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Abstract. We investigate problems connected to the stability of the well-known Pohožaev obstruc-
tion. We generalize results which were obtained in the minimizing setting by Brezis and Nirenberg
[2] and more recently in the radial situation by Brezis and Willem [3].

Let � be a smooth bounded domain in Rn, n ≥ 3. Let h ∈ C1 (Rn) and consider the
equation {

1u+ hu = |u|4/(n−2)u in �,
u = 0 on ∂�,

(0.1)

where 1u = −
∑n
i=1 ∂

2u/∂x2
i . It is well-known that if � is star-shaped with respect to

the origin and if h satisfies

h(x)+
1
2
〈x,∇h(x)〉 ≥ 0, (0.2)

then there are no non-trivial solutions of (0.1). This is a consequence of Pohožaev’s iden-
tity (see [11] and equation (4.6) of appendix 4.3) and is referred to as the Pohožaev ob-
struction.

The above equation has been quite intensively studied in the past thirty years. Many
existence results have been obtained if � is not assumed to be star-shaped or if h does
not satisfy (0.2). It is almost impossible to give an exhaustive list of references on this
equation.

In this paper, we investigate the question of non-existence of positive solutions of
equation (0.1) and more precisely the stability properties of the Pohožaev obstruction.

Definition 0.1. Let� be a star-shaped domain of Rn and let (X, ‖ · ‖X) be some Banach
space of functions on � (typically X = Ck,η (�), X = L∞ (�) or X = Lp (�)). Let
h0 ∈ X∩C

1 (�) be a function which satisfies (0.2). We say that the Pohožaev obstruction
is X-stable at (h0, �) if the following property holds: there exists δ(h0, �,X) > 0 such
that for any function h ∈ X with

‖h− h0‖X ≤ δ(h0, �,X),

the only non-negative C2-solution of (0.1) is u ≡ 0.
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We say that the Pohožaev obstruction is X-stable if it is X-stable at (h0, �) for all �
star-shaped with respect to the origin and all h0 ∈ X ∩ C

1 (�) satisfying (0.2).

Note that the property (0.2) is not stable under perturbations of the function h in
any Ck-space. Since the work of Brezis and Nirenberg [2], we know that equation (0.1)
behaves differently in dimension 3 and in dimensions n ≥ 4. It is clear that, in dimen-
sions n ≥ 4, the Pohožaev obstruction is not X-stable for any reasonable X. Indeed, any
perturbation of h ≡ 0 which is negative somewhere leads to a minimizing solution in di-
mensions n ≥ 4 (see [2]).1 Hence we investigate the stability of the Pohožaev obstruction
for various spaces X in dimension 3. We give a complete answer to this problem in the
following theorems.

Theorem 1. The Pohožaev obstruction is C0,η-stable for any η > 0 in dimension 3. In
other words, given any η > 0, any domain� in R3, star-shaped with respect to the origin,
and any function h0 ∈ C

1 (�) satisfying (0.2), there exists δ(η,�, h0) > 0 such that if
h ∈ C0,η(�) satisfies

‖h− h0‖C0,η(�) ≤ δ(η,�, h),

the only non-negative solution of (0.1) is u ≡ 0.

Note that a consequence of our theorem is the following: if � is a star-shaped domain
in R3, there exists a constant λ̂(�) > 0 such that equation (0.1) does not possess any
non-trivial positive solutions with h ≡ λ for λ > −λ̂(�). This is in sharp contrast with
the situation for non-star-shaped domains (see [1] for instance).

In the seminal paper [2], it was proved that there are no minimizing solutions of
equation (0.1) in dimension 3 if h ≥ −λ?(�) for some λ?(�) > 0. Since h ≥ 0 if
h satisfies (0.2), a consequence of this result is a version of the above stability in C0

when one considers only minimizing solutions. A necessary and sufficient condition on
the function h and the domain � for the existence of a minimizing solution of (0.1) in
dimension 3 was found in [6].

In [3], the authors studied this question in the case of the unit ball with radial func-
tions. If we let

L
p
r (B) = {u ∈ L

p(B) : u radial},
then it was proved in [3] that the Pohožaev obstruction isL∞r -stable2 on the unit ball of R3

for all h ∈ L∞r (B) ∩ C
1(B). In [3], the question of extending the result to the non-radial

case was explicitly asked. Our result provides an answer to this question. However, the
situation is more delicate than expected in the non-radial case since, while the Pohožaev
obstruction is C0,η-stable for all η > 0, it is never L∞-stable.

Theorem 2. The Pohožaev obstruction is never L∞-stable. In other words, given any
ε > 0, any domain � in R3, star-shaped with respect to the origin, and any function
h0 ∈ C

1(�) satisfying (0.2), we can find some function hε ∈ L∞(�) such that

‖hε − h‖∞ ≤ ε

1 Note that this remark concerns only X-stability in general. The question of X-stability at some
given positive function h in dimensions n ≥ 4 is not investigated in this paper.

2 One should restrict oneself to radial solutions of the equation in the definition of stability.
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and some positive functions uε ∈ C2(�) satisfying the equation{
1uε + hεuε = u

5
ε in �,

uε = 0 on ∂�, uε > 0 in �.

Thus the L∞r -stability result obtained by Brezis–Willem is really specific to the radial
case. In fact, it is not due to the symmetry of the solutions but to one of its by-products in
dimension 3, precisely that sequences of solutions of equation (0.1) which are radial are
either compact or develop only one concentration point. In fact, with the PDE techniques
(as compared to the ODE techniques used in [3]) we use below, we can revisit the question
of the stability of the Pohožaev obstruction in dimension 3 in the radial case. We improve
the result of [3] by proving that the Pohožaev obstruction is Lpr -stable on the unit ball for
all p > 3 but is never L3

r -stable. For precise statements, we refer the reader to the end of
Section 2 and the beginning of Section 3.

All these results give a complete picture of the stability of the Pohožaev obstruction
in dimension 3 when the attention is restricted to non-negative solutions. The question
remains widely open if one allows solutions to change sign, and is certainly more subtle
due to the variety of changing-sign solutions of 1u = u5 in R3.

The paper is organized as follows. Section 2 is devoted to the proofs of Theorem 1 and
of the corresponding result in the radial situation. The proof makes use of standard blow-
up analysis in dimension 3 (see Section 1) and of an extension of Pohožaev’s identity to
Green’s functions (see Appendix 4.4). Section 3 is devoted to the proofs of Theorem 2
and of the corresponding result in the radial situation. Here we have to construct examples
of functions h arbitrarily close in X to some given function for which there is a positive
solution of equation (0.1). This appears to be quite subtle because we need to be sharp.
For instance, in order to prove Theorem 2, our functions h must be close to the given
function in L∞(�) but not in C0,η(�) for any η > 0.

1. Pointwise analysis around a concentration point

In this section we consider a sequence (hε) in C0,η(R3) for some η > 0 and a sequence
(uε) of C2-solutions of 1uε + hεuε = u

5
ε in �,

uε = 0 on ∂�,
uε > 0 in �,

(1.1)

where � is some smooth domain in R3 and

hε → h in Lp(�) as ε→ 0 (1.2)

for some p > 3 where h ∈ C1(R3) satisfies h ≥ 0 in �. Note that, as soon as h satisfies
(0.2), it is non-negative.

We also assume that we have a sequence (xε) of points in � and a sequence (ρε) of
positive real numbers with 0 < 3ρε ≤ d(xε, ∂�) such that

∇uε(xε) = 0 (1.3)
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and
ρε[ sup

B(xε,ρε)

uε(x)]2
→+∞ as ε→ 0. (1.4)

We prove the following:

Proposition 1.1. If there exists C0 > 0 such that

|xε − x|
1/2uε ≤ C0 in B(xε, 3ρε), (1.5)

then there exists C1 > 0 such that

uε(xε)uε(x) ≤ C1|xε − x|
−1 in B(xε, 2ρε) \ {xε},

uε(xε)|∇uε(x)| ≤ C1|xε − x|
−2 in B(xε, 2ρε) \ {xε}.

Moreover, if ρε → 0, then

ρεuε(xε)uε(xε + ρεx)→
1
|x|
+ b in C1

loc(B(0, 2) \ {0}) as ε→ 0

where b is some harmonic function in B(0, 2) with b(0) = 0. Finally, if the convergence
in (1.2) holds in C0,η, then also ∇b(0) = 0.

The rest of this section is dedicated to the proof of this proposition. We follow the lines
of [7, Section 2] (see also [8]). However, one must note that, compared to [8] and other
works on this kind of blow-up analysis, some new difficulties arise since the linear term
(hε) is only uniformly bounded in some Lp(�).

We divide the proof of the proposition into several claims. The first one gives the
asymptotic behaviour of uε around xε at an appropriate small scale.

Claim 1.1. After passing to a subsequence, we have

µ1/2
ε uε(xε + µεx)→

1
(1+ |x|2/3)1/2

in C1
loc(R

3) as ε→ 0 (1.6)

where µε = uε(xε)−2.

Proof. Let x̃ε ∈ B(xε, ρε) and µ̃ε > 0 be such that

uε(x̃ε) = sup
B(xε,ρε)

uε = µ̃
−1/2
ε . (1.7)

Thanks to (1.4), we have

µ̃ε → 0 and ρε/µ̃ε →+∞ as ε→ 0. (1.8)

By (1.5), we also have
|xε − x̃ε| = O(µ̃ε). (1.9)

For x ∈ �ε = {x ∈ R3 : x̃ε + µ̃εx ∈ �}, we set

ũε(x) = µ̃
1/2
ε uε(x̃ε + µ̃εx),
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which satisfies

1ũε + µ̃
2
ε h̃εũε = ũ

5
ε in �ε,

ũε(0) = sup
B((xε−x̃ε)/µ̃ε,ρε/µ̃ε)

ũε = 1, (1.10)

where h̃ε = h(x̃ε + µ̃εx). Thanks to (1.4), (1.7) and (1.9), we get

B

(
xε − x̃ε

µ̃ε
,
ρε

µ̃ε

)
→ R3 as ε→ 0. (1.11)

Now, from (1.10), (1.11), and by standard elliptic theory, we find that, after passing to a
subsequence, ũε → U in C1

loc(R
3) as ε→ 0 where U satisfies

1U = U5 in R3 and 0 ≤ U ≤ 1 = U(0).

From the work of Caffarelli, Gidas and Spruck [4], we know that

U(x) = (1+ |x|2/3)−1/2.

Moreover, thanks to (1.9), after passing to a new subsequence, (xε − x̃ε)/µ̃ε → x0 as
ε → 0 for some x0 ∈ R3. Hence, since xε is a critical point of uε, x0 must be a critical
point of U , hence x0 = 0. We deduce that µε/µ̃ε → 1 where µε is as in the statement of
the claim, so the claim follows. ut

For 0 ≤ r ≤ 3ρε, we set

ψε(r) =
r1/2

ω2r2

∫
∂B(xε,r)

uε dσ

where dσ denotes the Lebesgue measure on the sphere ∂B(xε, r) and ω2 = 4π is the
volume of the unit 2-sphere. We easily check, thanks to Claim 1.1, that

ψε(µεr) =

(
r

1+ r2/3

)1/2

+ o(1), ψ ′ε(µεr) =
1
2

(
r

1+ r2/3

)3/2( 1
r2 −

1
3

)
+ o(1).

(1.12)
We define

rε = max{r ∈ [2
√

3µε, ρε] : ψ ′ε(s) ≤ 0 for s ∈ [2
√

3µε, r]}.

Thanks to (1.12), the set on which the maximum is attained is not empty for ε small
enough, and moreover

rε/µε →+∞ as ε→ 0. (1.13)

We now prove the following:

Claim 1.2. There exists C > 0, independent of ε, such that

uε(x) ≤ Cµ
1/2
ε |xε − x|

−1 in B(xε, 2rε) \ {xε},

|∇uε(x)| ≤ Cµ
1/2
ε |xε − x|

−2 in B(xε, 2rε) \ {xε}.
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Proof. We follow the proof of Lemmas 1.5 and 1.6 of [8]. However, there is an extra
difficulty due to the fact that we do not assume any pointwise convergence of hε to h. We
first prove that for any given 0 < ν < 1/2, there exists Cν > 0 such that

uε(x) ≤ Cν

(
µ

1
2 (1−2ν)
ε |x − xε|

−(1−ν)
+ αε

(
rε

|x − xε|

)ν)
(1.14)

for all x ∈ B(xε, 2rε) and ε small enough, where

αε = sup
∂B(xε,rε)

uε. (1.15)

First of all, we can use (1.5) and apply the Harnack inequality (see for instance Theorem
4.17 of [10]) to get the existence of some C > 0 such that

1
C

max
∂B(xε,r)

(uε + r|∇uε|) ≤
1

ω2r2

∫
∂B(xε,r)

uε dσ ≤ C min
∂B(xε,r)

uε (1.16)

for all 0 < r < 5
2ρε and all ε > 0. The details of the proof can be found in [8, Lemma 1.3].

Hence, thanks to (1.12) and (1.13), we have

|x − xε|
1/2uε(x) ≤ Cψε(r) ≤ Cψε(Rµε) = C

(
R

1+ R2/3

)1/2

+ o(1)

for all R ≥ 2
√

3, all r ∈ [Rµε, rε], all ε small enough and all x ∈ ∂B(xε, r). Thus

sup
B(xε,rε)\B(xε,Rµε)

|x − xε|
1/2uε(x) = e(R)+ o(1) (1.17)

where e(R) → 0 as R → +∞. Let 0 < σ ≤ 1 and Gε,σ be the Green function of the
operator1+ hε/σ in � with Dirichlet boundary conditions. As h is non-negative (this is
an assumption in this section), we can use Lemma 4.2 of the Appendix to get the existence
of some Cσ > 0 such that∣∣∣∣|x − y|Gε,σ (x, y)− 1

ω2

∣∣∣∣ ≤ Cσ |x − y| (1.18)

and ∣∣∣∣|x − y|2|∇Gε,σ (x, y)| − 1
ω2

∣∣∣∣ ≤ Cσ |x − y| (1.19)

for all x 6= y ∈ �. We fix 0 < ν < 1/2 and set

8ε,ν = µ
1
2 (1−2ν)
ε Gε,1−ν(xε, x)1−ν + αε

(
rεGε,ν(xε, x)

)ν
.

Thanks to (1.18), (1.14) reduces to proving

sup
B(xε,2rε)

uε

8ε,ν
= O(1).
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We let yε ∈ B(xε, 2rε) \ {xε} be such that

sup
B(xε,2rε)

uε

8ε,ν
=

uε(yε)

8ε,ν(yε)
.

We are going to consider several possible behaviours of the sequence (yε).
First of all, assume that

|xε − yε|/µε → R as ε→ 0.

Thanks to Claim 1.1, in this case we have

µ1/2
ε uε(yε)→ (1+ R2)−1/2 as ε→ 0.

On the other hand, by (1.17), we can write

µ1/2
ε 8ε,ν(yε) =

(
µε

ω2|xε − yε|

)1−ν

+O

(
αεµ

1/2
ε

(
rε

|xε − yε|

)ν)
+ o(1)

= (Rω2)
ν−1
+O

(
(r1/2
ε αε)µ

1
2 (1−2ν)
ε r

1
2 (2ν−1)
ε

)
+ o(1) = (Rω2)

ν−1
+ o(1)

if R > 0, and µ1/2
ε 8ε,ν(yε)→+∞ as ε→ 0 if R = 0. In any case, (uε(yε)/8ε,ν(yε)) is

bounded.
Assume now that there exists δ > 0 such that yε ∈ B(yε, rε) \ B(yε, δrε). Thanks to

Harnack’s inequality (1.16), we get uε(yε) = O(αε), which, by (1.18), easily gives that
uε(yε)/8ε,ν(yε) = O(1).

Hence, we are left with the following situation:

|yε − xε|/rε → 0 and |xε − yε|/µε →+∞ as ε→ 0. (1.20)

By the definition of yε, we then have

1uε(yε)

uε(yε)
≥
18ε,ν(yε)

8ε,η(yε)
,

which gives, thanks to the definition of 8ε,ν and after multiplying by |xε − yε|2,

|xε − yε|
2uε(yε)

4
≥ ν(1− ν)

|xε − yε|
2

8ε,η(yε)

(
αεr

ν
ε

|∇Gε,ν(xε, yε)|2

Gε,ν(xε, yε)2
Gε,ν(xε, yε)ν

+µ
1
2 (1−2η)
ε

|∇Gε,1−ν(xε, yε)|2

Gε,1−ν(xε, yε)2
Gε,1−ν(xε, yε)1−ν

)
.

Here is the main difference with [8]. Thanks to our choice of8ε,ν , the terms involving hε
disappear, which is necessary since we did not assume any pointwise convergence of hε.
By (1.17), the left-hand side goes to 0 as ε→ 0. Then, thanks to (1.18)–(1.20), we get

o(1) ≥ ν(1− ν)+ o(1),
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which is a contradiction, and shows that this last case cannot occur. This ends the proof
of (1.14).

We now claim that there exists C > 0, independent of ε, such that

uε(x) ≤ C(µ
1/2
ε |x − xε|

−1
+ αε) in B(xε, rε). (1.21)

Thanks to Claim 1.1 and (1.16), this holds for all sequences yε ∈ B(xε, rε) \ {xε} such
that |yε − xε| = O(µε) or |yε − xε|/rε 9 0. Thus we may assume from now on that

|yε − xε|/µε →+∞ and |yε − xε|/rε → 0 as ε→ 0.

Using the Green representation formula, we deduce from (1.18) and (1.19) that

uε(yε) =

∫
B(xε,rε)

Gε,1(1uε + hεuε) dx

+O

(
r−1
ε

∫
∂B(xε,rε)

|∂νuε| dσ

)
+O

(
r−2
ε

∫
∂B(xε,rε)

uε dσ

)
.

This gives, by (1.15), (1.16) and (1.18),

uε(yε) = O

(∫
B(xε,rε)

|x − yε|
−1
|1uε + hεuε| dx

)
+O(αε). (1.22)

Using (1.14) with ν = 1/5, we can write∫
B(xε,rε)

|x − yε|
−1
|1uε + hεuε| dx

=

∫
B(xε,µε)

u5
ε

|x − yε|
dx +

∫
B(xε,rε)\B(xε,µε)

|x − yε|
−1u5

ε dx

= O(µ1/2
ε |yε − xε|

−1)+ α5
ε rε

∫
B(xε,rε)\B(xε,µε)

|x − yε|
−1
|x − xε|

−1 dx

+ µ3/2
ε

∫
B(xε,rε)\B(xε,µε)

|x − yε|
−1
|x − xε|

−4 dx

= O(µ1/2
ε |yε − xε|

−1)+O(α5
ε r

2
ε ).

Thanks to (1.13) and (1.17), this leads to∫
B(xε,rε)

|x − yε|
−1
|1uε| dx ≤ O(µ

1/2
ε |yε − xε|

−1)+ o(αε),

which, by (1.22), proves (1.21).
In order to end the proof of the first part of the claim, we just have to show that

αε = sup
∂B(xε,rε)

uε = O(µ
1/2
ε r−1

ε ). (1.23)
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For that purpose, we use the definition of rε to find that

(βrε)
1/2ψε(βrε) ≥ r

1/2
ε ψε(rε)

for all 0 < β < 1. Using (1.16), this leads to

r1/2
ε sup

∂B(xε,rε)

uε ≤ C(βrε)
1/2 sup

∂B(xε,βrε)

uε.

From (1.21), we obtain

sup
∂B(xε,rε)

uε ≤ Cβ
1/2
(
µ1/2
ε (βrε)

−1
+ sup
∂B(xε,rε)

uε

)
.

Choosing β small enough clearly gives (1.23) and thus the pointwise estimate on uε of
the claim. The estimate on ∇uε then follows from standard elliptic theory. ut

We now prove the following:

Claim 1.3. If rε → 0 as ε→ 0, then up to passing to a subsequence,

rεuε(xε)uε(xε + rεx)→
1
|x|
+ b in C1

loc(B(0, 2) \ {0}) as ε→ 0

where b is some harmonic function in B(0, 2). Moreover, if rε < ρε, then b(0) = 1.

Proof. We set, for x ∈ B(0, 2),

ũε(x) = µ
−1/2
ε rεuε(xε + rεx),

which satisfies
1ũε + r

2
ε h̃εũε = (µε/rε)

2ũ5
ε in B(0, 2) (1.24)

where h̃ε = h(xε + rεx). Thanks to Claim 1.2, there exists C > 0 such that

ũε(x) ≤ C/|x| in B(0, 2) \ {0}. (1.25)

Then, by standard elliptic theory, after passing to a subsequence, we have ũε → U in
C1

loc(B(0, 2) \ {0}) as ε→ 0 where U is a non-negative solution of

1U = 0 in B(0, 2) \ {0}.

Then, thanks to the Bôcher theorem on singularities of harmonic functions, we get

U(x) = λ/|x| + b(x)

where b is some harmonic function in B(0, 2) and λ ≥ 0. Now, integrating (1.24) on
B(0, 1), we get ∫

∂B(0,1)
∂ν ũε dσ =

∫
B(0,1)

(
r2
ε h̃εũε − (µε/rε)

2ũ5
ε

)
dx.
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Thanks to Claim 1.2, ∫
B(0,1)

r2
ε h̃εũε dx → 0 as ε→ 0,

and, by Claim 1.1,∫
B(0,1)

(µε/rε)
2ũ5
ε dx →

∫
R3
(1+ |x|2/3)−5/2 dx = ω2 as ε→ 0.

On the other hand, ∫
∂B(0,1)

∂ν ũε dσ →−ω2λ as ε→ 0.

We deduce that λ = 1, which proves the first part of the claim.
Now, if rε < ρε, from the definition of rε we have

ψ ′ε(rε) = 0.

Setting ψ̃ε(r) = (rε/µε)1/2ψε(rεr) for 0 < r < 2, we see that

ψ̃ε(r)→
r1/2

ω2r2

∫
∂B(0,r)

U dσ = r−1/2
+ r1/2b(0).

We deduce that b(0) = 1, which ends the proof of the claim. ut

We prove at last the following:

Claim 1.4. Using the notations of Claim 1.3, we have b(0) = 0, and if the convergence
in (1.2) holds in C0,η, then ∇b(0) = 0.

Proof. We use the notation of the proof of Claim 1.3. Let us apply the Pohožaev identity
(4.4) of Appendix 4.3 to ũε in B(0, 1). We obtain

1
2

∫
B(0,1)

r2
ε (h̃εũ

2
ε + h̃ε〈x,∇ũ

2
ε〉) dx = B̃

ε
1 + B̃

ε
2

where

B̃ε1 =

∫
∂B(0,1)

(
(∂ν ũε)

2
+

1
2
ũε∂ν ũε −

|∇ũε|
2

2

)
dσ, B̃ε2 =

∫
∂B(0,1)

(
µε

rε

)2
ũ6
ε

6
dσ.

By Claim 1.2 and Lebesgue’s dominated convergence theorem, we can pass to the limit
to obtain ∫

∂B(0,1)

(
(∂νU)

2
+

1
2
U∂νU −

|∇U |2

2

)
dσ = 0.

Since b is harmonic, it is easily checked that the left-hand side is just −ω2b(0)/2. This
proves that b(0) = 0.



Stability of the Pohožaev obstruction 1127

In order to prove the second part of the claim, we apply the Pohožaev identity (4.7) of
Appendix 4.3 to ũε in B(0, 1). We obtain

∫
∂B(0,1)

(
|∇ũε|

2

2
ν − ∂ν ũε∇ũε

)
dσ = −

∫
B(0,1)

r2
ε h̃ε
∇ũ2

ε

2
dx −

∫
∂B(0,1)

(
µε

rε

)2
ũ6
ε

6
ν dσ.

(1.26)
It is clear that∫
∂B(0,1)

(
|∇ũε|

2

2
ν − ∂ν ũε∇ũε

)
dσ →

∫
∂B(0,1)

(
|∇U |2

2
ν − ∂νU∇U

)
dσ as ε→ 0.

Moreover, as b is harmonic, we easily get

∫
∂B(0,1)

(
|∇U |2

2
ν −∇U∂νU

)
dσ = ω2∇b(0).

It remains to deal with the right-hand side of (1.26). It is clear that

∫
∂B(0,1)

(
µε

rε

)2
ũ6
ε

6
ν dσ → 0 as ε→ 0.

Then we rewrite the first term of the right-hand side of (1.26) as

∫
B(0,1)

r2
ε h̃ε
∇ũ2

ε

2
dx =

∫
B(0,1)

r2
ε

(
h̃ε − h̃ε(0)

)∇ũ2
ε

2
dx + h̃ε(0)

∫
B(0,1)

r2
ε

∇ũ2
ε

2
dx.

If we assume that the convergence of (hε) holds in C0,η, we can use Lebesgue’s domi-
nated convergence theorem to conclude that the first term of the right-hand side goes to 0
as ε→ 0. Then, integrating the second term by parts, we get

h̃ε(0)
∫
B(0,1)

r2
ε

∇ũ2
ε

2
dx = h̃ε(0)

∫
∂B(0,1)

r2
ε

ũ2
ε

2
ν dσ,

which clearly goes to 0 as ε → 0. Finally, collecting the above information, and passing
to the limit ε → 0 in (1.26), we get ∇b(0) = 0 if the convergence of (hε) holds in C0,η,
which completes the proof of the claim. ut

We are now in a position to end the proof of Proposition 1.1. If ρε → 0 as ε → 0 then
we deduce the proposition from Claims 1.3 and 1.4. If ρε 9 0 as ε→ 0, then Claims 1.3
and 1.4 give rε 9 0 as ε→ 0. Then, using the Harnack inequality (1.16), one can extend
the result of Claim 1.2 to B(xε, 2ρε) \ {xε}, which proves the first part of Proposition 1.1
when ρε 9 0, and ends the proof of the whole proposition.
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2. Stability of the Pohožaev obstruction

We now prove Theorem 1 and give some stability result for radial solutions on the unit
ball (see end of the section). We assume by contradiction that there exists a sequence (hε)
of functions in C0,η(R3) for some η > 0 and a sequence (uε) of C2-solutions of (1.1)
where� is some smooth domain in R3 star-shaped with respect to the origin and hε → h

in Lp(�) as ε→ 0 for some p > 3 where h ∈ C1(R3) satisfies (0.2). Sometimes we will
assume that hε → h in C0,η as ε→ 0.

We claim first that
‖uε‖∞→+∞ as ε→ 0. (2.1)

Indeed, if (uε) is uniformly bounded in L∞(�), then it is clear that (uε/‖uε‖∞) is uni-
formly bounded in W 2,p(�) for some p > 3, and thus, after passing to a subsequence,
uε/‖uε‖∞→ u in C1

loc(�) where u is a positive solution of

1u+ hu =
(

lim
ε→0
‖uε‖

4
∞

)
u5 in �

with u = 0 on ∂�. Since h ≥ 0, it is clear that ‖uε‖∞ 9 0 as ε → 0. Then ũ =
(limε→0 ‖uε‖∞)u is a non-trivial solution of (0.1), which is a contradiction since (0.2)
holds. Thus (2.1) is proved.

Then the sequence (uε) develops some concentration phenomena. We prove that this
leads to a contradiction as follows: in Claim 2.1, mimicking [8], we construct a family
of critical points of uε, (x1,ε, . . . , xNε,ε), such that each sequence (xiε,ε) satisfies the
assumptions of Section 1 with

ρε = min
1≤i≤Nε, i 6=iε

{|xi,ε − xiε,ε|, d(xiε,ε, ∂�)}.

In Claim 2.2, we prove that these concentration points are in fact isolated. In other words,
we prove that (uε) develops only finitely many concentration points. We prove that such
a configuration of concentration points must satisfy two relations involving the Green
function of1+ h at these points. And it is impossible to find such a configuration thanks
to some Pohožaev identity on Green functions we prove in Appendix 4.4. Claim 2.1 is
rather classical. The core of the proof lies in Claim 2.2. Avoiding bubble accumulation in
the interior of � in dimension 3 is by now classical. The main difficulty here is to avoid
boundary bubble accumulation. The rest of the section is devoted to the details of the
proof we have just sketched.

Claim 2.1. There exists D > 0 such that for all ε > 0, there exists Nε ∈ N∗ and Nε
critical points of uε, denoted by (x1,ε, . . . , xNε,ε), such that

d(xi,ε, ∂�)uε(xi,ε)
2
≥ 1 for all i ∈ [1, Nε],

|xi,ε − xj,ε|uε(xi,ε)
2
≥ 1 for all i 6= j ∈ [1, Nε],

and
min

i∈[1,Nε]
|xi,ε − x|uε(x)

2
≤ D for all x ∈ � and all ε > 0.
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Proof. First of all, we claim that

{x ∈ � : ∇uε(x) = 0 and d(x, ∂�)uε(x)2 ≥ 1} 6= ∅ (2.2)

for ε small enough. Let us prove (2.2). Let yε ∈ � be a point where uε achieves its
maximum. We set µε = uε(yε)

−2
→ 0 as ε → 0. We set also, for all x ∈ �ε =

{x ∈ R3 : yε + µεx ∈ �},

ũε(x) = µ
1/2
ε uε(yε + µεx),

which satisfies
1ũε + µ

2
ε h̃εũε = ũ

5
ε in �ε

where h̃ε = h(yε + µεx). Note that 0 ≤ ũε ≤ ũε(0) = 1. By standard elliptic theory,
ũε → U in C1

loc(�0) where U satisfies

1U = U5 in �0 and 0 ≤ U ≤ 1 = U(0),

and where �0 = limε→0�ε. Thanks to [5], we have �0 = R3, which proves that
d(yε, ∂�)uε(yε)

2
→+∞ as ε→ 0. This ends the proof of (2.2).

Now, in view of Lemma 4.1 (see Appendix 4.1), for ε small enough, there exist
Nε ∈ N∗ and Nε critical points of uε, denoted by (x1,ε, . . . , xNε,ε), such that

d(xi,ε, ∂�)uε(xi,ε)
2
≥ 1 for all i ∈ [1, Nε],

|xi,ε − xj,ε|uε(xi,ε)
2
≥ 1 for all i 6= j ∈ [1, Nε],

and
min

i∈[1,Nε]
|xi,ε − x|uε(x)

2
≤ 1 (2.3)

for all critical points x of uε such that d(x, ∂�)uε(x)2 ≥ 1. It remains to show that there
exists D > 0 such that

min
i∈[1,Nε]

|xi,ε − x|uε(x)
2
≤ D

for all x ∈ �. We proceed by contradiction, assuming that

sup
x∈�

min
i∈[1,Nε]

|xi,ε − x|uε(x)
2
→+∞ (2.4)

as ε→ 0. Let zε ∈ � be such that

min
i∈[1,Nε]

|xi,ε − zε|uε(zε)
2
= sup
x∈�

min
i∈[1,Nε]

|xi,ε − x|uε(x)
2.

We set µ̂ε = uε(zε)−2 and Sε = {x1,ε, . . . , xNε,ε}. Thanks to (2.4), we find that µ̂ε → 0
as ε→ 0 and

d(Sε, zε)/µ̂ε →+∞ as ε→ 0. (2.5)

Then we set, for all x ∈ �̂ε = {x ∈ R3 : zε + µ̂εx ∈ �},

ûε(x) = µ̂
1/2
ε ûε(zε + µ̂εx),
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which satisfies
1ûε + µ̂

2
ε ĥεûε = û

5
ε in �ε

where ĥε = h(zε + µ̂εx). Note that ûε(0) = 1 and also

lim
ε→0

sup
B(0,R)∩�ε

ûε = 1

for all R > 0 thanks to (2.4) and (2.5). Standard elliptic theory then gives ûε → Û in
C1

loc(�̂0) where U satisfies

1Û = Û5 in �̂0 and 0 ≤ Û ≤ 1 = Û (0)

with �̂0 = limε→0 �̂ε. As above, we deduce that �̂0 = R3, which gives

lim
ε→0

d(zε, ∂�)u
2
ε(zε) = +∞. (2.6)

Moreover, thanks to [4], we know that

Û (x) =
1

(1+ |x|2/3)1/2
.

Since Û has a strict local maximum at 0, there exists x̂ε, a critical point of uε, such
that |zε − x̂ε| = o(µ̂ε) and µ̂εuε(x̂ε)2 → 1 as ε → 0. Thanks to (2.5) and (2.6), this
contradicts (2.3) and proves the claim. ut

We define
dε = min{d(xi,ε, xj,ε), d(xi,ε, ∂�) : 1 ≤ i < j ≤ Nε}

and prove:

Claim 2.2. If the convergence of hε to h holds in C0,η, then there exists d > 0 such that
dε ≥ d .

Proof. Assume that dε → 0 as ε→ 0. There are two cases to consider: either the distance
between two critical points goes to 0, or one of them goes to the boundary. In the first case,
the arguments which lead to a contradiction follow closely [7], but in the second case we
have to be more precise looking at the “artificial” singularities created by the boundary.

Up to reordering the concentration points, we can assume that

dε = d(x1,ε, x2,ε) or d(x1,ε, ∂�).

For x ∈ �ε = {x ∈ R3 : x1,ε + dεx ∈ �}, we set

ũε(x) = d
1/2
ε uε(x1,ε + dεx),

which satisfies
1ũε + d

2
ε h̃εũε = ũ

5
ε in �ε
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where h̃ε = h(x1,ε + dεx). We have, up to a harmless rotation,

lim
ε→0

�ε = �0 = R3 or ]−∞, d[× R2 where d ≥ 1.

We also set

x̃i,ε =
xi,ε − x1,ε

dε
.

We claim that, for any sequence iε ∈ [1, Nε] such that

ũε(x̃iε,ε) = O(1), (2.7)

we have
sup

B(x̃iε ,ε,1/2)
ũε = O(1). (2.8)

Indeed, let yε ∈ B(x̃iε,ε, 1/2) be such that supB(x̃iε ,ε,1/2) ũε = ũε(yε) and assume by
contradiction that

ũε(yε)
2
→+∞ as ε→ 0. (2.9)

Thanks to the definitions of dε, yε and the last assertion of Claim 2.1,

|dε(yε − x̃iε,ε)|uε(x1,ε + dεyε)
2
≤ D

so that
|yε − x̃iε,ε| = o(1). (2.10)

For x ∈ B(0, 1/(3µ̂ε)) and ε small enough, we set

ûε(x) = µ̂
1/2
ε ũε(yε + µ̂εx)

where µ̂ε = uε(yε)−2. It satisfies

1ûε + (µ̂εdε)
2ĥεûε = û

5
ε in B

(
0,

1
3µ̂ε

)
and ûε(0) = sup

B(0,1/(3µ̂ε))
ûε = 1

where ĥε = h̃ε(yε + µ̂εx). Thanks to (2.9), B(0, 1/(3µ̂ε)) → R3 as ε → +∞. Then
(ûε) is locally uniformly bounded and, by standard elliptic theory, ûε converges to Û in
C1

loc(R
3) where Û satisfies

1Û = Û5 in R3 and 0 ≤ Û ≤ 1 = Û (0).

By [4] and the fact that (x̃iε,ε − yε)/µ̂ε is bounded, we find that

lim inf
ε→0

ũε(xiε,ε)

ũε(yε)
> 0,

which is in contradiction with (2.7) and (2.9), and completes the proof of (2.8).
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For R > 0, we set SR,ε = {x̃i,ε : x̃i,ε ∈ B(0, R)}. By the definition of dε, up to a
subsequence, SR,ε → SR as ε→ 0, where SR is a non-empty finite set; then up to taking
a diagonal subsequence, we can define the countable set

S =
⋃
R>0

SR.

Thanks to the previous definition, we are ready to prove the following assertion:

∀iε ∈ [1, Nε] with d(xiε,ε, x1,ε) = O(dε), ũε(x̃iε,ε)→+∞ as ε→ 0. (2.11)

Assume that there exists iε such that d(xiε,ε, x1,ε) = O(dε) with ũε(x̃iε,ε) bounded. Then
for all sequences jε such that d(xjε,ε, x1,ε) = O(dε), ũε(x̃jε,ε) is bounded. Indeed, if there
exists a sequence jε such that d(xjε,ε, x1,ε) = O(dε) and ũε(x̃jε,ε) → +∞ as ε → 0,
then thanks to Claim 2.1, we can apply Proposition 1.1 with xε = x̃jε,ε and ρε = dε/3. We
find that up to a subsequence, ũε → 0 in C1

loc(B(x̃, 2/3)) \ {x̃}, where x̃ = limε→0 x̃jε,ε.
But (ũε) is uniformly bounded in B(ỹ, 1/2), where ỹ = limε→0 x̃iε,ε. We thus deduce
from Harnack’s inequality that ũε(x̃iε,ε)→ 0 as ε→ 0, in contradiction with the first or
the second assertion of Claim 2.1.

Thus we have proved that for all sequences jε such that d(xjε,ε, x1,ε) = O(dε),
ũε(x̃jε,ε) is bounded, which proves that (ũε) is uniformly bounded in a neighbourhood
of any finite subset of S. But thanks to Claim 2.1, ũε is bounded in any compact sub-
set of �0 \ S. This clearly proves that ũε is uniformly bounded on any compact subset
of �0. Then, by standard elliptic theory, ũε → U in C1

loc(�0) as ε → 0, where U is a
non-negative solution of

1U = U5 in �0.

But, thanks to the first or second assertion of Claim 2.1, we know that U(0) ≥ 1, hence
necessarily �0 = R3, and thus U possesses at least two critical points, namely 0 and
x̌2 = limε→0 x̌2,ε. By [4], this is impossible. This ends the proof of (2.11).

We are now going to consider two cases, depending on �0.

Case 1:�0 = R3. In this case, up to a subsequence, dε = d(x1,ε, x2,ε) and S = {0, x̃2 =

limε→0 x̃2,ε, . . . } contains at least two points. Applying Proposition 1.1 with xε = x̃i,ε
and ρε = dε/3, we obtain

ũε(0)ũε(x)→ H =
1
|x|
+

λ2

|x − x̃2|
+ b̃ in C1

loc(R
3
\ S) as ε→ 0

where b̃ is a harmonic function in �0 \ {S \ {0, x̌2}}, and λ2 > 0. Moreover b̃(0) = −λ2.
We prove in the following that b̃ is non-negative, which will give a contradiction and end
the study of this case. To check that b̃ is non-negative, for each positive number r , we
rewrite H as

H =
∑

x̃i∈S∩B(0,r)

λi

|x − x̃i |
+ b̂r ,

where λi > 0. Then, taking R > r large enough, we get b̂r > −1/r on ∂B(0, R).
Moreover, for any x̃j ∈ B(0, R) \ B(0, r), there exists a neighbourhood Vj,r of x̃j such



Stability of the Pohožaev obstruction 1133

that b̂r > 0 on Vj,r . Thanks to the maximum principle, b̂r > −1/r on B(0, R). Since
b̂r → b̂ on every compact set as r →+∞, we see that H =

∑
x̃i∈S

λi/|x − x̃i | + b̂ with
b̂ ≥ 0, which proves that b̃ ≥ 0. This is the contradiction we have been looking for, and
this ends the proof of the claim in this first case.

Case 2: �0 = ]−∞, d[ × R2. We still denote S = {0 = x̃1, x̃2, . . . } and we apply
Proposition 1.1 with xε = xi,ε and ρε = dε/3 to deduce that

ũε(0)ũε(x)→ H =
∑
x̃i∈S

λi

|x − x̃i |
+ b̃ in C1

loc(�0 \ S)

where λi > 0 and b̃ is some harmonic function in �0. We extend H to R3 by setting

Ĥ (x) =

{
H(x) if x1 ≤ d,

−H(s(x)) otherwise,

where s is the symmetry with respect to {d} × R2. We also extend b̃ by setting

Ĥ =
∑
x̃i∈S

(
λi

|x − x̃i |
−

λi

|s(x)− x̃i |

)
+ b̂.

It is clear that b̂ is harmonic on R3 and satisfies b̂ ≥ 0 in �0 and b̂ ≤ 0 in R3
\�0. This

can be proved as in Case 1. Let GR be the Green function of the Laplacian on the ball
centred at 0 with radius R. The Green representation formula yields

b̂(x) =

∫
∂B(0,R)

∂νGR(x, y)b̂(y) dσ ;

since

∂νGR(x, y) =
R2
− |x|2

ω2R|x − y|3

on ∂B(0, R), this gives

∂1b̂(0) =
3

ω2R4

∫
∂B(0,R)

y1b̂(y) dσ.

Now we decompose ∂B(0, R) into three sets:

A = {y ∈ ∂B(0, R) : y1 ≥ d},

B = {y ∈ ∂B(0, R) : 0 ≤ y1 ≤ d},

C = {y ∈ ∂B(0, R) : y1 ≤ 0}.

In A and B, we have y1b̂(y) ≤ db̂(y), and in C, we have y1b̂(y) ≤ 0. Since b̂ ≥ 0 in C,
we arrive at

∂1b̂(0) ≤
3d
ω2R4

∫
A∪B

b̂(y) dσ ≤
3d
ω2R4

∫
∂B(0,R)

b̂(y) dσ =
3db̂(0)
R2 .
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Passing to the limit as R→+∞ gives ∂1b̂(0) ≤ 0. In order to obtain a contradiction, we
rewrite H in a neighbourhood of 0 as

H(x) =
1
|x|
+ b̌(x)

where

b̌(x) = b̂(x)−
1
|s(x)|

+

∑
x̌i∈S\{0}

λi

(
1

|x − x̌i |
−

1
|s(x)− x̌i |

)
.

As is easily checked, ∂1b̌(0) < 0, contrary to Proposition 1.1. This ends the proof of
Claim 2.2 in this second case.

We are now ready to prove Theorem 1. Thanks to Claim 2.1, there exist D > 0,
N ∈ N∗ and N local maxima of uε, x1,ε, . . . , xN,ε, such that

d(xi,ε, ∂�)uε(xi,ε)
2
≥ 1 for all i ∈ [1, N] ,

|xi,ε − xj,ε|uε(xi,ε)
2
≥ 1 for all i 6= j ∈ [1, N],

and
min
i∈[1,N ]

|xi,ε − x|uε(x)
2
≤ D for all x ∈ �.

We can assume that uε(xi,ε) → +∞ as ε → 0. Indeed, otherwise we can remove xi,ε
from the family of concentration points, and up to changingD, the assertion remains true.
Then, thanks to the Harnack inequality, there exists C > 0 such that

1
C
uε(x1,ε) ≤ uε(xi,ε) ≤ Cuε(x1,ε). (2.12)

Now, thanks to the results of Section 1 and by standard elliptic theory, we have, after
passing to a subsequence,

uε(x1,ε)uε(x)→ G in C2
loc(� \ {x1, . . . , xN }) as ε→ 0

where

G(x) =

N∑
i=1

λiGh(xi, x)

with Gh the Green function of the limit operator1+hwith Dirichlet boundary conditions
on �. From (2.12), we know that λi > 0 for 1 ≤ i ≤ N . This can be rewritten as

G(x) =
λi

ω2|x − xi |
+Gi(x) (2.13)

where Gi is a continuous function on � \ {x1, . . . , xi−1, xi+1, . . . , xN }. Thanks to Lem-
ma 4.3,

Gi(x) = Gi(xi)+
h(xi)

2ω2
|x − xi | + γi(x) (2.14)
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where γi ∈ C1(�) and γi(0) = 0. We claim that

Gi(xi) = 0 for all 1 ≤ i ≤ N. (2.15)

In order to prove this, we apply the Pohožaev identity (4.4) to uε on the ball B(xi,ε, δ) for
some δ > 0 small enough. This gives

1
2

∫
B(xi,ε,δ)

(
hεu

2
ε + hε〈x − xi,ε,∇u

2
ε〉
)
dx

=

∫
∂B(xi,ε,δ)

(
δ(∂νuε)

2
− δ
|∇uε|

2

2
+

1
2
uε∂νuε +

δ

6
u6
ε

)
dσ. (2.16)

Thanks to the fact that hε is bounded in Lp(R3) for some p > 3 and Proposition 1.1, we
get the uniform estimate

uε(xi,ε)
2
∣∣∣∣12
∫
B(xi,ε,δ)

(
hεu

2
ε + hε〈x − xi,ε,∇u

2
ε〉
)
dx

∣∣∣∣ ≤ e(δ)
where e ∈ C0(R) with e(0) = 0. Using (2.13), we get∫

∂B(xi,ε,δ)

(
δ(∂νuε)

2
− δ
|∇uε|

2

2
+

1
2
uε∂νuε

)
dσ +

∫
∂B(xi,ε,δ)

δ

6
u6
ε dσ

= uε(xi,ε)
−2
∫
∂B(xi ,δ)

(
δ(∂νG)

2
− δ
|∇G|2

2
+

1
2
G∂νG

)
dσ + o(uε(xi,ε)

−2).

Using (2.14), we easily get∫
∂B(xi ,δ)

(
δ(∂νG)

2
− δ
|∇G|2

2
+

1
2
G∂νG

)
dσ = −

1
2
λiGi(xi)+ o(1) as δ→ 0.

Collecting the above information proves (2.15).
We are now going to prove that ∇γi(xi) = 0 where γi is as in (2.14). This will

contradict Lemma 4.4 of Appendix 4.4 and complete the proof of the theorem. For that
purpose, we apply the Pohožaev identity (4.7) to uε on the ball B(xi,ε, δ) for some δ > 0
small enough. We obtain

uε(xi,ε)
2
∫
∂B(xi,ε,δ)

(
|∇uε|

2
ν −∇uε∂νuε

)
dσ

= uε(xi,ε)
2
∫
B(xi,ε,δ)

hε
∇u2

ε

2
dx − uε(xi,ε)

2
∫
∂B(xi,ε,δ)

∇u6
ε dσ. (2.17)

It is clear that we can pass to the limit on the left-hand side. Moreover, by (2.15) and
(2.14), ∫

∂B(xi ,δ)

(
|∇G|

2
ν −∇G∂νG

)
dσ → ∇γi(xi) as δ→ 0.
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Now we look at the right-hand side of (2.17). It is clear that

uε(xi,ε)
2
∫
∂B(xi,ε,δ)

∇u6
ε dσ → 0 as ε→ 0.

Then∫
B(xi,ε,δ)

hε
∇u2

ε

2
dx =

∫
B(xi,ε,δ)

(hε − hε(xi,ε))
∇u2

ε

2
dx + hε(xi,ε)

∫
B(xi,ε,δ)

∇u2
ε

2
dx.

Assuming that the convergence of hε to h holds in C0,η, it is clear that the first term of
the right-hand side goes to 0 as ε→ 0. Integrating the second term by parts, we get

hε(xi,ε)

∫
B(xi,ε,δ)

∇u2
ε

2
dx = hε(xi,ε)

∫
∂B(xi,ε,δ)

u2
ε

2
ν dσ → h(xi)

∫
∂B(xi ,δ)

G2

2
ν dσ

as ε→ 0. It is easily checked that the above goes to 0 as δ→ 0.
Finally, collecting the above information, and passing consecutively to the limit as

ε→ 0 and δ→ 0 in (2.17), we conclude that ∇γi(xi) = 0 for all i, which completes the
proof of Theorem 1 thanks to Lemma 4.4. ut

Let us now give a precise statement of what we meant by stability of the Pohožaev ob-
struction in the radial situation in the introduction. We will prove the following:

Theorem 3. Let B be the unit ball of R3. Let h0 be a C1-radial function which satisfies
(0.2). Then for any p > 3, there exists δ > 0 (depending on h0 and p) such that if
h ∈ C0,η(B) for some η > 0 with ‖h− h0‖Lp(B) ≤ δ, then there exists no positive radial
solution of equation (0.1) in the unit ball.

Proof. We proceed as in the proof of Theorem 1. Note that, since uε is radial, there can
be only one concentration point, namely 0. Thanks to Claim 2.1, the result of Section 1
and standard elliptic theory,

uε(0)uε(x)→ ω2Gh(x, 0) in C1
loc(� \ {0}) as ε→ 0

where Gh is the Green function of the limit operator 1+ h. We have

Gh(x, 0) =
1

ω2|x|
+ g(x)

where g is a continuous function on � which satisfies

1g + hg = −
h

ω2|x|
in � and g = −ω2 on ∂�.

By the maximum principle, we see that g is negative so that g(0) < 0. Now we can
proceed as in the proof of (2.15) to get a contradiction. Note that the proof of (2.15) did
not require the C0,η convergence of hε. In the above proof, this C0,η convergence was
used only in the proof of Claim 2.2 (which is given for free in the radial situation) and
in the last part of the proof to deal with the case of several concentration points (which
cannot happen in the radial situation). ut

In the next section we shall prove that the above theorem is sharp in the radial situation.
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3. Construction of blowing-up examples and instability of the Pohožaev obstruction

In this section, we prove Theorem 2. In fact, we will first prove the corresponding result
in the radial situation (thus showing that our Theorem 3 is sharp) since it contains the
main ideas, and the computations are a little less involved.

We first need some results on Green’s functions of coercive operators 1 + h with
Dirichlet boundary conditions on domains in R3. We let � be a smooth domain in R3

and h ∈ C1(�) be such that the operator 1 + h, with Dirichlet boundary conditions,
is coercive. Then there exists a unique function G : � × � \ {(x, x) : x ∈ �} → R,
symmetric, positive, such that

1yG(x, y)+ h(y)G(x, y) = ω2δx

in � and G(x, y) = 0 for y ∈ ∂� for all x ∈ �. It is easily checked that G(x, y) has the
following expansion in the neighbourhood of the diagonal:

G(x, y) =
1

|x − y|
+

1
2
h(x)|x − y| + γx(y) (3.1)

where γx ∈ C1(�) satisfies

1yγx(y)+ h(y)γx(y) =
h(x)− h(y)

|x − y|
−

1
2
h(x)h(y)|x − y|

in � with

γx(y) = −
1

|x − y|
−

1
2
h(x)|x − y| for all y ∈ ∂�.

3.1. The radial case

We start by proving that the Pohožaev identity is not L3
r -stable in the unit ball of R3. More

precisely, we prove the following result:

Theorem 4. Let h ∈ C1(B) be a non-negative radial function on the unit ball B of R3.
For any ε > 0, there exists a radial function h̃ ∈ C0,η(B) with ‖h̃ − h‖L3(B) ≤ ε such
that the equation

1ũ+ h̃ũ = ũ5 in B, ũ = 0 on ∂B,

admits a positive radial solution.

Note that a function h which satisfies (0.2) is necessarily non-negative. To prove the
theorem, we let h ∈ C1(B) be a non-negative radial function. We let G be the Green
function of 1+ h and let G(x) = G(0, x). We set

uε(x) = Uε(x)+ ηε(x)Vε(x) (3.2)
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where

Uε(x) = ε
1/2(ε2

+G(x)−2)−1/2
,

Vε(x) = −γ0(0)ε1/2G(x)−3(ε2
+G(x)−2)−3/2

,

ηε(x) = η(x)
ln(ε2

+ |x|2)

ln ε2 x

(3.3)

where η is a smooth positive function such that η = 1 on the ball of radius 1/4 and η = 0
outside of the ball of radius 1/2. Here, γ0 comes from the asymptotic expansion (3.1). It
is easily checked that uε is a C2,η positive function in B and uε = 0 on ∂B. Moreover,

ηεVε/Uε → 0 in L∞(B) as ε→ 0. (3.4)

We claim that
3u5
ε −1uε

uε
→ h in L3(B) as ε→ 0, (3.5)

which clearly implies the theorem. Straightforward computations give

1Uε + hUε = 3U5
ε |∇G

−1
|
2
+ h(x)εU3

ε (3.6)

and

1Vε + hVε = 15U4
ε Vε + 12γ0(0)ε5/2G4(1+ ε2G2)−5/2

− ε1/2γ0(0)h
(
1+ ε2G2)−5/2(1+ 4ε2G2)

− 3γ0(0)ε5/2G4(1+ ε2G2)−7/2(1− 4ε2G2)(
|∇G−1

|
2
− 1

)
. (3.7)

It is easily checked that this implies that

1uε + huε − 3u5
ε = o(uε) (3.8)

in B0(1) \ B0(1/2). Using the expansion of G and its consequence

|∇G−1
|
2
= 1− 4γ0(0)G−1

+O(G−2),

we can then write, thanks to (3.4),

1uε + huε − 3u5
ε

uε
= O(|x|2U4

ε )+O(εU
2
ε )+O(|x|U

4
ε |1− ηε|)

+O(U−1
ε |∇Vε| |∇ηε|)+O(U

−1
ε |Vε| |1ηε|) (3.9)

in B0(1/2). It is easily checked that

|x|2U4
ε → 0 and εU2

ε → 0 in Lp(B) as ε→ 0 (3.10)



Stability of the Pohožaev obstruction 1139

for all 1 ≤ p < +∞. Now,∫
B

|x|3U12
ε |1− ηε|

3 dx = O

(
ε6
∫ 1

0
r5(ε2

+ r2)−6
∣∣∣∣1− ln(ε2

+ r2)

ln ε2

∣∣∣∣3 dr)
= O

(∫ ε−1

0
r5(1+ r2)−6

∣∣∣∣ ln(1+ r2)

ln ε2

∣∣∣∣3 dr) = O(|ln ε2
|
−3)

= o(1)

thanks to the dominated convergence theorem. Moreover,∫
B

U−3
ε |∇Vε|

3
|∇ηε|

3 dx = O

(
|ln ε2
|
−3
∫ 1

0
r11(ε2

+ r2)−6 dr

)
+O

(∫ 1/2

1/4

∣∣∣∣ ln(ε2
+ r2)

ln ε2

∣∣∣∣3 dr)
= O(|ln ε2

|
−3) = o(1)

and ∫
B

U−3
ε |Vε|

3
|1ηε|

3 dx = O

(
|ln ε2
|
−3
∫ 1

0
r5(ε2

+ r2)−1 dr

)
+O(|ln ε2

|
−3)

= O(|ln ε2
|
−3) = o(1).

Coming back to (3.9) with these last estimates, we get (3.5). This ends the proof of The-
orem 4. ut

3.2. The general case

Here we prove that the Pohožaev identity is never L∞-stable. In fact we will even prove
a stronger result:

Theorem 5. Let � be a smooth domain of R3 and let h ∈ C1(�) be such that the
operator 1+ h is coercive. For any ε > 0, there exists h̃ ∈ C0,η(�) with ‖h̃− h‖∞ ≤ ε
such that the equation {

1ũ+ h̃ũ = ũ5 in �,
ũ = 0 on ∂�, ũ > 0 in �,

admits a solution.

It is clear that this result implies Theorem 2. It is sufficient to remember that a function
h which satisfies (0.2) is necessarily non-negative and that a non-negative h leads to a
coercive operator1+h. The rest of this subsection is devoted to the proof of this theorem.

We will construct a sequence of functions uε ∈ C∞(�), positive in �, null on the
boundary of �, such that

1uε − 3u5
ε

uε
→ h in L∞(�) as ε→ 0. (3.11)

This will clearly prove the theorem.
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We let G be the Green function of the operator 1 + h in � with Dirichlet boundary
conditions. Note first that γx(x)→ −∞ as x approaches ∂�. In particular, there exists a
point x1 ∈ � such that γx1(x1) < 0. For x ∈ � \ {x1}, we set

λ(x) =

(
−
γx1(x1)

G(x1, x)

)2

, F (x) = G(x1, x)
2
− γx1(x1)γx(x).

Since F(x) → +∞ as x → x1 and F(x) → −∞ as x approaches ∂�, and since F is
continuous, there exists x2 such that F(x2) = 0. We then let λ = λ(x2) and we have

√
λG2(x1)+ γ1(x1) = G1(x2)+

√
λγ2(x2) = 0 (3.12)

where

G1(x) = G(x1, x), G2(x) = G(x2, x), γ1(x) = γx1(x), γ2(x) = γx2(x). (3.13)

We let δ > 0 be such that δ ≤ 10d(x1, ∂�) and δ ≤ 10d(x2, ∂�). We fix η ∈ C∞(R)
such that η(r) = 1 for |r| ≤ δ and η(r) = 0 for |r| ≥ 2δ. We set

uε = ε
−1/2U(εG1)+ (λε)

−1/2U(λεG2)

+ η(|x − x1|)γ1(x1)ε
1/2V (εG1)+ η(|x − x2|)γ2(x2)(λε)

1/2V (λεG2)

− η(|x − x1|)ψε(εG1)ε
1/2(x − x1)

i
(
(1+ ε2G2

1)
−3/2∂iγ1(x1)+ λ

1/2∂iG2(x1)
)

− η(|x − x2|)ψε(λεG2)(λε)
1/2(x − x2)

i
(
(1+ λ2ε2G2

2)
−3/2∂iγ2(x2)+ λ

−1/2∂iG1(x2)
)

+ η(|x − x1|)ε
3/2ψε(εG1)

(
h(x1)W(εG1)−

3
2
γ1(x1)

2U(εG1)
5
)

+ η(|x − x2|)(λε)
3/2ψε(λεG2)(h(x2)W

(
λεG2)−

3
2
γ2(x2)

2U(λεG2)
5
)

(3.14)

where we adopt Einstein’s summation convention and U , V , W and ψε are given by

U(r) = r(1+ r2)−1/2, V (r) = 1− (1+ r2)−3/2, ψε(r) = 1+
ln(1+ r−2)

ln ε2 ,

W(r) = −
13
4
U + 8(2U3

− U) lnU − 2(U−1
− 8U + 8U3)r arctan

(
1
r

)
.

(3.15)

It is easily checked that uε is C2,η in� and uε = 0 on ∂�. We now claim that (3.11) holds
for this specific uε and that uε is positive in �. We shall prove this claim in three steps.
First, we can prove it rather easily in � \ (Bx1(2δ) ∪ Bx2(2δ)) because, in this region, uε
is simply

uε = ε
−1/2U(εG1)+ (λε)

−1/2U(λεG2).

Now, noticing that U ′ = r−3U3 and that U ′′ = −3r−4U5, simple computations lead to

1
(
ε−1/2U(εG1)+ (λε)

−1/2U(λεG2)
)
+ h

(
ε−1/2U(εG1)+ (λε)

−1/2U(λεG2)
)

= 3
(
ε−1/2U(εG1)

)5
|∇G−1

1 |
2
+ 3

(
(λε)−1/2U(λεG2)

)5
|∇G−1

2 |
2

+ hε−1/2U(εG1)
(
1− (1+ ε2G2

1)
−1)

+ h(λε)−1/2U(λεG2)
(
1− (1+ λ2ε2G2

2)
−1) (3.16)
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in �. In the region we are interested in, this clearly leads to

1uε + huε − 3u5
ε = o(uε),

which proves that (3.11) holds in this region while uε is clearly positive there.
We will now prove that (3.11) holds in Bx1(2δ) and that uε is positive in this ball.

By symmetry, it is clear that the proof of the fact that (3.11) holds in Bx2(2δ) is exactly
the same.3 In order to simplify the notations, we will assume that x1 = 0, which we can
always do by translating �. We will denote G1 by G and γ1 by γ . We also set

Uε = ε
−1/2U(εG), Vε = ε

1/2V (εG), Wε = ε
3/2W(εG),

ϕε = ψε(εG), Yε = −
3
2
ε3/2U(εG)5, Ũε = (λε)

−1/2U(λεG2),

Zε = −ε
1/2xi

(
(1+ ε2G2)−3/2∂iγ (0)+ λ1/2∂iG2(0)

)
.

(3.17)

With these notations, we have, in B0(2δ),

uε = Uε + Ũε + η(|x|)γ (0)Vε + η(|x|)ϕε(h(0)Wε + γ (0)2Yε + Zε). (3.18)

By (3.1),

|∇G−1
|
2
= 1− 4γ (0)G−1

+ 3
(
2γ (0)2 − h(0)

)
G−2

− 6G−1xi∂iγ (0)+ o(G−2) (3.19)

and also

G−2
= εU−2

ε − ε
2. (3.20)

By (3.12),

Ũε = −ε
1/2γ (0)+ (λε)1/2xi∂iG2(0)+O(ε3/2U−2

ε ),

Vε = O(ε
3/2U2

ε ), Wε = O(ε
3/2), Yε = O(ε

3/2), Zε = O(εU
−1
ε ).

(3.21)

From (3.18) and to (3.21), it is easily checked that uε is positive in B0(2δ). Lengthy but
straightforward computations then lead to

|∇ϕε| = O

(
1

ε1/2 ln(1/ε)
Uε

)
, |∇Vε| = O(εU

3
ε ), |∇Wε| = O(εUε),

|∇Yε| = O(εUε), |∇Zε| = O(ε
1/2)

(3.22)

3 The symmetry is precisely the following: if we see uε as a function uε(x1, x2, ε, λ), then
uε(x2, x1, λε, λ

−1) = uε(x1, x2, ε, λ).
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in B0(2δ) and to

1Uε + hUε = 3U5
ε − 12γ (0)G−1U5

ε − 18G−1xi∂iγ (0)U5
ε

+ 18γ (0)2G−2U5
ε + h(0)(ε

2
− 8G−2)U5

ε + o(Uε),

1Ũε + hŨε = 3Ũ5
ε |∇G

−1
2 |

2
+ λεhŨ3

ε = O(ε
5/2),

1Vε + hVε = 15U4
ε Vε − 15ε1/2U4

ε + 12G−1U5
ε

+ 12γ (0)(5ε−1G−4U7
ε − 4G−2U5

ε )+ o(Uε),

1Wε + hWε = 15U4
εWε + 8εU3

ε − 9ε2U5
ε + o(Uε),

1Yε + hYε = 15U4
ε Yε + 30ε3U7

ε − 30ε4U9
ε + o(Uε),

1ϕε = O

(
1

ε ln(1/ε)
U2
ε

)
,

1Zε + hZε = 15U4
εZε + 18U5

εG
−1∂iγ (0)xi

+ 15(λε)1/2U4
ε x

i∂iG2(0)+O(εU−1
ε )+ o(Uε)

(3.23)

in B0(2δ). It follows easily from the above equations that

1uε + huε − 3u5
ε

uε
→ 0 in L∞(B0(2δ) \ B0(δ)) as ε→ 0.

It remains to prove the result in B0(δ). Thanks to (3.21), one can easily check that

uε

Uε
→ 1+

√
λ
G2

G1
in L∞(B0(δ)) as ε→ 0 (3.24)

so that

3u5
ε = 3U5

ε + 15U4
ε (uε − Uε)+ 30U3

ε (uε − Uε)
2
+O(U2

ε |uε − Uε|
3).

Using again (3.22), we deduce that

3u5
ε = 3U5

ε − 15ε1/2γ (0)U4
ε + 15(λε)1/2U4

ε x
i∂iG2(0)

+15γ (0)U4
ε Vε + 15U4

ε ϕε
(
h(0)Wε + γ (0)2Yε + Zε

)
+30γ (0)2U3

ε (Vε − ε
1/2)2 + o(Uε)

in B0(δ). Thanks to (3.21)–(3.23), we can also write

1uε + huε = 3U5
ε + 15γ (0)U4

ε Vε + 15(λε)1/2ϕεU4
ε x

i∂iG2(0)

− 15γ (0)ε1/2U4
ε + 15U4

ε ϕε
(
h(0)Wε + γ (0)2Yε + Zε

)
+ 30γ (0)2(2ε−1G−4U7

ε −G
−2U5

ε )+ h(0)(ε
2
− 8G−2)U5

ε

+h(0)ϕε(8εU3
ε − 9ε2U5

ε )+ 30γ (0)2ϕε(ε3U7
ε − ε

4U9
ε )

+ 18(ϕε − 1)U5
ε |x|∂iγ (0)x

i
+ o(Uε).
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Combining these last two equations, we get

1uε + huε − 3u5
ε

= − 30γ (0)2
(
U3
ε (Vε − ε

1/2)2 − ϕεε
3U7

ε + ϕεε
4U9

ε − 2ε−1G−4U7
ε +G

−2U5
ε

)
+ h(0)

(
ε2U5

ε − 8G−2U5
ε + 8ϕεεU3

ε − 9ϕεε2U5
ε

)
+ o(Uε)

+ 18(ϕε − 1)|x|xi∂iγ (0)U5
ε .

It remains to remark using (3.20) that

U3
ε (Vε − ε

1/2)2 − ϕεε
3U7

ε + ϕεε
4U9

ε − 2ε−1G−4U7
ε +G

−2U5
ε

= ε2G−2U9
ε (1− ϕε) = −

ε2

ln ε2 ln(1+ ε−2G−2)G−2U9
ε

= −
Uε

ln ε2 ε
6 ln(1+ ε−2G−2)G−2(ε2

+G−2)−4
= O

(
Uε

ln(1/ε)

)
= o(Uε),

that

ε2U5
ε − 8G−2U5

ε + 8ϕεεU3
ε − 9ϕεε2U5

ε = (−9ε2U5
ε + 8εU3

ε )(ϕε − 1)

=
Uε

ln ε2 ln(1+ ε−2G−2)
(
−9(1+ ε−2G−2)−2

+ 8(1+ ε2G−2)−1)
= O

(
Uε

ln(1/ε)

)
= o(Uε),

and that

(ϕε − 1)G−1xi∂iγ (0)U5
ε = O

(
Uε

ln ε2 ln(1+ ε−2G−2)ε−2G−2(1+ ε−2G−2)−2
)

= O

(
Uε

ln(1/ε)

)
= o(Uε)

to conclude thanks to (3.24) that (3.11) holds in B0(δ) for this choice of uε. As already
said, this proves that (3.11) holds for uε given by (3.14), and this ends the proof of the
theorem. ut

As already said, this result implies Theorem 2.

4. Appendix

4.1. A general simple lemma on functions

We prove a new version of the simple Lemma 1.1 of [8], replacing the compact manifold
M by a domain � in Rn.
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Lemma 4.1. Let � be a smooth bounded domain in Rn. Let u ∈ C1(�) be a function
positive in the interior and null on the boundary. Assume that

{x ∈ � : ∇u(x) = 0 and d(x, ∂�)u(x)2 ≥ 1} 6= ∅.

Then there exist N ∈ N∗ and N critical points of u, denoted by (x1, . . . , xN ), such that

d(xi, ∂�)u(xi)
2
≥ 1 for all i ∈ [1, N],

|xi − xj |u(xi)
2
≥ 1 for all i 6= j ∈ [1, N],

and
min
i∈[1,N ]

|xi − x|u(x)
2
≤ 1

for all critical points x of u such that d(x, ∂�)u(x)2 ≥ 1.

Proof. Let Cu be the set of critical points of u. We let

K0 = {x ∈ Cu : d(x, ∂�)u(x)2 ≥ 1}

and we assume that K0 6= ∅. We let x1 ∈ K0 and K1 ⊂ K0 be such that

u(x1) = max
K0

u and K1 = {x ∈ K0 : |x1 − x|u(x)
2
≥ 1}.

Then we proceed by induction. Assuming we have constructed K0 ⊃ · · · ⊃ Kp and
x1, . . . , xp such that xi ∈ Ki−1 for all i ∈ [1, p], we let xp+1 ∈ Kp and Kp+1 ⊂ Kp be
such that

u(xp+1) = max
Kp

u

and

Kp+1 = {x ∈ Kp : |xp+1 − x|u(xp+1)
2
≥ 1 and min

i∈[1,p]
|x − xi |u(x)

2
≥ 1}.

We claim that, at some step in the process, Kp = ∅. In order to prove it, we remark that
at each step of the construction,

|xi − xj |u(xi)
2
≥ 1 for all i 6= j ∈ [1, p], (4.1)

which will prove the claim, since � is bounded. We prove (4.1) by induction. Let p ≥ 1.
By definition, for all x ∈ Kp, we have

|xi − x|u(x)
2
≥ 1 for all i ∈ [1, p].

This holds in particular for x = xp+1. Then, for all x ∈ Kp, we also easily check that

|xi − x|u(xi)
2
≥ 1 for all i ∈ [1, p],

which is also true for xp+1, and proves (4.1). Let N ∈ N∗ be such thatKN = ∅. We claim
that

min
i∈[1,N ]

|xi − x|u(x)
2
≤ 1 for all x ∈ K0, (4.2)
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which, together with (4.1), will end the proof of the lemma. Let x ∈ K0. Since KN = ∅,
there exists p such that x ∈ Kp−1 and x 6∈ Kp. Then either

|xp − x|u(xp)
2 < 1 or min

i∈[1,p]
|x − xi |u(x)

2 < 1.

In the second case, (4.2) is clearly true, while in the first, by the definition of xp,

|xp − x|u(x)
2
≤ |xp − x|u(xp)

2 < 1,

which proves that (4.2) also holds. As already said, this proves the lemma. ut

4.2. Green function of 1+ h

We prove here some basic estimates on Green’s functions of operators 1+ h where h is
of low regularity.

Lemma 4.2. Let � be a smooth bounded domain in R3. Let h ∈ Lp(�) for some p > 3.
Then there exists δ > 0 such that if

‖h−‖3/2 < δ, (4.3)

then the operator1+h admits a positive Green function Gh which satisfies the estimates∣∣∣∣|x − y|Gh(x, y)− 1
ω2

∣∣∣∣ ≤ C|x − y|
and ∣∣∣∣|x − y|2|∇Gh(x, y)| − 1

ω2

∣∣∣∣ ≤ C|x − y|
for all x 6= y ∈ �, where C is a positive constant depending only on �, ‖h‖p and δ.

Proof. We divide the proof into three steps.

Step 1: 1+ h is coercive if ‖h−‖3/2 is small enough. Let u ∈ H 1
0 (�). Then∫

�

(|∇u|2 + hu2) dx ≥

∫
�

(|∇u|2 − h−u
2) dx ≥ ‖∇u‖22 − ‖h−‖3/2‖u‖6

thanks to Hölder’s inequalities. One can then use Sobolev’s embeddings and the fact that
‖h−‖3/2 is small to conclude this first step.

Step 2: Existence and a priori estimate. Let G(x, y) be the Green function of the Lapla-
cian. Then solving

1yGh(x, y)+ hGh(x, y) = δx in �,
Gh(x, y) = 0 on ∂�,

is equivalent to solving

1yβ(x, y)+ hβ(x, y) = −hG(x, y),
β(x, y) = 0 on ∂�.
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Since h ∈ Lp(�) for some p > 3, there exists q > 3/2 such that hG(x, ·) ∈ Lq(�).
The existence of β follows from the coercivity of 1 + h and the Lax–Milgram theorem.
Moreover, using again the coercivity of 1+ h and Sobolev’s embeddings, we get

1
C
‖∇β‖22 ≤

∫
�

(|∇β|2 + hβ2) dx =

∫
�

−hGβ dx ≤ ‖hG‖3/2‖β‖3 ≤ C‖∇β‖2

for some C > 1 depending only on ‖h‖p, ‖h−‖3/2 and �. This gives an a priori bound
on ‖∇β‖2.

Step 3: Estimates and positivity. By the previous step, there exists C > 0 which depends
only on ‖h‖p and ‖h−‖3/2, and q > 3/2 such that

‖h(β + G(x, ·))‖q ≤ C.

Now, by standard elliptic theory (see for instance Theorem 9.13 of [9]), we see that
β ∈ L∞ and

‖β‖∞ ≤ C

where C is a positive constant which depends only on ‖h‖p and ‖h−‖3/2. This proves the
first estimate of the lemma. The second follows by standard elliptic theory. Positivity of
the Green function is an easy consequence of the coercivity of the operator 1+ h. ut

4.3. General Pohožaev identities

For the sake of completeness, we derive here several forms of the classical Pohožaev
identity [11] we used in this paper. Assume that u is a C2 solution of

1u = u5
− hu in �.

Multiplying this equation by 〈x,∇u〉 and integrating by parts, one easily gets

1
2

∫
�

(
hu2
+ h〈x,∇u2

〉
)
dx = B1 + B2, (4.4)

where

B1 =

∫
∂�

(
〈x,∇u〉∂νu+

1
2
u∂νu− 〈x, ν〉

|∇u|2

2

)
dσ,

B2 =

∫
∂�

〈x, ν〉
u6

6
dσ.

Hence, if u = 0 on ∂�, we get

1
2

∫
�

h
(
u2
+ 〈x,∇u2

〉
)
dx =

∫
∂�

〈x, ν〉(∂νu)
2 dσ. (4.5)

Integrating by parts again, we deduce the Pohožaev identity in its usual form:∫
�

(
h+
〈x,∇h〉

2

)
u2 dx = −

∫
∂�

〈x, ν〉(∂νu)
2 dσ. (4.6)
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In a similar way, multiplying the equation by ∇u and integrating by parts, one can derive
the following Pohožaev identity:∫

∂�

(
|∇u|2

2
ν − ∂νu∇u+

u6

6
ν

)
dσ =

∫
�

h
∇u2

2
dx. (4.7)

4.4. Pohožaev’s identity for Green functions

In this section, we prove a useful Pohožaev identity for a sum of Green’s functions. First
of all, we easily derive the following lemma from standard elliptic theory:

Lemma 4.3. Let � be a smooth bounded domain in R3. Let y ∈ � and let g be a weak
solution in H 1(�) of

1g + hg = −
h

ω2|x − y|
in �.

Then g is continuous and can be written as

g(x) = g(y)+
h(y)

2
|x − y| + γy(x) in � (4.8)

where γy ∈ C1(�) satisfies γy(y) = 0.

Applying the decomposition lemma to Green’s functions, we get the following Pohožaev
identity for their regular parts.

Lemma 4.4. Let � be a smooth bounded domain in R3, star-shaped with respect to 0,
and let h ∈ C1(�) satisfy (0.2). Let Gh be the Green function of 1+ h. Let also N ∈ N∗,
x1, . . . , xN ∈ �, λ1, . . . , λN some positive real numbers and

G(x) =

N∑
i=1

λiGh(x, xi).

Then, using Lemma 4.3, we write G in a neighbourhood of xi as

G(x) =
λi

ω2|x − xi |
+mi + λi

h(xi)

2
|x − xi | + γi(x)

where mi ∈ R and γi ∈ C1(�) satisfies γi(0) = 0. Then

N∑
i=1

λi
(
mi + 2〈xi,∇γxi (xi)〉

)
< 0.
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Proof. We let δ > 0 be such that the B(xi, δ) are disjoint and do not intersect the bound-
ary of � and we set

�δ = � \

N⋃
i=1

B(xi, δ).

Multiplying the equation satisfied by G by 〈x,∇G〉, after some integrations by parts we
obtain∫

�δ

(
1
2
〈x,∇h〉 + h

)
G2 dx

=

∫
∂�

(
1
2
〈x, ν〉

(
|∇G|2 + hG2)

−

(
〈x,∇G〉 +

1
2
G

)
∂νG

)
dσ

−

N∑
i=1

∫
∂B(xi ,δ)

(
1
2
〈x, ν〉

(
|∇G|2 + hG2)

−

(
〈x,∇G〉 +

1
2
G

)
∂νG

)
dσ

where ν denotes the outer normal to ∂� and to ∂B(xi, δ) respectively. Noting that G = 0
on ∂�, we have∫

∂�

(
1
2
〈x, ν〉

(
|∇G|2 + hG2)

−

(
〈x,∇G〉 +

1
2
G

)
∂νG

)
dσ

= −
1
2

∫
∂�

〈x, ν〉|∇G|2 dσ < 0

since � is star-shaped. Since h satisfies (0.2), we arrive at

N∑
i=1

∫
∂B(xi ,δ)

(
1
2
〈x, ν〉

(
|∇G|2 + hG2)

−

(
〈x,∇G〉 +

1
2
G

)
∂νG

)
dσ ≤ −C0

where C0 is independent of δ. It is easily checked that∫
∂B(xi ,δ)

〈x, ν〉hG2 dσ → 0 as δ→ 0.

In order to estimate the remaining terms, we write∫
∂B(xi ,δ)

(
1
2
〈x, ν〉|∇G|2 −

(
〈x,∇G〉 +

1
2
G

)
∂νG

)
dσ

=

∫
∂B(xi ,δ)

(
1
2
〈x − xi, ν〉|∇G|

2
−

(
〈x − xi,∇G〉 +

1
2
G

)
∂νG

)
dσ

+

∫
∂B(xi ,δ)

(
1
2
〈xi, ν〉|∇G|

2
− 〈xi,∇G〉∂νG

)
dσ.

Then, thanks to the expansion of G in a neighbourhood of xi , one can easily check that∫
∂B(xi ,δ)

(
1
2
〈x − xi, ν〉|∇G|

2
−

(
〈x − xi,∇G〉 +

1
2
G

)
∂νG

)
dσ →

λi

2
mi
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and ∫
∂B(xi ,δ)

(
1
2
〈xi, ν〉|∇G|

2
− 〈xi,∇G〉∂νG

)
dσ → λi〈xi,∇γxi (xi)〉

as δ→ 0. Combining the above results gives the desired inequality. ut
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