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Abstract. A complete solution to the quaternionic contact Yamabe problem on the seven-dimen-
sional sphere is given. Extremals for the Sobolev inequality on the seven-dimensional Heisenberg
group are explicitly described and the best constant in the L2 Folland–Stein embedding theorem is
determined.
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1. Introduction

It is well known that the sphere at infinity of any non-compact symmetric spaceM of rank
one carries a natural Carnot–Carathéodory structure (see [M, P]). A quaternionic contact
(qc) structure [Biq1, Biq2] appears naturally as the conformal boundary at infinity of the
quaternionic hyperbolic space. In this paper, following Biquard, a quaternionic contact
structure (qc structure) on a real (4n + 3)-dimensional manifold M is a codimension
three distribution H locally given as the kernel of an R3-valued 1-form η = (η1, η2, η3)

such that the three 2-forms dηi |H are the fundamental forms of a quaternionic structure
on H . This means that there exists a Riemannian metric g on H and three local almost
complex structures Ii onH satisfying the commutation relations of the imaginary quater-
nions, I1I2I3 = −1, such that dηi |H = 2g(Ii ·, ·). The 1-form η is determined up to a
conformal factor and the action of SO(3) on R3, and thereforeH is equipped with a con-
formal class [g] of Riemannian metrics and a 2-sphere bundle of almost complex struc-
tures, the quaternionic bundle Q. The 2-sphere bundle of one forms determines uniquely
the associated metric and a conformal change of the metric is equivalent to a conformal
change of the 1-forms. To every metric in the fixed conformal class one can associate a
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linear connection preserving the qc structure (see [Biq1]), which we shall call the Biquard
connection.

If the first Pontryagin class of M vanishes then the 2-sphere bundle of R3-valued 1-
forms is trivial [AK], i.e. there is a globally defined 3-contact form η that annihilates H ;
we denote the corresponding QC manifold by (M, η). In this case the 2-sphere of associ-
ated almost complex structures is also globally defined on H .

Examples of QC manifolds are given in [Biq1, Biq2, IMV, D2]. In particular, any
totally umbilic hypersurface of a quaternionic Kähler or hyperkähler manifold carries
such a structure [IMV]. A basic example is provided by any 3-Sasakian manifold which
can be defined as a (4n+ 3)-dimensional Riemannian manifold whose Riemannian cone
is a hyperkähler manifold. It was shown in [IMV] that the torsion endomorphism of the
Biquard connection is the obstruction for a given qc-structure to be locally 3-Sasakian,
up to multiplication with a constant factor and an SO(3)-matrix.

To a fixed metric in the conformal class of metrics on the horizontal space one as-
sociates the scalar curvature of the associated Biquard connection, called the qc-scalar
curvature. Guided by the real (Riemannian) and complex (CR) cases, the quaternionic
contact Yamabe problem is: given a compact QC manifold (M, η), find a conformal 3-
contact form for which the qc-scalar curvature is constant.

In the present paper we provide a solution of this problem on the seven-dimensional
sphere equipped with its natural quaternionic contact structure. The spheres are important
examples of locally quternionic conformally flat qc structures characterized locally in
[IV] by the vanishing of a curvature-type tensor invariant and from the point of view
of the Yamabe problem play a role similar to their Riemannian and CR counterparts.
The question reduces to the solvability of the Yamabe equation (3.4) below. Taking the
conformal factor in the form η̄ = u4/(Q−2)η, Q = 4n+ 6, turns (3.4) into the equation

Lu ≡ 4
Q+ 2
Q− 2

4u− uScal = −u2∗−1Scal,

where4 is the horizontal sub-Laplacian,4h = trg(∇dh), Scal and Scal are the qc-scalar
curvatures respectively of (M, η) and (M, η̄), and 2∗ = 2Q/(Q − 2), with Q = 4n + 6
the homogeneous dimension. On a compact quaternionic contact manifoldM with a fixed
conformal class [η] the Yamabe equation characterizes the non-negative extremals of the
Yamabe functional defined by

ϒ(u) =

∫
M

(
4
Q+ 2
Q− 2

|∇u|2 + Scal u2
)
dvg,

∫
M

u2∗ dvg = 1, u > 0.

Considering M equipped with a fixed qc structure, hence, a conformal class [η], the
Yamabe constant is defined as the infimum

λ(M) ≡ λ(M, [η]) = inf
{
ϒ(u) :

∫
M

u2∗ dvg = 1, u > 0
}
.

Here dvg denotes the Riemannian volume form of the Riemannian metric onM extending
in a natural way the horizontal metric associated to η.
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When the Yamabe constant λ(M) is less than that of the quaternionic sphere with its
standard qc structure the existence of solutions to the quaternionic contact Yamabe prob-
lem is shown in [W] (see also [JL1]). We consider the Yamabe problem on the standard
unit (4n + 3)-dimensional quaternionic sphere. The standard 3-Sasaki structure on the
sphere is a qc-Einstein structure η̃ having constant qc-scalar curvature S̃cal = 16n(n+2).
Its images under conformal quaternionic contact automorphisms have again constant qc-
scalar curvature. In [IMV] we conjectured that these are the only solutions to the Yamabe
problem on the quaternionic sphere. The purpose of this paper is to prove this conjecture
when the dimension is equal to seven, i.e., n = 1.

Theorem 1.1. Let η̃ = 1
2hη be a conformal deformation of the standard qc structure η̃

on the quaternionic unit sphere S7. If η has constant qc-scalar curvature, then up to a
multiplicative constant, η is obtained from η̃ by a conformal quaternionic contact auto-
morphism. In particular, λ(S7) = 48 (4π)1/5 and this minimum value is achieved only
by η̃ and its images under conformal quaternionic contact automorphisms.

In [IMV] a weaker result was shown, namely the conclusion holds (in all dimensions)
provided the vertical space of η is integrable. We recall the definition of conformal quater-
nionic contact automorphisms in Definition 2.1.

Another motivation for studying the Yamabe equation comes from its connection with
the determination of the norm and extremals in a relevant Sobolev-type embedding on
the quaternionic Heisenberg group G(H) ([GV1], [Va1], [Va2]). As is well known, the
Yamabe equation is essentially the Euler–Lagrange equation of the extremals for the L2

case of such embedding results. In the present setting we have the following theorem due
to Folland and Stein [FSt].

Theorem 1.2 (Folland and Stein). Let � ⊂ G be an open set in a Carnot group G of
homogeneous dimension Q and Haar measure dH . For any 1 < p < Q there exists
Sp = Sp(G) > 0 such that for u ∈ C∞0 (�),(∫

�

|u|p
∗

dH(g)

)1/p∗

≤ Sp

(∫
�

|Xu|p dH(g)

)1/p

, (1.1)

where |Xu| =
∑m
j=1 |Xju|

2 with X1, . . . , Xm denoting a basis of the first layer of G and
p∗ = pQ/(Q− p).

Let Sp be the best constant in the Folland–Stein inequality, i.e., the smallest constant
for which (1.1) holds. The second result of this paper is the following theorem, which
determines the extremals and the best constant in Theorem 1.2 when p = 2 for the case
of the seven-dimensional quaternionic Heisenberg group G(H). As a manifold, G(H) =
H× Im H with the group law given by

(q ′, ω′) = (q0, ω0) ◦ (q, ω) = (q0 + q, ω + ω0 + 2 Im q0q̄),

where q, q0 ∈ H and ω,ω0 ∈ Im H. The standard quaternionic contact (qc) struc-
ture is defined by the left-invariant quaternionic contact form 2̃ = (2̃1, 2̃2, 2̃3) =
1
2 (dω − q

′
· dq̄ ′ + dq ′ · q̄ ′), where · denotes quaternion multiplication.
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Theorem 1.3. Let G(H) = H×Im H be the seven-dimensional quaternionic Heisenberg
group. The best constant in the L2 Folland–Stein embedding theorem is

S2 =
2
√

3
π3/5 ,

An extremal is given by the function

v =
211
√

3
π3/5 [(1+ |q|2)2 + |ω|2]−2, (q, ω) ∈ G(H).

Any other non-negative extremal is obtained from v by translations (5.10) and dila-
tions (5.11).

Our result confirms the Conjecture made after [GV1, Theorem 1.1]. In [GV1, Theorem
1.6] the above theorem is proved in all dimensions, but with the assumption of partial
symmetry. Here with a completely different method we show that the symmetry assump-
tion is superfluous in the case of the first quaternionic Heisenberg group. On the other
hand, in [IMV] we proved Theorem 1.1 in all dimensions, but with the extra assump-
tion of the integrability of the vertical distribution. In the present paper we remove the
extra integrability assumption in dimension seven. A key step is the establishment of a
suitable divergence formula, Theorem 4.4 (see [JL2] for the CR case and [Ob], [LP] for
the Riemannian case). With the help of this divergence formula we show that the ‘new’
structure is also qc-Einstein, thus we reduce the Yamabe problem on the 7-sphere from
solving the non-linear Yamabe equation to a geometrical system of differential equations
describing the qc-Einstein structures conformal to the standard one. Invoking the (quater-
nionic) Cayley transform, which is a contact conformal diffeomorphism, [IMV], we turn
the question to the corresponding system on the quaternionic Heisenberg group. On the
latter all global solutions are explicitly described in [IMV] and this allows us to conclude
the proof of our results.

Remark 1.4. With the left-invariant basis of Theorem 1.3 the Heisenberg group G(H) is
not a group of Heisenberg type. If we consider G(H) as a group of Heisenberg type then
the best constant in the L2 Folland–Stein embedding theorem is (cf. [GV1, Theorem 1.6])

S2 =
151/10

π2/52
√

2
,

and an extremal is given by the function

F(q, ω) = γ [(1+ |q|2)2 + 16|ω|2]−2, (q, ω) ∈ G(H),

where
γ = 32π−17/5021/5152/5.

Organization of the paper. The paper uses some results from [IMV]. In order to make
the present paper self-contained, in Section 2 we give a review of the notion of a quater-
nionic contact structure and collect formulas and results from [IMV] that will be used in
the subsequent sections.
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Sections 3 and 4 are of technical nature. In the former we find some transformation
formulas for relevant tensors, while in the latter we prove certain divergence formulas.
The key result is Theorem 4.4, with the help of which in the last section we prove the
main theorems.

Convention 1.5. We use the following conventions:
• {e1, . . . , e4n} denotes an orthonormal basis of the horizontal space H .
• The summation convention over repeated vectors from the basis {e1, . . . , e4n} will be

used. For example, for a (0, 4)-tensor P , the formula k = P(eb, ea, ea, eb) means

k =

4n∑
a,b=1

P(eb, ea, ea, eb).

• The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3).

2. Quaternionic contact manifolds

In this section we will briefly review the basic notions of quaternionic contact geometry
and recall some results from [Biq1] and [IMV].

For the purposes of this paper, a quaternionic contact (QC) manifold (M, g,Q) is a
(4n+3)-dimensional manifoldM with a codimension three distributionH equipped with
a metric g and an Sp(n)Sp(1) structure, i.e., we have
(i) a 2-sphere bundle Q over M of almost complex structures such that Q =

{aI1 + bI2 + cI3 : a2
+ b2
+ c2
= 1}, where the almost complex structures Is :

H → H , I 2
s = −1, s = 1, 2, 3, satisfy the commutation relations of the imagi-

nary quaternions I1I2 = −I2I1 = I3;
(ii) H is the kernel of a 1-form η = (η1, η2, η3) with values in R3 and the following

compatibility condition holds:

2g(IsX, Y ) = dηs(X, Y ), s = 1, 2, 3, X, Y ∈ H.

Given a quaternionic contact manifold we shall denote by η any associated contact
form. The associated contact form is determined up to an SO(3)-action, namely if 9 ∈
SO(3) with smooth functions as entries then 9η is again a contact form satisfying the
above compatibility condition (rotating also the almost complex structures). On the other
hand, if we consider the conformal class [g], the associated contact forms are determined
up to multiplication with a positive function µ and an SO(3)-action, namely if 9 ∈
SO(3) then µ9η is a contact form associated with a metric in the conformal class [g].

We shall denote by (M, η) a QC manifold with a fixed globally defined contact form.
A special phenomenon here, noted in [Biq1], is that the 3-contact form η determines the
quaternionic structure and the metric on the horizontal bundle in a unique way.

A QC manifold (M, ḡ,Q) is called conformal to (M, g,Q) if ḡ ∈ [g]. In that case,
if η̄ is a corresponding associated 1-form with complex structures Īs , s = 1, 2, 3, we
have η̄ = µ9η for some 9 ∈ SO(3) with smooth functions as entries and a positive
function µ. In particular, starting with a QC manifold (M, η) and defining η̄ = µη we
obtain a QC manifold (M, η̄) conformal to the original one.
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Definition 2.1. A diffeomorphism φ of a QC manifold (M, [g],Q) is called a conformal
quaternionic contact automorphism (conformal qc-automorphism) if φ preserves the QC
structure, i.e.

φ∗η = µ9 · η

for some positive smooth function µ and some matrix 9 ∈ SO(3) with smooth functions
as entries and η = (η1, η2, η3)

t is a local 1-form considered as a column vector of three
1-forms as entries.

Any endomorphism 9 of H can be decomposed with respect to the quaternionic
structure (Q, g) uniquely into Sp(n)-invariant parts as follows: 9 = 9+++ + 9+−− +
9−+− + 9−−+, where 9+++ commutes with all three Ii , 9+−− commutes with I1
and anti-commutes with the other two etc. The two Sp(n)Sp(1)-invariant components
are given by

9[3] = 9
+++, 9[−1] = 9

+−−
+9−+− +9−−+. (2.1)

Denoting the corresponding (0, 2)-tensor via g by the same letter one sees that the
Sp(n)Sp(1)-invariant components are the projections on the eigenspaces of the Casimir
operator

† = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3 (2.2)

corresponding, respectively, to the eigenvalues 3 and −1 (see [CSal]). If n = 1 then the
space of symmetric endomorphisms commuting with all Ii , i = 1, 2, 3, is 1-dimensional,
i.e. the [3]-component of any symmetric endomorphism 9 on H is proportional to the
identity, 9[3] = (tr(9)/4) Id|H .

On a quaternionic contact manifold there exists a canonical connection defined in
[Biq1] when 4n+ 3 > 7, and in [D1] in the 7-dimensional case.

Theorem 2.2 ([Biq1]). Let (M, g,Q) be a quaternionic contact manifold of dimension
4n + 3 > 7 and a fixed metric g on H in the conformal class [g]. Then there exists a
unique connection ∇ with torsion T on M4n+3 and a unique supplementary subspace V
to H in TM such that:

(i) ∇ preserves the decomposition H ⊕ V and the metric g;
(ii) for X, Y ∈ H , one has T (X, Y ) = −[X, Y ]|V ;

(iii) ∇ preserves the Sp(n)Sp(1)-structure on H , i.e., ∇g = 0 and ∇Q ⊂ Q;
(iv) for ξ ∈ V , the endomorphism T (ξ, ·)|H of H lies in (sp(n)⊕ sp(1))⊥ ⊂ gl(4n);
(v) the connection on V is induced by the natural identification ϕ of V with the sub-

space sp(1) of the endomorphisms of H , i.e. ∇ϕ = 0.

We shall call the above connection the Biquard connection. Biquard [Biq1] also described
the supplementary subspace V explicitly, namely, locally V is generated by vector fields
{ξ1, ξ2, ξ3} such that

ηs(ξk) = δsk, (ξsydηs)|H = 0, (ξsydηk)|H = −(ξkydηs)|H . (2.3)

The vector fields ξ1, ξ2, ξ3 are called Reeb vector fields or fundamental vector fields.
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If the dimension of M is seven, the conditions (2.3) do not always hold. Duchemin
shows in [D1] that if we assume, in addition, the existence of Reeb vector fields as in
(2.3), then Theorem 2.2 holds. Henceforth, by a qc structure in dimension 7 we shall
mean a qc structure satisfying (2.3).

Notice that equations (2.3) are invariant under the natural SO(3) action. Using the
triple of Reeb vector fields we extend g to a metric on M by requiring span{ξ1, ξ2, ξ3} =

V ⊥ H and g(ξs, ξk) = δsk. The extended metric does not depend on the action of
SO(3) on V , but it changes in an obvious manner if η is multiplied by a conformal factor.
Clearly, the Biquard connection preserves the extended metric on TM,∇g = 0. We shall
also extend the quaternionic structure by setting Is|V = 0. The fundamental 2-forms ωi ,
i = 1, 2, 3, of the quaternionic structure Q are defined by

2ωi|H = dηi|H , ξyωi = 0, ξ ∈ V. (2.4)

Due to (2.4), the torsion restricted to H has the form

T (X, Y ) = −[X, Y ]|V = 2
3∑
s=1

ωs(X, Y )ξs, X, Y ∈ H. (2.5)

The properties of the Biquard connection are encoded in the properties of the torsion
endomorphism Tξ = T (ξ, ·) : H → H , ξ ∈ V . Decomposing the endomorphism Tξ ∈

(sp(n)+sp(1))⊥ into its symmetric part T 0
ξ and skew-symmetric part bξ , Tξ = T 0

ξ +bξ , we
summarize the description of the torsion due to O. Biquard in the following proposition.

Proposition 2.3 ([Biq1]). The torsion Tξ is completely trace-free,

tr Tξ = g(Tξ (ea), ea) = 0, tr Tξ ◦ I = g(Tξ (ea), Iea) = 0, I ∈ Q,

where e1, . . . , e4n is an orthonormal basis of H . If we decompose the torsion into sym-
metric and antisymmetric parts, Tξi = T 0

ξi
+ bξi , i = 1, 2, 3, the symmetric part of the

torsion has the properties

T 0
ξi
Ii = −IiT

0
ξi
,

I2(T
0
ξ2
)+−− = I1(T

0
ξ1
)−+−, I3(T

0
ξ3
)−+− = I2(T

0
ξ2
)−−+, I1(T

0
ξ1
)−−+ = I3(T

0
ξ3
)+−−,

and the skew-symmetric part can be represented as

bξi = Iiu,

where u is a traceless symmetric (1, 1)-tensor on H which commutes with I1, I2, I3.
If n = 1 then the tensor u vanishes identically, u = 0, and the torsion is a symmetric

tensor, Tξ = T 0
ξ .

The covariant derivative of the quaternionic contact structure with respect to the Biquard
connection and the covariant derivative of the distribution V are given by

∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj , (2.6)
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where the sp(1)-connection 1-forms αs on H are given by [Biq1]

αi(X) = dηk(ξj , X) = −dηj (ξk, X), X ∈ H, ξi ∈ V, (2.7)

while the sp(1)-connection 1-forms αs on the vertical space V are calculated in [IMV] to
be

αi(ξs) = dηs(ξj , ξk)

− δis

(
Scal

16n(n+ 2)
+

1
2
(dη1(ξ2, ξ3)+ dη2(ξ3, ξ1)+ dη3(ξ1, ξ2))

)
, (2.8)

where s ∈ {1, 2, 3}. The vanishing of the sp(1)-connection 1-forms on H is equivalent to
the vanishing of the torsion endomorphism of the Biquard connection (see [IMV]).

2.1. The qc-Einstein condition and Bianchi identities

We explain briefly the consequences of the Bianchi identities and the notion of qc-Einstein
manifold introduced in [IMV] since it plays a crucial role in solving the Yamabe equation
in the quaternionic seven-dimensional sphere. For more details see [IMV].

Let R = [∇,∇]− ∇[ , ] be the curvature tensor of ∇. The Ricci tensor and the scalar
curvature Scal of the Biquard connection, called qc-Ricci tensor and qc-scalar curvature,
respectively, are defined by

Ric(X, Y ) = g(R(ea, X)Y, ea), X, Y ∈ H, Scal = Ric(ea, ea) = g(R(eb, ea)ea, eb).

According to [Biq1] the Ricci tensor restricted to H is a symmetric tensor. If the trace-
free part of the qc-Ricci tensor is zero we call the quaternionic structure a qc-Einstein
manifold [IMV]. It is shown in [IMV] that the qc-Ricci tensor is completely determined
by the components of the torsion. First, recall the notion of the Sp(n)Sp(1)-invariant
trace-free symmetric 2-tensors T 0, U on H introduced in [IMV] by

T 0(X, Y ) := g((T 0
ξ1
I1 + T

0
ξ2
I2 + T

0
ξ3
I3)X, Y ), U(X, Y ) := g(uX, Y ), X, Y ∈ H.

The tensor T 0 belongs to the [−1]-eigenspace while U is in the [3]-eigenspace of the
operator † given by (2.2), i.e.,

T 0(X, Y )+ T 0(I1X, I1Y )+ T
0(I2X, I2Y )+ T

0(I3X, I3Y ) = 0, (2.9)
3U(X, Y )− U(I1X, I1Y )− U(I2X, I2Y )− U(I3X, I3Y ) = 0. (2.10)

Theorem 1.3, Theorem 3.12 and Corollary 3.14 in [IMV] imply:

Theorem 2.4 ([IMV]). Let (M4n+3, g,Q) be a quaternionic contact (4n + 3)-dimen-
sional manifold, n > 1. For anyX, Y ∈ H the qc-Ricci tensor and the qc-scalar curvature
satisfy

Ric(X, Y ) = (2n+ 2)T 0(X, Y )+ (4n+ 10)U(X, Y )+
Scal
4n

g(X, Y ),

Scal = −8n(n+ 2)g(T (ξ1, ξ2), ξ3).

For n = 1 the above formulas hold with U = 0.
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In particular, the qc-Einstein condition is equivalent to the vanishing of the torsion
endomorphism of the Biquard connection. If Scal 6= 0 the latter holds exactly when the
qc-structure is 3-Sasakian up to multiplication by a constant and an SO(3)-matrix with
smooth entries.

For the last part of the above theorem, we recall that a (4n+ 3)-dimensional Riemannian
manifold (M, g) is called 3-Sasakian if the cone metric gN = t2g+dt2 onN = M×R+
is a hyperkähler metric, namely, it has holonomy contained in Sp(n+ 1).

The Ricci 2-forms ρs , s = 1, 2, 3, of a quaternionic contact structure are defined by

4nρs(B,C) = g(R(B,C)ea, Isea), B,C ∈ 0(TM).

For ease of reference, in the following theorem we summarize the properties of the Ricci
2-forms, the scalar curvature and the torsion evaluated on the vertical space established
in Lemma 3.11, Corollary 3.14, Proposition 4.3 and Proposition 4.4 of [IMV] .

Theorem 2.5 ([IMV]). The Ricci 2-forms satisfy

ρ1(X, Y ) = 2g((T 0
ξ2
)−−+I3X, Y )− 2g(I1uX, Y )−

Scal
8n(n+ 2)

ω1(X, Y ),

ρ2(X, Y ) = 2g((T 0
ξ3
)+−−I1X, Y )− 2g(I2uX, Y )−

Scal
8n(n+ 2)

ω2(X, Y ),

ρ3(X, Y ) = 2g((T 0
ξ1
)−+−I2X, Y )− 2g(I3uX, Y )−

Scal
8n(n+ 2)

ω3(X, Y ).

(2.11)

ρi(X, ξi) = −
X(Scal)

32n(n+ 2)

+
1
2
(ωi([ξj , ξk], X)− ωj ([ξk, ξi], X)− ωk([ξi, ξj ], X)),

ρi(X, ξj ) = ωj ([ξj , ξk], X), ρi(X, ξk) = ωk([ξj , ξk], X),
ρi(IkX, ξj ) = − ρi(IjX, ξk) = g(T (ξj , ξk), IiX) = ωi([ξj , ξk], X),

(2.12)

ρi(ξi, ξj )+ ρk(ξk, ξj ) =
1

16n(n+ 2)
ξj (Scal). (2.13)

The torsion of the Biquard connection restricted to V satisfies the equality

T (ξi, ξj ) = −
Scal

8n(n+ 2)
ξk − [ξi, ξj ]H , (2.14)

where [ξi, ξj ]H denotes the projection on H parallel to the vertical space V .

We also recall the definition of the Sp(n)Sp(1)-invariant vector field A, which appeared
naturally in the Bianchi identities investigated in [IMV]:

A = I1[ξ2, ξ3]+ I2[ξ3, ξ1]+ I3[ξ1, ξ2].

We shall denote by the same letter the corresponding horizontal 1-form, i.e.,

A(X) = g(I1[ξ2, ξ3]+ I2[ξ3, ξ1]+ I3[ξ1, ξ2], X).
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The horizontal divergence∇∗P of a (0, 2)-tensor field P onM with respect to the Biquard
connection is defined to be the (0, 1)-tensor field

∇
∗P(·) = (∇eaP)(ea, ·).

Then we deduce from [IMV, Theorem 4.8] the following

Theorem 2.6 ([IMV]). On a (4n+3)-dimensional QC manifold with constant qc-scalar
curvature we have the formulas

∇
∗T 0
= (n+ 2)A, ∇

∗U =
1− n

2
A. (2.15)

3. Conformal transformations

Note that a conformal quaternionic contact transformation between two quaternionic con-
tact manifold is a diffeomorphism 8 which satisfies

8∗η = µ9 · η

for some positive smooth function µ and some matrix 9 ∈ SO(3) with smooth entries
and η is an R3-valued 1-form, η = (η1, η2, η3)

t is a column vector with entries 1-forms.
The Biquard connection does not change under rotations, i.e., the Biquard connections of
9 · η and η coincide. Hence, studying conformal transformations we may consider only
the transformations 8∗η = µη.

Let h be a positive smooth function on a QC manifold (M, η). Let η̄ = 1
2hη be a

conformal deformation of the QC structure η. We will denote the objects related to η̄ by
overlining the same object corresponding to η. Thus, dη̄ = − 1

2h2 dh ∧ η +
1

2h dη and
ḡ = 1

2hg. The new triple {ξ̄1, ξ̄2, ξ̄3} is determined by the conditions defining the Reeb
vector fields. We have

ξ̄s = 2hξs + Is∇h, s = 1, 2, 3, (3.1)

where ∇h is the horizontal gradient defined by g(∇h,X) = dh(X), X ∈ H .
The components of the torsion tensor transform according to the following formulas

from [IMV, Section 5]:

T
0
(X, Y ) = T 0(X, Y )+ h−1 [∇dh][sym][−1](X, Y ), (3.2)

Ū (X, Y ) = U(X, Y )+ (2h)−1[∇dh− 2h−1dh⊗ dh][3][0](X, Y ), (3.3)

where the symmetric part is given by (cf. (3.9))

[∇dh][sym](X, Y ) = ∇dh(X, Y )+

3∑
s=1

dh(ξs) ωs(X, Y )
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and [3][0] indicates the trace free part of the [3]-component of the corresponding tensor.
In addition, the qc-scalar curvature changes according to the formula [Biq1]

Scal = 2h(Scal)− 8(n+ 2)2 h−1
|∇h|2 + 8(n+ 2)4h. (3.4)

The following vectors will be important for our considerations:

Ai = Ii[ξj , ξk], hence A = A1 + A2 + A3. (3.5)

Lemma 3.1. Let h be a positive smooth function on a QC manifold (M, g,Q) with con-
stant qc-scalar curvature Scal = 16n(n + 2) and η̄ = 1

2hη a conformal deformation of
the qc structure η. If η̄ is a 3-Sasakian structure, then

A1(X) = −
1
2h
−2dh(X)− 1

2h
−3
|∇h|2dh(X)− 1

2h
−1(∇dh(I2X, ξ2)+ ∇dh(I3X, ξ3))

+
1
2h
−2(dh(ξ2)dh(I2X)+ dh(ξ3)dh(I3X))

+
1
4h
−2(∇dh(I2X, I2∇h)+∇dh(I3X, I3∇h)). (3.6)

The expressions for A2 and A3 can be obtained from the above formula by a cyclic per-
mutation of (1, 2, 3). Thus, we also have

A(X) = − 3
2h
−2dh(X)− 3

2h
−3
|∇h|2dh(X)− h−1

3∑
s=1

∇dh(IsX, ξs)

+ h−2
3∑
s=1

dh(ξs)dh(IsX)+
1
2h
−2

3∑
s=1

∇dh(IsX, Is∇h).

Proof. First we calculate the sp(1)-connection 1-forms of the Biquard connection ∇.
For a 3-Sasakian structure we have dη̄i(ξ̄j , ξ̄k) = 2, ξ̄iydη̄i = 0, the non-zero sp(1)-
connection 1-forms are ᾱi(ξ̄i) = −2, i = 1, 2, 3, and the qc-scalar curvature Scal =
16n(n+ 2) (see [IMV, Example 4.12]). Then (3.1), (2.7), and (2.8) yield

2dηi(ξj , ξk) = 2h−1
+ h−2

‖dh‖2, αi(X) = −h
−1dh(IiX),

αi(ξj ) = −h
−1dh(ξk) = −αj (ξi), 4αi(ξi) = −4− 2h−1

− h−2
‖dh‖2.

(3.7)

From the 3-Sasakian assumption the commutators are [ξ̄i, ξ̄j ] = −2ξ̄k . Thus, for X ∈ H
taking also into account (3.1) we have

g([ξ̄1, ξ̄2], I3X) = −2g(ξ̄3, I3X) = −2g(2hξ3 + I3∇h, I3X) = −2dh(X).

Therefore, using again (3.1), we obtain

−2dh(X) = g([ξ̄1, ξ̄2], I3X) = g([2hξ1 + I1∇h, 2hξ2 + I2∇h], I3X)

= − 4h2A3(X)+ 2hg([ξ1, I2∇h], I3X)+ 2hg([I1∇h, ξ2], I3X)

+ g([I1∇h, I2 ∇h], I3X). (3.8)
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The last three terms are transformed as follows. The first equals

g([ξ1, I2∇h], I3X) = g((∇ξ1I2)∇h+ I2∇ξ1∇h, I3X)− g(T (ξ1, I2∇h), I3X)

= − α3(ξ1)dh(I2X)+ α1(ξ1)dh(X)−∇dh(ξ1, I1X)

− g(T (ξ1, I2∇h), I3X),

where we use (2.6) and the fact that ∇ preserves the splitting H ⊕ V . The second term is

g([I1∇h, ξ2], I3X) = α2(ξ2)dh(X)+ α3(ξ2)dh(I1X)−∇dh(ξ2, I2X)

− g(T (I1∇h, ξ2), I3X),

and finally

g([I1∇h, I2∇h], I3X) = − α3(I1∇h)dh(I2X)+ α1(I1∇h)dh(X)−∇dh(I1∇h, I1X)

+ α2(I2∇h)dh(X)+ α3(I2∇h)dh(I1X)−∇dh(I2∇h, I2X).

Next we apply (3.7) to the last three equalities, then substitute their sum into (3.8), after
which we use the commutation relations

∇dh(X, Y )−∇dh(Y,X) = −dh(T (X, Y )) = −2
3∑
s=1

ωs(X, Y )dh(ξs),

∇dh(X, ξ)−∇dh(ξ,X) = −dh(T (X, ξ)), X, Y ∈ H, ξ ∈ V.

(3.9)

The result is the following identity:

4h2A3(X) = (−4h+ h−1
‖∇h‖2)dh(X)− 2h[∇dh(I1X, ξ1)+∇dh(I2X, ξ2)]

− [∇dh(I1X, I1∇h)+∇dh(I2X, I2∇h)]
+ 2[dh(ξ1)dh(I1X)+ dh(ξ2)dh(I2X)+ 2dh(ξ3)dh(I3X)]
+ 2h[T (ξ1, I1X,∇h)+ T (ξ2, I2X,∇h)− T (ξ1, I2X, I3∇h)

+ T (ξ2, I1X, I3∇h)], (3.10)

where T (ξ,X, Y ) = g(TξX, Y ) for a vertical vector ξ and horizontal vectors X and Y .
With the help of Proposition 2.3 we decompose the torsions into symmetric and anti-
symmetric part Tξi = T 0

ξi
+ IiU , i = 1, 2, 3, and then express the symmetric parts

of the torsion terms in the form T 0
ξ1
= (T 0

ξ1
)−−+ + (T 0

ξ1
)−+−, T 0

ξ2
= (T 0

ξ2
)−−+ +

(T 0
ξ2
)+−−. Hence, using T 0−−+

= 2(T 0
ξ2
)+−−I2 = 2(T 0

ξ1
)−+−I1 etc., which follows

again from Proposition 2.3, the sum of the torsion terms in (3.10) can be seen to equal
2(T 0)−−+(X,∇h)− 4U(X,∇h). This allows us to rewrite (3.10) in the form

4A3(X) = (−4h−1
+ h−3

‖∇h‖2)dh(X)− 2h−1[∇dh(I1X, ξ1)+∇dh(I2X, ξ2)]

+ 2h−2[dh(ξ1)dh(I1X) + dh(ξ2)dh(I2X)+ 2dh(ξ3)dh(I3X)]

− h−2[∇dh(I1X, I1∇h)+∇dh(I2X, I2∇h)]

+ 4h−1[(T 0)−−+(∇h,X)− 2U(∇h,X)]. (3.11)

Using (3.2) the (T 0)−−+ component of the torsion can be expressed by h as follows (see
(2.1) and (2.9)):



Extremals for the Sobolev inequality 1053

4(T 0)−−+(∇h,X) = T 0(∇h,X)− T 0(I1∇h, I1X)− T
0(I2∇h, I2X)+ T

0(I3∇h, I3X)

= −h−1
{[∇dh][−1](∇h,X)− [∇dh][−1](I1∇h, I1X)− [∇dh][−1](I2∇h, I2X)

+ [∇dh][−1](I3∇h, I3X)}

−h−1
3∑
s=1

{dh(ξs)[g(Is∇h,X)−g(IsI1∇h, I1X)−g(IsI2∇h, I2X)+g(IsI3∇h, I3X)]}

= − h−1
{∇dh(∇h,X)−∇dh(I1∇h, I1X)−∇dh(I2∇h, I2X)+∇dh(I3∇h, I3X)}

+ 4h−1dh(ξ3)dh(I3X).

Invoking equation (3.9) we can put ∇h in the second place in the Hessian terms, thus,
proving the formula

4(T 0)−−+(∇h,X) = − 4h−1dh(ξ3)dh(I3X)

− h−1
{∇dh(X,∇h)−∇dh(I1X, I1∇h)−∇dh(I2X, I2∇h)+∇dh(I3X, I3∇h)}.

(3.12)

On the other hand, (2.10), (3.3) and the Yamabe equation (3.4) give

8U(∇h,X) = −h−1
{
∇dh(∇h,X)+

3∑
s=1

∇dh(Is∇h, IsX)

− 2h−1
‖∇h‖2dh(X)−

4h

n
dh(X)+ 2h−1 ‖∇h‖

2

n
dh(X)

}
= −h−1

{
∇dh(∇h,X)+

3∑
s=1

∇dh(Is∇h, IsX)
}

−h−1
{
−2h−1

‖∇h‖2dh(X)−
2n−4nh+(n+2)h−1

‖∇h‖2

n
dh(X)+2h−1 ‖∇h‖

2

n
dh(X)

}
= −h−1

{
∇dh(X,∇h)+

3∑
s=1

∇dh(IsX, Is∇h)
}
− h−1(−3h−1

‖∇h‖2 − 2+ 4h)dh(X).

(3.13)

Substituting the last two formulas in (3.11) gives A3 in the form of (3.6) written for A1
(cf. the paragraph after (3.6)). ut

4. Divergence formulas

We shall need the divergences of various vectors/forms through the almost complex struc-
tures, so we start with a general formula valid for any horizontal vector/form A. Let
{e1, . . . , e4n} be an orthonormal basis of H . The divergence of I1A is

∇
∗(I1A) ≡ (∇ea (I1A))(ea) = −(∇eaA)(I1ea)− A((∇ea I1)ea),

recalling I1A(X) = −A(I1X).
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We say that an orthonormal frame

{e1, e2 = I1e1, e3 = I2e1, e4 = I3e1, . . . , e4n = I3e4n−3, ξ1, ξ2, ξ3}

is a qc-normal frame (at a point) if the connection 1-forms of the Biquard connection
vanish (at that point). Lemma 4.5 in [IMV] asserts that a qc-normal frame exists at each
point of a QC manifold. With respect to a qc-normal frame the above divergence reduces
to

∇
∗(I1A) = −(∇eaA)(I1ea).

Lemma 4.1. Suppose (M, η,Q) is a quaternionic contact manifold with constant qc-
scalar curvature. For any function h we have

∇
∗

( 3∑
s=1

dh(ξs)IsAs

)
=

3∑
s=1

∇dh(Isea, ξs)As(ea),

∇
∗

( 3∑
s=1

dh(ξs)IsA
)
=

3∑
s=1

∇dh(Isea, ξs)A(ea).

Proof. Using the identification of the 3-dimensional vector spaces spanned by {ξ1, ξ2, ξ3}

and {I1, I2, I3} with R3, the restriction of the action of Sp(n)Sp(1) to these spaces
can be identified with the action of the group SO(3), i.e., ξi =

∑3
t=19it ξ̄t and

Ii =
∑3
t=19it Īt , i = 1, 2, 3, with 9 ∈ SO(3). One verifies easily that the vectors A,∑3

s=1 dh(ξs)IsAs = −
∑3
i=1 dh(ξi)[ξj , ξk] and

∑3
s=1 dh(ξs)IsA are Sp(n)Sp(1) invari-

ant on H, for example Ā = (det9)A. Thus, it is sufficient to compute their divergences
in a qc-normal frame. To avoid the introduction of new variables, in this proof, we shall
assume that {e1, . . . , e4n, ξ1, ξ2, ξ3} is a qc-normal frame.

We apply (2.14). Using that the Biquard connection preserves the splitting of TM , we
find

∇
∗[ξ1, ξ2] = −g(∇ea (T (ξ1, ξ2)), ea)

= −g((∇eaT )(ξ1, ξ2), ea)− g(T (∇eaξ1, ξ2), ea)− g(T (ξ1,∇eaξ2), ea).

From Bianchi’s identity we have (σA,B,C means a cyclic sum over (A,B,C))

g((∇eaT )(ξ1, ξ2), ea) = −g((∇ξ1T )(ξ2, ea), ea)− g((∇ξ2T )(ea, ξ1), ea)

− g(σea ,ξ1,ξ2{T (T (ea, ξ1), ξ2)}, ea)+ g(σea ,ξ1,ξ2{R(ea, ξ1)ξ2}, ea)

= −g(T (T (ea, ξ1), ξ2), ea)− g(T (T (ξ1, ξ2), ea), ea)− g(T (T (ξ2, ea), ξ1), ea)

= g(T (T (ξ1, ea), ξ2), ea)− g(T (T (ξ2, ea), ξ1), ea)− g(T (T (ξ1, ξ2), ea), ea),

taking into account that as mappings on H the torsion tensors T (ξi, X) and the curvature
tensor R(ξ1, ξ2) are traceless, so g((∇ξ1T )(ξ2, ea), ea) = 0 and g(R(ξ1, ξ2)ea, ea) = 0,
while the connection preserves the splitting, to obtain the next to last line. The last term
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is equal to zero as

g(T (T (ξ1, ξ2), ea), ea) = g

(
T

(
−

Scal
8n(n+ 2)

ξ3 − [ξ1, ξ2]H , ea

)
, ea

)
= −

Scal
8n(n+ 2)

g(T (ξ3, ea), ea) = 0,

taking into account that the torsion Tξ3 is traceless and T ([ξ1, ξ2]H , ea) is a vertical vector.
On the other hand,

g(T (Tξ1ea, ξ2), ea)− g(T (Tξ2ea, ξ1), ea)

= −[g(T (eb, ξ2), ea)g(T (ξ1, ea), eb)− g(T (eb, ξ1), ea)g(T (ξ2, ea), eb)]
= [g(T (ξ2, eb), ea)g(T (ξ1, ea), eb)− g(T (ξ1, eb), ea)g(T (ξ2, ea), eb)] = 0.

The equalities ∇∗(I1A1) = ∇
∗(I2A2) = 0 with respect to a qc-normal frame can be

obtained similarly. Hence, the first formula in Lemma 4.1 follows.
We are left with proving the second divergence formula. Since the scalar curvature is

constant, (2.12) implies

A(X) = −2
3∑
s=1

ρs(X, ξs). (4.1)

Fix an s ∈ {1, 2, 3}. Working again in a qc-normal frame we have

(∇eaA)(Isea) = −2
3∑
t=1

(∇eaρt )(Isea, ξt ).

A calculation involving the expressions (2.11) and the properties of the torsion shows that

tr(ρt ◦ Is) = −
1

2(n+ 2)
δst Scal . (4.2)

The second Bianchi identity

0 = g((∇eaR)(Isea, ξt )eb, Iteb)+ g((∇IseaR)(ξt , ea)eb, Iteb)
+ g((∇ξtR)(ea, Isea)eb, Iteb)+ g(R(T (ea, Isea), ξt )eb, Iteb)

+ g(R(T (Isea, ξt ), ea)eb, Iteb)+ g(R(T (ξt , ea), Isea)eb, Iteb)

together with the constancy of the qc-scalar curvature and (4.2) show that the third term
on the right is zero and thus

3∑
t=1

{2(∇eaρt )(Isea, ξt )− 2ρt (T (ξt , Isea), ea)+ ρt (T (ea, Isea), ξt )} = 0.

Substituting (2.5) in the above equality we come to the equation

3∑
t=1

(∇eaρt )(Isea, ξt ) =

3∑
t=1

ρt (T (ξt , Isea), ea)− 4n
3∑
t=1

ρt (ξs, ξt ) = 0, (4.3)

where the vanishing of the second term follows from (2.13), while the vanishing of the
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first term is seen as follows. Using the standard inner product on End(H)

g(C,B) = tr(B∗C) =
4n∑
a=1

g(C(ea), B(ea)),

where C,B ∈ End(H), {e1, . . . , e4n} is a g-orthonormal basis of H , the definition of T 0
ξs

,
the formulas in Theorem 2.5 and Proposition 2.3 imply

3∑
s=1

ρs(T (ξs, I1ea), ea)

= g(ρ1, T
0
ξ1
I1)+ g(ρ2, T

0
ξ2
I1)+ g(ρ3, T

0
ξ3
I1)− g(ρ1, u)− g(ρ2, I3u)+ g(ρ3, I2u)

= g(ρ1, T
0
ξ1
I1)+ g(ρ2, T

0
ξ2
I1)+ g(ρ3, T

0
ξ3
I1)

= g

(
2(T 0

ξ2
)−−+I3 − 2I1u−

Scal
8n(n+ 2)

I1, T
0
ξ1
I1

)
+ g

(
2(T 0

ξ3
)+−−I1 − 2I2u−

Scal
8n(n+ 2)

I2, T
0
ξ2
I1

)
+ g

(
2(T 0

ξ1
)−+−I2 − 2I3u−

Scal
8n(n+ 2)

I3, T
0
ξ3
I1

)
= − 2g((T 0

ξ2
)−−+I2, T

0
ξ1
)+ 2g((T 0

ξ3
)+−−, T 0

ξ2
)+ 2g((T 0

ξ1
)−+−I3, T

0
ξ3
)

= 2g((T 0
ξ3
)+−−, (T 0

ξ2
)+−−)+ 2g((T 0

ξ1
)−+−, I3(T

0
ξ3
)+−−)

= 2g(I2(T
0
ξ3
)+−−, I2(T

0
ξ2
)+−−)− 2g(I1(T

0
ξ1
)−+−, I2(T

0
ξ3
)+−−) = 0.

Renaming the almost complex structures shows that the same conclusion is true when we
replace I1 with I2 or I3 in the above calculation.

Finally, the second formula in Lemma 4.1 follows from (4.1) and (4.3). ut

We shall also need the following 1-forms:

D1(X) = −h
−1(T 0)+−−(X,∇h),

D2(X) = −h
−1(T 0)−+−(X,∇h),

D3(X) = −h
−1(T 0)−−+(X,∇h).

(4.4)

For simplicity, using the musical isomorphism, we will denote by D1,D2,D3 the corre-
sponding (horizontal) vector fields, for example g(D1, X) = D1(X) for X ∈ H. Finally,
we set

D = D1 +D2 +D3 = −h
−1T 0(X,∇h). (4.5)

Lemma 4.2. Suppose (M, η) is a quaternionic contact manifold with constant qc-scalar
curvature Scal = 16n(n + 2). Suppose η̄ = 1

2hη has vanishing [−1]-torsion component

T
0
= 0. Then

D(X) =
1
4
h−2

(
3∇dh(X,∇h) −

3∑
s=1

∇dh(IsX, Is∇h)
)
+ h−2

3∑
s=1

dh(ξs)dh(IsX).
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and the divergence of D satisfies

∇
∗D = |T 0

|
2
− h−1g(dh,D)− h−1(n+ 2)g(dh,A).

Proof. (a) The formula for D follows immediately from (3.2).
(b) We work in a qc-normal frame. Since the scalar curvature is assumed to be constant

we use (2.15) to find

∇
∗D = −h−1dh(ea)D(ea)− h

−1
∇
∗T 0(∇h)− h−1T 0(ea, eb) ∇dh(ea, eb)

= −h−1dh(ea)D(ea)− h
−1(n+ 2)dh(ea)A(ea)− g(T 0, h−1

∇dh)

= |T 0
|
2
− h−1dh(ea)D(ea)− h

−1(n+ 2)dh(ea)A(ea),

using (3.2) in the last equality. ut

Let us also consider the following 1-forms (and corresponding vectors):

Fs(X) = −h
−1T 0(X, Is∇h), X ∈ H, s = 1, 2, 3.

From the definition of F1 and (4.4) we find

F1(X) = −h
−1T 0(X, I1∇h)

= −h−1(T 0)+−−(X, I1∇h)−h
−1(T 0)−+−(X, I1∇h) −h

−1(T 0)−−+(X, I1∇h)

= h−1(T 0)+−−(I1X,∇h)−h
−1(T 0)−+−(I1X,∇h) −h

−1(T 0)−−+(I1X,∇h)

= −D1(I1X)+D2(I1X)+D3(I1X).

Thus, the forms Fs can be expressed by the forms Ds as follows:

F1(X) = −D1(I1X)+D2(I1X)+D3(I1X),

F2(X) = D1(I2X)−D2(I2X)+D3(I2X),

F3(X) = D1(I3X)+D2(I3X)−D3(I3X).

(4.6)

Lemma 4.3. Suppose (M, η) is a quaternionic contact manifold with constant qc-scalar
curvature Scal = 16n(n+ 2). Suppose η̄ = 1

2hη has vanishing [−1]-torsion component,

T
0
= 0. Then

∇
∗

( 3∑
s=1

dh(ξs)Fs

)
=

3∑
s=1

[∇dh(Isea, ξs)Fs(Isea)]

+ h−1
3∑
s=1

[dh(ξs)dh(Isea)D(ea)+ (n+ 2)dh(ξs)dh(Isea)A(ea)].

Proof. We note that the vector
∑3
s=1 dh(ξs)Fs is an Sp(n)Sp(1)-invariant vector, hence

we may assume that {e1, . . . , e4n, ξ1, ξ2, ξ3} is a qc-normal frame. Since the scalar cur-
vature is assumed to be constant we can apply Theorem 2.6, thus ∇∗T 0

= (n + 2)A.
Turning to the divergence, we compute
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∇
∗

( 3∑
s=1

dh(ξs)Fs

)
=

3∑
s=1

[∇dh(ea, ξs)Fs(ea)]−
3∑
s=1

h−1dh(ξs)∇
∗T 0(Is∇h)

+

3∑
s=1

[h−2dh(ξs)dh(ea)T
0(ea, Iseb)dh(eb)− h

−1dh(ξs)T
0(ea, Iseb) ∇dh(ea, eb)]

=

3∑
s=1

[∇dh(ea, ξs)Fs(ea)]−
3∑
s=1

h−1dh(ξs)∇
∗T 0(Is∇h)

+

3∑
s=1

[h−1dh(ξs)dh(Isea)D(ea)]

=

3∑
s=1

[∇dh(ea, ξs)Fs(ea)+ h−1dh(ξs)dh(Isea)D(ea)

+ h−1(n+ 2)dh(ξs)dh(Isea)A(ea)], (4.7)

using the symmetry of T 0 in the next to last equality and the fact T 0(ea, I1eb)∇dh(ea, eb)

= 0. The latter can be seen, for example, by first using (3.2) and the formula for the
symmetric part of ∇dh given after (3.3) from which we have

T 0(ea, I1eb)∇dh(ea, eb)

= − h−1
∇dh[sym][−1](ea, I1eb)

[
∇dh[sym](ea, eb)−

3∑
s=1

dh(ξs)ωs(ea, eb)
]

= − h−1
∇dh[sym][−1](ea, I1eb)∇dh[sym][−1](ea, eb)

− h−1
∇dh[sym][−1](ea, I1eb)∇dh[sym][3](ea, eb)

+ h−1
∇dh[sym][−1](ea, I1eb)

3∑
s=1

dh(ξs)ωs(ea, eb) = 0,

using the zero traces of the [−1]-component to justify the vanishing of the third term in
the last equality. Switching to the basis {Isea : a = 1, . . . , 4n} in the first term of the
right-hand side of (4.7) completes the proof. ut

At this point we restrict our considerations to the 7-dimensional case, i.e. n = 1. Follow-
ing is our main technical result. As mentioned in the introduction, we were motivated to
seek a divergence formula of this type based on the Riemannian and CR cases of the prob-
lem in question. The main difficulty was to find a suitable vector field with non-negative
divergence containing the norm of the torsion. The fulfilment of this task was facilitated
by the results of [IMV], which in particular showed that similarly to the CR case, but un-
like the Riemannian case, we were not able to achieve a proof based purely on the Bianchi
identities (see [IMV, Theorem 4.8]).

Theorem 4.4. Suppose (M7, η) is a quaternionic contact structure conformal to a 3-
Sasakian structure (M7, η̄), η̃ = 1

2hη. If Scalη = Scalη̃ = 16n(n+ 2), then with f given
by
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f = 1
2 + h+

1
4h
−1
|∇h|2,

the following identity holds:

∇
∗

(
fD+

3∑
s=1

dh(ξs)Fs+4
3∑
s=1

dh(ξs)IsAs−
10
3

3∑
s=1

dh(ξs)IsA
)
= f |T 0

|
2
+h〈QV,V 〉.

Here, Q is a positive semi-definite matrix and V = (D1,D2,D3, A1, A2, A3) with As ,
Ds defined, respectively, in (3.5) and (4.4).
Proof. Using the formulas for the divergences of D,

∑3
s=1 dh(ξs)Fs ,

∑3
s=1 dh(ξs)IsAs

and
∑3
s=1 dh(ξs)IsA given respectively in Lemmas 4.2, 4.3 and 4.1 we have the identity

(n = 1 here)

∇
∗

(
fD +

3∑
s=1

dh(ξs)Fs + 4
3∑
s=1

dh(ξs)IsAs −
10
3

3∑
s=1

dh(ξs)IsA
)

= (dh(ea)−
1
4h
−2dh(ea)|∇h|

2
+

1
2h
−1
∇dh(ea,∇h))D(ea)

+ f (|T 0
|
2
− h−1dh(ea)D(ea) − h−1(n+ 2)dh(ea)A(ea))

+

3∑
s=1

∇dh(Isea, ξs)Fs(Isea)

+ h−1
3∑
s=1

[dh(ξs)dh(Isea)D(ea)+ (n+ 2)dh(ξs)dh(Isea)A(ea)]

+ 4
3∑
s=1

∇dh(Isea, ξs)As(ea) −
10
3

3∑
s=1

∇dh(Isea, ξs)A(ea)

= (dh(ea)−
1
4h
−2dh(ea)|∇h|

2
+

1
2h
−1
∇dh(ea,∇h))

3∑
t=1

Dt (ea)

+ f (|T 0
|
2
− h−1dh(ea))

( 3∑
t=1

Dt (ea)
)
− f h−1(n+ 2)dh(ea)

( 3∑
t=1

At (ea)
)

+∇dh(I1ea, ξ1)(D1(ea)−D2(ea)−D3(ea))

+∇dh(I2ea, ξ2)(−D1(ea)+D2(ea)−D3(ea))

+∇dh(I3ea, ξ3)(−D1(ea)−D2(ea) +D3(ea))

+ h−1
( 3∑
s=1

dh(ξs)dh(Isea)
)( 3∑

t=1

Dt (ea)
)

+ h−1(n+ 2)
( 3∑
s=1

dh(ξs)dh(Isea)
)( 3∑

t=1

At (ea)
)

+ 4
3∑
s=1

∇dh(Isea, ξs)As(ea)−
10
3

( 3∑
s=1

∇dh(Isea, ξs)
)( 3∑

t=1

At (ea)
)
, (4.8)
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where the last equality uses (4.6) to express the vectors Fs by Ds , and the expansions of
the vectors A and D according to (3.5) and (4.5). Since the dimension of M is seven it
follows that U = Ū = [∇dh− 2h−1dh⊗ dh][3][0] = 0. This, together with the Yamabe
equation (3.4), which when n = 1 becomes4h = 2−4h+3h−1

|∇h|2, yields the formula
(cf. (3.13))

∇dh(X,∇h)+

3∑
s=1

∇dh(IsX, Is∇h)− (2− 4h+ 3h−1
|∇h|2)dh(X) = 0. (4.9)

From equations (4.4) and (3.12) we have

D1(X) = h
−2dh(ξ1)dh(I1X)+

1
4h
−2[∇dh(X,∇h)+∇dh(I1X, I1∇h)

−∇dh(I2X, I2∇h)−∇dh(I3X, I3∇h)],
D2(X) = h

−2dh(ξ2)dh(I2X)+
1
4h
−2[∇dh(X,∇h)−∇dh(I1X, I1∇h)

+∇dh(I2X, I2∇h)−∇dh(I3X, I3∇h)],
D3(X) = h

−2dh(ξ3)dh(I3X)+
1
4h
−2[∇dh(X,∇h)−∇dh(I1X, I1∇h)

−∇dh(I2X, I2∇h)+∇dh(I3X, I3∇h)].

Expressing the first term in (4.9) by the rest and substituting the result in the above equa-
tions we come to

Di(ea) =
1
4h
−2(2− 4h+ 3h−1

|∇h|2)dh(ea)+ h
−2dh(ξi)dh(Iiea)

+
1
2h
−2[−∇dh(Ij ea, Ij∇h)−∇dh(Ikea, Ik∇h)]. (4.10)

At this point, by a purely algebraic calculation, using Lemma 3.1 and (4.10) we find

22
3 A1 −

2
3A2 −

2
3A3 +

11
3 D1 −

1
3D2 −

1
3D3

= − 3h−1(1+ 1
2h
−1dh(ea)+

1
4h
−2
|∇h|2)dh(ea)+ 3h−2

( 3∑
s=1

dh(ξs)dh(Isea)
)

+
2
3h
−1
∇dh(I1ea, ξ1)−

10
3 h
−1
∇dh(I2ea, ξ2)−

10
3 h
−1
∇dh(I3ea, ξ3).

Similarly,

3A1 − A2 − A3 + 2D1

= (−2h−1
+

1
2h
−2
+ h−3

|∇h|2)dh(ea)−
1
2h
−2

3∑
s=1

∇dh(Isea, Is∇h)

+ h−1
∇dh(I1ea, ξ1)− h

−1
∇dh(I2ea, ξ2)

− h−1
∇dh(I3ea, ξ3)+ h

−2
3∑
s=1

dh(ξs)dh(Isea).
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On the other hand, the coefficient of A1(ea) in (4.8) is found to be, after setting n = 1,

h
[
−3(1+ 1

2h
−1
+

1
4h
−2
|∇h|2)h−1dh(ea)+ 3h−2

( 3∑
s=1

dh(ξs)dh(Isea)
)

+
2
3h
−1
∇dh(I1ea, ξ1)−

10
3 h
−1
∇dh(I2ea, ξ2)−

10
3 h
−1
∇dh(I3ea, ξ3)

]
,

while the coefficient of D1(ea) in (4.8) is

dh(ea)−
1
4h
−2dh(ea)|∇h|

2
+

1
2h
−1
∇dh(ea,∇h)− f h−1dh(ea)

+∇dh(I1ea, ξ1)−∇dh(I2ea, ξ2)−∇dh(I3ea, ξ3)D1(ea)

+ h−1
( 3∑
s=1

dh(ξs)dh(Isea)
)
. (4.11)

Substituting ∇dh(ea,∇h) = −
∑3
s=1 ∇dh(Isea, Is∇h)+( 2−4h +3h−1

|∇h|2)dh(ea)

according to (4.9) and using the definition of f transforms the above expression into

dh(ea)−
1
4h
−2dh(ea)|∇h|

2
− ( 1

2 + h+
1
4h
−1
|∇h|2)h−1dh(ea)

+
1
2h
−1
(
−

3∑
s=1

∇dh(Isea, Is∇h)+ (2− 4h + 3h−1
|∇h|2)dh(ea)

)
+∇dh(I1ea, ξ1)−∇dh(I2ea, ξ2)−∇dh(I3ea, ξ3)D1(ea)

+ h−1
( 3∑
s=1

dh(ξs)dh(Isea)
)
.

Simplifying the above expression shows that the coefficient of D1(ea) in (4.8) is

(−2+ 1
2h
−1
+ h−2

|∇h|2)dh(ea)−
1
2h
−1
( 3∑
s=1

∇dh(Isea, Is∇h)
)

+∇dh(I1ea, ξ1)−∇dh(I2ea, ξ2)−∇dh(I3ea, ξ3)+ h
−1
( 3∑
s=1

dh(ξs)dh(Isea)
)
.

Hence, we proved that the coefficient of D1(ea) in (4.8) is h(3A1 − A2 − A3 +

2D1)(ea), while that of A1(ea) is h( 22
3 A1 −

2
3A2 −

2
3A3 +

11
3 D1 −

1
3D2 −

1
3D3)(ea).

A cyclic permutation gives the rest of the coefficients in (4.8). With this, the divergence
(4.8) can be written in the form

∇
∗

(
fD +

3∑
s=1

dh(ξs)Fs + 4
3∑
s=1

dh(ξs)IsAs −
10
3

3∑
s=1

dh(ξs)IsA
)

= f |T 0
|
2
+ hσ1,2,3{g(D1, 3A1 − A2 − A3 + 2D1)

+ g(A1,
22
3 A1 −

2
3A2 −

2
3A3 +

11
3 D1 −

1
3D2 −

1
3D3)},
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where σ1,2,3 denotes the sum over all positive permutations of (1, 2, 3). LetQ be equal to

Q :=



2 0 0 10
3 −

2
3 −

2
3

0 2 0 −
2
3

10
3 −

2
3

0 0 2 −
2
3 −

2
3

10
3

10
3 −

2
3 −

2
3

22
3 −

2
3 −

2
3

−
2
3

10
3 −

2
3 −

2
3

22
3 −

2
3

−
2
3 −

2
3

10
3 −

2
3 −

2
3

22
3


so that

∇
∗

(
fD +

3∑
s=1

dh(ξs)Fs + 4dh(ξs)IsAs − 10
3

3∑
s=1

dh(ξs)IsA
)
= f |T 0

|
2
+ h〈QV,V 〉,

with V = (D1,D2,D3, A1, A2, A3). It is not hard to see that the eigenvalues of Q are
given by

{0, 0, 2(2+
√

2), 2(2−
√

2), 10, 10},

which shows that Q is a non-negative matrix. ut

5. Proofs of the main theorems

The proofs rely on Theorem 4.4 and the following characterization of all qc-Einstein
structures conformal to the standard qc structures on the Heisenberg group.

Theorem 5.1 ([IMV, Theorem 1.2]). Let 2 = 1
2h2̃ be a conformal deformation of the

standard qc-structure 2̃ on the quaternionic Heisenberg group G(H). Then 2 is qc-
Einstein if and only if, up to a left translation, the function h is given by

h = c[(1+ ν|q|2)2 + ν2(x2
+ y2

+ z2)], (5.1)

where c and ν are any positive constants.

Consider first the case of the (seven-dimensional) sphere.

5.1. Proof of Theorem 1.1

Integrating the divergence formula of Theorem 4.4 we see that according to the divergence
theorem established in [IMV, Proposition 8.1] the integral of the left-hand side is zero.
Thus, the right-hand side vanishes as well, which shows that the quaternionic contact
structure η has vanishing torsion, i.e., it is also qc-Einstein according to Theorem 2.4.

Next we bring into consideration the 7-dimensional quaternionic Heisenberg group
and the quaternionic Cayley transform as described in [IMV, Section 5.2]. The quater-
nionic Heisenberg group of dimension 7 is G(H) = H × Im H. The group law is given
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by (q ′, ω′) = (q0, ω0) ◦ (q, ω) = (q0 + q, ω + ω0 + 2 Im q0q̄), where q, q0 ∈ H and
ω,ω0 ∈ Im H. The left-invariant orthonormal basis of the horizontal space is

T1 =
∂

∂t1
+ 2x1 ∂

∂x
+ 2y1 ∂

∂y
+ 2z1 ∂

∂z
, X1 =

∂

∂x1
− 2t1

∂

∂x
− 2z1 ∂

∂y
+ 2y1 ∂

∂z
,

Y1 =
∂

∂y1
+ 2z1 ∂

∂x
− 2t1

∂

∂y
− 2x1 ∂

∂z
, Z1 =

∂

∂z1
− 2y1 ∂

∂x
+ 2x1 ∂

∂y
− 2t1

∂

∂z
,

using q = t1+ ix1+ jy1+ kz1 and ω = ix+ jy+ kz. The central (vertical) orthonormal
vector fields ξ1, ξ2, ξ3 are described as follows:

ξ1 = 2
∂

∂x
, ξ2 = 2

∂

∂y
, ξ3 = 2

∂

∂z
.

Let us identify the (seven-dimensional) group G(H) with the boundary 6 of a Siegel
domain in H×H,

6 = {(q ′, p′) ∈ H×H : <p′ = |q ′|2}.

6 carries a natural group structure and the map (q, ω) 7→ (q, |q|2 − ω) ∈ 6 is an
isomorphism between G(H) and 6.

The standard contact form, written as a purely imaginary quaternion valued form, on
G(H) is given by 22̃ = (dω−q ·dq̄+dq · q̄), where · denotes quaternion multiplication.
Since dp = q · dq̄ + dq · q̄ − dω, under the identification of G(H) with 6 we also have
22̃ = −dp′ + 2dq ′ · q̄ ′. Taking into account that 2̃ is purely imaginary, the last equation
can also be written in the following form:

42̃ = (dp̄′ − dp′)+ 2dq ′ · q̄ ′ − 2q ′ · dq̄ ′.

The (quaternionic) Cayley transform is the map C : S \ {(−1, 0)} → 6 from the sphere
S = {(q, p) ∈ H×H : |q|2+ |p|2 = 1} ⊂ H×H minus a point to the Heisenberg group
6 = {(q1, p1) ∈ H×H : <p1 = |q1|

2
}, with C defined by

(q1, p1) = C((q, p)), q1 = (1+ p)−1q, p1 = (1+ p)−1(1− p) (5.2)

with inverse (q, p) = C−1((q1, p1)) given by

q = 2(1+ p1)
−1q1, p = (1− p1)(1+ p1)

−1. (5.3)

The Cayley transform is a conformal quaternionic contact diffeomorphism between the
quaternionic Heisenberg group with its standard quaternionic contact structure 2̃ and
S \ {(−1, 0)} with its standard structure η̃ (see [IMV]),

λ · (C∗η̃) · λ̄ =
8

|1+ p1|2
2̃, (5.4)

where λ = (1 + p1)/(|1 + p1|) is a unit quaternion and η̃ is the standard quaternionic
contact form on the sphere, η̃ = dq · q̄ + dp · p̄ − q · dq̄ − p · dp̄. Hence, up to a
constant multiplicative factor and a quaternionic contact automorphism the forms C∗η̃

and 2̃ are conformal to each other. It follows that the same is true for C∗η and 2̃. In



1064 Stefan Ivanov et al.

addition, 2̃ is qc-Einstein by definition, while η and hence also C∗η are qc-Einstein as we
observed at the beginning of the proof. According to Theorem 5.1, up to a multiplicative
constant factor, the forms C∗η̃ and C∗η are related by a translation or dilation on the
Heisenberg group. Hence, we conclude that up to a multiplicative constant, η is obtained
from η̃ by a conformal quaternionic contact automorphism, which proves the first claim
of Theorem 1.1. From the conformal properties of the Cayley transform and [Va2, Va1] it
follows that the minimum λ(S4n+3) is achieved by a smooth 3-contact form, which due
to the Yamabe equation is of constant qc-scalar curvature. This shows the second claim
of Theorem 1.1.

5.2. Proof of Theorem 1.3

Let D1,2 be the space of functions u ∈ L2∗(G(H)) having distributional horizontal gradi-
ent |∇u|2 = |T1u|

2
+|X1u|

2
+|Y1u|

2
+|Z1u|

2
∈ L2(G(H))with respect to the Lebesgue

measure dH on R7, which is the Haar measure on the group. Let us define the constant
(2∗ = 5/2 here)

3 := inf
{∫

G(H)
|∇v|2 dH : v ∈ D1,2, v ≥ 0,

∫
G(H)
|v|2

∗

dH = 1
}
.

Let v be a function for which the infimum is achieved. Note that such a function exists by
[Va2] or [Va1]. Furthermore, 3 = S−2

2 , where S2 is the best constant in the L2 Folland–
Stein inequality (1.1), since v ∈ D1,2 implies |v| ∈ D1,2 and the gradient is the same a.e.
From the choice of v we have

3 =

∫
G(H)
|∇v|2 dH,

∫
G(H)

v2∗ dH = 1.

Writing the Euler–Lagrange equation of the constrained problem we see that v is a non-
negative entire solution of (T 2

1 +X
2
1 + Y

2
1 + Z

2
1)v = −3v

3/2. By [GV2, Lemma 10.2] (
see [Va1] or [Va2, Theorem 10.3] for further details), v is a bounded function. Similarly
to [FSt, Theorem 16.7] it follows v is a Lipschitz continuous function in the sense of
non-isotropic Lipschitz spaces [F]. Iterating this argument and using [F, Theorem 5.25]
we see that v is a C∞ smooth function on the set where it is positive, while being of class
0

2,β
loc , the non-isotropic Lipschitz space, for some β > 0. In particular v is continuously

differentiable function by [F, Theorem 5.25]. Applying the Hopf lemma [GV1, Theorem
2.13] on the set where v is positive shows that v cannot vanish, i.e., it is a positive entire
solution to the Yamabe equation. The positivity can also be seen by the Harnack inequality
(see [W] for example). Let u = 31/(2*−2)v. Then u is a positive entire solution of the
Yamabe equation

(T 2
1 +X

2
1 + Y

2
1 + Z

2
1)u = −u

3/2. (5.5)

From the definition of u, we have

3 =

(∫
G(H)
|∇u|2 dH

)1/5

=

(∫
G(H)

u5/2 dH

)1/5

.
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We shall compute the last integral by determining u with the help of the divergence for-
mula.

As before, let 2̃ be the standard contact form on G(H) identified with 6. Using the
inversion and the Kelvin transform on G(H) (cf. [GV2, Sections 8 and 9]), we can see that
if2 = 1

2h2̃ has constant scalar curvature, then the Cayley transform lifts the qc structure
defined by 2 to a qc structure of constant qc-scalar curvature on the sphere, which is
conformal to the standard one. The details are as follows. Let us define two contact forms
21 and 22 on 6 setting

21 = u
4/(Q−2)2̃ and 22 = (Ku)

4/(Q−2) p̄
′

|p′|
2̃
p′

|p′|
,

where u is as in (5.5), Ku is its Kelvin transform (see (5.8) below for the exact formula),
and Q is the homogeneous dimension of the group. Notice that p̄′

|p′|
2̃

p′

|p′|
defines the

same qc structure on the Heisenberg group as 2̃, and Ku is a smooth function on the
whole group according to [GV2, Theorem 9.2]. We are going to see that using the Cayley
transform these two contact forms define a contact form on the sphere, which is conformal
to the standard one and has constant qc-scalar curvature.

Let P1 = (−1, 0) and P2 = (1, 0) be respectively the ‘south’ and ‘north’ poles of the
unit sphere S = {|q|2+|p|2 = 1}. Let C1 and C2 be the corresponding Cayley transforms
defined, respectively, on S \ {P1} and S \ {P2}. Note that C1 was defined in (5.2), while
C2 is given by

(q2, p2) = C2((q, p)), q2 = −(1− p)−1q, p2 = (1− p)−1 (1+ p). (5.6)

In order that 21 and 22 define a contact form η on the sphere it is enough to see that

21(p, q) = 22 ◦ C2 ◦ C−1
1 (p, q), i.e., 21 = (C2 ◦ C−1

1 )∗22. (5.7)

A calculation shows that C2 ◦ C−1
1 : 6→ 6 is given by

q2 = −p
−1
1 q1, p2 = p

−1
1 ,

or equivalently, in the model G(H),

q2 = −(|q1|
2
− ω1)

−1q1, ω2 = −
ω1

|q1|4 + |ω1|2
.

Hence, σ = C2 ◦ C−1
1 is an involution on the group. Furthermore, with the help of (5.4)

we calculate

C1∗ ◦ C2
∗2 =

1
|p1|2

µ̄2µ, µ =
p1

|p1|
,

which proves the identity (5.7). Using the properties of the Kelvin transform [GV2, Sec-
tions 8 and 9]

(Ku)(q ′, p′) := |p′|−(Q−2)/2u(σ(q ′, p′)), (5.8)
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we see that u and Ku are solutions of the Yamabe equation (5.5). This implies that the
contact form η has constant qc-scalar curvature, equal to 4(Q+ 2)/(Q− 2).

Notice that η is conformal to the standard form η̃ and the arguments in the preceding
proof imply that η is qc-Einstein. A small calculation shows that this is equivalent to the
fact that if we set

ū = 210[(1+ |q|2)2 + |ω|2]−2, (5.9)

then ū satisfies the Yamabe equation (5.5) and all other non-negative solutions of (5.5) in
the space D1,2 are obtained from ū by translations and dilations,

τ(q0,ω0)ū (q, ω) := ū(q0 + q, ω + ω0), (5.10)

ūλ(q) := λ4ū(λq, λ2ω), λ > 0. (5.11)

Thus u, which was defined at the beginning of the proof, is given by equation (5.9) up to
translations and dilations. This allows the calculation of the best constant in the Folland–
Stein inequality (see [GV1, (4.52)])

35
=

∫
G(H)

225

[(1+ |q|2)2 + |ω|2)]5 dH = 225π7/20(7/2)
0(7)

=
π12/10

12
,

where 0 is the Gamma function. Hence

S2 = 3
−1/2
=

2
√

3
π3/5 .

Recalling the relation between u and v we find that the extremals in the Folland–Stein
embedding are given by

v =
211
√

3
π3/5 [(1+ |q|2)2 + |ω|2]−2

and its translations and dilations. The proof of Theorem 1.3 is complete.
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