvature condition
governing regularity does not have an associated magnitude, since the problem has no
intrinsic length scale. To be scale free, the geometrical structure which governs regularity
for optimal transportation must be pseudo-Riemannian, since the modulus of continuity
of a map F has no intrinsic meaning in the absence of separate notions of length on
M and M̄ , which the cost function c(x, x̄) alone cannot provide. What it can and does

2 However, as we learned subsequently from Robert Bryant, the wedge product ω ∧ ω can be
used to define a signature (3, 3) pseudo-metric on the space R4

∧ R4; in four dimensions, the
difference between positive sectional curvature and positive curvature operator amounts to the
question of whether the curvature operator is positive definite only on the light cone with respect to
this pseudo-metric, or on the full space (cf. [2]). In one way this parallels the distinction between
strict regularity and positive cross-curvature of a cost; in another it parallels the distinction between
positive cross-curvature and positive sectional curvature, (2.3)–(2.4).
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provide are geodesics on N(x̄) × {x̄} and {x} × N(x), and geodesic convexity of these
null submanifolds is the essential domain hypothesis in Ma, Trudinger & Wang’s theory.

In the main text of this manuscript, we have focused exclusively on the pseudo-metric
d`2
= −cij̄dx

idx j̄ induced by the cost (2.1). Let us conclude by noting that there is also
a canonical symplectic form ω = d(Dc⊕ 0) = −d(0⊕ D̄c) on N ⊂ M × M̄ associated
to the cost c ∈ C4(N). In local coordinates x1, . . . , xn on M and x 1̄, . . . , xn̄ on M̄ it is
given by

ω :=
1
2

(
0 D̄Dc

−DD̄c 0

)
. (5.3)

It is possible to verify that any c-optimal diffeomorphism F : M → M̄ has a graph which
is spacelike with respect to h and Lagrangian with respect to ω. Conversely, for a weakly
regular cost, results of Trudinger & Wang [42], [43] can be used to deduce that any dif-
feomorphism whose graph is h-spacelike and ω-Lagrangian is in fact the c-optimal map
between the measures ρ := π#(vol(N,h) |Graph(F )) and ρ̄ := π̄#(vol(N,h) |Graph(F )) ob-
tained by projecting the Riemannian volume vol(N,h) induced by h on Graph(F ) through
the canonical projections π(x, x̄) = x and π̄(x, x̄) = x̄. This reveals another unex-
pected connection between optimal transportation and symplectic (or para-Kähler) ge-
ometry. When ρ and ρ̄ are given by the Euclidean volumes on two convex domains, and
c(x, x̄) = |x − x̄|2/2, this is related to the work of Wolfson [55] and Warren [54] on
special Lagrangian submanifolds, where a pseudo-Riemannian metric of signature (n, n)
also appears [54]. We defer the details of this development to the appendix below.

Appendix. Differential geometric characterization of optimality

This appendix is intended to elucidate how differential geometric concepts such as La-
grangian submanifolds describe optimizers in the Kantorovich problem (1.1). It was
added in revision at the request of the referee, to substantiate claims made in the con-
cluding remarks of the text. For simplicity, we shall focus our attention particularly on
situations in which the optimizers are known to be supported on the graph of a differen-
tiable map F : M → M̄ .

For Lipschitz costs, it is well-known that γ ∈ 0(ρ, ρ̄) minimizes (1.1) if and only
if γ vanishes outside a set 6 ⊂ M × M̄ which is c-cyclically monotone [22], [49]. In
turn, 6 is c-cyclically monotone if and only if there exists a pair of Lipschitz functions
u ∈ C(clM) and ū ∈ C(cl M̄) which are conjugate to each other in the sense that u = ūc

and ū = uč, where

ūc(x) = sup
x̄∈cl M̄

(−c(x, x̄)− ū(x̄)), uč(x̄) = sup
x∈clM

(−c(x, x̄)− u(x)), (A.1)

and for which 6 ⊂ ∂cu with ∂cu = ∂cclMu from (2.8). We may take such an inclusion
to define c-cyclical monotonicity in the present context. In case 6 is a smooth graph, the
next theorem uses these facts to characterize optimality in terms of the pseudo-metric h
and symplectic form ω induced by the cost through (2.1) and (5.3). The second part of
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the theorem should be compared to a result of Trudinger and Wang giving local suffi-
cient conditions on u for c-convexity: u = učc [43]; see also [42], [41] and Villani’s
Theorem 12.46 [50]. Although part (2) of Theorem A.1 can be deduced from their re-
sult, the argument given below is based on considerations introduced above and entirely
self-contained; at least for u ∈ C2(M), it yields a new, logically independent, proof of
Trudinger and Wang’s result, without requiring twistedness of the cost.

Recall a submanifold 6 ⊂ N is Lagrangian with respect to the symplectic form ω

if ω(P,Q) = 0 for all s ∈ 6 and tangent vectors P,Q ∈ Ts6. The same submani-
fold is spacelike with respect to the pseudo-metric h if h(P, P ) ≥ 0 for all s ∈ 6 and
tangent vectors P ∈ Ts6, and strictly spacelike if equality implies P = 0. The next theo-
rem shows that being ω-Lagrangian and h-spacelike give local differential conditions on
a graph which characterize global minimality. This is somehow analogous to the well-
known result for functions on Rn, that a (local) minimum has vanishing first derivative
and non-negative second derivative. The converse may also be true, but only if the sec-
ond derivative is strictly positive or if some global information about the function whose
critical points are being investigated is known—such as convexity, unimodality, or level
set convexity—which allows global minimality to be inferred from local criticality. In
part (2) of the theorem below, Ma, Trudinger and Wang’s hypotheses on the domains and
cost provides this requisite global information.

Theorem A.1 (Spacelike Lagrangian characterization of optimality). Fix c ∈ C4(N)

non-degenerate on the domain N ⊂ M × M̄ extending to a Lipschitz function on the
compact space cl(M × M̄). Let F : M → M̄ be differentiable.

(1) If Graph(F ) := {(x, F (x)) | x ∈ M} is c-cyclically monotone, then Graph(F )∩N is
Lagrangian for the symplectic form ω of (5.3) and spacelike for the pseudo-metric h
of (2.1); it is strictly spacelike at points where det[DF(x)] 6= 0.

(2) Conversely, assuming c is weakly regular and N = M× M̄ is bi-convex, if Graph(F )
is ω-Lagrangian and h-spacelike then Graph(F ) is c-cyclically monotone.

Proof of (1). Suppose 6 = Graph(F ) is c-cyclically monotone. As asserted above,
this means 6 ⊂ ∂cu for a Lipschitz function u ∈ C(clM). Assuming differentiability
of F , we shall now deduce u ∈ C2, at least on the projection U = πM(6 ∩ N). Since
(x, F (x)) ∈ ∂cu implies y ∈ M 7→ u(y)+ c(y, F (x)) is minimized at y = x, we have

Du(x) = −Dc(x, F (x)) (A.2)

on the set x ∈ DomDu of full measure in U . Here the right hand side is continuously
differentiable on U , implying u ∈ C2(U). Denoting F k̄j := ∂F k̄/∂xj and differentiating
(A.2) yields symmetry of the matrix

uij + cij = −cik̄F
k̄
j ≥ 0 (A.3)

in any local coordinate system x1, . . . , xn on M and x 1̄, . . . , xn̄ on M̄ . This matrix is
non-negative definite since y ∈ M 7→ u(y) + c(y, F (x)) attains its minimum at y = x.
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The non-degeneracy of c shows the same matrix to be invertible, hence positive definite,
wherever det[DF(x0)] 6= 0.

Any pair of smooth curves intersecting on N ∩ Graph(F ) can be parameterized near
their point of intersection (x0, F (x0)) by s ∈ [−1, 1] 7→ (x(s), F (x(s))) and t ∈ [−1, 1]
7→ (y(t), F (y(t))) with x(0) = y(0) = x0 ∈ U . Setting P = [I | DF(x0)]ẋ(0) and
Q = [I | DF(x0)]ẏ(0), from (A.3) we compute

2ω(P,Q) := ẋicij̄F
j̄
k ẏ

k
− ẋiF

j̄
i cj̄ k ẏ

k
= −ẋi(uik + cik)ẏ

k
+ ẋi(uki + cki)ẏ

k
= 0

and

2h(P, P ) := −ẋicij̄F
j̄
k ẋ

k
− ẋiF

j̄
i cj̄ k ẋ

k
= ẋi(uik + cik)ẋ

k
+ ẋi(uki + cki)ẋ

k
≥ 0.

In other words, 6 is ω-Lagrangian and h-spacelike in N , and strictly spacelike wherever
det[DF(x0)] 6= 0. 4

Proof of (2). To prove the converse, assumeN = M×M̄ bi-convex and6 = Graph(F ) is
ω-Lagrangian and h-spacelike. In local coordinates, this means the matrix−cij̄F

j̄
k is sym-

metric and non-negative definite. Symmetry implies the field of covectors −Dc(x, F (x))
agrees with a differential Du(x) of u ∈ C2(M) locally, and in fact globally due to the
Poincaré lemma since bi-convexity of N implies contractibility ofM . Note u extends to a
Lipschitz function on clM since c is Lipschitz on cl(M × M̄). Non-negative definiteness
implies uij + cij ≥ 0. We use this in the following, to show that u is c-convex, mean-
ing u = (uč)c in (A.1). This c-convexity implies the desired c-cyclical monotonicity of
Graph(F ).

Fix x0 ∈ M and x ∈ clM . Let x̄0 = F(x0). It suffices to show that

u(x)− u(x0)+ c(x, x̄0)− c(x0, x̄0) ≥ 0. (A.4)

This implies −u(x0) − c(x0, x̄0) = uč(x̄0) and hence učc(x0) ≥ u(x0). The converse
inequality u ≥ učc holds quite generally [49]. Moreover, since u is Lipschitz it suffices to
establish učc ≥ u and (A.4) for all x, x0 ∈ M to conclude the desired identity učc = u on
clM . We apply the same idea as in Theorem 4.10. We first show

Claim A.2. Let t ∈ [0, 1] 7→ (x(t), x̄) ∈ N be a horizontal geodesic with x0 = x(0) and
x = x(1). Define

H(t, x̄) = u(x(t))+ c(x(t), x̄).

If ∂
∂t
H(t, x̄) = 0, then ∂2

∂t2
H(t, x̄) ≥ 0.

Proof of Claim A.2. Fix x̄ and suppose ∂
∂t

∣∣
t=t0

H(t, x̄) = 0. Let x̄t0 = F(x(t0)); that is,
Du(x(t0))+Dc(x(t0), x̄t0) = 0, and

∂2

∂t2

∣∣∣∣
t=t0

H(t, x̄t0) = (uij (x(t0))+ cij (x(t0), x̄t0))ẋ(t0)
i ẋ(t0)

j

+ (ui(x(t0))+ ci(x(t0), x̄t0))ẍ(t0)
i

= (uij (x(t0))+ cij (x(t0), x̄t0))ẋ(t0)
i ẋ(t0)

j

≥ 0. (A.5)
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The last line follows from the non-negative definiteness of uij + cij ≥ 0 on Graph(F ).
Consider a vertical geodesic s ∈ [0, 1] 7→ (x(t0), x̄(s)) linking x̄(0) = x̄t0 to x̄(1) = x̄;
it satisfies

cij̄ (x(t0), x̄(s))
˙̄x(s)j̄ = −ci(x(t0), x̄t0)+ ci(x(t0), x̄).

Therefore,

0 =
∂

∂t

∣∣∣∣
t=t0

H(t, x̄) = ui(x(t0))ẋ(t0)
i
+ ci(x(t0), x̄)ẋ(t0)

i

= −ci(x(t0), x̄t0)ẋ(t0)
i
+ ci(x(t0), x̄)ẋ(t0)

i

= cij̄ (x(t0), x̄(s))ẋ(t0)
i ˙̄x(s)j̄ .

Thus we can use weak regularity (A3w) of the cost in Lemma 4.5 to deduce

∂4

∂s2∂t2

∣∣∣∣
(s,t)=(s,t0)

H(t, x̄(s)) =
∂4

∂s2∂t2

∣∣∣∣
(s,t)=(s,t0)

c(x(t), x̄(s)) ≤ 0.

From the geodesic equation satisfied by t ∈ [0, 1] 7→ (x(t), x̄(1)) one can check

∂3

∂s∂t2

∣∣∣∣
(s,t)=(1,t0)

H(t, x̄(s)) =
∂3

∂s∂t2

∣∣∣∣
(s,t)=(1,t0)

c(x(t), x̄(s)) = 0.

These last two facts together imply that s ∈ [0, 1] 7→ f (s) = ∂2H
∂t2
(t0, x̄(s)) is a concave

function attaining its maximum at s = 1. The desired non-negativity 0 ≤ f (0) ≤ f (1) =
∂2H
∂t2
(t0, x̄) then follows from (A.5). 4

Use the same notation as in Claim A.2. Define g(t, x̄) = ∂
∂t
H(t, x̄) and set

S+(t) = {x̄ ∈ M̄ | g(t, x̄) ≥ 0}.

Notice D̄g(t, x̄) 6= 0 on [0, 1] × M̄ , so ∂S+(t) = {x̄ ∈ M̄ | g(t, x̄) = 0}. Extending the
geodesic (x(t), x̄) ∈ N to values of t slightly beyond [0, 1], we can apply Lemma 4.9.
Claim A.2 shows the set-valued function S+(t) is non-decreasing in t ; that is, S+(t1) ⊂
S+(t2) for 0 ≤ t1 ≤ t2 ≤ 1. Let x̄0 = F(x0). Then g(0, x̄0) = 0, thus x̄0 ∈ S

+(0) and the
monotonicity of S+(t) implies x̄0 ∈ S

+(t) for all 0 ≤ t ≤ 1. Thus g(t, x̄0) ≥ 0 and

u(x)+ c(x, x̄0) = H(1, x̄0) ≥ H(0, x̄0) = u(x0)+ c(x0, x̄0),

completing the proof. ut

Remark A.3. Given F : M 7→ M̄ , Lemma A.1 of [10] shows any Radon measure γ ≥ 0
on M × M̄ assigning zero outer measure to the complement of Graph(F ) has its first
marginal ρ := π#γ pushed forward to its second marginal ρ̄ := π̄#γ = F#ρ by the
map F . Here π(x, x̄) = x and π̄(x, x̄) = x̄. This applies in particular to the Riemannian
volume γ induced on a spacelike submanifold Graph(F ) by the pseudo-metric h.
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[15] Delanoë, P., Ge, Y.: Regularity of optimal transportation maps on compact, locally nearly
spherical, manifolds. J. Reine Angew. Math., to appear
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