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Abstract. We show that it is possible in rather general situations to obtain a finite-dimensional
modular representation p of the Galois group of a number field F as a constituent of one of the
modular Galois representations attached to automorphic representations of a general linear group
over F, provided one works “potentially.” The proof is based on a close study of the monodromy of
the Dwork family of Calabi—Yau hypersurfaces; this in turn makes use of properties of rigid local
systems and the classification of irreducible subgroups of finite classical groups with certain sorts
of generators.
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Introduction

The “Galois representations” of the title are modular representations p of the Galois
groups of a number field F, and the “automorphic realization” refers to obtaining these
representations as constituents of Galois representations attached to automorphic repre-
sentations of general linear groups over F. The present article refines the moduli-theoretic
arguments of [HST]] to show that this is possible in rather general situations, provided one
works “potentially,” replacing p by its restriction to a certain infinite class of Galois ex-
tensions F’/F'; this class is sufficiently large that the restriction to the Galois group of F’
can be assumed injective.

In §1, we introduce the notion of potential stable automorphy of modular Galois rep-
resentations, and state a general result on the ubiquity of such representations. In §2 we
state some rather precise group-theoretic results on the monodromy of the Dwork family,
strengthening the results of [HST], and use them to prove the general result of §1. In §3
we discuss variants and possible future applications of the general result. In §4 we prove
the group-theoretic results stated in §2, as well as some supplements to those results. The
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techniques used in §4 are based on (1) relating the monodromy of the Dwork family to
a rigid local system, then exploiting properties of rigid local systems, and (2) applying
results on the classification of irreducible subgroups of finite classical groups with certain
sorts of generators.

1. Stable automorphy of residual representations

Let F be a number field, 'r = Gal(@/ F), k a finite field of characteristic £ > 2, O the
ring of integers of a finite extension of Z, with residue field k, p : I'r — GL(n, O) a
continuous representation of I'r. We assume p is defined over a number field C in the
sense that p is unramified at all primes of F outside a finite set S and, for v ¢ S, the
characteristic polynomial of (geometric) Frobenius Frob,,

Py(p, X) = det(I — p(Frob,)X),

has coefficients in C. Fix an embedding ¢ : C — C. One says that p is automorphic
(relative to ¢) if there is an automorphic representation IT of GL(n, F) such that, for
almost all places v of F prime to ¢, p is unramified at v and there is an equality of local
Euler factors

Ly(s, p) = L(s, ITy)

where L, (s, p) = Py(p, Nv™*) and L(s, IT,) is the standard (Godement-Jacquet) local
Euler factor of IT,,.

Let mp C O be the maximal ideal, and let o = p : I'r — GL(n, k) be the reduction
mod mo of p. One says that p is residually automorphic, or that o is automorphic, if
there is an automorphic lift p’ of o to some finite extension O’ of O with residue field k
(one could also replace k by a finite extension, but with no added generality); by definition
o' has to be defined over a number field with a chosen complex embedding. This is an
intrinsic property of o, so the definition remains valid without assuming a priori that o
lifts to characteristic zero.

One says that p is potentially automorphic if, for any finite extension L of F, there
is a finite Galois extension F’/F disjoint from L such that p|r - is automorphic. One
says that 0 : 'r — GL(n, k) is potentially automorphic if for any finite extension L
of F, there is a finite Galois extension F’/F disjoint from Lg such that o7 = o o 18
automorphic. This definition implies that o admits a lift to characteristic zero for each
such F’, but this is not necessarily the case for the original o.

The notion of residual automorphy is the starting point of the approach, initiated by
Wiles and generalized in a variety of directions, to show that an ¢-adic representation
such as p is associated to automorphic forms. The notion of potential automorphy was
introduced by Taylor and has proved a powerful tool for applications in which actual
automorphy is either unnecessary or inaccessible; the proof of Serre’s conjecture by Khare
and Wintenberger suggests that it may eventually be possible to use a combination of
automorphic and arithmetic techniques to deduce automorphy from potential automorphy.

In contrast to these two notions, whose fruitfulness has been amply demonstrated, the
following notion may have no applications whatsoever:
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Definition 1.1. Let p and o be as above. Say p is stably residually automorphic (resp.
o is stably automorphic) if there exists a finite-dimensional representation ¢’ : 'y —
GL(#n, k) such that o @ o’ (resp. o @ o) is automorphic.

In the obvious way one combines this definition with the previous ones, and we can
talk of stably potentially automorphic representations—that is, representations that are
direct summands of potentially automorphic representations—or stably potentially resid-
ually automorphic representations. The main result of the present note is the following
application of the method of potential automorphy as developed in the article [HST]:

Main Theorem 1.2. Assume F is totally real and k = Fy. Then any finite-dimensional
representation o : I'r — GL(n, Fy) is stably potentially automorphic. Moreover, the fi-
nite Galois extensions F' in the definition of potential automorphy can be assumed totally
real.

Remarks 1.3. (1) A representation o as above is said to be polarized of weight w if it
admits a nondegenerate pairing

oc®oc — k(—w)

where k(—w) is the one-dimensional vector space over k on which I'r acts by the
—w-power of the cyclotomic character. Likewise for p. It will be clear from the proof
that if n is even and o is symplectically polarized of weight n— 1, or more generally of
any weight w of parity opposite to 7, one can take o’ = (0)—i.e. o is itself potentially
automorphic—unless £ | n 4 1, which is precisely where the argument breaks down.
In general, one can take 6’ = o ¥ (1 — 2n), unless £ | 2n + 1. This smallest possible
choice for ¢’ is not necessarily optimal, for reasons to be discussed in §3.

(2) Note that o is not assumed odd when F = Q and n = 2. There is a sign obstruction to
relating o to a Galois representation arising in the cohomology of a Shimura variety,
but this is compensated for by o”.

(3) The assumption that F is totally real can be suppressed, as follows. Let F* C F
be the maximal totally real subfield. Let o = Indlzi " o, and apply the theorem
to 0. Then the restrictions of o ¥ to I'z.p, for F’ as in the definition of potential
automorphy, all contain o'|r, ..

(4) One is entitled to expect stronger results when F is CM and o is not polarized of
weight n — 1 but rather that there is a nondegenerate pairing 0 ® o o ¢ — Fy(1 —n),
where ¢ is complex conjugation. The methods of [HST] do not apply to this situation.
However, shortly after completing the first version of this article, the authors became
aware of Barnet-Lamb’s generalization in [BL] of the techniques of [HST], based on
[Ka-AL]. This work may provide a more natural formulation for CM fields.

(5) The assumption that k = [, is dispensable—just replace o by the representation
of dimension [k : F;]dim oc—but since one cannot guarantee that the automorphic
lifts of the indicated representations have coefficients in W (k)-algebras this is rather
artificial. Again, the methods of [BL] should lead to a result over general finite residue
field.

(6) The method breaks down completely when £ = 2. Whether or not this is unfortunate
is left to the reader’s judgment.
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2. A refined potential automorphy result

In view of the following result, the proof of the Main Theorem is an immediate application
of the methods of [HST], whose notation we use freely. Let F' be a number field, d > 1
a positive odd integer, N a positive integer. Define Ty = P! \ {00, ig} over Z[1/d] as in
[HST], and let V[N] be the natural representation of 1 (7y(C), ) defined in [HST], with
d replaced by n 4 1. The following result is a substantial strengthening of Corollary 1.11
of [HST]. It is based on the rather miraculous rigidity properties of absolutely irreducible
hypergeometric local systems, and on the explicit description by Levelt of such systems,
which is perfectly adapted to “reduction mod £” considerations.

Theorem 2.1. Suppose N is relatively prime to 2d. Then the natural map 7 (To(C), 1)
— Sp(VIN]) >~ Sp(d — 1, Z/NZ) is surjective.

Let W be a free Z/NZ-module of rank d — 1 with a continuous action of Gal(Q/F) and
a perfect alternating pairing

(JIw:WxW — (Z/NZ)2 —d).

We may think of W as a lisse etale sheaf over Spec . Consider the functor from
To x Spec F-schemes to sets which sends X to the set of isomorphisms between the
pull back of W and the pull back of V[N] which sends (, )w to the pairing we have
defined on V[N]. As in the discussion following Corollary 1.11 of [HST], this functor
is represented by a finite étale cover Ty /Ty x Spec F. Theorem 2.1 implies the next
corollary.

Corollary 2.2. Suppose N is relatively prime to 2d. Then the curve Ty is geometrically
irreducible.

The orthogonal analogue of Theorem 2.1 is not invoked in the proof of the Main Theorem
but it is included for the sake of completeness. Suppose now d > 0 is even, £ an odd prime
number, and define V[£] as before.

Theorem 2.3. Suppose £ is relatively prime to 2d, d > 10. Moreover suppose neither
d — 1 nord + 1 is a power of £. Then the image of the natural map 7w1(To(C),t) —
OWV[L]) =~ O(d — 1,Z/L7Z) is one of the following two subgroups of index 2 in
O(d — 1,7Z/L7): either the subgroup
{g€0d—1,Z/tZ) | ns(g) =1}
or the subgroup
{§ € O —1,Z/tZ) | ns(g) = det(g)},

where ns is the spinor norm.

Remark 2.4. A version of this theorem valid for Z/N Z-representations is proved in §4.
The formulation is somewhat more complicated than the analogous statement for Theo-
rem 2.1; see 4.10 for a precise statement.

Remark 2.5. The exceptional cases, when d % 1 is a power of £, are analyzed in 4.11.

The proofs of Theorems 2.1 and 2.3 are given in §4.
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Proof of the Main Theorem

As in [HST], the proof makes crucial use of the following variant of a theorem of Moret-
Bailly [MBI:

Proposition 2.6. Let F be a number field and let S = S111S, L1S3 be a finite set of places
of F such that Sy contains no infinite place. Suppose that T | F is a smooth, geometrically
connected variety. Suppose also that for v € Sy, Q, C T(Fy) is a nonempty open (for
the v-topology) subset; that for v € S, Q, C T (F}'") is a nonempty open Gal(F}'" | F)-
invariant subset; and that for v € S3, Q, C T(F,) is a nonempty open Gal(F,/F,)-
invariant subset. Suppose finally that Lo/ F is a finite extension. Then there is a finite
Galois extension F'/F and a point P € T (F') such that

e F'/F is linearly disjoint from Lo/ F;

e every place v of S splits completely in F' and if w is a prime of F' above v then
P e Q, C T(F));

o every place v of Sy is unramified in F' and if w is a prime of F' above v then P €
Q, NT(F));

e ifw is a prime of F' above v € S5 then P € Q, N T(F,).

Corollary 2.2 is used to verify the irreducibility condition above for certain moduli spaces
of Calabi—Yau hypersurfaces with level structure. In [HST], this was only known for level
structures of modulus all of whose prime factors are sufficiently large.

One takes N = £ - £’ where £ is the characteristic of k, as before, and £’ is an absurdly
large prime, as in [HSTI], to be specified presently. We take o’ any representation of
dimension r such that

(@) d =n+r+ 11is odd and relatively prime to £,
(b) o ® o’ is symplectically polarized of weight d — 2.

Remark 1.3(1) gives some suggestions for o’ provided n + 1 (or 2n + 1) is prime to £.
If that is not the case, one can just add an innocuous additional factor of the appropriate
dimension. We place ourselves in the setting of §3 of [HS'T], letting # = 1 in the statement
of Theorem 3.1 there, with the dimensionny = d — 1. Let p = 0 @ o’ and let E be an
imaginary quadratic field. We let ¢ = | be (the finite part of) a Hecke character of the
CM field M, cyclic of degree d — 1 over Q, satisfying the properties listed at the beginning
of the proof of Theorem 3.1 of [HST]. In particular, v is unramified at primes of M
dividing £ and at any prime dividing a rational prime that does not splitin £ /Q, its infinity
type is as specified in the proof of Theorem 3.1 of [HST]], and the automorphic induction
of ¥ to an automorphic representation of GL(d — 1, Q) is self-dual, cohomological (up
to twist by a half-integral power of the norm character) and cuspidal.

Assume £’ is chosen as in the proof of Theorem 3.1 of [HST]. In particular, £’ = 1
(mod d) is a prime that is unramified in F and in the splitting field of o @ o’ and satisfies

d—1)/2+1
(’>8<d+1>( )/2+
—4 .
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Moreover, £’ is split in the extension of E - M generated by the values (at finite ideles) of
the Hecke character ¥. The character ¢ gives us a residual representation

1(9) : g — GSp(d — 1, Fy).

as in the proof of Theorem 3.1 of [HST]; in particular, our choice of ¥ and the very large
lower bound on ¢’ guarantee that I (9) is irreducible.

In [HST] there is a prime g at which a lift of the representation taking the place of
o is of Steinberg type. In our situation there is no given lift of p, so g has nothing to do
with £, but we choose a ¢ > d at which [ (@) is unramified and whose residue class in IE‘;,
is of order > d — 1. The choice of ¢ is irrelevant in what follows but it is important to
note that such g (obviously) exist in order to apply the results as stated in [HST]E]

Now let W be the Galois module Wy x Wy = p x I () of rank d — 1 over Fy x Fyr. By
hypothesis (b) above and the construction of [HST]| we see that the representation of I'p
on W lies in GSp(d — 1, Fy x Fy). It follows from Corollary 2.2 and our hypotheses on £
and ¢’ that the curve Ty is geometrically irreducible. Hence the proof of Theorem 3.1 of
[HST] applies to yield a totally real Galois extension F’ of F, unramified at £’ and ¢, and
apointt € Tw (F) corresponding to a Calabi—Yau hypersurface in the Dwork family with
good reduction at ¢’ and totally degenerate reduction at g. At the request of the referee,
we sketch the argument, since both the hypotheses and the conclusions are weaker than
in [HST]. In Proposition 2.6 we take S; to be the set of archimedean primes of F, S> to
be the set of primes dividing £/, and S3 to be the set of primes dividing g. To prove that
F’ can be taken totally real, it suffices, by Moret-Bailly’s theorem, to show that Ty (R)
is nonempty. This follows as in [HST] from the existence of the symplectic polarization
of weight d — 2 on p and the construction of 8. To prove that F’ can be taken unramified
at £, we note as in [HST] that, on the one hand, p was assumed unramified at £; on the
other hand, the other hypotheses on v and ¢’ imply, as in [HST], that there is a point of
Tw (Qy") lying above the Fermat point 0 € 7p. The condition at ¢ does not appear in the
statement of the Main Theorem, so we refer the reader to [HST] for the details on this
point.

Moreover, Proposition 2.6 asserts that F’ can be taken linearly disjoint over F from
any finite extension Lo/ F. Note that, in contrast to [HST], we do not assume F’ unrami-
fied at £.

Recall that the point 7 has the property that there is a compatible family of (d — 1)-
dimensional £*-adic representations V=, of ' (letting £* denote a variable prime), with
symplectic polarizations of weight d — 2, and with residual representations V[£*];, such
that

VIC = plry, VIEL = 1@,
Moreover, Vi ; is crystalline with Hodge-Tate weights 0, 1, ..., d — 2, each with multi-
plicity one. Now Theorem 4.61 of [CHT]] and Theorem 4.6 of [T]] apply to show that V/ ,
is automorphic as a representation of I' /. Thus V ; is also automorphic, hence p|r,, is
automorphic. This completes the proof of the Main Theorem.

1" Given the results of the Paris book project, the choice of an auxiliary prime ¢ at this stage is no
longer necessary, and the article [BGHT] dispenses with this choice.
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Remark 2.7. Note that the cited theorems of [CHT] and [T] actually state that Vs ; and
Vi, are automorphic of the type considered in those papers, namely correspond to self-
dual cohomological automorphic representations I1" of GL(n, F’) (with a local condition
at some finite prime now known to be irrelevant). Moreover, the archimedean component
of TT" is the unique tempered representation of GL(n, F’ ®g R) with nontrivial cohomol-
ogy with coefficients in the trivial representation.

Remark 2.8. It is clear that the proof works just as well if k = Fy is replaced by Z/¢"Z
for any m. In particular, we find that any representation of I'z on a free rank n Z /0" Z-
module can be completed to a rank d representation, for appropriate d, that admits po-
tential liftings, for a collection of totally real Galois extensions F'/F, to d-dimensional
£-adic representations p of I'p that are not only geometric in the sense of Fontaine—
Mazur (unramified outside a finite set of primes and de Rham at primes dividing £) but
are in fact automorphic and indeed are attached to automorphic representations of the
kind considered in [CHT]. We leave the details to the reader. It is likely that by paying
more attention to the choice of £’ one can even take p to be crystalline at primes divid-
ing £—then one can expect F’/F to be highly ramified at £—but we have not looked into
the question carefully.

3. Variants

One interest of the Main Theorem is that it hints at the pathologies that may lurk in the
unexplored regions of the eigenvarieties constructed by Chenevier [C1} [(C2] and studied
in his book with Bellaiche [Be-Chl). Let IT be an automorphic representation of GL(n, F').
For almost al £, the (semisimplified) automorphic £-adic Galois representations define
points on these eigenvarieties, whereas the automorphic residual representations define
discrete invariants. If the residual representation is reducible then one can ask about the
reducibility locus on the corresponding component of the eigenvariety, which is expected
to encode a wealth of arithmetic information.

One naturally wonders whether any (semi-stable) lifting of the residual representation
occurs as a point of the eigenvariety, which is obviously an especially intriguing ques-
tion when the residual representation is completely arbitrary (for example a sum of the
reductions modulo £ of the two-dimensional representations one hopes to attach to Maass
forms, cf. Remark 1.3(2)). One might someday hope to be able to prove automorphic lift-
ing theorems for certain representations like the p = o @ o’ introduced in the proof of
the main theorem. Assuming this to be the case (a very optimistic assumption), this gives
a (potentially) positive answer to the question raised by Langlands, whether all Galois
representations are in some sense accessible by a combination of automorphic and con-
gruence methods. This answer may not be very satisfying, even ignoring the difference
between automorphy and potential automorphy, but in this generality it is hard to imagine
a simpler answer.

2 The exceptions are a subset of the £ such that, for some prime v of F dividing ¢, the local
component [T, has no vector fixed by the maximal pro-£ subgroup of the Iwahori subgroup at v.
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The “very optimistic” assumption above is a sort of overconvergent modularity lifting
hypothesis—the point on the eigenvariety associated to the lifting of (o ® o”)|r,, corre-
sponds to an overconvergent £-adic automorphic form of finite slope. It is very optimistic
even if o is irreducible and polarized of weight n — 1 and o’ is taken trivial, mainly
because current methods assume (a) £ > n (which we do not assume); (b) £ is unram-
ified in each F’ (which we cannot guarantee), and (¢) o admits a de Rham lifting with
distinct Hodge—Tate weights, which is a restrictive condition even on residual representa-
tions. It is much more optimistic if ¢’ is not trivial—this includes every case when o is a
two-dimensional even representation—because modularity lifting theorems appear to be
completely out of reach for reducible representations of dimension > 2. When n = 2 and
F = Q one has the notoriously difficult Skinner—Wiles theorem.

Note that in §2 we constructed automorphic lifts of representations of the form o ©o”’,
but there is no reason not to take nontrivial extensions of o by o’, provided the exten-
sions admit symplectic polarizations of the right weight. If we take an extension such that
Endr, (p) is limited to scalars—it seems this can always be arranged—then the defor-
mation functor of p is representable. Generalizing the Skinner—Wiles theorem to higher
dimensions, as would be necessary to treat reducible p, appears at present an insurmount-
able obstacle, but if that were not the case we would want to make judicious choices of o’
when possible. This suggests the following strengthening of the hypotheses (a) and (b) of
“Proof of the Main Theorem” in §2:

(c) For every prime v of F' dividing ¢, o is of Fontaine—Laffaille type at v with n distinct
weights.

(d) If o is not symplectically polarized of weight d — 2 (with d to be determined be-
low), then the sets of Fontaine—Laffaille weights of o and of 0¥ (2 — d) have empty
intersection.

This already implies at least £ > 2n, otherwise there is no room for 2n distinct Fontaine—
Laffaille weights. In fact, we want £ > m_—m_, where m (resp. m_) is the largest (resp.
smallest) Fontaine-Laffaille weight of 0 @ 0¥ (2 —d), and we define o’ = oV (2—d)®t
where 7 is an innocuous symplectically polarized representation of dimension d — 1 —2n
such that (a) and (b) are satisfied and such that o @ o' is of Fontaine—Laffaille type at
each v dividing £ with weights O, ..., d — 2, each with multiplicity one. One can take ©
to be induced from a CM Hecke character with the missing weights.

The Main Theorem shows that such o @ o, after restriction to I' v for a large class of
totally real F’, admit automorphic lifts of the type indicated in Remark 2.8. One expects
that one can replace F’ by F, and it is plausible that every lift of ¢ @ o’ to characteristic
zero that is unramified at all but finitely many places and de Rham at primes dividing £ is
automorphic of this type. This should have implications for lifts of the original o that are
not assumed symplectically polarized.

In the applications in [HST] it was always necessary to prove that F’ can be chosen
unramified at ¢, in order to apply the modularity lifting theorems of [CHT] and [T)]. This
required in practice assuming that the residual representation p is a sum of (necessarily
distinct) characters when restricted to the inertia group at any prime dividing ¢. Without
this assumption there is no way to guarantee that the moduli space Tw has rational points
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over an unramified extension of Q. Since Ty is a curve, its local £-adic points have little
room for variation. Lifting theorems for the p considered above will have to be valid for
number fields in which ¢ is allowed to ramify. For ordinary liftings this has now been
proved in D. Geraghty’s Harvard thesis, and there are interesting partial results in other
cases in a forthcoming preprint of Barnet-Lamb, Gee, and Geraghty.

4. Proofs of Theorems 2.1 and 2.3
4.1. The general setting

Recall the general setting. We work over C. We are given an integer d > 3, and we
consider the Dwork family of degree d hypersurfaces X; in P4~!, with homogeneous
coordinates X1, ..., Xy, defined by the equation

d d
XY X —di][xi =0,
i=1 i=1

with parameter A € Tp(C) := P!\ {00, iy}. For any chosen ¢ € Ty(C), we have a rep-
resentation of the (topological) fundamental group 71 (7p(C), 7) on the Betti cohomology
group H?=2(X,, Z), which is a free Z-module of known rank. The cup product pairing

(,): H"2(X,,Z) x H*2(X,,7) —» H¥**X,,2) =7

is a perfect duality of free Z-modules; it is alternating if d is odd, and symmetric if d is
even. The action of 71 (Tp(C), t) respects this pairing.

When d is even, the (d — 2)/2th power of the cohomology class of a hyperplane
section is a 771 (Tp(C), t)-invariant element L € H?=2(X,, Z) with (L, L) = d. We define
Prim?=2(X;, Z[1/d])) ¢ H*~%(X,, Z[1/d]) to be the orthogonal complement of L under
the cup product pairing. Because we have now inverted d, the cup product induces an
autoduality on Prim?~2(X,, Z[1/d]). If d is odd, we define Prim?~2(X,, Z[1/d))) :=
HY¥2(X,, Z[1/d)).

The finite group Hy := {(¢1, ..., ¢q) € Mg | [1; & = 1} acts on our family, so induces
a1 (Tp(C), t)-equivariant action on Primd_z(X +» Z[1/d])). The space of invariants

V = Prim?"%(X,, Z[1/d])"

is a free Z[1/d]-module of rank d — 1, on which the cup product induces an autoduality.
So we have a representation

p 1 (To(C), 1) — Aut(V, (,)),

with Aut(V, (,)) either Sp(d — 1, Z[1/d]) if d is odd, or O(d — 1, Z[1/d]) if d is even.
For any integer N prime to d, we have the reduction mod N of this representation

pn 1 (To(C), 1) — Aut(VN], (,)),

where we write
VIN]:=V/NV.
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4.2. A descent

There is a slightly finer structure we will take advantage of. Consider the family over
P!\ {0, 1, oo} given by

d d
v x{+ Y x¢ =d] ] x.
i=2 i=1

This is a descent of the Dwork family through the dth power map (cf. [Ka-AL, Section 6]).
[Indeed, its pullback Y,a is

d d
Y02 7x¢+ 3" xd =a[] xi.
i=2 i=1

which, by the change of variable X| — AX{, X; — X; fori > 2, becomes X,.] Re-
peating everything for this descended family, we now get, for any € P! \ {0, 1, 0o}, the
subspace

V = Prim?~2(Y,, Z[1/d])",

the representation 3
p:m@ N\ {0, 1,00}, 1) = Aut(V, {,)),

and, for each integer N prime to d, its reduction mod N,
Ay (P {0, 1, 00}, 1) = Aut(V[N], (,)),

where we write V[N] = \7/N\7.

The point of considering this descent is this. The dth power map is a finite etale cover-
ing of P1(C)\ {0, 1, 0o} by P! (C)\ {0, stq, 00}, so for a base point ¢ € P! (C)\ {0, pq, o0}
and its image 14 e PL(C) \ {0, 1, o0}, 71 (P (C) \ {0, 114, 00}, 1) is a normal subgroup of
71 (PH(C) \ {0, 1, oo}, 1) of index d, with cyclic quotient. So for any homomorphism

A (PHC)\ {0, 1, 00}, 1% - G

toward any group G, its image and the image of its restriction [d]*A to 7 (P'(C) \
{0, g, 0o}, t) are related as follows: Image([d]* A) is a normal subgroup of Image(A) of
index dividing d, with cyclic quotient. We will apply this with A taken to be p, so that
[d]*A is our p.

We know that

(odd case) If d > 3 is odd, then Image(p) C Sp(d — 1, Z[1/d]) is Zariski dense in

Spd — 1, C).
(even case) If d > 3 is even, then Image(p) C O(d — 1, Z[1/d]) is Zariski dense in
0d-1,C)

(cf. [HS:f, 1.9] or [Ka-ALl 8.7]). Moreover, we know [[Ka-AL! 5.3 or 8.5] that the C-local
system V is a specific hypergeometric local system, Hc, whose local monodromies are
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(at 0) an automorphism whose characteristic polynomial is (T4 — 1)/(T — 1),
(at 1) a pseudoreflection of determinant (—l)d_l, i.e., a transvection if d is odd, and a
reflection if d is even,
(at 00) a single unipotent Jordan block.

We will now exploit the rigidity of this local system.

4.3. Rigid local systems

Let us first recall the basic facts about local systems on P! (C)\ {0, 1, oo} and their rigidity.
For any ring R, an R-local system F of rank n > 1 on P!(C) \ {0, 1, 0o} is a locally
constant sheaf of free R-modules of rank n. Picking bases, this is a homomorphism

pr : T (PY(C)\ {0, 1, 00}, t) — GL(n, R).

Concretely, this means a triple (Mo, M1, M) of elements in GL(n, R) satisfying
MoyM My, = 1; the M’s are the local monodromies around the three missing points.
An isomorphism between R-local systems (Mo, M|, M) and (Ng, N1, N) is an
element A € GL(n, R) which conjugates each M into the corresponding N, i.e.,
A(My, My, Moo)A™! = (Ng, N1, Noo). Two R-local system are said to be locally iso-
morphic if there exist three elements Ag, A1, Acoc € GL (7, R) such that

AoMoAy' = No,  AIMIAT' = N1, AeMaoAy) = Neo.

An R-local system F is said to be rigid if, whenever G is a second R-local system which
is locally isomorphic to p, there exists an isomorphism of F with G.

When R is a field k, and F is an absolutely irreducible k-local system, there is
a numerical criterion that implies its rigidity. Cohomologically, it can be stated as fol-
lows. Denote by j : P'(C) \ {0, 1, 00} c P!(C) the inclusion. If the Euler character-
istic X(]P’l((C), Jx(End(F))) is 2, then F is rigid (cf. [Ka-RLS| first half of the proof of
1.1.2, which works with coefficients k any field]). In terms of the local monodromy ma-
trices (Mo, M1, M) in GL(n, k) giving F, absolute irreducibility means that no proper
nonzero subspace of (k¥ is stable under each of Mo, M, M. To make explicit
the numerical criterion, we need a notation. Given an element A € GL(n, k), denote by
Z(A) € M, (k) its centralizer, i.e., the set of matrices which commute with A. For any
k-local system F of rank n, we have the Euler—Poincaré formula

X (B ©), juEnd(F) = —n+ Y dim(Z(M,)).
s€{0,1,00}

The numerical criterion for rigidity of an absolutely irreducible k-local system F of rank n
on PH(C) \ {0, 1, oo} is thus

Z dim(Z(My)) = n? + 2.

s€{0,1,00}
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4.4. Hypergeometric local systems

We next define hypergeometric local systems. An endomorphism A € M, (k) with char-
acteristic polynomial P4 (T) := det(TI, — A) is said to be cyclic, or of companion type,
if the pair (K", A) is k-isomorphic to the pair (k[T]/Pa(T)k[T], T). A k-local system F
on P1(C) \ {0, 1, oo} is called hypergeometric if it satisfies the following conditions on
its local monodromies:

(1) M; is a pseudoreflection, i.e., dimg (Ker(M1 — 1)) = n — 1, i.e., the fixed space of M
has codimension one.
(2) Both M( and M, are of companion type.

A hypergeometric k-local system is absolutely irreducible if My !and M., have rela-
tively prime characteristic polynomials (i.e., have no common eigenvalue in any overfield
of k), simply because if G C F is a nonzero proper sub-local system, then on either G or
on the quotient F /G, M7 will be trivial, and on that piece we will have MoMy, = 1.

Lemma 4.4.1. Letk be a field, and F ~ (Mo, My, M) a hypergeometric k-local system
on PY(C) \ {0, 1, 00} of rank n > 1. Suppose that Mo and MO_O1 have relatively prime
characteristic polynomials. Then F is (absolutely irreducible and) rigid.

Proof. We check the numerical criterion. As My and My, are of companion type, their
commuting algebras each have dimension n. Because M is a pseudoreflection, its com-
muting algebra has dimension (n—1)?4 1. And indeed n+n+((n—1)>+1) = n?+2. O

4.5. Spreading out and reducing mod ¢, via Levelt

Now let us return to our C-local system ‘7@, which we know [Ka-ALl 5.3 or 8.5] is a
specific hypergeometric local system, Hc, whose local monodromies are

(at 0) an automorphism whose characteristic polynomial is (T —DH/(T — 1),
(at 1) a pseudoreflection of determinant (— )41, i.e., a transvection if d is odd, and a
reflection if d is even,
(at 00) a single unipotent Jordan block.

Next we recall Levelt’s explicit description [BH, Thm. 3.5] of the unique C-local
system with such local monodromies. Denote by A the companion matrix of local mon-
odromy at 0o, and by B the companion matrix of the inverse of local monodromy at 0.
These matrices lie in GL(d — 1, Z). Taking BA™! as local monodromy around 1, we get
the matrix relation B~!'(BA™1)A = 1, so a Z-local system Hz on PH(C) \ {0, 1, oo}.
For any field k in which d is invertible, the images of A and B in GL(d — 1, k) have no
common eigenvalue, and the image of BA™! is a pseudoreflection. For such a field ,
the k-local system Hy on P!(C) \ {0, 1, oo} is therefore absolutely irreducible, and any
k-local system on P1(C)\ {0, 1, oo} whose local monodromies in GL(d — 1, k) have these
prescribed Jordan normal forms is k-isomorphic to Hy.

We first apply this with & = Q. Consider the Q-local system \7@. Its local mon-
odromies are (Q-forms of the complex local monodromies, and hence its local mon-
odromies are
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(at 0) an automorphism whose characteristic polynomial is (T4 — 1)/(T — 1),
(at 1) a pseudoreflection of determinant (—l)d_l, i.e., a transvection if d is odd, and a
reflection if d is even,
(at 00) a single unipotent Jordan block.

Therefore VQ is Q-isomorphic to Hg. With this identification, V and Hyz1/4) are two
Z[1/d]-forms of \7@. So for any prime £ prime to d, Brauer—Nesbitt tells us that the
reductions mod ¢ of these two Z[1/d]-forms, namely ‘7[6] and Hly,, have isomorphic

semisimplifications. As Hy, is irreducible, we infer that in fact \7[{] and Hy, are IF-
isomorphic.

4.6. Proof of 2.1

With these preliminaries established, we now turn to the proofs of Theorems 2.1 and
2.3. We begin with 2.1. Thus d > 3 is odd. If £ is an odd prime not dividing d, the
group Sp(d — 1, [Fy) has no proper nontrivial normal subgroup other than its center {11},
the group PSp(d — 1,F,) := Sp(d — 1,F,)/{£1} is simple, and for fixed d but vari-
able ¢ these simple groups are pairwise nonisomorphic (cf. [Ar, 5.1, 5.2]). And for any
power £", n > 2, of £, the group Sp(d — 1, Z/¢"Z) maps onto Sp(d — 1, ;) with ker-
nel an ¢-group. By Goursat’s lemma, if N = []; E:.“ is prime to d, then any subgroup of
Sp(d—1,Z/NZ) =[], Sp(d—1,Z/ Z;”' Z) which maps onto each factor must be the entire
group Sp(d — 1, Z/NZ). [We apply Goursat’s lemma by induction on the number of fac-
tors, separating out one prime £ from the others. We must show that Sp(d — 1, Z/ K’f‘ Z)
and [[,.,Sp(d — 1, Z /E:"' Z) have no common nontrivial quotient. For this, we argue as
follows. The only composition factors Sp(d — 1, Z/E'I“Z) and [[;~, Sp(d — 1, Z/E:.” VA)
have in common are £1. So if Sp(d — 1, Z/¢}'Z) and [];., Sp(d — 1, Z/¢}' Z) have a
common nontrivial quotient, that nontrivial quotient is a 2-group, which itself has a Z /27
quotient. But Sp(d — 1, Z/Z'f1 Z) does not have a Z /27 quotient. Indeed, as £ is odd, any
homomorphism from Sp(d — 1, Z/K';l Z) to Z,/27 must factor through the Sp(d — 1, [Fy,)
quotient, and this last group has no such quotient.]

We apply this to the image of py. So to prove Theorem 2.1, it suffices to show that for
each odd prime power ¢" prime to d, the image of pg» is the full group Sp(d — 1, Z /0" Z).
For this, it suffices to show that the image of pg» is the full group Sp(d — 1,7Z/¢"Z).
[Indeed, as explained above, Image(p¢») is a normal subgroup of Image(p¢n) of index
dividing d, with cyclic quotient. But the group Sp(d — 1, Z/¢"Z) has no such normal
subgroup other than itself: any homomorphism from Sp(d — 1, Z/£"Z) onto a nontrivial
cyclic group of order prime to £ factors through its Sp(d — 1, [Fy) quotient, and this last
group has no nontrivial cyclic quotient.]

We first show that G := Image(py) is the full group Sp(d — 1, ). It is an irreducible
subgroup of Sp(d—1, Fy), generated by three elements x, y, z with xyz = 1, x an element
of order d, y a transvection, and z a unipotent element with a single Jordan block. One
knows that any irreducible subgroup of Sp(d — 1, IFy) generated by transvections is the
full group (cf. [M], [£S1]). Let N <« G denote the normal subgroup generated by all the
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G-conjugates of y. Then G/N is generated by the images x and 7 of x and z, and xz = 1.
But x has order dividing d, while z has order a power of £, which is prime to d. Hence
G = N is generated by all the G-conjugates of y, so is generated by transvections, and
we are done.

Now consider the closed subgroup I' C Sp(d — 1, Z;) defined as the ¢-adic closure
of the image of p : w1 — Sp(d — 1, Z[1/d]). Local monodromy around 1 gives us an
element y € I" which is a transvection when viewed in Sp(d — 1, Q) and which remains
a transvection when reduced mod ¢ in Sp(d — 1, Fy). By the previous paragraph, we know
that I" maps onto Sp(d — 1, F¢). The following lemma tells us that any such I' maps onto
every finite quotient Sp(d — 1, Z/£"7Z) (and hence is the entire group Sp(d — 1, Zy)). [See
[Wei, Thm. B] and [Vasl 1.3] for other approaches to this question.] Thus the image of
pen is the full group Sp(d — 1, Z/€"7Z) for every n > 1.

Lemma 4.6.1. Letd > 3 be odd, and £ an odd prime. Let I" C Sp(d — 1, Zy) be a closed
subgroup which maps onto Sp(d — 1, F¢). Suppose that there is an element y € I which
is a transvection when viewed in Sp(d — 1, Q¢) and which remains a transvection when
reduced mod € in Sp(d — 1, Fy). Then I" maps onto every finite quotient Sp(d — 1, Z/¢"Z),
and ' = Sp(d — 1, Zy).

Proof. Letus denote by I'; C I the intersection of I with 1 + 0 My_1(Zy). Thus T'; con-
sists of the elements of I" which die in Sp(d — 1, Z/¢'Z). Then '/ Ty is Sp(d — 1, Fy),
and for every i > 1, the quotient I';/I';41 is an F,-subspace of the F,-Lie algebra
Lie(Sp(d — 1))(FF¢). The group I' acts by conjugation on itself, preserving each sub-
group I';, and so acting on each quotient I';/I";41, i > 1. This last action factors
through I'/T'1 = Sp(d — 1, Fy), and makes I';/ ';;+1 into an Sp(d — 1, [Fy)-stable sub-
space of Lie(Sp(d — 1))(FF¢). But one knows that Lie(Sp(d — 1))(F,) is Sp(d — 1, Fy)-
irreducible (cf. [Bor, 6.3, 6.4, 7.3], [Cur]). So for each i > 1, I';/I';4 is either O or
Lie(Sp(d — 1)) (Fy).

We now use the element y to show that I'; /"1 is never 0. Indeed, the element
N :=y —1 € My_1(Z¢) has N> = 0 (because y is a transvection in Sp(d — 1, Qy))
and N # 0in My_1(IF¢) (because y remains a transvection mod £). So y = 1 + N has
y" = 14rN for any integer r > 1. Taking r = £/, we get y* = 14 ¢! N, whose image in
I'; / T4 is nonzero (because N is nonzero mod £). Once we know that each I'; / I'; 41 is
the full Lie(Sp(d — 1))(FF¢), a counting argument shows that I'/ ", C Sp(d — 1, Z/¢"7Z)
is, for each n > 1, the full group Sp(d — 1, Z/¢"Z). Hence I C Sp(d — 1, Z;) is a closed
subgroup which maps onto every Sp(d — 1, Z/¢"Z), so is dense, so must be the entire
group. o

4.7. Proof of 2.3

We now turn to proving 2.3. Here also it suffices to show that p, has one of the two
asserted images. Indeed, for both of these asserted images, the only possibly nontrivial
proper normal subgroups are the center, which is either trivial or is &1, and the subgroup
Q(d — 1, Fy) of index two, defined by det = ns = 1, which is a simple group (remember
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d — 1 > 5 is odd). On the other hand, the image of p, is a normal subgroup of the
asserted image, of index dividing d, and with cyclic quotient. The cyclicity of the quotient
disqualifies the center and the trivial group, leaving only 2(d — 1, Fy) or the full asserted
image as possibilities. The group 2(d—1, Fy) is ruled out because it lies in SO (d—1, Fy),
but the image of p; contains reflections: the dth power map is finite etale over 1, so the
local monodromy of V[£] around each dth root of unity is a reflection.

Thus d > 10 is even, £ is an odd prime which is prime to d, and neither d — 1 nor
d + 1is a power of £. Now G := Image(py) is an irreducible subgroup of O(d — 1, Fy),
generated by three elements x, y, z with xyz = 1, x an element of order d, y a reflection,
and z a unipotent element with a single Jordan block. The same G/N argument as above
shows that G := Image(p¢) is an irreducible subgroup of O(d — 1, F,) generated by
reflections, indeed by all the G-conjugates of y.

4.8. The spinor norm

Let us denote by
ns: O(d—1,Fy) — £1

the spinor norm with respect to the quadratic form on V[£] given by cup product. Recall
[Ka-Irr, §6] that when d — 1 is odd, as it is here, there is only one orthogonal group
O(d — 1, Fy), because the two isomorphism classes of nondegenerate quadratic forms
in d — 1 variables over I, are proportional: if W is one of them, then the other is «\,
for any nonsquare o € F,. The spinor norm depends on the choice of the quadratic
form W, so should be denoted nsy. For a nonisotropic vector v, we have the reflection
R, € O — 1,Fy), given by

Y (w, v)

Ry:wr—w-—2
W(v, v)

V.

Its spinor norm is given by
nsy (R,) = the class mod squares of W (v, v).

Since O(d — 1,F,) is generated by reflections, this determines the spinor norm. If we
pass from W to oV, o € IFeX a nonsquare, then for any g € O(d — 1, Fy), we have
nsqw (g) = det(g) nsy(g).

So the effect of passing from W to «W, & € F a nonsquare, is to interchange the two
characters ns and det x ns, and so to interchange cases (3) and (4) in the classification just
below.

4.9. Classification, and its use

One knows [W2f, [ZS2] that if d > 10 and ¢ is odd, an irreducible subgroup of
O(d — 1,TF,) which is generated by reflections and which is primitive is one of the
following five groups.
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(la) the symmetric group Sy in its deleted permutation representation, if £ is prime to d,
(1b) the symmetric group Sy41 in its doubly deleted permutation representation, if £
divides d + 1,
(2) the full group O(d — 1, Fy),
(3) the index two subgroup of O(d — 1,Fy) where ns = 1,
(4) the index two subgroup of O(d — 1, [Fy) where ns = det.

[Recall that the deleted permutation representation of Sg is the d — 1-dimensional -
representation given by its action on the space of those linear forms Z?:l a; X; satisfying
>;ai =0. When ¢ divides d + 1, the doubly deleted permutation representation of Sq41
is the d — 1-dimensional F,-representation which is the quotient of its deleted permutation
representation by the line spanned by Z?:ll X;.]

In our case, G cannot be the entire group O(d — 1, Fy), for the following reason. The
element z has order a power of ¢, so ns(z) = det(z) = 1. Therefore we have ns(x) =
ns(y) and det(x) = det(y) = —1, so whichever of ns or det x ns is trivial on y is trivial
on x as well (and is also trivial on z). So G certainly lies inside one of the groups (3)
or (4).

Furthermore, because d is prime to ¢, and neither d — 1 nor d + 1 is a power of £,
we cannot be in case (1a) or in case (1b). Consider first case (1a). Here G cannot be S,
simply because the element z cannot lie in S,;. Indeed, under the action of the cyclic group
generated by z, Hy, is indecomposable. The only elements y € S; which can possibly
act indecomposably in the deleted permutation representation are either a single d-cycle,
or a single (d — 1)-cycle. The first has order d, and the second has order d — 1, while z
has order a power of .

When ¢ divides d + 1, but d + 1 is not a power of £, we cannot be in case (1b): the
element z cannot lie in S;z41. As before, Hy, is indecomposable under the cyclic group
generated by z. But the only elements y € S;41 which can possibly act indecomposably
in the doubly deleted permutation representation are either a single d + 1-cycle, or a single
d-cycle, or a single (d — 1)-cycle. The first has order d + 1, the second has order d, the
third has order d — 1, while z has order a power of £.

So we are reduced to proving that G is primitive whenever d > 10, £ is an odd prime
which is prime to d, and neither d — 1 nor d + 1 is a power of £. We argue by contradiction.
Again by classification [£S2], if G is not primitive, then in a suitable basis of Hp,, G is
permutation-shaped, i.e., it stabilizes the collection of d — 1 lines spanned by the basis
vectors. So we have a homomorphism of G onto a transitive subgroup K of Sy_i, by
looking at its action on these d — 1 lines. The image of y must be nontrivial, since G
is generated by the conjugates of y. And y must map to a transposition, since it acts as
a reflection on Hp,. Since G is generated by the conjugates of y, the image group K is
a transitive subgroup of S;_; generated by transpositions, so K = S;_1. In this image
group Sy—1, wehave xyz = 1,s02x = )7_1 is a reflection, and S;_1 is generated by x, y,
and z.

We claim that either x or z is a (d — 1)-cycle, and that the other is the product of two
disjoint cycles. Granting this, we reach a contradiction as follows. If x is a (d — 1)-cycle,
then it has order d — 1. But x had order d, so x has order dividing d, hence x = 1. But
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this is impossible, for then S;_; would be generated by y and z, with yz = 1, so Sg—1
would be generated by y, so would be cyclic of order 2. If 7 is a (d — 1)-cycle, then it has
order d — 1, but z had order a power of ¢, so 7 has order either 1 or a power of ¢. Since
d — 1 is not a power of £, z must be trivial, and we reach the same contradiction.

Here is a monodromy-theoretic proof of the claim.

Lemma 4.9.1. Letd > 4, and a,b,c € Sj—1 elements with abc = 1 which generate
Sq—1. Suppose that b is a transposition. Then one of a or c is a (d — 1)-cycle, and the
other is the product of two disjoint cycles.

Proof. View S;4_1 inside O(d — 1, C) by the permutation representation, and denote by
A, B,C € O(d — 1, C) the images of a, b, ¢ respectively. Denote by F the C-local sys-
tem on P1(C) \ {0, 1, oo} of rank d — 1 whose local monodromies at 0, 1, oo are A, B, C
respectively. Consider the inclusion j : P1(C) \ {0, 1, oo} — P!(C), and form the coho-
mology groups H'(P!(C), j,F), whose dimensions we denote simply /. Thus A’ = 0
for i outside {0, 1, 2}. The permutation representation of S;_; has one-dimensional spaces
of invariants and of coinvariants, so h° = h? = 1. Because F is orthogonally self-dual,
H!(P'(C), j.F) is symplectically self-dual, so 2! is even. The Euler—Poincaré formula
gives

X@®'(©), juF):=h"—h' +h*=2—h'
= X(IP’I((C) \ {0, 1, 00}, F) + Z (dim of invar.’s of local mono. at s)

s€{0,1,00}

= —(d — 1) + dim(Ker(A — 1)) + dim(Ker(B — 1)) + dim(Ker(C — 1)).
As B is a reflection, dim(Ker(B — 1)) = d — 2, so we get
2 —h' = =1 + dim(Ker(A — 1)) + dim(Ker(C — 1)),

ie.,
—h' = dim(Ker(A — 1)) 4+ dim(Ker(C — 1)) — 3.

Since i' is > 0 and even, we get the inequality
dim(Ker(A — 1)) + dim(Ker(C — 1)) < 3,

and the information that dim(Ker(A — 1)) 4+dim(Ker(C — 1)) is odd. But dim(Ker(A — 1)),
respectively dim(Ker(C — 1)), is just the number of cycles in a, resp. in ¢, when that
element of S;_1 is written as a product of disjoint cycles, including cycles of length one.
So either a or c is a single cycle, and the other is the product of two disjoint cycles. O

Although we do not need it, here for the sake of completeness is a more elementary (but
perhaps less satisfying conceptually) proof of a slightly stronger statement.

Lemma 4.9.2. Letd > 4, and a, b, c € Sg—1 elements with abc = 1 which generate a
transitive subgroup of Sq—1. Suppose that b is a transposition. Then one of a or c is a
(d — 1)-cycle, and the other is the product of two disjoint cycles.
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Proof. To fix ideas, renumber so that the transposition b is (1, 2), and remember that
a~! = be, so that b and ¢ generate a transitive subgroup. If ¢ is a (d — 1)-cycle write ¢
as(1,...,x,2,...,y). Then a ' =bc= (1,...,x)(2,...,Yy) is the product of two dis-
joint cycles. If ¢ is the product of two disjoint cycles, then the symbols 1 and 2 cannot be
in the same cycle, otherwise b fixes every element of the other cycle, contradicting the fact
that b and ¢ generate a transitive subgroup. So we can writec = (1,...,x)(2,...,y). But
thena™! = be = 1,...,x,2,...,y)isa (d — 1)-cycle. Finally, ¢ cannot be the product
of three or more disjoint cycles, for then at least one of them contains neither 1 nor 2, and
then b fixes every element of such a cycle, again contradicting the transitivity. O

4.10. Analysis of the mod N representation

We begin with the orthogonal analogue of Lemma 4.6.1.

Lemma 4.10.1. Let d > 4 be even, and £ an odd prime. Denote by
01d—-1,F,)co@d—-1,Fy)

any chosen one of the five subgroups containing Q2(d — 1, Fy). Denote by O1(d—1, Zy) C
0 — 1,Zy), resp. by O1(d — 1,Z/¢"Z) C O — 1,Z/0"7Z), the complete inverse
image of O1(d — 1, Fy) under the “reduction mod £” map. Let ' C O1(d — 1, Zy) be a
closed subgroup which maps onto O1(d — 1, Fy). Suppose that there is an element y € T’
which is a regular unipotent element (i.e., unipotent with a single Jordan block) when
viewed in O(d — 1, Q¢) and which remains a regular unipotent element when reduced
mod £ in O(d — 1,Fy). Then ' maps onto O1(d — 1,7Z/0"Z) for every n > 1, and
I'=01d -1, Zy).

Proof. Letus denote by I'; C T the intersection of I" with 1 + 0 My_1(Zs). Thus T'; con-
sists of the elements of I" which die in O(d — 1, Z/¢Z). Then I'/ Ty is O1(d — 1, Fy),
and for every i > 1, the quotient I';/I';41 is an F;-subspace of the [Fy-Lie algebra
Lie(SO(d — 1))(F¢). The group I' acts by conjugation on itself, preserving each sub-
group I';, and so acting on each quotient I'; / I';+1 , i > 1. This last action factors through
r/yry = 0:1(d — 1,F;), and makes I';/';;+ into an O1(d — 1, [Fy)-stable subspace of
Lie(SO(d — 1))(Fy). One knows that Lie(SO (d — 1)) (IFy) is Spin(d — 1, F¢)-irreducible
(cf. [Bor, 6.3, 6.4, 7.3], [[Curl]). The adjoint action of Spin(d — 1, F;) on its Lie algebra
factors through its 2(d — 1, [Fy) quotient. Since O1(d — 1, ) contains Q(d — 1, Fy), we
see that Lie(SO(d — 1))(Fy) is O1(d — 1, Fy)- irreducible. So foreachi > 1, T';/ "4
is either 0 or Lie(SO(d — 1))(F¢). We now use the element y to show that I';/['; 4 is
never 0. .

If ¢ is large, i.e. if £ > d — 1, then Nt = 0, and we can use the powers yfl =
1 4 ¢/ (N + higher terms in N) exactly as in the proof of Lemma 4.6.1 to get the asserted
result.

In the general case, let us denote by ¢" the least power of £ with £¥ > d — 1. Then
N = 0, but N‘ZH # 01in My _1(F¢) (because y remains a regular unipotent element
mod ¢). Then we claim that y’zv = 1 4+ ¢Ny for some nilpotent No with Ng # O in
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Mi—_1(F¢). Indeed, when we expand y‘zv =(1+N )ev by the binomial theorem, the last
term N¢’ vanishes, and the intermediate terms all have coefficients divisible by ¢, so our
Ny is given by
-1
No = (1/0) Z Binom(¢*, a) N°.

a=1

Since N # 0in My_1 (), it suffices to show that for some integer 1 < a < 271 we
have ord; (Binom(¢”, a)) = 1. For the least such a, we have Ny = (£-adic unit) N4 4 - - ..
But @ = ¢! is such an a. Once we know that yﬁv = 1 4 ¢Ny with Ny nilpotent and
No # 0in M,_,(Fy), we proceed inductively, examining the ¢/ powers of yev. For each
i > 0, we have ylw = 1+ ¢/ N; for some nilpotent N; with N; # 0 in My_(Fy),
indeed Nj;1 = N; + higher terms in N;. We then use these powers yzm exactly as in the
proof of Lemma 4.6.1 to get the asserted result. O

Corollary 4.10.2. Suppose € is an odd prime, d > 10 is even and prime to £, and neither
d — 1 nord + 1is a power of £. Denote by O1(d — 1,Fy) C O(d — 1,Fy) the common
image of pg and of pg. Then for every n > 1, the images of pen and pen are both the group
01d—-1,Z/0"7).

Proof. For both p and p, apply the previous result with I the £-adic image, using local
monodromy around oo as y. O

Suppose d > 10 is even, and N = [; E?i > 3 is an odd integer which is relatively prime
to d. Suppose also that neither d — 1 nor d + 1 is a power of any ¢; dividing N. We have
the product group []; O1(d — 1, Z/¢}Z). Each of its factors O1(d — 1, Z/£}'Z) has a
determinant homomorphism toward the same “abstract” group £1. We denote by

O1~ga(d — 1.Z/NZ) C [ ] O1(d = 1. 2/¢]'2)
i
the subgroup of elements (y;); all of whose components fy; have the same determinant
in £1 as each other. We have obvious inclusions
Image(oy) C Image(on) C Oy, =det(d — 1, Z/NZ),

the second inclusion simply because py is the reduction mod N of an orthogonal repre-
sentation in characteristic zero.

Lemma 4.10.3. In the situation of the paragraph above, we have

Image(oy) = Image(5y) = O —qa(d — 1, Z/NZ).

Proof. We show this by induction on the number of distinct ¢;. If there is only one, this is
the previous result. Separate £1 from the others, and define Ny := N/ Z’l”. Then we have

Image(pn) C O1(d — 1, Z/0}'Z) x O1,ger(d — 1, Z/NoZ),
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and the subgroup Image (o) maps onto each factor, by induction. So by Goursat’s lemma,
this subgroup is the complete inverse image of an isomorphism between isomorphic quo-
tients of the two factors. The only composition factors in the first factor are the simple
group Q(d — 1,TF,), a single +1, and possibly some copies of IF,. The only compo-
sition factors in the second factor are the simple groups Q(d — 1,F,) with i > 2,
possibly various copies of Fy, with i > 2, and some copies of 1. So the only possi-
ble common nontrivial quotient of the two factors is the single group 1. Now on the
first factor such a quotient must be a quotient of O1(d — 1, Fy,), since the kernel of re-
duction mod ¢ is an £-group. Similarly, on the second factor, such a quotient must be
a quotient of O —get(d — 1, Z/NgedZ), where we write Néed = ]—[i22 £;. But in each
group O1(d — 1,Fy,), the elements of determinant one are precisely the simple group
Q(d — 1, Fy;). So we have a short exact sequence
1} > HQ(d— 1,Fy,) = O1—get(d — 1, Z/NZ) RN

i>2

Thus the only £1 quotient of O —get(d — 1,Z/ NéedZ) is by the determinant. So by
Goursat, Image(py) is either the full product O1(d —1, Z/E'l” Z)x 01 =det(d—1, Z/ NoZ)
or the subgroup of this product consisting of pairs with equal determinants, i.e., the group
O1,=det(d — 1, Z/NZ). But as already noted, we have the a priori inclusion of the image
in O1,=get(d — 1,Z/NZ). O

4.11. Analysis of the exceptional cases

What becomes of Theorem 2.3 in the two excluded cases, when d =+ 1 is a power of £?

Lemma 4.11.1. Suppose £ is an odd prime, and d — 1 > 5 is a power of £. Then the
images of pg and of pg are both the symmetric group Sq C O(d — 1, ), Sy in its deleted
permutation representation.

Proof. Tt suffices to prove that the image of p, is Sy, since the image of p, is then a
normal subgroup of S; of index dividing d, with cyclic quotient. The only such proper
subgroup is the alternating group A, but this lies inside SO(d — 1, F,), whereas the
image of py contains reflections. To show that p; has the asserted image, we use the
absolute irreducibility and the rigidity of our mod £ local system. Inside the subgroup
Sqs C O(d — 1,Fy) we indeed have three elements x, y, z with xyz = 1 and which gen-
erate Sy, such that x has eigenvalues all the nontrivial dth roots of unity, y is a reflection,
and z is a regular unipotent element. Namely, we take x L= 1,2,...,d),y :=(1,2),
and z := (2,3,...,d). [To see that z is a regular unipotent element, notice first that it
is unipotent because it has ¢ power order. Now view z as lying in S;_1. Then the given
mod £ representation of (z) is the restriction of the permutation representation of Sy_1;
in this representation, z has a one-dimensional space of invariants. Thus z is a unipotent
element with a one-dimensional space of invariants, which is precisely a regular unipotent
element.] O
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Lemma 4.11.2. Suppose £ is an odd prime, and d + 1 > 5 is a power of £. Then the
images of pe¢ and of pg are both the symmetric group Sg+1 C O(d — 1,Fy), Sg41 in its
doubly deleted permutation representation.

Proof. Exactly as in the lemma above, it suffices to show that the image of pg is Sz41. We
again use the absolute irreducibility and the rigidity of our mod ¢ local system. Inside the
subgroup Sz4+1 C O(d — 1, F,) we indeed have three elements x, y, z with xyz = 1 and
which generate S;4 1, such that x has eigenvalues all the nontrivial dth roots of unity, y is a
reflection, and z is a regular unipotent element. Namely, we take x -1.= 2,3,...,d+1),
y:=(,2),andz := (1,2, ...,d+1).[To see that z is a regular unipotent element, notice
again that it is unipotent because it has £ power order. When we view z as lying in Sg41,
it gives a regular unipotent element in O (d + 1, IFy) in the full permutation representation
of Sgz41, i.e., it gives a unipotent element of companion type. Our d — 1-dimensional
representation is a subquotient of this one, and the property of being of companion type
passes to subquotients.] O

We can also be more precise about the entire ¢-adic image in these two excluded cases.

Lemma 4.11.3. Suppose d—1 > 7, respectively d+1 > 7, is a power of the odd prime L.
Denote by

Os(d—1,Fy) Cc O(d —1,Fy)

the symmetric group Sq C O(d — 1,Fy), respectively Sg+1 C O(d — 1,Fy). Denote
by Os(d — 1,Z¢) C Od — 1,Zy), resp. by Os(d — 1,Z/¢"Z) C Od — 1,Z/¢"Z),
the complete inverse image of Os(d — 1, ;) under the “reduction mod £’ map. Let
' C Os(d — 1,Zy) be a closed subgroup which maps onto Os(d — 1, Fy¢). Suppose
that there is an element y € I" which is a regular unipotent element (i.e., unipotent with a
single Jordan block) when viewed in O (d — 1, Qg) and which remains a regular unipotent
element when reduced mod £ in O(d — 1,Fy). Then T maps onto Os(d — 1, Z/¢"Z) for
everyn > 1, and ' = Os(d — 1, Zy).

Proof. The key point is that the subgroup Os(d — 1,F;) C O(d — 1, Fy) acts irreducibly
on Lie(SO(d — 1)). In fact already the alternating group, A; or Ag4; in the two cases,
acts irreducibly (cf. [MagMal, Prop. 2.5, Table 2.1]). Using this fact, the proof is then
identical to the proof of Lemma 4.10.1. O

Corollary 4.11.4. Suppose d — 1 > 7, respectively d + 1 > 7, is a power of the
odd prime L. Then for every n > 1, the images of pen and pg are both the group
Os(d — 1,Z/0"Z).
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