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Abstract. We investigate problems connected to the stability of the well-known PohoZaev obstruc-
tion. We generalize results which were obtained in the minimizing setting by Brezis and Nirenberg
[2] and more recently in the radial situation by Brezis and Willem [3].

Let © be a smooth bounded domain in R”, n > 3. Let h € C! (R™) and consider the
equation

Au+hu = u¥" Py inQ,

{u:O on 02, ©.D
where Au = — Y7, 3%u/dx?. Tt is well-known that if € is star-shaped with respect to
the origin and if & satisfies

1
h(x) + E(x, Vh(x)) = 0, 0.2)

then there are no non-trivial solutions of (0.I)). This is a consequence of PohoZaev’s iden-
tity (see [11]] and equation of appendix and is referred to as the PohoZaev ob-
struction.

The above equation has been quite intensively studied in the past thirty years. Many
existence results have been obtained if €2 is not assumed to be star-shaped or if 4 does
not satisfy (0.2). It is almost impossible to give an exhaustive list of references on this
equation.

In this paper, we investigate the question of non-existence of positive solutions of
equation and more precisely the stability properties of the PohoZaev obstruction.
Definition 0.1. Let €2 be a star-shaped domain of R” and let (X, || - ||x) be some Banach
space of functions on 2 (typically X = Ckn(Q), X = L®(Q) or X = L? (R)). Let
ho € XNC! () be a function which satisfies . We say that the Pohozaev obstruction
is X-stable at (hg, 2) if the following property holds: there exists §(hg, 2, X) > 0 such
that for any function 2 € X with

Ilh = hollx < &(ho, 2, X),
the only non-negative C2-solution of (0.1)) is u = 0.
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We say that the PohoZaev obstruction is X-stable if it is X-stable at (hg, €2) for all 2
star-shaped with respect to the origin and all 19 € X N C! (Q) satisfying lb

Note that the property (0.2) is not stable under perturbations of the function /4 in
any C*-space. Since the work of Brezis and Nirenberg [2], we know that equation (0.1)
behaves differently in dimension 3 and in dimensions n > 4. It is clear that, in dimen-
sions n > 4, the PohoZaev obstruction is not X-stable for any reasonable X. Indeed, any
perturbation of 2 = 0 which is negative somewhere leads to a minimizing solution in di-
mensions n > 4 (see [2])E]Hence we investigate the stability of the Pohozaev obstruction
for various spaces X in dimension 3. We give a complete answer to this problem in the
following theorems.

Theorem 1. The Pohozaev obstruction is C*"-stable for any n > 0 in dimension 3. In
other words, given any 1 > 0, any domain Q2 in R3, star-shaped with respect to the origin,
and any function hy € C' (Q) satisfying , there exists §(n, 2, hg) > 0 such that if
h € CO(Q) satisfies

\h — hO”co-n(Q) <4&(n, 2, h),

the only non-negative solution of (0.1) is u = 0.

Note that a consequence of our theorem is the following: if 2 is a star-shaped domain
in R3, there exists a constant A($2) > 0 such that equation lﬂl does not possess any
non-trivial positive solutions with 4 = A for A > —i(Q). This is in sharp contrast with
the situation for non-star-shaped domains (see [1]] for instance).

In the seminal paper [2]], it was proved that there are no minimizing solutions of
equation (0.1) in dimension 3 if & > —A*(Q2) for some A*(2) > 0. Since 2 > 0 if
h satisﬁe, a consequence of this result is a version of the above stability in C°
when one considers only minimizing solutions. A necessary and sufficient condition on
the function 4 and the domain €2 for the existence of a minimizing solution of in
dimension 3 was found in [6]].

In [3], the authors studied this question in the case of the unit ball with radial func-
tions. If we let

LY (B) = {u € LP(B) : u radial},
then it was proved in [3]] that the PohoZaev obstruction is Lfo-stableﬂ on the unit ball of R3
forallh e L°(B)NC 1(B). In [3], the question of extending the result to the non-radial
case was explicitly asked. Our result provides an answer to this question. However, the
situation is more delicate than expected in the non-radial case since, while the PohoZaev
obstruction is C%"-stable for all 5 > 0, it is never L>-stable.

Theorem 2. The PohoZaev obstruction is never L°°-stable. In other words, given any
e > 0, any domain Q in R3, star-shaped with respect to the origin, and any function
ho € CY(Q) satisfying li we can find some function hy € L°°(S2) such that

lhe —hlloo < €

! Note that this remark concerns only X-stability in general. The question of X-stability at some
given positive function 4 in dimensions n > 4 is not investigated in this paper.

2 One should restrict oneself to radial solutions of the equation in the definition of stability.
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and some positive functions ug, € C*(Q) satisfying the equation

Aug—i—hgue:ug in 2,
U, =0 onoQ, u,>0 inQ.

Thus the L{°-stability result obtained by Brezis—Willem is really specific to the radial
case. In fact, it is not due to the symmetry of the solutions but to one of its by-products in
dimension 3, precisely that sequences of solutions of equation (0.I)) which are radial are
either compact or develop only one concentration point. In fact, with the PDE techniques
(as compared to the ODE techniques used in [3]) we use below, we can revisit the question
of the stability of the PohoZaev obstruction in dimension 3 in the radial case. We improve
the result of [3] by proving that the PohoZaev obstruction is LY -stable on the unit ball for
all p > 3 but is never Lf-stable. For precise statements, we refer the reader to the end of
Section 2] and the beginning of Section 3]

All these results give a complete picture of the stability of the PohoZaev obstruction
in dimension 3 when the attention is restricted to non-negative solutions. The question
remains widely open if one allows solutions to change sign, and is certainly more subtle
due to the variety of changing-sign solutions of Au = u> in R3,

The paper is organized as follows. Section2]is devoted to the proofs of Theorem [I]and
of the corresponding result in the radial situation. The proof makes use of standard blow-
up analysis in dimension 3 (see Section[I)) and of an extension of PohoZaev’s identity to
Green’s functions (see Appendix [4.4). Section [3]is devoted to the proofs of Theorem
and of the corresponding result in the radial situation. Here we have to construct examples
of functions # arbitrarily close in X to some given function for which there is a positive
solution of equation (0.1). This appears to be quite subtle because we need to be sharp.
For instance, in order to prove Theorem [2} our functions 4 must be close to the given
function in L°°(£2) but not in C%" () for any 5 > 0.

1. Pointwise analysis around a concentration point

In this section we consider a sequence (h;) in C 0.7(R3) for some n > 0 and a sequence
(ug) of C%-solutions of
Aug + heu, = ug in €2,
u, =0 on 9€2, (1.1)
ug >0 in ,

where € is some smooth domain in R3 and
he > h inLP(Q)ase— 0 (1.2)

for some p > 3 where h € C'(R3) satisfies & > 0 in . Note that, as soon as & satisfies
(0-2), it is non-negative.

We also assume that we have a sequence (x,) of points in €2 and a sequence (p,) of
positive real numbers with 0 < 3p, < d(x., 9€2) such that

Viug(xe) =0 (1.3)
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and
e[ sup us(x)]2 — 400 ase — 0.

B(xe,pe)

We prove the following:
Proposition 1.1. If there exists Co > 0 such that

2y, < Co  in B(xe, 3ps),

|xe — x|

then there exists C; > 0 such that
ue(xe)ug(x) < Cilxe — xl_l in B(xg, 20e) \ {xe},

e (xe) Ve ()| < Cilxe —x|7> i B(x, 2p¢) \ {xe}.

Moreover, if p. — 0, then

1
Pelle (X)Ue(Xe + pex) > — + b in CIIOC(B(O, 2)\{0})ase -0

|x|

(1.4)

(1.5)

where b is some harmonic function in B(0, 2) with b(0) = 0. Finally, if the convergence

in (1.2) holds in C%", then also Vb(0) = 0.

The rest of this section is dedicated to the proof of this proposition. We follow the lines
of [7, Section 2] (see also [8]]). However, one must note that, compared to [8] and other
works on this kind of blow-up analysis, some new difficulties arise since the linear term

(h¢) is only uniformly bounded in some L?(£2).

We divide the proof of the proposition into several claims. The first one gives the

asymptotic behaviour of u, around x; at an appropriate small scale.

Claim 1.1. After passing to a subsequence, we have

1

12
Mg ug(Xg + flex) —> 1+ |x|2/3)1/2

where (e = U, (xe) "2

Proof. Let X, € B(x, ps) and i, > 0 be such that

ug(¥g) = sup ug = /15_1/2'

B(xe,pe)
Thanks to (T.4), we have
e =0 and p./fie > 400 ase — 0.

By (I.3)), we also have
lxe — Xe| = O(fie).
Forx € Q, = {x e R3: %, + jl.x € Q}, we set

Ue(x) = ll;/zue(is + fLex),

in CIIOC(R3) ase — 0

(1.6)

1.7

(1.8)

(1.9)
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which satisfies

Allg + fitheile = i>  in Qe,

iie(0) = sup e =1, (1.10)
B((xe—X¢)/fLe,pe/[Le)
where /1, = h(Z, + jiex). Thanks to (1.4), (1.7) and (1.9), we get
B(xijs,/j—)ﬁR3 ase — 0. (1.11)
Me Me

Now, from (T:10), (I.TT), and by standard elliptic theory, we find that, after passing to a

subsequence, i, — U in Clloc(]R3) as ¢ — 0 where U satisfies

AU=U> iR’ and 0<U <1=U(0).
From the work of Caffarelli, Gidas and Spruck [4], we know that
Ux) = (1+x*/3)7'2,

Moreover, thanks to (1.9), after passing to a new subsequence, (x, — X¢)/fte — Xo as
& — 0 for some xg € R°. Hence, since x; is a critical point of u., xo must be a critical
point of U, hence xo = 0. We deduce that i, /i, — 1 where p, is as in the statement of
the claim, so the claim follows. O

For 0 <r < 3p,, we set
F1/2

3 / ugsdo
war OB (xg,r)

where do denotes the Lebesgue measure on the sphere d B(x, r) and wp; = 4 is the
volume of the unit 2-sphere. We easily check, thanks to Claim[T.T] that

r 172 ) 1 r 201001
Ye(per) = (m) +o(), Y (uer) = E(m) (ﬁ - 3) + o(1).
(1.12)

Velr) =

We define
re = max{r € [2v3ue, pel : Vi(s) <Ofors e 2v/3 e, r1}.

Thanks to (I.12), the set on which the maximum is attained is not empty for & small
enough, and moreover
re/phe &> +00 ase — 0. (1.13)

We now prove the following:
Claim 1.2. There exists C > 0, independent of €, such that

e (x) < Cpl?|xe — x|7! in B(xe, 2re) \ {xe},
Ve (0)] < Cul?1xs — xI72 in B(xe, 2r) \ {xe ).
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Proof. We follow the proof of Lemmas 1.5 and 1.6 of [§]. However, there is an extra
difficulty due to the fact that we do not assume any pointwise convergence of /. to h. We
first prove that for any given 0 < v < 1/2, there exists C,, > 0 such that

l _ v
ue(x) < Cy (ué“ e — x| 70 +a5( T ) ) (1.14)
|x — x|
for all x € B(xg, 2r,) and & small enough, where
Oy = SUp Us. (1.15)

0B (xe,re)

First of all, we can use (I.3]) and apply the Harnack inequality (see for instance Theorem
4.17 of [10])) to get the existence of some C > 0 such that

1
— . max )(MS +r|Vuel) <

/ usdo < C min u, (1.16)
C 9B(xe,r B (xe,r)

war 0B(xg,r)

forall0 <r < % pe and all ¢ > 0. The details of the proof can be found in [8, Lemma 1.3].

Hence, thanks to (1.12) and (1.13)), we have
172
) +o()

forall R > 2+4/3,allr € [Rue, ], all € small enough and all x € 3 B(xg, r). Thus

Y =C| ———
|x — xel "“ue(x) < Ce(r) < Ce(Rue) = C(] + R%/3

sup Ix — xe|"%u. (x) = e(R) + 0(1) (1.17)
B(xe,re)\B(xe,Rute)

where e(R) — 0as R — +o00.Let0 < o < 1 and G, , be the Green function of the
operator A + h. /o in Q with Dirichlet boundary conditions. As £ is non-negative (this is
an assumption in this section), we can use Lemmad.2]of the Appendix to get the existence
of some C, > 0 such that

< Cylx — | (1.18)

1
|)C - y|g£,a(xa y) -
)

and
< Cqylx —y| (1.19)

1
X = YPIVGeo (x, y)| — —
[0%)

forallx #y e Q. Wefix0 < v < 1/2 and set

1
La=2v) _
Dy = ug ga,l—u(xs»x)l v+as(rags,v(x5ax))v~

Thanks to (1.18)), (1.14) reduces to proving

Ug
sup

B(x¢,2r¢) CDE’V

= o).
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We let y. € B(x.,2r;) \ {x¢} be such that

Ug ue(ye)
sup = —2"
B(x¢,2r¢) q)s,v (Ds,v(ys)

We are going to consider several possible behaviours of the sequence (y;).
First of all, assume that

|Xe — yel/tte = R ase — 0.
Thanks to Claim [I.1] in this case we have
/L;/zus(yg) — (1 + Rz)fl/2 ase — 0.

On the other hand, by (1.17), we can write

1—v v
% T
a2 0en 00 = (wzlx : hJ |> * 0<%M;/2<|X : b |> >+0(1)
e — Je e~ Je

La—2vy Lav-1
= (Rw)" ' + 0<(r;/2a£)u§( U)rgz( ! )> +o(1) = (Rw)" "'+ 0(1)

if R > 0, and M;/ZCD&V(ys) — +ooase — 0if R = 0. In any case, (s (e)/ Pe,u(y,)) 18
bounded.

Assume now that there exists § > 0 such that y. € B(ye, re) \ B(ye, 8r¢). Thanks to
Harnack’s inequality (T.T6), we get u,(y:) = O(a.), which, by (I-I8), easily gives that

Ms(ys)/q)s,v(yg) =0().
Hence, we are left with the following situation:

|ye —xg|/re > 0 and |xg — yo|/ue > +00 ase — 0. (1.20)

By the definition of y,, we then have

Aue(ys) . Aq)e,v()’e)
ug(ye) cbe,n(ya) '

which gives, thanks to the definition of @, and after multiplying by |x — y.|*
e = yel® (L IVGew(xe, ye) P
Qg 5
©s,n(Y£) gs,v(x& Ve)
L2 [VGe 10 (xe, ye) I*
+ I’LS 2
gs,l—v(xs» Ye)
Here is the main difference with [8]. Thanks to our choice of @ ,, the terms involving A,

disappear, which is necessary since we did not assume any pointwise convergence of /.
By (L.T7), the left-hand side goes to 0 as ¢ — 0. Then, thanks to (T.I8)—(T.20), we get

o(l) > v(l —v)+o0(1),

)

gs,u(xs» ya)v

Ixe — vel?ue(ye)* = v(1 — v)

gs,l—v(XSa ys)l_”)
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which is a contradiction, and shows that this last case cannot occur. This ends the proof
of (LT4).
We now claim that there exists C > 0, independent of ¢, such that

ue(x) < C(u?lx —xe| ™' +ae)  in Blxe, re). (1.21)

Thanks to Claim [I.T) and (T.I6), this holds for all sequences y, € B(xe,7¢) \ {x.} such
that |y, — x| = O(pg) or |ys — x¢|/re - 0. Thus we may assume from now on that

|ye — Xe|l/the = +00 and |y — x¢|/re > 0 ase — 0.

Using the Green representation formula, we deduce from (T.I8) and (T.I9) that

U (ye) = f Gt (Atty + hotty) dx
B(xg,re)

+ 0<r;1/ EXN da) + o(rng ugdo).
dB(xg,re) 0B (xg,re)

This gives, by (T.13), (T.16) and (T.13),

ug(ye) = 0</ lx — yel ™' Aug +hsu£|dx> + O(ae). (1.22)
B(xg,re)

Using (L.T4) with v = 1/5, we can write

/ Ix — vel "' Aug + heug| dx
B(xg,re)

u5
= / £ dx+/ |x—y8|_1u§dx
B(xe,pe) 1% — Vel B(xe,re)\ B(xe, 1e)

- 0(ug/2|y£—xg|*‘>+a3r8/ o — el x — x|~V dx
B(XSars)\B(xa’Ms)

+u2/2/ v = yel M — xe| *dx
B(xg,re)\B(xg,pie)

= 0(u*ye — x| 71 + 0(er)).
Thanks to (T.13) and (T:17), this leads to

/ = vl Aueldx = O 1ys — xo ™) + o(ate),
B(xs,rs)

which, by (1.22), proves (I.21).

In order to end the proof of the first part of the claim, we just have to show that

o = sup u. = O(ul/*rh. (1.23)
dB(xe,re)
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For that purpose, we use the definition of r, to find that

(Bre) 2 Ye (Bre) = rp e (re)
forall 0 < B < 1. Using (I.16), this leads to

rsl/2 sup MESC(ﬁ}’s)l/z sup  ug.
0B(xg,re) dB(xe,Bre)

From (1.21]), we obtain

sup u8§Cﬁ]/2(u;/2(,3r8)*1+ sup ug).
dB(xg,rs) dB(xg,rs)

Choosing B small enough clearly gives (1.23) and thus the pointwise estimate on u, of
the claim. The estimate on Vu, then follows from standard elliptic theory. O

We now prove the following:

Claim 1.3. Ifr. — 0as e — 0, then up to passing to a subsequence,
1
Felg(Xg)Ue(Xg + 1ex) — m +b in CIIOC(B(O, 2)\{0}) ase — 0

where b is some harmonic function in B(0, 2). Moreover, if ro < pg, then b(0) = 1.
Proof. We set, for x € B(0, 2),

ug(x) = M;l/zrsus(xa + rex),

which satisfies y
Al 4 r2heiie = (e /re)*@>  in B(0,2) (1.24)

where h, = h(x, + rex). Thanks to Claim|1.2} there exists C > 0 such that
ug(x) < C/|x] in B(0,2)\ {0}. (1.25)

Then, by standard elliptic theory, after passing to a subsequence, we have i, — U in
CIIOC(B(O, 2) \ {0}) as ¢ — O where U is a non-negative solution of

AU =0 in B(0,2)\ {0}.
Then, thanks to the Bocher theorem on singularities of harmonic functions, we get
U(x) = A/Ix| + b(x)

where b is some harmonic function in B(0, 2) and A > 0. Now, integrating (1.24) on
B(0, 1), we get

/ Dyiie do = f (r2heiic — (e /re) i) dx.
dB(0,1) B(0,1)
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Thanks to Claim[1.2}
/ rnglsﬁg dx -0 ase— 0,
B(0,1)

and, by Claim [T}
/ (e /1e)*0> dx — / A+ x|?/3)?dx =wy ase — 0.
B(0,1) R3

On the other hand,
/ oigdo — —awnpAr ase — 0.
8B(0,1)

We deduce that A = 1, which proves the first part of the claim.
Now, if . < p., from the definition of r, we have

w;(”s) =0.
Setting 1/75(;’) = (re/we) Y Yo (rer) for 0 < r < 2, we see that
_ P12
Ye(r) — 5 / Udo =r71/2+r1/2b(0).
w2 JyB(0,r)
We deduce that »(0) = 1, which ends the proof of the claim. ]

We prove at last the following:

Claim 1.4. Using the notations of Claim[I.3] we have b(0) = 0, and if the convergence
in (1.2) holds in C%", then Vb(0) = 0.

Proof. 'We use the notation of the proof of Claim[I.3] Let us apply the PohoZaev identity
(@.4) of Appendix [4.3|to i, in B(0, 1). We obtain

1 A 7 ~ ~
5/ rgz(hsflg—khg(x,Vﬁg))dx=Bf+35
B(0,1)

where

~ 1 Vii.|? . 2~6
Bi = (Buite)? + < i dyile — [Vie| do, Bt = He\ He 4o
1 3 ) 2
3B(0,1) aBO,H\T: ) ©

By Claim [I.2]and Lebesgue’s dominated convergence theorem, we can pass to the limit

to obtain
, 1 VU |?
@,U)? + -Ud,U — do = 0.
3B,1) 2 2

Since b is harmonic, it is easily checked that the left-hand side is just —w;b(0)/2. This
proves that b(0) = 0.
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In order to prove the second part of the claim, we apply the PohoZaev identity (4.7) of
Appendix [4.3]to i, in B(0, 1). We obtain

Viig|? I . Vi 256
/ (l el v — 8ngVu£> do = —/ rszhg £ dx —/ <&) £vdo.
3B(0,1) 2 B(0,1) 2 aBO,H\Te ) ©

(1.26)

It is clear that

|Viie |* R IVU|?
v— 0y Vilg | do — v—090,UVU |do ase— 0.
3B0,1) 2 3B,1) 2

Moreover, as b is harmonic, we easily get

VU ?
v—VU,U |do = wVb(0).
dB(0,1)

It remains to deal with the right-hand side of (I.26). It is clear that

2~6

u
/ <&) —~vdo -0 ase— 0.
aBoO,H\Te ) ©

Then we rewrite the first term of the right-hand side of (I.26)) as

- Vii? N v - Vii2
/ e dx = / 12 (he = he(0) 5= dx + 2 (0) I~ dx.
B(0,1) B(0,1) B(0,1)

If we assume that the convergence of (&) holds in CY" we can use Lebesgue’s domi-
nated convergence theorem to conclude that the first term of the right-hand side goes to 0
as ¢ — 0. Then, integrating the second term by parts, we get

- Vii - 12

12 (0) 2228 gy = he (0) / 22y do,

BO.y © 2 9BO1) 2

which clearly goes to 0 as ¢ — 0. Finally, collecting the above information, and passing
to the limit ¢ — 0 in || we get Vb(0) = 0 if the convergence of (k) holds in C 0.,
which completes the proof of the claim. O

We are now in a position to end the proof of Proposition [I.1] If p — 0 as & — 0 then
we deduce the proposition from Claims[I.3]and[T.4] If p, - 0 as ¢ — 0, then Claims[T.3]
and[I.4]give r, -+ 0 as ¢ — 0. Then, using the Harnack inequality (I.I6), one can extend
the result of Claim @to B(xe, 2p¢) \ {x:}, which proves the first part of Propositionﬂ;fl
when p; - 0, and ends the proof of the whole proposition.
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2. Stability of the Pohozaev obstruction

We now prove Theorem 1| and give some stability result for radial solutions on the unit
ball (see end of the section). We assume by contradiction that there exists a sequence (h,)
of functions in C 0”7(]1%‘3) for some n > 0 and a sequence (ug) of C 2_solutions of
where  is some smooth domain in R star-shaped with respect to the origin and h, — &
in LP(Q) as ¢ — 0 for some p > 3 where 1 € C!(R?) satisfies (0.2)). Sometimes we will
assume that h, — hin C%" as ¢ — 0.
We claim first that
luglloo = +00 ase — 0. 2.D

Indeed, if (u,) is uniformly bounded in L°°(2), then it is clear that (ug/||ue||co) iS uni-
formly bounded in W27 (Q) for some p > 3, and thus, after passing to a subsequence,
ug/|lttelloo = uin CIIOC(Q) where u is a positive solution of

Au+ hu = (nm ||u£||go)u5 in Q
e—0

with u = 0 on 9. Since & > 0, it is clear that ||us||coc -~ 0 as & — 0. Then u =
(limg—0 ||ut¢ [loo)u is a non-trivial solution of (0.I), which is a contradiction since (0.2))
holds. Thus 2.) is proved.

Then the sequence () develops some concentration phenomena. We prove that this
leads to a contradiction as follows: in Claim [2.1} mimicking [8], we construct a family
of critical points of ug, (x1¢,...,xn,,¢), such that each sequence (x;, ) satisfies the
assumptions of Section [ with

pe = min {|x;e — Xi, |, d(Xi, e, 02)}.
I1<i<Ne, i#i¢

In Claim we prove that these concentration points are in fact isolated. In other words,
we prove that (u.) develops only finitely many concentration points. We prove that such
a configuration of concentration points must satisfy two relations involving the Green
function of A + A at these points. And it is impossible to find such a configuration thanks
to some PohoZaev identity on Green functions we prove in Appendix {.4} Claim [2.1]is
rather classical. The core of the proof lies in Claim Avoiding bubble accumulation in
the interior of €2 in dimension 3 is by now classical. The main difficulty here is to avoid
boundary bubble accumulation. The rest of the section is devoted to the details of the
proof we have just sketched.

Claim 2.1. There exists D > 0 such that for all ¢ > 0, there exists N € N* and N,
critical points of ug, denoted by (x1¢, ..., XN, ), such that

d(xie, 0Que(xi)> > 1 foralli €[1, Ne],
IXie — Xjelue(xie)® > 1 foralli # j €[l, Nel,
and

' 1[11112 | |X; e —x|ug(x)2 <D forallx € Qandall e > 0.
te[l,Ng
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Proof. First of all, we claim that
{x € Q:Vug(x) =0and d(x, E)SZ)ug(x)2 >1}#£0 2.2)

for ¢ small enough. Let us prove (2.2). Let y. € S be a point where u, achieves its
maximum. We set @, = u,;(ys)*2 — 0 as e — 0. We set also, for all x € Q, =
(x eR3: y, + puex € Q)

fie(x) = Pue(ve + pex),
which satisfies 5
Aiig 4 plheily = 2 in
where h, = h(ye + pex). Note that 0 < u, < u.(0) = 1. By standard elliptic theory,

i, — Uin CIIOC(SZO) where U satisfies

AU=U> inQy and 0<U<1=U(0),

and where 29 = lim,_. o 2.. Thanks to [5], we have Q¢ = R3, which proves that
d(ye, 3ug(ys)> — 400 as € — 0. This ends the proof of .

Now, in view of Lemma @] (see Appendix @, for ¢ small enough, there exist
N, € N* and N; critical points of u,, denoted by (x, ..., Xn,,¢), such that

d(xie, 0Que(xi)? > 1 foralli € [1, Nel,
Xie — Xjelue(xie)® = 1 foralli # j € [1, N,],
and
min |x;, — x|ue(x)> < 1 (2.3)
i€[1,Ng]

for all critical points x of u, such that d (x, Q) u,(x)? > 1. It remains to show that there
exists D > 0 such that

min |x; e — x|ug(x)> < D
i€[l,Ng]

for all x € Q2. We proceed by contradiction, assuming that

sup min |x; . — )c|u6(x)2 — 400 24
reQi€ll,Ne]

as ¢ — 0. Let z, € Q2 be such that

: 2 : 2
omin |xj e — Ze|ug(ze)” = sup min |x; e — x|ug(x)”.
i€[l,Ng xeQ!l€ A

We set flp = us(ze) 2 and S, = {x1,6, ..., %N, ¢}. Thanks to li we find that i, — 0
ase¢ — Oand
d(Se, ze)/fle — +00  ase — 0. (2.5)

Then we set, forall x € 2, = {x € R?: z, + fiex € Q},

ﬁs(x) = I:Lé/zﬁs(ze + [)“8'x)a
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which satisfies
Alie + [2helie = & in
where h, = h(zs + [Lex). Note that 1, (0) = 1 and also

lim sup u.=1
£=>0 B0, R)NQ;

for all R > 0 thanks to |b and || Standard elliptic theory then gives i1, — U in
CIIOC(QO) where U satisfies

AU=0U5 inQy and 0<U<1=0U(0)
with fzo = limg_o fZe. As above, we deduce that Qo = R3, which gives

lim d(z¢, 0Q)u7 (z¢) = +00. (2.6)
£—

Moreover, thanks to [4], we know that

1

YO = T

Since U has a strict local maximum at 0, there exists X, a critical point of u,, such
that |z, — X¢| = o(fle) and feues (%) — 1 as e — 0. Thanks to (2.3) and (2.6)), this
contradicts (2.3) and proves the claim. |

We define
dé‘ = min{d(xi,é‘?xj,é‘)v d(-xi,é" aQ) : 1 S l < .] E Ne}

and prove:

Claim 2.2. If the convergence of he to h holds in C%", then there exists d > 0 such that
de > d.

Proof. Assume thatd, — 0 as e — 0. There are two cases to consider: either the distance

between two critical points goes to 0, or one of them goes to the boundary. In the first case,

the arguments which lead to a contradiction follow closely [7]], but in the second case we

have to be more precise looking at the “artificial” singularities created by the boundary.
Up to reordering the concentration points, we can assume that

ds = d(xl,s, X2¢) OF d(xl,as 082).
Forx € Q, = {x e R? 1 X1 +dex € Q}, we set
iig (x) = d}ug (x16 + dex),

which satisfies
Adle + d?heil; = ii>  in
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where h, = h(x1,¢ + dex). We have, up to a harmless rotation,

lim Q, = Q¢ = R3 or |—o0, d[ x R? where d > 1.

e—0

We also set
Xi,e — Xl,e

ds

We claim that, for any sequence i, € [1, N,] such that

Xie =

e (Xi,e) = O(1), 2.7
we have
sup U, = O(1). (2.8)
B(%ip 6,1/2)

Indeed, let y. € B(Xj, ¢, 1/2) be such that SUPB(5,. ..1/2) iy = Ug(ye) and assume by
contradiction that
Il‘g(ye)2 — 400 ase — 0. 2.9)

Thanks to the definitions of d;, y. and the last assertion of Claim@
|ds(}’e - x~i5,s)|“s(xl,s + ds)’e)z <D

so that
[ve — Xip.el = o(1). (2.10)

For x € B(0, 1/(3/t¢)) and ¢ small enough, we set
’/Als(x) = Ia;/zﬁs()’e + ﬂsx)

where /1, = u,(y:) 2. It satisfies

. 1
Al)s + (/:Lsds)zhsﬁg = 122 in B<07 0 ) and 128(0) = sup ﬁé‘ =1
3ite B(0,1/(3))

where h, = he(ye + fiex). Thanks to lb B(0,1/(3fis)) — R3ase — +oo. Then
(@) is locally uniformly bounded and, by standard elliptic theory, it converges to U in
Cl (R3) where U satisfies

loc
AU=0> inR® and 0<U <1="0U(0).
By [4] and the fact that (X;, » — y¢)/[Le is bounded, we find that

.. ﬁs(xig,s)
liminf ———
e>0  Ug(Ye)

which is in contradiction with (2.7) and (2.9), and completes the proof of (2.8).

>0,
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For R > 0, we set S, = {Xi¢ : Xir € B(0, R)}. By the definition of d;, up to a
subsequence, Sg . — Sg as ¢ — 0, where Sg is a non-empty finite set; then up to taking
a diagonal subsequence, we can define the countable set

s=J sx.

R>0

Thanks to the previous definition, we are ready to prove the following assertion:
Vie € [1, Ng] withd(x;, ¢, x1,¢) = O(dg), ug(X;, ) > +00 ase — 0. (2.11)

Assume that there exists i, such that d(x;, ¢, x1,¢) = O(dg) with 14 (X;, ) bounded. Then
for all sequences j, such thatd(x;, ¢, x1,¢) = O(d;), iis(Xj, ¢) is bounded. Indeed, if there
exists a sequence jg such that d(x;, ¢, x1,¢) = O(de) and ¢ (X}, ¢) — 400 ase — 0,
then thanks to Claim we can apply Propositionwith Xe = Xj, ¢ and po = d. /3. We
find that up to a subsequence, i1, — 0 in CIIOC(B(E, 2/3)) \ {x}, where X = lim; 0 X, ¢.
But (it¢) is uniformly bounded in B(y, 1/2), where y = lim,—,¢ X;, .. We thus deduce
from Harnack’s inequality that it (X;, ) — 0 as ¢ — 0, in contradiction with the first or
the second assertion of Claim 211

Thus we have proved that for all sequences j. such that d(xj, ¢, x1,¢) = O(de),
lig(Xj, ¢) is bounded, which proves that (ii,) is uniformly bounded in a neighbourhood
of any finite subset of S. But thanks to Claim e is bounded in any compact sub-
set of ¢ \ S. This clearly proves that i, is uniformly bounded on any compact subset
of Q¢. Then, by standard elliptic theory, i, — U in CIIOC(QQ) as ¢ — 0, where U is a
non-negative solution of

AU =U> inQq.

But, thanks to the first or second assertion of Claim we know that U (0) > 1, hence
necessarily 9 = R3, and thus U possesses at least two critical points, namely 0 and
X = lim,_0 ¥2,¢. By [4], this is impossible. This ends the proof of (2.11).

We are now going to consider two cases, depending on 2.

Case 1: Q9 = R3. In this case, up to a subsequence, d; = d(x1,¢,x2¢) and § = {0, X2 =
lim,,0 X2, ...} contains at least two points. Applying Proposition with x; = X
and p, = d./3, we obtain

1 A -
i (0)iig(x) > H= —+ ——2 45 inCLR*\S)ase — 0
x| [x — x|
where b is a harmonic functionjn Qo \ {S\ {0, X2}}, and A, > 0. Moreover 5(0) = —A.

We prove in the following that b is non-negative, which will give a contradiction and end
the study of this case. To check that b is non-negative, for each positive number r, we

rewrite H as N
W= Y P
- lx — X
x;€SNB(0,r)

where A; > 0. Then, taking R > r large enough, we get by > —1/r on 0B(0, R).
Moreover, for any X; € B(0, R) \ B(0, r), there exists a neighbourhood V; , of X; such
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that b, > 0 on V;,r. Thanks to the maximum principle, by > —1 /r on B(0, R). Since
l;r — bon every compact set as r — 400, we see that H = Z)?,-ES Ai/lx — x|+ b with
b > 0, which proves that b > 0. This is the contradiction we have been looking for, and
this ends the proof of the claim in this first case.

Case 2: Q) = ]—o00,d[ x R2. We still denote § = {0 = X1, Xx2,...} and we apply
Proposition [T.1|with x, = x; ¢ and p; = d,/3 to deduce that

. Ai L

e (0)iic(x) > H=Y_ ———+b inCL.(Q\S)

ics lx — Xx;]

where A; > 0 and b is some harmonic function in €2o. We extend H to R? by setting

H(x) if x; <d,

H(x) = { —H(s(x)) otherwise,

where s is the symmetry with respect to {d} x R?. We also extend b by setting

. A A .
"= Z(u—m B |s<x>—zzl-|> o

fl'ES

It is clear that b is harmonic on R3 and satisfies b > 0in 9 and b <0inR? \ €. This
can be proved as in Case 1. Let Gg be the Green function of the Laplacian on the ball
centred at 0 with radius R. The Green representation formula yields

b(x) = / 9,Gr(x, y)b(y) do;
9B(0,R)

since
R2 _ |x |2

d X,y) = ———
WGR(X, ) w2R|x—y|3

on dB(0, R), this gives

N 3 ~
01b(0) = 7 / yib(y)do.
2 R* JaBo,R)

Now we decompose d B(0, R) into three sets:

A={ye€dB(0,R):y >dj},
B={yedB(0,R):0=<y <d},
C={yecdB(,R):y <0}

In A and B, we have ylls(y) < dla(y), and in C, we have ylﬁ(y) <0. Since b >0inC,
we arrive at

3db(0)

n 3d N 3d A
216(0) < f b(y)do < f b(y)do = .
wrR* Jaus w2R* Jyp0.R) R?
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Passing to the limit as R — 400 gives 0 1;(0) < 0. In order to obtain a contradiction, we
rewrite H in a neighbourhood of 0 as

H(x) = |—1| + b(x)

) R 1
b(x) =b - ‘
(x) (x) — | ( )| Z (|x Xl |s(x) —JEI)

% €S\{0}

where

As is easily checked, 31b(0) < 0, contrary to Proposition This ends the proof of
Claim[2.2]in this second case.

We are now ready to prove Theorem [I} Thanks to Claim there exist D > 0,
N € N* and N local maxima of ug, x1 ¢, ..., Xn ¢, such that

d(xie, 0Que(x;)> > 1 foralli e [1,N],
|xi,e —)Cj,glug(xi,g)2 >1 foralli # je[l, N],

and

er |Xi e —xlus(x) <D forallx € Q.
ig[l

We can assume that u.(x; ) — +00 as ¢ — 0. Indeed, otherwise we can remove x; ¢
from the family of concentration points, and up to changing D, the assertion remains true.
Then, thanks to the Harnack inequality, there exists C > 0 such that

1
Eua(xl,s) < us(xi,s) < Cua(xl,s)~ (2.12)

Now, thanks to the results of Section E] and by standard elliptic theory, we have, after
passing to a subsequence,

ug(x1e)ue(x) - G in Clzoc(Q \{x1,...,xny})ase - 0
where

N
G(x) =Y 1iGn(xi, x)
i=1
with G, the Green function of the limit operator A + A with Dirichlet boundary conditions
on Q. From @2.12)), we know that A; > 0 for 1 <i < N. This can be rewritten as

)\'.
G(x) = ———— 4+ G;(x) (2.13)
@2|x — x;|
where G; is a continuous function on 2\ {xy, ..., Xj—1, Xi+1, ..., Xy }. Thanks to Lem-
maf.3]
( i)

Gi(x) = Gi(xi) + Ix — xi| + yi(x) (2.14)
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where y; € C L(©) and i (0) = 0. We claim that
Gi(x;) =0 foralll <i <N. (2.15)

In order to prove this, we apply the PohoZaev identity @) to u, on the ball B(x; ., §) for
some § > 0 small enough. This gives

1

- / (hsug + he(x — X ¢, Vug)) dx
2 JBie.0)

Vue? 1

8
= / (8(8,)148)2 — S —udyue + —u§> do. (2.16)
3B(xi.e.8) 2 2 6

Thanks to the fact that /, is bounded in L? (R3) for some p > 3 and Proposition we
get the uniform estimate

1
ug<xi,g)2‘— / (heu? + he(x — xi ¢, Vu2)) dx| < e()
2 JB(xic.8)

where ¢ € CO(R) with e(0) = 0. Using (2.13), we get

Vue> 1 B
/ <8(avug)2 _ aﬂ =+ _usal)u8> dO' +/ —MS dG
IB(x; ¢,8) 2 2 9B(x;.,8) O
_ IVG?
= e (x10) 2 / ((S(avG)2 )
3B(x;,8)

Using (2.14), we easily get

1
+ §G8”G> do + 0(ua(xi,s)_2)-

, VG 1 1
8(8,G)* =4 +-G3,G |do = —=1;G;(x;) +o(1) ass— 0.
9B(x;.5) 2 2 2

Collecting the above information proves (2.13).

We are now going to prove that Vy;(x;) = 0 where y; is as in (2.14). This will
contradict Lemma [#.4] of Appendix [4.4]and complete the proof of the theorem. For that
purpose, we apply the PohoZaev identity (@) to u, on the ball B(x; ., §) for some 6 > 0
small enough. We obtain

Vu
”s(xi,s)z (| el v — Vugavug) do
0B (x;¢,8)
2 V”? 2 6
=us(x;¢) he——dx —ug(x;¢) Vuy,do. (2.17)
B(xie8) 2 9B (xic.5)

It is clear that we can pass to the limit on the left-hand side. Moreover, by (2.15)) and

IVG|
v—VGai G |)do — Vyi(x;) asd— 0.
9B\ 2
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Now we look at the right-hand side of (2.17). It is clear that
ug(xi,g)zf Vug do — 0 ase— 0.
9B(xi¢,08)
Then

Viu?
£ dx.

Vu? Vu?
/ he e gy = / (he — he (i )% dx + he (s o)
Blied) 2 B(x;.e.5) 2 B(xie) 2

Assuming that the convergence of ki, to h holds in C%", it is clear that the first term of
the right-hand side goes to 0 as ¢ — 0. Integrating the second term by parts, we get

2
Vu;

u? G?
he(Xie) dx = hg(xi,g)/ —“yvdo — h(x,-)/ —vdo
B(xie,8) 9B (xj¢,0) 9B(x;,5)

as ¢ — 0. It is easily checked that the above goes to 0 as 6 — 0.

Finally, collecting the above information, and passing consecutively to the limit as
g—>0and§ — Oin , we conclude that Vy; (x;) = 0 for all i, which completes the
proof of Theorem|I] thanks to Lemma[4.4] |
Let us now give a precise statement of what we meant by stability of the PohoZaev ob-
struction in the radial situation in the introduction. We will prove the following:

Theorem 3. Let B be the unit ball of R3. Let ho be a C'-radial function which satisfies
(0:2). Then for any p > 3, there exists § > 0 (depending on ho and p) such that if
h e CO*"(B)for some 1 > QO with ||h — hollLr(B) < 6, then there exists no positive radial
solution of equation (0.1) in the unit ball.

Proof. We proceed as in the proof of Theoremm Note that, since u; is radial, there can
be only one concentration point, namely 0. Thanks to Claim [2.1] the result of Section [T]
and standard elliptic theory,

e (0)ue (x) = Gy (x,0) in CL(2\{0}) ase — 0

where Gy, is the Green function of the limit operator A + /4. We have

1
Gn(x,0) = —— + g(x)
w2|x|

where g is a continuous function on 2 which satisfies

Ag+hg =—

inQ and g=-—wy; onadf.
ws x|

By the maximum principle, we see that g is negative so that g(0) < 0. Now we can
proceed as in the proof of (2.I5) to get a contradiction. Note that the proof of (2.13) did
not require the C%" convergence of /.. In the above proof, this C*7 convergence was
used only in the proof of Claim (which is given for free in the radial situation) and
in the last part of the proof to deal with the case of several concentration points (which
cannot happen in the radial situation). O

In the next section we shall prove that the above theorem is sharp in the radial situation.
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3. Construction of blowing-up examples and instability of the PohoZaev obstruction

In this section, we prove Theorem 2| In fact, we will first prove the corresponding result
in the radial situation (thus showing that our Theorem [3]is sharp) since it contains the
main ideas, and the computations are a little less involved.

We first need some results on Green’s functions of coercive operators A + h with
Dirichlet boundary conditions on domains in R?. We let  be a smooth domain in R>
and h € C 1(Q) be such that the operator A + h, with Dirichlet boundary conditions,
is coercive. Then there exists a unique function G : Q x Q\ {(x,x) : x € Q} —> R,
symmetric, positive, such that

AVG(x, y) +h())G(x, y) = wady

in 2and G(x,y) = 0fory € R for all x € Q. It is easily checked that G(x, y) has the
following expansion in the neighbourhood of the diagonal:

1
G(x,y) = + Sh)|x =yl + ya(y) (3.1
lx—yl 2
where y, € C1(Q) satisfies
hx) —h(y) 1
Ayye )+ hMya(y) = —2—2 — Zp(nh()lx — v
lx — yl 2
in  with
1 1
V() = —— — zh(x)|x —y| forally € 9.

x—yl 2

3.1. The radial case

We start by proving that the PohoZaev identity is not Lf’ -stable in the unit ball of R3. More
precisely, we prove the following result:

Theorem 4. Let h € C'(B) be a non-negative radial function on the unit ball B of R3.
For any ¢ > 0, there exists a radial function h € C%"(B) with ||h — hllp3gy < € such
that the equation

Aii+hi=a inB, @=0 ondB,
admits a positive radial solution.

Note that a function & which satisfies (0.2) is necessarily non-negative. To prove the
theorem, we let h € C 1(B) be a non-negative radial function. We let G be the Green
function of A 4+ % and let G(x) = G(0, x). We set

e (x) = Ug(x) + 1¢ (x) Ve (x) (3.2
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where
Ue(xr) = 62(2 + G0y 2) 72,
V() = =100 2603 (62 + G)2) 2, (3.3)
Ne(x) = n(ﬂ%x

where 7 is a smooth positive function such that n = 1 on the ball of radius 1/4 and n = 0
outside of the ball of radius 1/2. Here, yo comes from the asymptotic expansion (3.1). It
is easily checked that u, is a C>" positive function in B and u, = 0 on d B. Moreover,

neVe/Us — 0 in L°°(B)ase — 0. (3.4)

We claim that
3u§ — Aug

Ug

—h inL*(B)ase — 0, 3.5)
which clearly implies the theorem. Straightforward computations give
AU, + hU, =3U2 VG + h(x)eU? (3.6)
and
AV, + hV. = 15UV, + 12(0)6¥2G*(1 + £2G?) ™
— 'y (1 +62G?) P (1 + 462G?)
— 302G (1 +2G?) (1 = 42 GH)(IVG P = 1). 37
It is easily checked that this implies that
Aug + hug — 3142 = o(ug) 3.8)
in Bo(1) \ Bp(1/2). Using the expansion of G and its consequence
IVG™'P =1 - 400G+ 0(G™),
we can then write, thanks to @]}

Aug + hugs —3u

5
; £ = O(Ix|*Ud) + 0(eU>) + O(Ix|UH1 — 1))
£

+ OW N VVe IVnel) + OU Vel lAnel)  (3.9)
in Bo(1/2). It is easily checked that

Ix[?U$ - 0 and eU?— 0 inLP(B)ass— 0 (3.10)
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3
dr)

3
dr) = O(Jln&?|73)

forall 1 < p < 4o00. Now,

1
/ IXPURI =P dx = 0(86/ rie? + 170
B 0

-1

= o(/e P +rH°
0
=o0(1)

thanks to the dominated convergence theorem. Moreover,

1
/U;3|vvs|3|vn8|3dx = O<|ln82|3/ r“(82+r2)6dr>
B 0

12 3
+0</ dr)
1/4

= 0(llng*|7) = o(1)

In(e? + r?)

1 —
In &2

In(1 + %)
Ineg?

In(e? + r?)
In&?

and

1
/ U Vel | Ane P dx = 0(|ln82|_3/ (e’ +r2)—1dr) +0(llne*|7?)
B 0
= 0(lln&?|73) = o(1).

Coming back to (3.9) with these last estimates, we get (3.5). This ends the proof of The-
orem[4l m|

3.2. The general case

Here we prove that the PohoZaev identity is never L°°-stable. In fact we will even prove
a stronger result:

Theorem 5. Let Q2 be a smooth domain of R3 and lgt h e CHQ) be guch that the
operator A + h is coercive. For any € > 0, there exists h € CO'”(Q) with |h — h|c < €
such that the equation

All +hit =#@°  in Q,

u=0 ono2, u>0 inQQ,

admits a solution.

It is clear that this result implies Theorem [2] It is sufficient to remember that a function
h which satisfies (0.2) is necessarily non-negative and that a non-negative 4 leads to a
coercive operator A+ h. The rest of this subsection is devoted to the proof of this theorem.
We will construct a sequence of functions u, € C°°(2), positive in €2, null on the

boundary of €2, such that
5
Mgu—%—m in L(R) as £ — 0. G.11)

&

This will clearly prove the theorem.
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We let G be the Green function of the operator A + /& in @ with Dirichlet boundary
conditions. Note first that yx(x) — —oo as x approaches 9€2. In particular, there exists a
point x1 € 2 such that y,, (x1) < 0. For x € @\ {x1}, we set

2
AGx) = (— gy)"(“) ) L FM) = G0, 1) — e (D) ().
(x1,x)

Since F(x) — +o0 as x — xj and F(x) — —oo0 as x approaches 9€2, and since F is
continuous, there exists x, such that F'(x3) = 0. We then let A = A(x3) and we have

VaGa(x1) + yi(x1) = G1(x2) + Vaya(x2) =0 (3.12)
where
G1(x) = G(x1,%), Ga(x) = G(x2, %), Y1(x) =y, (x), 12(x) =y, (x).  (3.13)

We let § > 0 be such that § < 10d(x1, 02) and § < 10d (x>, 9R2). We fix n € C°(R)
such that n(r) = 1 for |r| < § and n(r) = 0 for |r| > 25. We set

ue = e V2U(eGy) + (he) " V2U(MeGr)

+n(x —x1Dy1 (e 2V (eG) + n(lx — x2D)y2(x2) (he) 2V (e Go)

—n(x — x1DYe(eGe' 2 (x —x) ((1 +e*GD 729 y1 (x1) + 1128, G2 (x)))

— n(Ix — x2))¥s (AeG2) (he) 2 (x — x2)' (1 + 2267 G3) /20 y2(x2) + 17120, G 1 (x2))

3
+n(x — x1|>e3/2ws<eG1>(h(xoW(eGl) —~ 5y1(x1>2U<eGl)5)

3
+n(lx — xz|)(xe)3/2ws(stz)<h(xz)W(As(b) - §V2(X2)2U(?»8G2)5) (3.14)
where we adopt Einstein’s summation convention and U, V, W and . are given by
In(1+r72
U =+ A7 V) =1 A g =14 D 1+§ :
ne

3 (3.15)
W) ==1U+ 8QU3 —U)InU —2(U™" = 8U + 8U>)r arctan(—).

r

It is easily checked that u, is C 21 in € and u, = 0 on 9$2. We now claim that holds
for this specific u, and that u, is positive in 2. We shall prove this claim in three steps.
First, we can prove it rather easily in Q \ (By, (26) U By, (25)) because, in this region, u
is simply

ue = e 12U (eGy) + (he) V2U (1eGo).
Now, noticing that U’ = r—3U?3 and that U” = —3r~*U?, simple computations lead to

A(e2UG)) + (he) T 2U (heGo)) + h(e 72U (eGy) + (he) " 2U (1eG))
= 3(8*1/2U(8G1))5|VG;1|2 + 3((x8)*1/2U(x8G2))5|VG2—1|2
+he ' PUEGH(1 - (142G 7))
+h(e) " PUMeG) (1 — (1 +21%62GH ™) (3.16)
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in . In the region we are interested in, this clearly leads to
Aug + hug — 3u2 = o(ug),

which proves that (3.TT) holds in this region while u, is clearly positive there.

We will now prove that (@ holds in By, (26) and that u, is positive in this ball.
By symmetry, it is clear that the proof of the fact that (@) holds in By, (26) is exactly
the sameE| In order to simplify the notations, we will assume that x; = 0, which we can
always do by translating 2. We will denote G| by G and y; by y. We also set

U, = 2U@G), V.=6"2V(EG), W,=e&W(eE6),
3 -
0 = Ve(eG), Y. = —583/20(86)5, U, = (1e)"2U (1eG2), (3.17)

Z, = —e'2x1 (1 4+ e2GH 7 y(0) + 1128, G2(0)).

With these notations, we have, in By(26),

e = Ug + Ue + n(IXDy (0) Ve + n(IxD@e (h(O0) W, + ¥ (02 Y, + Ze). (3.18)
By (3.1),
VG2 =1 -4y (0)G™" +3(2y(0)* — h(0))G >
—6G X191 (0) + o(G™?) (3.19)
and also
G ?2=eU? &% (3.20)
By (.12),

Ue = —&'2y(0) + (1) /2x'8;G2(0) + 0 (72U ?),

(3.21)
Ve = 0202, We=0(@E?), Ye=0EY?), Z.=o0@EU ).

From (3:18) and to (3.21), it is easily checked that u, is positive in By(28). Lengthy but
straightforward computations then lead to

1
\% =0 ————
Vel (81/21n(1/8)
VY| = O(eUp), |VZe| = 0('?)

Ug), IVVel = 0(U2),  |VWe| = O(eUs), 322)

3 The symmetry is precisely the following: if we see ue as a function ug(xq, x3, €, A), then
ug (xg, x1, A8, A7) = ug (xy, x2, 8, ).
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in By(26) and to

AU + hUs = 3U2 — 12y (0)G™'U? — 18G7'x' 9,y (O)U?
+ 18y (0)2G2U?2 + h(0)(¢* — 8G2)U? + o(Uy),
AU, +hU, = 307 |VG > + xehU} = 0(7/),
AV, 4+ hV, = 15U%V, — 1561204 + 1267107
+ 12y (0)(5e'GTHU! — 4GT2U2) + o(Us),
AW, +hW, = 15U W, + 82U — 9¢*U? + o(U,), (3.23)
AYe + hYe = 15U2Y, +306°U] — 30e*U. + o(Uy),

1
Ag. = O ———U? ),
v (eln(l/e) )
AZe+hZ, = 15U} Z, +18U2G ™19,y (0)x

+ 15(0&)2U2x'8;G2(0) + O (U + o(U)
in By(26). It follows easily from the above equations that

Aug + hug — 3ul

Ug

— 0 in L™ (By(28) \ Bo(8)) as ¢ — 0.

It remains to prove the result in Bo(8). Thanks to (3.21)), one can easily check that
G
l”]_g S+ ﬁG—z in L®(By(8)) as & — 0 (3.24)
& 1

so that
3ud = 3U2 4+ 15U (ue — Ug) 4 30U2 (ue — Ue)? + O (U2 ue — Ue]?).
Using again (3.22)), we deduce that
3ud = 3U2 — 1562y (UL 4 15(06) 2U2x"9;G2(0)

+15y (UL V; + 15U e (R(O) W, + ¥ (0)*Y, + Z,)
+30y (02U (V. — %) + o(Uy)

in By(8). Thanks to (3.21)—(3.23)), we can also write

Aug + hug = 3U3 + 15y (0)UAV, + 15(06) 20, U2 x'8; G (0)

— 15y (0)e'2U2 + 15U 0. (H(O)W: + v (0)*Y: + Z;)
+30y(0)*2e™'G*U! — GT2U2) + h(0)(* — 8GHU?
+h(0)ps (8eU7 — 962U + 30y (0)*¢: (£’ U] — £*UY)
+18(@e — DU |x]9;y (0)x" + o(Up).
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Combining these last two equations, we get

Aug + hug — 3u§
= =30y (X (U2 (Ve — '/3? — 0:’U] + 9.*U;) —2¢7'G7HU] + G2U7)
+h(0)(e*U. — 8G 72U + 892U — 9¢.?U2) + 0(Us)

+ 18(: — Dlx|x'9;7 (O)U?.

It remains to remark using (3.20) that

U3(Ve — V2?2 — 083U + ges*U? —2¢7'G7*U! + G207
2

= 262001 — g) = ——— In(1 + £ GG 2U?
In g2
=— Ue Sl +e267H62(*+G6H =0 Ue = o(U,),
Ine2 In(1/¢)

that

e2U3 — 8G 72U + 8¢:eU3 — 99, U2 = (982U + 8sU3) (9 — 1)

U
1 (142G (=91 + 726G H 2 +8(1+°GH7)
ne

=0 Ue = o(U,
= <ln(1/8)> =o(U;),

and that

. U
(0 — DG'X 3y (U = O —
In g2

Ue '\ _
- 0<1n<1/e>> = olte)

to conclude thanks to (3.24) that (3.1T)) holds in Bo(8) for this choice of u,. As already
said, this proves that (3.11) holds for u, given by (3:14), and this ends the proof of the
theorem. o

In(l +&72G6"2)e7262(1 + 8‘26‘2)‘2)

As already said, this result implies Theorem 2]

4. Appendix

4.1. A general simple lemma on functions

We prove a new version of the simple Lemma 1.1 of [§]], replacing the compact manifold
M by a domain 2 in R”.
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Lemma 4.1. Let Q be a smooth bounded domain in R". Let u € C1(Q) be a function
positive in the interior and null on the boundary. Assume that

{x e Q:Vulx) =0and d(x, BSZ)M()C)2 > 1} £ 0.
Then there exist N € N* and N critical points of u, denoted by (x1, ..., xn), such that

d(xl-, aQ)u(_xi)z Z 1 foralli € [1, N]’
|x,'—xj|u(xi)22 1 foralli #jell,N],

and

IA

min |x; — x|u(x)2
ie[1,N]

for all critical points x of u such that d(x, dQ)u(x)> > 1.

Proof. Let C, be the set of critical points of 1. We let
Ko={x €Cy:d(x,dQux)> > 1}
and we assume that Ko # . We let x; € Ko and K; C K be such that

u(xy) = n}{&lxu and K;={x € Kp:|x —x|u()c)2 > 1}.
0

Then we proceed by induction. Assuming we have constructed Ko O --- D K, and
X1,...,Xpsuchthatx; € K;_ foralli € [1, p], welet x,41 € K, and K11 C K, be
such that

u(x = max u
( p+1) X,
and
Kpi1 = {x € Kp @ |xp41 — x|u(xp41)? > 1 and iér[llirll)] Ix — xjlu(x)* > 1}.
We claim that, at some step in the process, K, = . In order to prove it, we remark that
at each step of the construction,
|x; —xj|u(xi)2 >1 foralli #j e[l pl, “.1)

which will prove the claim, since € is bounded. We prove (.1)) by induction. Let p > 1.
By definition, for all x € K, we have

Ixi —xlu(x)>>1 foralli € [1, p].
This holds in particular for x = x,1. Then, for all x € K, we also easily check that
Ixi —xlu(x;)?>>1 foralli €[1, pl,

which is also true for x4 1, and proves (4.1). Let N € N* be such that Ky = ). We claim
that

min |x; —x|u(x)> <1 forall x € Ko, 4.2)
ie[1,N]
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which, together with 4.1)), will end the proof of the lemma. Let x € Ky. Since Ky = 0,
there exists p such that x € K1 and x ¢ K,. Then either

|xp —x|u(xp)2 <1 or min |x —x,»|u(x)2 < 1.
i€[l,p]

In the second case, (4.2)) is clearly true, while in the first, by the definition of x),,
lxp — x[u(x)? < xp — xlu(xp)® < 1,

which proves that (#.2)) also holds. As already said, this proves the lemma. O

4.2. Green function of A + h

We prove here some basic estimates on Green’s functions of operators A + i where & is
of low regularity.

Lemma 4.2. Let Q be a smooth bounded domain in R3. Let h € LP () for some p > 3.
Then there exists § > 0 such that if

lh-ll32 <6, (4.3)

then the operator A + h admits a positive Green function G, which satisfies the estimates

<Clx -yl

1
lx = y1Gn(x,y) — —
2%

and

1
Ix — yI2IVGr(x, »)| — —| < Clx — |
0]

forall x #y € Q, where Cis a positive constant depending only on , ||h||, and 8.
Proof. We divide the proof into three steps.
Step 1: A + h is coercive if ||h_||3/2 is small enough. Letu € HOl (2). Then

/<|w|2+hu2>dx zf(|W|2—h_u2>dx > 1Vul2 = A 32 llls
Q Q

thanks to Holder’s inequalities. One can then use Sobolev’s embeddings and the fact that
l—1l3/2 is small to conclude this first step.

Step 2: Existence and a priori estimate. Let G(x, y) be the Green function of the Lapla-
cian. Then solving
AyGn(x, y) +hGp(x,y) =dx in,
Gn(x,y) =0 ona<,

is equivalent to solving

AyB(x,y) +hB(x,y) = —hG(x, y),
Bx,y) =0 ondQ.
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Since h € LP(R2) for some p > 3, there exists ¢ > 3/2 such that hG(x, ) € L1(<2).
The existence of 8 follows from the coercivity of A + & and the Lax—Milgram theorem.
Moreover, using again the coercivity of A + & and Sobolev’s embeddings, we get

1
EIIVﬂII% =< / (IVBI* + hp*) dx = / —hGBdx < [|hGl3.21Bll3 < CIIVBI2
Q Q
for some C > 1 depending only on ||k, [[h—|l3/2 and €2. This gives an a priori bound
on [|[VA]2.

Step 3: Estimates and positivity. By the previous step, there exists C > 0 which depends
only on ||A||, and ||h_]|3/2, and ¢ > 3/2 such that

Ih(B +G(x, Nlg = C.

Now, by standard elliptic theory (see for instance Theorem 9.13 of [9]), we see that
B € L™ and
Bl = C

where C is a positive constant which depends only on [|2]|, and || _]||3/2. This proves the
first estimate of the lemma. The second follows by standard elliptic theory. Positivity of
the Green function is an easy consequence of the coercivity of the operator A + h. O

4.3. General PohoZaev identities

For the sake of completeness, we derive here several forms of the classical Pohozaev
identity [11]] we used in this paper. Assume that u is a C2 solution of

Au=u’ —hu inQ.
Multiplying this equation by (x, Vu) and integrating by parts, one easily gets

1
5/ (h® + h(x, V) dx = By + By, (44)
Q

where

1 |Vu|?
B, = (x, Vu)oyu + —udyu — (x, v) do,
Fle) 2 2

I/t6
B> =/ (x,v)—do.
FYe) 6

Hence, if u = 0 on 9€2, we get

%/ h(u? + (x, Vu?)) dx =/ (x, v)(Byu)* do. (4.5)
Q

IR

Integrating by parts again, we deduce the Pohozaev identity in its usual form:

/ (h + x, Vh)),ﬂ dx = —/ (x, v)(3yu)* do. (4.6)
Q 2 0Q
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In a similar way, multiplying the equation by Vu and integrating by parts, one can derive
the following PohoZaev identity:

\v/ 2 6 \V/ 2
/ Vul v+ do=/h—udx. 4.7)

4.4. PohoZaev’s identity for Green functions

In this section, we prove a useful Pohozaev identity for a sum of Green’s functions. First
of all, we easily derive the following lemma from standard elliptic theory:

Lemma 4.3. Let Q be a smooth bounded domain in R3. Let y € Q and let g be a weak
solution in HY(Q) of

h
Ag+hg=———"— inQ.
w2 |x — y|
Then g is continuous and can be written as
h(y) .
g(x) —g(y)+—|x—y|+1/y(X) in §2 (4.8)

where yy, € C(Q) satisfies yy(y) =0.

Applying the decomposition lemma to Green’s functions, we get the following PohoZzaev
identity for their regular parts.

Lemma 4.4. Let Q be a smooth bounded domain in R3, star-shaped with respect to 0,

and let h € CY(Q) satisfy (0.2). Let Gy, be the Green function of A + h. Let also N € N*,
X1, ... XN € 2, A1, ..., AN SOome positive real numbers and

N
G(x) =Y 1Gn(x,x).
i=1

Then, using Lemma[.3] we write G in a neighbourhood of x; as

Ai h(x;)
G(x) = ———— 4+ mj + A ——|x — xi| + yi(x)
wy|x — xi| 2

where m; € R and y; € clQ) satisfies y;(0) = 0. Then

N
Z)Lz m; + 2(x;, V)/x,(xz))) <0.
i=1



1148 Olivier Druet, Paul Laurain

Proof. We let § > 0 be such that the B(x;, §) are disjoint and do not intersect the bound-
ary of 2 and we set

N
Qs =\ JBxi. o).
i=1
Multiplying the equation satisfied by G by (x, VG), after some integrations by parts we
obtain

/ <1<x, Vh) + h) G*dx
Qs 2

zf <l(x,v>(|VG|2+hG2)—((X,VG)+1G)avG>dU
a1 \2 2

ul 1 5 5 1
-> (0, V(IVG* + hG?) — [ (x,VG) + =G )8,G ) do
151 JoB0.0) \2 2

where v denotes the outer normal to 9€2 and to d B(x;, §) respectively. Noting that G = 0
on 02, we have

f <1<x, W(IVGP +hG?) — <(x, VG) + 1G)avc;) do
sa \2 2
= _1/ (x,V)|VG*do <0
2 Jag

since €2 is star-shaped. Since & satisfies (0.2), we arrive at

ul 1 5 5 1
§ / =(x,V)(IVG]* + hG?) — | (x, VG) + =G )3,G | do < —Cy
i=1 Y 0B(x,0) 2 2

where Cy is independent of §. It is easily checked that
/ (x,1)hG*do — 0 ass — 0.
3B(x;,8)

In order to estimate the remaining terms, we write

1 1
/ <—(x,v)|VG|2— <(x,VG)+—G>8UG) do
3B(x;.8) \2 2
1 1
=/ (—(x—x,-,u>|VG|2— ((x—xi,VG)—i——G)BvG) do
IB(x;,8) \2 2

1
+/ (—(Xi, WIVG? = (x, VG)E)VG) do.
3B (x;,8) \2

Then, thanks to the expansion of G in a neighbourhood of x;, one can easily check that

1 1 Ai
/ (—(x—xi,v)|VG|2—<(x—xi,VG)+—G>8vG)da—> iy
3B(x;,8) \ 2 2 2
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and :
/ (—(Xi, WIVG — (xi, VG>8UG) do — Xi{xi, Vyy, (xi))
9B(x,8) \ 2
as § — 0. Combining the above results gives the desired inequality. O
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