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Abstract. In this paper we generalize Zak’s theorems on tangencies and on linear normality as well
as Zak’s definition and classification of Severi varieties. In particular we find sharp lower bounds for
the dimension of higher secant varieties of a given variety X under suitable regularity assumptions
on X, and we classify varieties for which the bound is attained.
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Introduction

Let X ⊂ Pr be an irreducible, projective, non-degenerate variety of dimension n. For any
non-negative integer k one can consider the k-secant variety of X, which is the Zariski
closure in Pr of the union of all k-dimensional subspaces of Pr that are spanned by k +
1 independent points of X. Secant varieties are basic projective invariants related to a
given variety X and their understanding is of primary importance in the study of the
geometry and topology of X. As such, they have been, for more than a century, the object
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of important research in algebraic geometry. For instance, the classification of defective
varieties, i.e. the ones for which some secant variety has dimension smaller than expected,
goes back to several classical authors, like Terracini [25], Palatini [18], [19], and Scorza
[22], [23] to mention but a few. For recent developments on this classical theme see [5],
[6], [7] and the basic reference [27].

In more recent times the interest in the geometry of projective varieties has been
revived by Zak’s epochal work (see [27]). Specifically, Zak first proved his so-called
theorem on tangencies, a basic tool which, although very classical in spirit, completely
escaped the consideration of the classics. This theorem was used by Zak to prove a sharp
lower bound for the dimension of the first secant variety to a smooth variety X, as well as
the classification of those varieties achieving the bound, i.e. the so-called Severi varieties.

In this paper we present an extension of these results of Zak’s. Namely we first extend
the theorem on tangencies, then we provide, under suitable regularity assumptions on a
variety X, a lower bound for the dimension of its higher secant varieties, and finally we
classify the varieties for which the bound is attained.

To be specific, we introduce in §5 the notion of Jk-tangency extending the concept of
J -tangency which is one of the cornerstones of Zak’s theorem on tangencies. The notion
of Jk-tangency is crucial for us, so we devote to it, and to related concepts, all §5. In §6 we
prove Theorem 6.1, which is the announced generalization of the theorem on tangencies.
In §7 we prove our extension of Zak’s theorem on linear normality, i.e. Theorem 7.5
providing a sharp lower bound for the dimension of the k-secant variety to varieties having
a suitable tangential behaviour which we call Rk-property, where R stands for regularity
(see Definition 5.5). Basic tools in the proof are the generalized theorem on tangencies, as
well as a few basic facts about secant varieties, defects and contact loci, which we present
in §§2 and 3.

Notice that, without suitable regularity assumptions, it seems quite unlikely to get
good bounds for the dimension of higher secant varieties. Examples, together with a nice
account of the general theory, can be found in [17], where several partial results are given.

In §8 we define k-Severi varieties as the irreducible Rk-varieties for which the bound
in the extended theorem on linear normality is attained. Smoothness is not required in
the definition. However we prove that k-Severi varieties are smooth (see Theorem 8.7).
The classification of k-Severi varieties is given in Theorem 8.3. The main point here
is to observe that k-Severi varieties are Scorza varieties in the sense of Zak (see [27,
Chapter VI]). Then our classification theorem follows from Zak’s classification of Scorza
varieties in [27]. However, a crucial point here is the smoothness of certain contact loci
(ensured by Lemma 8.5 and Claims 8.9 and 8.12 in the proof of Theorem 8.7), which is
essential in Zak’s analysis of Scorza varieties. It is well known that strong motivations
for Zak’s work have been Hartshorne’s conjectures. One of them, Hartshorne’s Conjec-
ture 7.2 on linear normality, has been proved by Zak. The other (see Conjecture 9.1) is
still unsolved. In §9 we speculate on a possible extension of this conjecture which may
be suggested by the results of the present paper.

We want to finish by observing that, besides the intrinsic interest of the subject, defec-
tive varieties, or more generally properties of secant varieties, are relevant also in other
fields of mathematics, such as expressions of polynomials as sums of powers, Waring
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type problems, polynomial interpolation, rank tensor computations and canonical forms,
Bayesian networks, algebraic statistics etc. (see [9] as a general reference, [4], [13], [15],
[20]). This classical subject is therefore still very lively and widely open to future re-
search.

1. Preliminaries and notation

We work over the field C of complex numbers and we consider the projective space
Pr = PrC, equipped with the tautological line bundle OPr (1).

If Y ⊂ Pr is a subset, we denote by 〈Y 〉 the span of Y . We say that Y is non-degenerate
if 〈Y 〉 = Pr . A linear subspace of dimension n of Pr will be called an n-subspace of Pr .

Given a subscheme X ⊂ Pr , IX will denote its homogeneous ideal and IX the ideal
sheaf of X.

Let X ⊆ Pr be a scheme. By a general point of X we mean a point varying in
some dense open Zariski subset of some irreducible component of X. We will denote
by dim(X) the maximum of the dimensions of the irreducible components of X. We
will often assume that X is pure, i.e. all the irreducible components of X have the same
dimension. If X is projective, reduced and pure, we will say it is a variety.

Let X ⊂ Pr be a variety. We will denote by Sing(X) the closed Zariski subset of
singular points of X. Let x ∈ X − Sing(X) be a smooth point. We will denote by TX,x
the embedded tangent space to X at x, which is an n-subspace of Pr (n = dim(X)). More
generally, if x1, . . . , xk are smooth points of X, we will set

TX,x1,...,xk =

〈 k⋃
i=1

TX,xi

〉
.

We will denote by Vn,d the d-Veronese variety of Pn, i.e. the image of Pn via the
d-Veronese embedding

vn,d : Pn→ Pr , r =

(
n+ d

d

)
− 1.

Given positive integers 0 < m1 ≤ · · · ≤ mh we will denote by Seg(m1, . . . , mh)

the Segre variety of type (m1, . . . , mh), i.e. the image of Pm1 × · · · × Pmh in Pr , r =
(m1 + 1) . . . (mh + 1)− 1, via the Segre embedding

sm1,...,mh : Pm1 × · · · × Pmh → Pr .

Let 0 ≤ a1 ≤ · · · ≤ an be integers and set P(a1, . . . , an) := P(OP1(a1) ⊕ · · · ⊕

OP1(an)). Set r = a1 + · · · + an + n− 1 and consider the morphism

φa1,...,an : P(a1, . . . , an)→ Pr

defined by the sections of the line bundleOP(a1,...,an)(1). We denote the image of φa1,...,an

by S(a1, . . . , an). As soon as an > 0, the morphism φa1,...,an is birational to its image.
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Then the dimension of S(a1, . . . , an) is n, its degree is a1 + · · · + an = r − n + 1 and
S(a1, . . . , an) is a rational normal scroll, which is smooth if and only if a1 > 0.

We will denote by G(m, n) the Grassmann variety of m-subspaces in Pn, embedded
in Pr , r =

(
n+1
m+1

)
− 1, via the Plücker embedding.

For all integers k ≥ 1, we will denote by Sk the k-spinor variety, which parametrizes
the family of (k − 1)-subspaces contained in a smooth quadric of dimension 2k − 1. The
variety Sk is smooth, of dimension

(
k+1

2

)
, and its Picard group is generated by a very

ample divisor which embeds Sk in P2k−1.

2. Joins, secant varieties and defects

Let X0, . . . , Xk be varieties in Pr . The join J (X0, . . . , Xk) of X0, . . . , Xk is the closure
in Pr of the set

{x ∈ Pr : x lies in the span of k + 1 independent points pi ∈ Xi, 0 ≤ i ≤ k}.

We will use the exponential notation J (Xm1
1 , . . . , X

mh
h ) if Xi is repeated mi times, 1 ≤

i ≤ h. If X0, . . . , Xk are irreducible, their join is also irreducible. The definition is inde-
pendent of the order of X0, . . . , Xk and one has

dim(J (X0, . . . , Xk)) ≤ min
{
r, k +

k∑
i=0

dim(Xi)
}
.

The right hand side is called the expected dimension of the join.
If X is irreducible of dimension n, we will set Sk(X) = J (Xk+1), and we will call

Sk(X) the k-secant variety of X. This is an irreducible variety of dimension

s(k)(X) := dim(Sk(X)) ≤ min{r, n(k + 1)+ k} =: e(k)(X). (2.1)

Again, the right hand side is called the expected dimension of Sk(X).
IfX is reducible of dimension n, then J (Xk+1) is in general reducible and not pure. In

this case, we consider the union of all joins J (X0, . . . , Xk), whereX0, . . . , Xk are distinct
irreducible components of X. It is convenient for us to denote this by Sk(X) and call it
the k-secant variety of X. With this convention, formula (2.1) still holds. The varieties X
we will be considering next, even if reducible, will have the property that Sk(X) is pure.
We will therefore often make this assumption.

One says that X is k-defective when strict inequality holds in (2.1). One calls

δk(X) := e(k)(X)− s(k)(X)

the k-secant defect of X. There is however a slightly different concept of k-defect, which
will be useful for us, i.e. the concept of k-fibre defect fk(X), defined as

fk(X) = (k + 1)n+ k − s(k)(X). (2.2)

Notice that fk(X) = δk(X) if r ≥ (k + 1)n + k, while otherwise fk(X) = δk(X) +

(k + 1)n+ k − r , thus fk(X) can be positive even if δk(X) = 0.
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Remark 2.1. The reason for the name fibre defect is the following. Assume Sk(X) is
pure. Then fk(X) equals the dimension of the family of (k + 1)-secant k-spaces to X
passing through a general point of Sk(X).

Indeed, consider the abstract secant variety Sk(X) which is the union of the closures
of the sets

{(p0, . . . , pk, x) ∈ X0 × · · · ×Xk × Pr : x ∈ 〈p0, . . . , pk〉 ' Pk}

with X0, . . . , Xk distinct irreducible components of X. Then the image of the projection
p : Sk(X)→ Pr is Sk(X) and fk(X) is the dimension of a general fibre of p. Hence one
may have fk(X) > 0 even if X is not k-defective: this happens when Sk(X) = Pr and
r < (k + 1)n+ k.

We will use abbreviated notation like s(k), e(k), δk, fk instead of s(k)(X), e(k)(X),
δk(X), fk(X) if there is no danger of confusion. Also, we may drop the index k when
k = 1.

3. Secant varieties and contact loci

IfX0, . . . , Xk are projective varieties in Pr , then Terracini’s Lemma describes the tangent
space to their join at a general point of it (see [25] or, for modern versions, [1], [5], [8],
[10], [27]).

Theorem 3.1. Let X0, . . . , Xk be varieties in Pr . If pi ∈ Xi , 0 ≤ i ≤ k, are general
points and x ∈ 〈p0, . . . , pk〉 is a general point, then

TJ (X0,...,Xk),x = 〈TX0,p0 , . . . , TXk,pk 〉.

In particular, if X ⊂ Pr is an irreducible, projective variety, and if p0, . . . , pk ∈ X are
general points and x ∈ 〈p0, . . . , pk〉 is a general point, then

TSk(X),x = TX,p0,...,pk .

We recall a useful consequence of Terracini’s Lemma, which is well known in the irre-
ducible case (see [27, p. 106]). The easy proof can be left to the reader.

Proposition 3.2. Let X ⊂ Pr be a non-degenerate variety. If we have dim(J (Xk)) =
dim(J (Xk+1)) then J (Xk) = Pr . Similarly, if dim(Sk(X)) = dim(Sk−1(X)), then
Sk(X) = Pr .

Given a variety X ⊂ Pr of dimension n, the Gauss map of X is the rational map

gX : X 99K G(n, r)

defined at the smooth points of X by mapping x ∈ X−Sing(X) to TX,x . It is well known
that if x ∈ X is a general point, then the closure of the fibre of gX through x is a linear
subspace 0X,x of Pr .
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Definition 3.3. In the above setting, 0X,x is called the general Gauss fibre of X and its
dimension the tangential defect of X, denoted by t (X). We will set tk(X) = t (Sk(X)).

Note that if X is smooth, then t (X) = 0 (see [27]).
Let X ⊂ Pr be a non-degenerate variety such that s(k)(X) < r . Terracini’s Lemma

implies that tk(X) ≥ k. More precise information about tk(X) will be provided in a while.
First we are going to introduce a few remarkable families of subvarieties of X related
to Sk(X).

Given a general point x ∈ Sk(X), i.e. x ∈ 〈p0, . . . , pk〉, with p0, . . . , pk ∈ X general
points, consider the Zariski closure of the set

{p ∈ X − Sing(X) : TX,p ⊆ TSk(X),x}.

We denote by 0p0,...,pk the union of all irreducible components of this locus containing
p0, . . . , pk , and by γk(X) its dimension, which clearly does not depend on p0, . . . , pk .
Note that 0p0,...,pi ⊆ 0p0,...,pk for all i = 1, . . . , k. We set

5p0,...,pk = 〈0p0,...,pk 〉.

We will use the abbreviated notation 0k,5k, γk if no confusion arises. Note that 5k
contains 〈p0, . . . , pk〉, hence it contains x.

Definition 3.4. In the above setting, we will call 0p0,...,pk the tangential k-contact locus
of X at p0, . . . , pk . We will call γk(X) the k-tangential defect of X.

Let X⊂Pr be an irreducible, projective variety as above and let again p0, . . . , pk ∈X

be general points. Consider the projection of X with centre TX,p1,...,pk . We call this a
general k-tangential projection of X, and we denote it by τX,p1,...,pk , or τp1,...,pk , or τk .
We denote its image by Xp1,...,pk , or simply Xk . By Terracini’s Lemma, the map τk is
generically finite to its image if and only if s(k)(X) = s(k−1)(X)+ n+ 1.

Definition 3.5. Let p0 ∈ X be a general point. Let9p0,...,pk be the component of the fibre
of τX,p1,...,pk containing p0. We will denote it by 9k if no confusion arises. It is called
the projection k-contact locus of X at p0, . . . , pk and we will denote by ψk(X), or ψk ,
its dimension, which is independent of p0, . . . , pk . This will be called the projection k-
defect.

Remark 3.6. Notice that 0p0,...,pk contains 9p0,...,pk . Indeed TX,p0,...,pk projects, via τk ,
to the tangent space of Xk at the point τk(p0), thus it is tangent along the component of
the fibre containing p0. In particular we get γk ≥ ψk . Equality holds if and only if the
Gauss map of Xk is generically finite to its image, which is equivalent to being birational
to its image.

One has 9p0,...,pi ⊆ 9p0,...,pk for all i = 1, . . . , k.
One of the main consequences of Terracini’s Lemma is that if X is k-defective, then

ψk > 0, so that γk is also positive.

Other relevant items related to the secant variety Sk(X) are the so called entry loci.
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Definition 3.7. Let x ∈ Sk(X) be a point. We define the entry locus Ek,x of x with
respect to X as the closure of the set

{z ∈ X : there is x′ ∈ Sk−1(X) with x′ 6= z and x ∈ 〈z, x′〉}.

Alternatively, consider the fibre Fx of p : Sk(X) → Sk(X) over x. The entry locus
Ek,x is the image of Fx under the projection p1 : Sk(X)→ X to the first factor.

If x ∈ Sk(X) is a general point, we may denote Ek,x simply by Ek .

Next we can provide interesting information about the k-contact loci.

Lemma 3.8. Let X⊂Pr be an irreducible, non-degenerate variety such that s(k)(X)<r .
If p0, . . . , pk ∈ X are general points and q0, . . . , qk are general points on 0p0,...,pk such
that qi specializes to pi for all i = 0, . . . , k, then 0p0,...,pk = 0q0,...,qk .

Proof. One has TX,qi ⊂ TSk(X),x = TX,p0,...,pk for all i = 0, . . . , k, thus TX,q0,...,qk =

TX,p0,...,pk . This immediately implies the assertion. ut

Proposition 3.9. Same hypotheses as in Lemma 3.8. Then:

(i) 0p0,...,pk is smooth at p0, . . . , pk; moreover it is either irreducible or consists of
k + 1 irreducible components of the same dimension γk , each containing one of the
points p0, . . . , pk as its general point;

(ii) fi(0k) = fi(X) for all i = 1, . . . , k;
(iii) 5k = Sk(0k) equals the general Gauss fibre 0Sk(X),x of Sk(X), whereas Si(0k)
6= 5k for all i = 1, . . . , k − 1;

(iv) tk(X) = dim(5k) = kγk + k + γk − fk(X).

Proof. Part (i) follows from Lemma 3.8 and from monodromy on the general points
p0, . . . , pk (see [7]).

Let us prove (ii). We assume 0k = 0p0,...,pk is irreducible, otherwise the same argu-
ment works. Let x ∈ 〈p0, . . . , pk〉 be a general point of Sk(X). Let also q0, . . . , qi be
general points on 0k and let y ∈ 〈q0, . . . , qi〉 be a general point of Si(0k). By the gen-
erality assumption on p0, . . . , pk , also q0, . . . , qi are general points on X, hence y is a
general point of Si(X).

Since q0, . . . , qi are in 0k , we have TSi (X),y = TX,q0,...,qi ⊂ TSk(X),x . Moreover, we
have an fi(X)-dimensional family of (i + 1)-secant i-spaces to X passing through y. Let
〈r0, . . . , ri〉 be a general element of such a family, with r0, . . . , ri ∈ X. Then TX,r0,...,ri =
TSi (X),y ⊂ TSk(X),x , which shows that r0, . . . , ri ∈ 0k . This implies (ii).

Let us prove (iii). We have Sk(0p0,...,pk ) ⊆ 5p0,...,pk ⊆ 0Sk(X),x . Let y be a general
point of 0Sk(X),x , hence y ∈ 〈q0, . . . , qk〉with q0, . . . , qk ∈ X. Since TSk(X),y = TSk(X),x ,
we have q0, . . . , qk ∈ 0p0,...,pk , thus y ∈ Sk(0p0,...,pk ). This proves the first assertion.
If Si(0k) = 5k for some i < k, then we would have Si(X) = Sk(X), contradicting
Sk(X) 6= Pr (see Proposition 3.2).

Part (iv) easily follows. ut
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Remark 3.10. It is useful to notice that the k-contact loci are responsible for the k-fibre
defect of X. In fact Proposition 3.9 tells us that they have the same k-fibre defect of X
and through k + 1 general points of X there is one of them passing.

Moreover, by applying Proposition 3.9 for all positive integers i < k, one sees that
Si(0i) is the linear subspace 5i , which is also the general Gauss fibre of Si(X), and
ti(X) = iγi + i + γi − fi(X).

The next proposition shows an important relation between fibre and projection de-
fects.

Proposition 3.11. LetX ⊂ Pr be an irreducible variety of dimension n such that s(k)(X)
< r . Then

fi = ψ1 + · · · + ψi, ∀i ≤ k.

The same holds if X is reducible but S(k)(X) is pure and s(k)(X) < r .

Proof. The proof is by induction on i. The case i = 1 is an immediate consequence of
Terracini’s Lemma.

Suppose i > 1. Consider the general i-tangential projection τi of X from TX,p1,...,pi .
One has dim(Xi) = n − ψi and the general tangent space to Xi is the projection of
TX,p0,p1,...,pi , p0 being a general point ofX. We have dim(TX,p0,p1,...,pi ) = in+i+n−fi
and dim(TX,p1,...,pi ) = in+ i−1−fi−1. Hence n−ψi = n−fi+fi−1, and the assertion
follows by induction. ut

Corollary 3.12. In the above setting, for all i = 1, . . . , k, fix general points p1, . . . , pi
in 0k . Then the general projection i-contact locus of 0k coincides with 9i . In particular
ψi(0k) = ψi(X).

Proof. Note that T0k,p1,...,pi ⊆ TX,p1,...,pi∩5k . Moreover TX,p1,...,pi does not contain 0k ,
otherwise it would contain the whole of X, since p0 ∈ 0k is a general point of X. There-
fore it makes sense to consider the restriction to 0k of the i-tangential projection τX,i ,
which factors through the i-tangential projection τ0k,i . This implies thatψi(0k) ≤ ψi(X).
By Propositions 3.11 and 3.9(ii), equality has to hold for all i = 1, . . . , k and the assertion
follows. ut

Useful information about the entry loci is provided by the following:

Proposition 3.13. Let X ⊂ Pr be an irreducible variety with s(k)(X) < r . Then Ek is
pure of dimension ψk. The same holds ifX is reducible and Sk−1(X) and Sk(X) are pure.

Proof. Let x ∈ Sk(X) be a general point. The fibre Fx of p : Sk(X) → Sk(X) over
x is pure of dimension fk . The projection to the first factor yields a dominant map q :
Fx → Ek,x . Let z be a general point in a component of Ek,x , and let Fx,z be the fibre
of q over z. Let ξ = (z, p1, . . . , pk, x) be a general point in a component Z of Fx,z.
Note that 〈p1, . . . , pk〉 is a (k − 1)-space intersecting the line 〈x, z〉 at a point p. By
Proposition 3.2, the point p does not depend on ξ . Moreover one sees that, for x and z
general, p is a general point in Sk−1(X). Hence we have a map

Z 99K Sk−1(X), ξ 7→ (p1, . . . , pk, p),
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which is birational to its image, and this, in turn, is a component of the fibre of Sk−1(X)

→ Sk−1(X) over p. This shows that any componentZ of Fx,z has dimension fk−1. Hence
any component of Ek,x has dimension fk − fk−1 = ψk (see Proposition 3.11). ut

A different proof of Proposition 3.13 follows from Proposition 2.2 of [16], which asserts
that 9k can be seen as a degeneration of Ek .

Remark 3.14. Terracini’s Lemma implies that for x ∈ Sk(X) general and for a general
point z ∈ Ek,x , one has TX,z ⊆ TSk(X),x . Hence Ek,x is contained in the tangential k-
contact locus 0p0,...,pk for all p0, . . . , pk ∈ Ek,x which are smooth points of X and such
that x ∈ 〈p0, . . . , pk〉. Again we deduce ψk ≤ γk .

We finish by recalling the following well known subadditivity theorem by Palatini–
Zak, whose proof is an application of the previous results (see [27, Chapter V, Proposition
1.7 and Theorem 1.8]). One more piece of notation before that. Let X ⊂ Pr be an irre-
ducible, non-degenerate variety. We set

k0 := k0(X) = min{k ∈ N : Sk(X) = Pr}.

Theorem 3.15. Let X ⊂ Pr be a smooth, irreducible, non-degenerate variety of dimen-
sion n. Then

(i) ψ1 ≤ · · · ≤ ψk0 ≤ n;
(ii) ψk ≥ ψk−1 + ψ1 for all k ≤ k0.

From Theorem 3.15 one deduces

ψk ≥ kψ1, ∀k ≤ k0. (3.1)

Definition 3.16 (see [27, Chapter VI, Proposition 1.2]). A smooth, irreducible, non-
degenerate variety X ⊂ Pr of dimension n with ψ1 > 0 is called a Scorza variety if
equality holds in (3.1) and in addition k0 = [n/ψ1].

The classification of Scorza varieties is contained in [27, Chapter VI].

Remark 3.17. If X is smooth, and the general entry locus E1 is a quadric, then E1 is
smooth (see [11, pp. 964–965]). To the best of our knowledge, there is no argument for
the smoothness of the general entry locus Ek , though in [27, p. 123], this is claimed to be
a consequence of “usual general position arguments” which we are unable to understand.
The classification of Scorza varieties in [27] seems to depend on this assertion, which is
however false, in its full generality, as the following example shows.

Example 3.18. Consider the scroll X = S(1, h) ⊂ Ph+2 with h ≥ 4. Let L be the line
directrix of X. For all k ≥ 1, Sk(X) is the cone with vertex L over Sk(Y ), with Y a
rational normal curve in an h-space 5′ which is skew with L. Therefore

s(k)(X) = 2k + 3 < h+ 2

as soon as k < (h − 1)/2, and X is k-defective if k ≥ 2. In this case it is not difficult to
see that Ek is formed by k + 1 general rulings of X plus the line L.
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4. Zak’s theorem on tangencies

Zak’s theorem on tangencies is a basic tool for the study of projective varieties and their
secant varieties (see [26], [27]). It says that if a linear space L in Pr is tangent to a smooth,
pure variety X ⊂ Pr along a subvariety Y , then

dim(L) ≥ dim(X)+ dim(Y ). (4.1)

Zak’s original formulation in [26] is more general, inasmuch as it also applies to
singular varieties X: in this case the dimension of the singular locus ofX enters into play.
On the other hand, as proved in Zak’s book [27], formula (4.1) also works for singular
varieties X, provided one takes the right definition of tangency at singular points. Let us
recall this definition.

Definition 4.1. Let X be a variety, L a linear subspace of Pr , and Y a subvariety of X
contained in L. One says that L is J -tangent to X along Y if the following holds. Let
{(q0(t), q1(t))}t∈1 be any analytic curve inX×Y parametrized by the unitary disc1 and
such that:

(i) q0(t) 6∈ L for any t ∈ 1− {0};
(ii) q0(0) ∈ L.

Then the flat limit of the line 〈q0(t), q1(t)〉 lies in L.

Remark 4.2. In point (ii) of Definition 4.1 one may equivalently ask that q0(0) ∈ Y .
Indeed, if q0(0) ∈ L but not in Y , then it is clear that the flat limit of the line 〈q0(t), q1(t)〉

lies in L, since q1(0) ∈ Y and q0(0) 6= q1(0).
If L is J -tangent to X along Y , then it is also J -tangent to X along any subvariety Z

contained in Y .
If L is J -tangent toX along Y , then L is J -tangent to any irreducible component ofX

along any irreducible component of Y .
If L is J -tangent to X along Y , and Z is a subvariety of X containing Y but not

contained in L, then L is also J -tangent to Z along Y .

If X is smooth along Y , being J -tangent is equivalent to the condition that L contains
the tangent space TX,y toX at a general point y ∈ Y . IfX is singular at some point y ∈ Y ,
J -tangency imposes further restrictions on L.

Example 4.3. IfX ⊂ Pr is a non-degenerate cone with vertex v, then no proper subspace
of Pr can be J -tangent to X along a subvariety containing v.

The notion of J -tangency provides a suitable setting for a general formulation of
Zak’s theorem on tangencies valid for singular varieties.

Theorem 4.4 (Zak’s theorem on tangencies). Let X ⊂ Pr be a variety. If a linear space
L of Pr is J -tangent to X along a subvariety Y , then (4.1) holds.

It is well known that this theorem is sharp.
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Example 4.5. There are smooth surfaces X in P4 with a hyperplane H tangent to X
along a curve. An example is the projection X to P4 of the Veronese surface V2,2 in P5

from a general point p ∈ P5.
In fact, the Veronese surface has a 2-dimensional system of conics and there is a

hyperplane tangent to V2,2 along each conic. Hence, there is a 1-dimensional system of
these tangent hyperplanes passing through the centre of projection p. Such hyperplanes
project down to P4 to hyperplanes of P4 which are tangent to X along the corresponding
conics.

To be more specific, let Y be any conic on X. Consider the pencil of hyperplanes
containing Y . This pencil cuts out on X, off Y , a pencil of conics having a base point y.
There is a hyperplane tangent to X along Y if and only if y ∈ Y .

Since the map associating y to Y is a projective transformation ω : (P2)∗ → P2, the
locus of points y ∈ X belonging to the corresponding conic Y describes a conic in P2 and
therefore a rational normal quartic on X.

Although sharp, Zak’s theorem can be improved, as we shall see. To do this, we first
have to extend the notion of J -tangency. We will do this in the next section.

5. The notion of Jk-tangency

In order to improve Zak’s theorem on tangencies, we need to extend the concept of J -
tangency.

Definition 5.1. Let X, L and Y be as in Definition 4.1. Let k be a positive integer such
that dim(〈Y 〉) ≥ k− 1. One says that L is Jk-tangent to X along Y if the following holds.
Let {(q0(t), q1(t), . . . , qs(t))}t∈1, with 1 ≤ s ≤ k, be any analytic curve in X × Y s

parametrized by the unitary disc 1 and such that:

(i) (q0(t), . . . , qs(t)) are linearly independent for any t ∈ 1− {0};
(ii) q0(t) 6∈ L for any t ∈ 1− {0};

(iii) q0(0) ∈ L.

Then the flat limit of the s-space 〈q0(t), q1(t), . . . , qs(t)〉 as t → 0 lies in L.

Remark 5.2. Of course J1-tangency is J -tangency. Remark 4.2 can be repeated verbatim
replacing J -tangency with Jk-tangency.

In particular, in point (iii) of Definition 5.1 one may equivalently ask that q0(0) ∈
J (Y s) ∩ X. Indeed, if q0(0) lies in L but not on J (Y s) ∩ X, then the flat limit of the
s-space 〈q0(t), q1(t), . . . , qs(t)〉 as t → 0 lies in L, since it is spanned by the flat limit 5
of the (s − 1)-space 〈q1(t), . . . , qs(t)〉, which lies in L, and by q0(0) which lies in L and
not on 5.

Finally Jk-tangency implies Jh-tangency for all h < k, but the converse does not hold.

Example 5.3. Let us go back to Example 4.5, from which we keep the notation. Consider
a hyperplane H tangent, and therefore J -tangent, to X along a conic Y . Let us show that
H is not J2-tangent to X along Y . Let 5 = 〈Y 〉 and let y ∈ Y be as in Example 4.5.
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Note that all hyperplanes through 5 cut on X a curve of the form Y + Z, with Z a
conic through y. This shows that 5 = TX,y . Take a general conic Z on X through y.
Set 5′ = 〈Z〉. Then 5 ∩ 5′ is a line ` which is the tangent line to Z at y and is also a
general line in 5 through y. Let x be the intersection of ` with Y other than y. Consider
an analytic parametrization p(t) of Z around y, so that p(0) = y ∈ Y , and consider the
analytic curve (p(t), x, y) inX×Y 2. Then the 2-space 〈p(t), x, y〉 = 5′ does not depend
on t , and therefore its limit is 5′, which does not lie in H .

The notion of Jk-tangency will play a crucial role below. Let us add a couple of related
definitions.

Definition 5.4. LetX ⊂ Pr be variety, Y a subvariety ofX and let k be a positive integer.
We say that X is k-smooth along Y if X is smooth along Y and any subscheme Z of X of
finite length s ≤ k + 1 supported at Y spans a linear space of dimension s − 1. We say
that X is k-smooth if it is k-smooth along X.

Definition 5.5. Let X ⊂ Pr be a variety such that s(k)(X) < r . We will say that X
enjoys the Rk-property (or briefly that X is an Rk-variety) if the following holds. For
any i = 1, . . . , k and general points p0, . . . , pi , taken in different components of X if X
is reducible, the general hyperplane tangent to X at p0, . . . , pi is Ji-tangent to X along
0p0,...,pi .

Remark 5.6. (a) The notion of k-smoothness is hereditary, i.e., if X is k-smooth
along Y , then X is k-smooth along any subvariety Z of Y .

(b) The notion of k-smoothness coincides with OX(1) being k-very ample (see [3]). It
can also be rephrased as follows: X is k-smooth along Y if there is no linear space
L of dimension s < k containing a subscheme Z of X of finite length ` ≥ s + 2
supported at Y .
Note that k-smoothness is a rather rigid notion. For example a smooth variety con-
taining a line is not k-smooth for any k ≥ 2. On the other hand, if X is smooth, its
d-tuple Veronese embedding, with d ≥ k + 1, is k-smooth.

Next we will show a relationship between the notions of k-smoothness and Jk-tan-
gency.

Lemma 5.7. Let X ⊂ Pr be a variety, and Y a subvariety of X. Assume that
X is smooth along Y and let L be a linear space tangent to X along Y . Let
{(q0(t), q1(t), . . . , qs(t))}t∈1 be an analytic curve inX×Y s parametrized by the unitary
disc 1 such that q0(t), q1(t), . . . , qs(t) are distinct for t ∈ 1 − {0} and q0(0) ∈ L. Let
Z0 be the flat limit of the reduced 0-dimensional scheme corresponding to the 0-cycle
Zt = q0(t)+ q1(t)+ · · · + qs(t). Then Z0 is contained in L.

Proof. Let Z be the limit of the 0-dimensional scheme corresponding to the 0-cycle
q1(t) + · · · + qs(t). Note that Z sits in Y and therefore in L. The degrees of Z and
Z0 differ by 1. If Z and Z0 do not share the same support, then the assertion is clear. If
Z and Z0 have the same support, then q0(0) ∈ Y . Moreover the ideal sheaves of Z and
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Z0 behave as follows: for any point p of the common support one has IZ0,p ⊆ IZ,p

and the inclusion is strict only at one point q, where IZ,q/IZ0,q = C. This corresponds
to a single condition imposed on functions in IZ,q in order to have functions in IZ0,q .
This is clearly a tangential condition, i.e. the functions in IZ,q , in order to be in IZ0,q ,
are required to be annihilated by the differential operator corresponding to the tangent
vector to the branch of the curve {q0(t)}t∈1 at t = 0. Since L is tangent to X along Y ,
this condition is satisfied by the equations of L as well, proving the assertion. ut

Proposition 5.8. Let X ⊂ Pr be a variety, and Y a subvariety of X. Assume that X is
k-smooth along Y . Then a linear space L is Jk-tangent to X along Y if and only if it is
tangent to X along Y .

Proof. Assume L is tangent to X along Y . Let {(q0(t), q1(t), . . . , qs(t))}t∈1, with 1 ≤
s ≤ k, be any analytic curve in X × Y s as in Definition 5.1.

Suppose the limit 50 of the s-space 5t = 〈q0(t), q1(t), . . . , qs(t)〉 does not lie in L.
Then 50 ∩ L would be a linear space of dimension t < s containing the scheme Z0 (see
Lemma 5.7). This contradicts the k-smoothness assumption. ut

Remark 5.9. The converse of Proposition 5.8 does not hold, i.e. there are varieties which
are k-regular but not k-smooth. For example, the Segre variety Seg(n, n), with n ≥ 3, is
not 2-smooth because it contains lines, hence also triples of collinear points, but it is an
Rn−1-variety (see Example 5.14 below).

Next we point out a couple of easy lemmata.

Lemma 5.10. Let X, Y, k be as in Definition 5.4. Let L be a linear space which is Jk-
tangent to X along Y . Fix a point p /∈ Sk(X) and let π be the projection from p. Then
L′ = π(L) is Jk-tangent to X′ = π(X) along Y ′ = π(Y ).

Proof. Let {(q0(t), q1(t), . . . , qs(t))}t∈1, with 1 ≤ s ≤ k, be an analytic curve as in
Definition 5.1. Then the limit 5 of the s-space 〈q0(t), q1(t), . . . , qs(t)〉 as t → 0 lies
in L and does not contain p.

Consider the curve {(π(q0(t)), π(q1(t)), . . . , π(qs(t)))}t∈1 in X′ × Y ′s . It enjoys
properties (i)–(iii) of Definition 5.1 with Y,L replaced by Y ′, L′. The limit of the s-space
〈π(q0(t)), π(q1(t)), . . . , π(qs(t))〉 is the projection of 5 from p, hence it is an s-space
contained in L′. On the other hand, any curve in X′ × Y ′s enjoying properties (i)–(iii) of
Definition 5.1 with Y,L replaced by Y ′, L′ can be obtained in this way. ut

Lemma 5.11. Let X, Y, k be as in Definition 5.4 with k ≥ 2. Let L be a linear space
which is Jk-tangent to X along Y . Let p be a point on Y and let π be the projection
from p. Then L′ = π(L) is Jk−1-tangent to X′ = π(X) along Y ′ = π(Y ).

Proof. Suppose the assertion is not true. Then we can find an analytic curve {(q0(t), . . . ,

qs(t))}t∈1, with 1 ≤ s ≤ k− 1, in X′× Y ′s satisfying (i)–(iii) of Definition 5.1 with Y,L
replaced by Y ′, L′, and such that the limit 5′ of the s-space 〈q0(t), q1(t), . . . , qs(t)〉 as
t → 0 does not lie in L′. By slightly perturbing this curve if necessary, we may assume
that it can be lifted to an analytic curve {(p0(t), . . . , ps(t))}t∈1 in X×Y s . Consider then
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the analytic curve {(p0(t), . . . , ps(t), ps+1(t))}t∈1 in X × Y s+1, with ps+1(t) indepen-
dent of t and equal to p. This curve satisfies (i)–(iii) of Definition 5.1 and therefore the
limit 5 of the (s + 1)-space 〈p0(t), . . . , ps(t), p〉 as t → 0 lies in L. But then its projec-
tion from p, which is 5′, should lie in L′, a contradiction. ut

Remark 5.12. As in Lemma 5.10, one has the following. Let X be an Rk-variety [resp.
a k-smooth variety] and fix a point p /∈ Sk(X). Then the image of the projection π of X
from p is again an Rk-variety [resp. a k-smooth variety].

Similar considerations hold for Lemma 5.11.

The following provides a simple criterion for the Rk-property.

Proposition 5.13. LetX⊂Pr be an irreducible, non-degenerate variety such that s(k)(X)
< r . Assume that γi = ψi for all i = 1, . . . , k. Assume moreover that the intersection of
the indeterminacy loci of all tangential projections τp0,...,pi is empty for p0, . . . , pi being
general points in X. Then X is an Rk-variety.

Proof. Fix any i = 1, . . . , k and general points p0, . . . , pi . Consider the i-tangential
projection τi of X from TX,p1,...,pi and set p = τi(p0). Note that γi = ψi implies that
9p0,...,pi is the irreducible component of 0p0,...,pi containing p0. Assume 0i = 0p0,...,pi

is irreducible. The argument in the reducible case is the same, and can be left to the reader.
Thus p is the image via τi of 0i = 0p0,...,pi . Consider a general hyperplane H tangent
to X along 0i . Let H ′ be the image of H via τi , tangent to Xi at p, which is a smooth
point of Xi .

Take a curve {(q0(t), q1(t), . . . , qs(t))}t∈1, with 1 ≤ s ≤ i, in X × 0si satisfying
(i)–(iii) of Definition 5.1 with Y = 0i . Choose p0, . . . , pi on 0i in such a way that none
of the points q0(t), q1(t), . . . , qs(t), for t general in 1, sits in the indeterminacy locus
of τi . Then the projection via τi of the limit 5 of the s-space 〈q0(t), q1(t), . . . , qs(t)〉 as
t → 0 sits in TXi ,p, which in turn sits in H ′. This implies that 5 sits in H , proving the
assertion. ut

Example 5.14. The previous proposition implies that the following varieties are Rk-
varieties:

(i) the (k + 1)-dimensional Veronese variety V2,k+1 in Pk(k+3)/2;
(ii) the 2(k + 1)-dimensional Segre variety Seg(k + 1, k + 1) in Pk2

+4k+3;
(iii) the 4(k + 1)-dimensional Grassmann variety G(1, 2k + 3) in P(

2k+4
2 )−1.

Indeed, the i-contact locus of V2,k+1 is the Veronese image of a general linear sub-
space of dimension i. This is also the fibre of the general i-tangential projection of V2,k+1.

Similarly the i-contact locus of Seg(k + 1, k + 1) is a subvariety of type Seg(i, i),
which is also the fibre of the general i-tangential projection of Seg(k + 1, k + 1).

Finally the i-contact locus of G(1, 2k+ 3) is a subvariety of type G(1, 2i+ 1), which
is also the fibre of the general i-tangential projection of Seg(k + 1, k + 1).

The condition about the indeterminacy loci is easily seen to be satisfied in all these
cases.
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6. An extension of Zak’s theorem on tangencies

The notion of Jk-tangency plays a basic role in the following extension of Zak’s theorem
on tangencies.

Theorem 6.1. Let X ⊂ Pr be a non-degenerate variety and let L 6= Pr be a proper
linear subspace of Pr which is Jk-tangent to X along a pure subvariety Y . Then

dim(L) ≥ dim(X)+ dim(J k(Y )) ≥ dim(X)+ dim(Sk−1(Y )). (6.1)

In particular, (6.1) holds when L is tangent to X along Y and X is k-smooth along Y .

Proof. The proof follows Zak’s original argument.
By definition we have dim(〈Y 〉) ≥ k − 1. Fix k independent points p1, . . . , pk ∈ Y

such that N := 〈p1, . . . , pk〉 lies in a component Z ⊆ J k(Y ) of maximal dimension. Fix
p0 ∈ X general, so that p0 /∈ L. Set M := 〈p0, p1, . . . , pk〉, so that dim(M) = k.

We may assume that M is not contained in X, otherwise X would be a cone with
vertex N , contradicting the fact that L is Jk-tangent to X along Y (see Example 4.3).

Pick a general point x ∈ M − X and let f : X × J k(Y )→ L × L be the morphism
which is the inclusion on the second coordinate and the projection π from a general
linear space 5 of dimension r − dim(L)− 1 containing x on the first coordinate. By the
generality assumption one has 5 ∩ L = 5 ∩X = ∅.

We claim that f is finite. Suppose in fact C is a curve mapping to a point via f .
Its projection on X would be a curve C′, since f is injective on the second coordinate.
Moreover π(C′) = y would be a point, and therefore C′ ⊂ 〈y,5〉. But then X ∩ 5 ⊇
C′ ∩5 6= ∅, a contradiction.

Now consider the component X0 of X passing through p0 and restrict the map f to
X0 × Z. If dim(L) < dim(X) + dim(J k(Y )) = dim(X0) + dim(Z), Fulton–Hansen’s
connectedness theorem (see [12]) implies that the inverse image of the diagonal D of
L× L is connected.

Notice that π(p0) = y ∈ N . Thus f (p0, y) = (y, y). Since also (x, x), with x ∈
X ∩ J k(Y ), belongs to the inverse image of D, Fulton–Hansen’s theorem implies that
there is a curve {(q0(t), q1(t), . . . , qk(t))}t∈1 in X0 × Y

k such that:

(i) q1(t), . . . , qk(t) are linearly independent for any t ∈ 1− {0};
(ii) q0(t) is a general point in X0 for t ∈ 1− {0}.

(iii) π(q0(t)) ∈ Qt := 〈q1(t), . . . , qk(t))〉 ⊂ Z for all t ∈ 1− {0};
(iv) q0(0) ∈ J k(Y ) ∩X.

The Jk-tangency hypothesis implies that the limit P of Pt := 〈q0(t), q1(t), . . . , qk(t)〉

as t → 0 lies in L. On the other hand, since π(q0(t)) ∈ Qt for all t ∈ 1 − {0}, we have
5∩Pt 6= ∅ for all t ∈ 1−{0}, and therefore5∩P 6= ∅. ThusL∩5 6= ∅, a contradiction.

ut

Remark 6.2. Theorem 6.1 is sharp. The Veronese surface V2,2 has hyperplanes L which
are J2-tangent along a conic Y , because V2,2 is 2-smooth. In that case S1(Y ) is a plane
and in (6.1) equality holds. This extends to higher Veronese varieties V2,r , r ≥ 3.
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The Jk-tangency hypothesis is essential in Theorem 6.1. Indeed, for a general projec-
tion X of V2,2 in P4, the inequality (6.1) does not hold, but X is not 2-smooth (since it
has trisecant lines, see Example 4.5).

7. An extension of Zak’s theorem on linear normality

A striking consequence of the theorem on tangencies is the famous:

Theorem 7.1 (Zak’s theorem on linear normality). LetX ⊂ Pr be a smooth, irreducible,
non-degenerate variety of dimension n. Then

s(X) ≥ min{r, 3n/2+ 1}.

The reason for the name of the theorem is that it gives a positive answer to the following
conjecture by Hartshorne (see [14]):

Conjecture 7.2 (Hartshorne’s conjecture on linear normality). LetX ⊂ Pr be a smooth,
irreducible, non-degenerate variety of dimension n. If 3n > 2(r − 1) then X is linearly
normal.

In this section we want to extend Zak’s Theorem 7.1 by giving a lower bound on s(k)(X)
under suitable assumptions on the variety X ⊂ Pr .

Let us prove the following key lemma:

Lemma 7.3. Let X ⊂ Pr be a non-degenerate variety such that s(k)(X) < r . Assume X
is an Rk-variety (or X is k-smooth). Then

2fk(X) ≤ kn. (7.1)

Moreover, if equality holds, then:

(i) γi = ψi = if for all i = 1, . . . , k,
(ii) fi =

i(i+1)
2 f for all i = 1, . . . , k,

(iii) n = (k + 1)f,
(7.2)

where, as usual, we set f = f1.

Proof. After projecting generically and applying Lemma 5.10, we may reduce ourselves
to the case r = nk + n+ k − fk + 1.

Consider the general tangential i-contact locus 0i = 0p0,...,pi for all i = 1, . . . , k. By
the hypothesis, the general hyperplane Hi tangent to X at p0, . . . , pi−1 is Ji−1-tangent
to X along 0i−1. Moreover it does not contain 0i . Hence it is also Ji−1-tangent to 0i
along 0i−1. Since Si−1(0i) does not fill up 5i (see Proposition 3.9), after projecting
from a general point of Hi ∩ 5i , by Lemma 5.10 we find a linear space of dimension
dim(Hi ∩ 5i) − 1 = dim(5i) − 2, which is Ji−1-tangent to the projection of 0i along
0i−1. Then, by Proposition 3.2 and Theorem 6.1, we deduce that

dim(5i)− 2 ≥ dim(0i)+ dim(Si−2(0i−1)).
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Using Proposition 3.9, this inequality translates into

iγi ≥ (i − 1)γi−1 + fi − fi−2 (7.3)

for all i = 2, . . . , k, where we put f0 = 0. Adding these relations up, and taking into
account that γ1 ≥ f1 = ψ1, we deduce

kγk ≥ fk + fk−1. (7.4)

Now notice that there exists a hyperplane H in Pr which is Jk-tangent to X along 0k .
With the same argument as above, we find

nk ≥ kγk + fk − fk−1.

By taking into account (7.4), (7.1) follows.
Suppose 2fk = kn. Then equality holds in (7.3) for all i = 1, . . . , k. In particular

we get γ1 = ψ1 = f . Thus (i) of 7.2 holds for i = 1. Assume i ≥ 2 and proceed by
induction.

By Proposition 3.11, we know that γi ≥ ψi = fi − fi−1. This, together with (7.3)
(where we must have an equality), yields

(i − 1)γi ≤ (i − 1)γi−1 + fi−1 − fi−2

so that, by induction,

(i − 1)γi ≤ (i − 1)γi−1 + ψi−1 = iγi−1 = i(i − 1)f,

thus if ≥ γi . On the other hand, by induction and subadditivity (see Theorem 3.15), we
have

γi ≥ ψi ≥ ψi−1 + ψ1 = γi−1 + f = if

so that if = γi . This proves (i), and (ii) immediately follows; moreover kn = 2fk =
k(k − 1)f and also (iii) is proved. ut

Example 7.4. There are examples of Rk-varieties X for which formulas (7.2) (i), (ii)
hold, but 2fk(X) < kn and n 6= (k + 1)f .

For instance, take X to be the Segre variety Seg(3, 4) in P19. The variety S2(X) has
dimension 17. The first tangential projection sends X to Seg(2, 3) ⊂ P11. The second
tangential projection sends X to Seg(1, 2) ⊂ P5. One computes f = f1 = γ1 = ψ1 = 2,
γ2 = ψ2 = 4 = 2f , f2 = 6 = 3f . Moreover, using Proposition 5.13 one sees that X is
an R2-variety.

On the other hand, n = 7 6= 6 = (k + 1)f , and 2fk = 12 < 14 = nk.

We can now prove our extension of Zak’s linear normality theorem.

Theorem 7.5. Let X ⊂ Pr be a non-degenerate variety of dimension n. Assume X is an
Rk-variety (or X is k-smooth). Then

either Sk(X) = Pr or s(k)(X) ≥
k + 2

2
n+ k.
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Proof. Let s(k)(X) < r . By (7.1), one has

s(k)(X) = (k + 1)n+ k − fk ≥ (k + 1)n+ k −
kn

2
=
k + 2

2
n+ k. ut

Corollary 7.6. Let X ⊂ Pr be a k-smooth variety of dimension n. If (k+ 2)n > 2(r − k)
then X is linearly normal.

Proof. If X is not linearly normal, then it comes as an isomorphic projection of a variety
X′ ⊂ Pr+1 from a point p 6∈ X′. Hence X′ is also k-smooth and therefore an Rk-variety.
Then Theorem 7.5 implies that Sk(X′) = Pr+1. Therefore there is some (k + 1)-secant
k-space to X′ passing through the centre of projection, yielding a (k + 1)-secant (k − 1)-
space to X, contradicting k-smoothness. ut

We finish this section by stressing that the Rk-property in Theorem 7.5 is really essential,
as the following example due to C. Fontanari shows.

Example 7.7. Consider the rational normal scroll 3-foldX := S(1, 1, h) ⊂ Ph+4, h ≥ 2.
Note that we have two line sections on X spanning a 3-space 5. For all k ≥ 1, Sk(X)
is the cone with vertex 5 over Sk(Y ), with Y a rational normal curve in an h-space 5′

which is skew with 5. Therefore

s(k)(X) = 2k + 5 < h+ 4

as soon as k < (h−1)/2. On the other hand 2k+5 is smaller than the bound k+2
2 n+ k =

5
2k + 3 as soon as k > 4.

Indeed,X is not an Rk-variety. For instance, consider the case h = 2k+2. Then there
is a unique hyperplane H which is tangent to X at k + 1 general points p0, . . . , pk: it
contains 5 and projects to the unique hyperplane H ′ in 5′ which is tangent to Y at the
projection points p′0, . . . , p

′

k of p0, . . . , pk from 5. The k-contact locus 6 contains the
union of the rulings of the scroll X passing through p0, . . . , pk . Suppose H is Jk-tangent
to X along 6. By projecting down from three general points of 5 we would have Jk−3-
tangency of the image hyperplane to a cone over Y , a contradiction (see Lemma 5.11 and
Example 4.3).

8. The classification theorem

Let us start with the following definition.

Definition 8.1. A k-Severi variety is an irreducible, non-degenerate Rk-variety X ⊂ Pr
such that

r > s(k)(X) =
k + 2

2
n+ k. (8.1)

A 1-Severi variety is simply called a Severi variety. Note we do not require smooth-
ness of X in Definition 8.1. We will see in a moment that k-Severi varieties are smooth,
thus, in case k = 1, our definition of Severi varieties turns out to coincide with the one of
Zak (see [27]).
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Remark 8.2. A trivial, but useful, remark is that k-Severi varieties are not cones, because
of the Rk-property.

Another striking result of Zak’s is the famous classification theorem.

Theorem 8.3 (Zak’s Classification Theorem). Let X ⊆ Pr be a smooth Severi variety.
Then X is one of the following varieties:

(i) the Veronese surface V2,2 in P5;
(ii) the 4-dimensional Segre variety Seg(2, 2) in P8;

(iii) the 8-dimensional Grassmann variety G(1, 5) in P14;
(iv) the 16-dimensional E6-variety in P26.

Remark 8.4. Case (i) of Theorem 8.3 is due to Severi (see [24]), whence the name of
Severi varieties.

Recall that Severi varieties are related to the unitary composition algebras R,C,H,O.
If A is one of these algebras, then take all 3 × 3 hermitian matrices A and impose that
rk(A) = 1. This gives equations defining the Severi varieties. The secant variety to a
Severi variety is defined by the vanishing of det(A). Note that O being non-associative,
the existence of this determinant is somewhat exceptional. Indeed there is no analogue
for higher order matrices.

We devote this section to the analogous classification of k-Severi varieties for k ≥ 2.

Lemma 8.5. LetX ⊂ Pr be a k-Severi variety. Let p0, . . . , pk ∈ X be general points and
x ∈ 〈p0, . . . , pk〉 be a general point of Sk(X). Then 9p0,...,pk and Ek,x are irreducible
components of 0p0,...,pk .

Proof. This follows from (7.2)(i) of Lemma 7.1. ut

Lemma 8.6. Let X ⊂ Pr be a k-Severi variety. Let p0, . . . , pk ∈ X be general points
and set, as usual, 0i = 0p0,...,pi and 5i = 〈0i〉. Then for all i = 1, . . . , k one has

T0i ,p1,...,pi = TX,p1,...,pi ∩5i . (8.2)

Moreover the intersection of 5i with X coincides with 0i .

Proof. One has

T0i ,p1,...,pi ⊆ TX,p1,...,pi ∩5i .

By formulas (7.2) and Proposition 3.9, T0i ,p1,...,pi has codimension 1 in 5i . Hence, if
(8.2) did not hold, then TX,p1,...,pi would contain 5i , and therefore 0i . Thus it would
contain p0, i.e. a general point of X, a contradiction. The final assertion follows from the
fact that 0i is the general fibre of the general tangential projection τi−1. ut

Theorem 8.7. Let X ⊂ Pr be a k-Severi variety of dimension n. Then X is smooth.
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Proof. After a general projection, we may assume that r = k+2
2 n+ k + 1.

Let p1, . . . , pk ∈ X be general points. Let τk be the k-tangential projection from
TX,p1,...,pk . Its imageXk has dimension n−ψk and spans a projective space of dimension
r−1− s(k−1)

= r−1− (kn+ k−1−fk−1). Using (7.2) one sees that Xk is a non-linear
hypersurface in Pf+1.

Let q0, q1 ∈ X be general points. By (7.2), and since the general secant line to X is
not a trisecant (see [27]), the tangential 1-contact locus 01 = 0q0,q1 is an f -dimensional
quadric. Indeed, by Proposition 3.9 we have dim(51) = f + 1.

Claim 8.8. The tangential projection τk isomorphically maps 01 to Xk . Then Xk and
01 are smooth quadrics. Moreover the general tangential 1-contact locus intersects the
general tangential k-contact locus 0k = 0p0,...,pk transversally in one point.

Proof of the Claim. In order to prove the first assertion, it suffices to show that51 = 〈01〉

does not intersect TX,p1,...,pk . Aiming for a contradiction, assume that TX,p1,...,pk ∩ 51
6= ∅. If this happens, then either

(i) τk(01) is a subspace of dimension at most f , or
(ii) 01 is singular, TX,p1,...,pk∩51 is a subspace of the vertex of 01 and τk(01) is a quadric

of dimension smaller than f .

Case (i) is impossible. Indeed, given two general points of Xk there would be a sub-
space τk(01) containing them and sitting inside Xk , contradicting the non-degeneracy of
Xk in Pf+1. In case (ii), the general tangential k-contact locus 0k , i.e. the general fibre
of τk , intersects the singular quadric 01 in a positive-dimensional subspace strictly con-
taining TX,p1,...,pk∩51 and not contained in the vertex of 01. Consider then the projection
π : X 99K Pn from 5k = 〈0k〉 and let X′ be its image, which is non-degenerate in Pn.

By the above considerations, the image of 01 via π would be a linear subspace of
dimension f ′ < f . Therefore dim(X′) < n and moreover two general points ofX′ would
be contained in a linear subspace of dimension f ′ contained in X′. This contradicts the
non-degeneracy of X′.

As for the second assertion, note that Xk is a quadric, which is smooth, otherwise we
have a contradiction to Lemma 8.5. The final assertion also follows from Lemma 8.5 since
the above argument implies that 01 intersects the general fibre of τk , i.e. 0k , transversally
in one point. ut

As a consequence we have:

Claim 8.9. For all i = 2, . . . , k, the general tangential i-contact locus 0i is an (i − 1)-
Severi variety.

Proof of the Claim. The irreducibility of the general 1-contact loci implies the irreducibil-
ity of the higher contact loci 0i with i ≥ 2. Moreover, by Lemma 8.6 and by the Rk-
property, 0i is an Ri−1-variety, and Lemma 7.3 and Proposition 3.9 imply that 0i is a
(i − 1)-Severi variety. ut

Next we have:
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Claim 8.10. For all i = 2, . . . , k, and for the general tangential i-contact locus 0i , the
secant variety Si−1(0i) is not a cone. Similarly Sk(X) is not a cone.

Proof of the Claim. We prove the assertion for 0i , the proof for X is similar. Suppose
Si−1(0i) is a cone with vertex p. Since 0i is not a cone (see Remark 8.2), there is a
maximum positive integer j < i such that p is not a vertex of Sj−1(0i). Then p does
not sit in the indeterminacy locus of the general projection τj = τX,p1,...,pj . The image Z
of 0i via τj has dimension (i − j)f and is a cone with vertex at the image of p. Hence
the general tangent hyperplane to Z is tangent along a positive-dimensional variety. This
implies that the general tangential j -contact locus of 0i , hence of X, has dimension at
least jf + 1, which is a contradiction. ut

Remark 8.11. The previous argument provides a sort of converse to the criterion of
Proposition 5.13.

Indeed, it proves that if an Rk-variety satisfies γi = ψi = if for all i = 1, . . . , k, then
the intersection of the indeterminacy loci of all tangential projections τp0,...,pi is empty
for i = 1, . . . , k.

Now we improve Lemma 8.6.

Claim 8.12. For all i = 2, . . . , k, the general tangential i-contact locus 0i is smooth.
Furthermore X is smooth along 0k , and 0k is the schematic intersection of 5 with X.

Proof of the Claim. Suppose 0i is singular at a point p. Consider the general tangential
projection τi = τX,p1,...,pi . By generic smoothness of τi and by Lemma 8.5, p has to be in
the indeterminacy locus of τi , i.e. in the intersection of TX,p1,...,pi with 0i . By Lemma 8.6,
this coincides with the intersection of T0i ,p1,...,pi with 0i . By the genericity of p1, . . . , pi
and Terracini’s Lemma, we deduce that Si−1(0i) is a cone with vertex p, contradicting
Claim 8.10.

Let now q ∈ 0k be any point and let p1, . . . , pk ∈ 0k be general points. Thus
p1, . . . , pk are general points onX. Moreover 0k is the fibre of q in the tangential projec-
tion τk . Since the imageXk ofX via τk is smooth of dimension f and the fibre of q via τk
is smooth of dimension ψk = kf at q we see thatX is smooth of dimension n = (k+1)f
at q. The final assertion follows by the same argument. ut

Now we go back to the projection π : X 99K Pn from 5k .

Claim 8.13. The map π : X 99K Pn is birational.

Proof of the Claim. Let X′ be the image of X. By Claim 8.8, the restriction of π to a
general tangential 1-contact locus 01 is birational, and its image is an f -subspace of Pn
contained in X′. This shows that X′ is a subspace of Pn, and therefore X′ = Pn.

Assume towards a contradiction that π is not birational. Then, if x ∈ X is a general
point, there is a point y ∈ X, with x 6= y, such that π(x) = π(y). Note that there is some
f -dimensional quadric 0 containing x and y and contained in X, i.e. a flat limit of 0x,z
with z a general point of X tending to y. The quadric 0, as well as 0x,z, has a non-empty
intersection with 5k (see Claim 8.8). Since the fibre of x in π is 0-dimensional, also the
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fibre of π|0 is finite. This implies that 〈0〉 ∩ 5k is only one point z ∈ 0 and that the
line 〈x, z〉 is not contained in 0. So the line 〈x, z〉 meets 0 only at z and x, contradicting
π(x) = π(y). ut

Let H be the hyperplane in P
k+2

2 n+k+1 which is tangent to X along 0k and let H ′ be its
image via π .

Claim 8.14. The inverse of the map π : X 99K Pn is well defined off H ′.

Proof of the Claim. We resolve the indeterminacies of π by blowing-up 0k . If f :
X̃ → X is this blow-up, then p = π ◦ f : X̃ → Pn is a morphism. Note that X̃ is
smooth along the exceptional divisor E by Claim 8.12. Points on the exceptional divisor
E are mapped via p to points of H ′.

Let z ∈ Pn be a point where the inverse of π is not defined. If x ∈ X is a point
such that π(x) = z, then the subspace 5x := 〈5k, x〉 intersects X along an irreducible
positive-dimensional subvariety Z containing x, which is contracted to a point via π .
Since 5k ∩ X = 0k (see Corollary 8.6), we have Z ∩ 0k 6= ∅. Let Z′ be the strict
transform of Z on X̃. Then Z′ intersects E, and is contracted to a point by p. Hence
z ∈ H ′. ut

Now we are able to finish the proof of Theorem 8.7. By Claim 8.14, X − (H ∩ X) is
isomorphic to the affine space Pn − H ′. It remains to prove that there is no point x ∈ X
contained in all hyperplanes tangent to the tangential k-contact loci 0k . Suppose that such
a point exists. Let p1, . . . , pk ∈ X be general points and consider again the tangential
projection τk from TX,p1,...,pk . Since Sk−1(X) is not a cone (see Claim 8.10), τk is well
defined at p. Let z be its image via τk . Then all tangent hyperplanes toXk would contain z,
hence Xk would be a cone, a contradiction. ut

We can now prove the classification theorem. By taking into account Theorem 8.7 and
Zak’s Classification Theorem 8.3, we may consider only k-Severi varieties with k ≥ 2.

Theorem 8.15. Let X ⊆ Pr be a k-Severi variety with k ≥ 2. Then X is one of the
following varieties:

(i) the (k + 1)-dimensional Veronese variety V2,k+1 in Pk(k+3)/2;
(ii) the 2(k + 1)-dimensional Segre variety Seg(k + 1, k + 1) in Pk2

+4k+3;
(iii) the 4(k + 1)-dimensional Grassmann variety G(1, 2k + 3) in P(

2k+4
2 )−1.

Proof. The varieties in (i)–(iii) are Rk-varieties (see Example 5.14). Moreover they are
k-Severi varieties, i.e. (8.1) holds for them (see [27]).

Set now s = s(k) + 1 = k+2
2 n + k + 1 and take a general projection X′ to Ps . Then

X′ is still a k-Severi variety. Moreover we have k0(X
′) = k + 1, ψi(X′) = ψi(X) = if ,

fi(X
′) = fi(X) =

i(i+1)
2 f for all i = 1, . . . , k and n = (k+1)f by Lemma 7.3. ThusX′

is a Scorza variety. The classification follows from Zak’s classification of Scorza varieties,
which implies that Scorza varieties are linearly normal, in particular X = X′. Notice the
smoothness of the entry loci, which follows by Lemma 8.5 and Claims 8.9 and 8.12. This
is essential in Zak’s argument (see Remark 3.17). ut
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Remark 8.16. The k-Severi varieties, with k ≥ 2, are related to the unitary composition
algebras R,C,H. In this case we take all (k + 1) × (k + 1) hermitian matrices A and
impose that rk(A) = 1. This gives the equations defining the k-Severi varieties. Again the
k-secant variety to a k-Severi variety is defined by the vanishing of det(A). The absence of
the analogue of the E6-variety, related to the composition algebra O, reflects the absence
of higher order determinants on O (see Remark 8.4).

A quick proof of the classification of Severi varieties can be obtained by using the
beautiful ideas contained in [21]. Along the same lines one can give a proof of the clas-
sification of k-Severi varieties, alternative to the one described above based on Zak’s
classification of Scorza varieties. We do not dwell on this here.

9. Speculations

Perhaps the main motivation for Zak’s beautiful piece of work was the following famous
conjecture by Hartshorne (see [14]):

Conjecture 9.1 (Hartshorne’s conjecture). Let X ⊂ Pr be a smooth, irreducible, non-
degenerate variety of dimension n. If 3n > 2r then X is a complete intersection of r − n
hypersurfaces in Pr .

This in turn was motivated by Barth–Larsen’s fundamental result (see [2]) to the effect
that smooth varieties X ⊂ Pr of low codimension are topologically similar to Pr . Barth–
Larsen’s theorem, in our context, can be stated as follows:

Theorem 9.2. Let X ⊂ Pr be a smooth, irreducible variety. Then for any non-negative
integer i < f1(X) the natural map

ρX,i : H i(Pr ,Z)→ H i(X,Z)

is an isomorphism. In particular, if f1(X)≥2 thenX is simply connected and if f1(X)≥3
then Pic(X) is generated by the hyperplane class.

One of the basic steps in the proof of Conjecture 9.1 would be to show that, under the
hypotheses, X is projectively Cohen–Macaulay. Since linear normality is the first naı̈ve
requirement for being projectively Cohen–Macaulay, this is the motivation for Conjec-
ture 7.2, which in turn motivates Zak’s theorems.

Now, in presence of our refined form of Zak’s linear normality theorem, one may spec-
ulate on the possibility of having an even more general view on Hartshorne’s conjecture.
This is what we want to present next. To be precise, we want to propose the following:

Conjecture 9.3 (Extended Hartshorne’s conjecture). There is a suitable function
f (r, n, k) such that the following happens. Let X ⊂ Pr be a k-smooth, irreducible, non-
degenerate variety of dimension n. If (k + 2)n > 2r then IX is generated by at most
f (r, n, k) elements.

This conjecture does not make too much sense unless one specifies the form of the func-
tion f (r, n, k). What we intend is that f (r, n, k) should be reasonably small. If one wants
to be really bold, one may even conjecture that f (r, n, k) = k(r − n). A further strength-
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ening of the conjecture would be to replace the ideal sheaf IX with the homogeneous
ideal IX.

Example 9.4. There are varieties at the boundary of Hartshorne’s conjecture. One of
them is G(1, 4), which has dimension 6 in P9. Its homogeneous ideal is generated by
five quadrics. This would fit Conjecture 9.3 for k = 2 and f (r, n, 2) = 2(r − n), but
unfortunately G(1, 4) is not 2-smooth, since it contains lines.

Another variety at the boundary of Hartshorne’s conjecture is the 10-dimensional
spinor variety S4 ⊂ P15, its homogeneous ideal being generated by 10 quadrics. Again
this would fit Conjecture 9.3 for k = 2 and f (r, n, 2) = 2(r − n), but this variety is not
2-smooth either.

More varieties at the boundary of Hartshorne’s conjecture, actually all the known
ones, are deduced from these by pulling them back via a general morphism Pr → Pr .
Now these can in general be 2-smooth and Conjecture 9.3 holds for them with f (r, n, 2)
= 2(r − n).

The examples of G(1, 4) and S4 suggest that the k-smoothness assumption in Conjec-
ture 9.3 might even be too strong. Maybe something like the Rk-property could suffice.

Remark 9.5. At this point a related natural question arises: is there, in this same spirit,
any extension of Barth–Larsen’s Theorem 9.2? By taking into account (3.1) we see that

2fk ≥ k(k + 1)f1

and therefore one might ask: is the map ρX,i an isomorphism for all positive integers i
such that k(k + 1)(i + 1) ≤ 2fk(X), under the assumption that X ⊂ Pr be a k-smooth,
irreducible variety? Or, is ρX,i an isomorphism under the condition(

k + 1
2

)
i ≤ (k + 1)n− r −

(
k

2

)
if X ⊂ Pr is a k-smooth, irreducible variety?
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