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Abstract. We construct irreducible graded representations of simply laced Khovanov-Lauda al-
gebras which are concentrated in one degree. The underlying combinatorics of skew shapes and
standard tableaux corresponding to arbitrary simply laced types has been developed previously by
Peterson, Proctor and Stembridge. In particular, the Peterson—Proctor hook formula gives the di-
mensions of the homogeneous irreducible modules corresponding to straight shapes.

1. Introduction

In [KLI, IKL2], Khovanov and Lauda have introduced a new family of graded algebras
whose representation theory is related to categorification of quantum groups. Similar al-
gebras have been defined by Rouquier [Rol.

In this note we give an explicit construction of the irreducible graded representa-
tions of simply laced Khovanov—Lauda algebras which are concentrated in one degree.
These homogeneous representations turn out to be similar to seminormal representations
of affine Hecke algebras. In type A this can be explained using [BK] and intertwining
operators.

By-products of our construction are notions of skew shape and standard tableaux for
arbitrary simply laced types. Equivalent notions have been considered before by Peterson,
Proctor, Stembridge, and Fan [P1} [P2} [S1} [S2} [F, IN1| IN2]]. In particular, the Peterson—
Proctor hook formula gives the dimensions of the homogeneous irreducible modules cor-
responding to straight shapes.

2. Khovanov-Lauda algebras

2.1. Definition

Let I be a graph without multiple edges and loops (cycles allowed). Denote the set of
vertices of I" by 1. If i, j € I are connected by an edge, we will say that i and j are
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neighbors (in I'). We allow for I to be infinite and for I" to contain cycles. To I' we

associate a generalized Cartan matrix (a;;);, je;s as in [Kal, so that

2 ifi=j,
a;j =4 —1 ifi and j are neighbors,
0  otherwise.

We fix an orientation on the edges of I'.
Let Q = @;; Za; be alattice with a basis {«; };cs labeled by I. Set

0+ = @ Zzoai-

iel

Fora =), ; mia; € Q4 define the height of « as

mmy:}jw.

iel

The symmetric group S; with basic transpositions s1, . . ., sq_1 acts on I¢ on the left

by place permutations. We have a decomposition of /¢ into Sy-orbits:

14 = |_| ¢,

aeQy
ht(a)=d

where
1% :={i=G1....i0) € I |aj, + -+, = a}.

Fix an arbitrary ground field F' and an element « € Q. of height d. The Khovanov—
Lauda algebra R, is an associative Z-graded unital F-algebra, given by the generators

fe@) |1 eI U{y,....ya} YY1, ..., ¥a1}

and the following relations for all ¢, 7 € I* and all admissible r and s:

e(@e(f) = 8ije(@), Y e =1;

ielv
yre(t) = e(2)yr;
Vre(®) = e(sr )Yy,
YrYs = Ys¥rs
Vs =5y (r #Es, s+ 1);

e(l) ifi, = ir—&-l,

Ore1¥r — Wr}’r)e(i) = {O

if iy #irt1s
N e(r) ifi, =iry1,
e Yra1 — yrbr)e(@) = {0 if iy # i1

2.1)

(2.2)

2.3)
2.4)
2.5)
2.6)

Q2.7

(2.8)
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0 ifi, = irt1,
2 . e(i) lfa, i'+l =O,
e(r) = o e L 2.9
Vre@ =0 (0 = ey ifiy — irt, 29)
Or+1 —yr)e(® ifirp1 — ip;
Yrbs =Y (Ir —s| > 1); (2.10)
e(z) if ir+2 =i — ir+1’
(wr+1wr1ﬂr+l - 1/frerrll,Zfr)e(i) = _e(i) if ir+1 —> i = ir+2, (2-11)
0 otherwise.
The grading on R,, is defined by
deg(e(z)) =0, deg(yre(®) =2, deg(Yre(d)) = —ai,i,,,-
2.2. Basis Theorem
For each element w € Sy fix a reduced expression w = s, ... s;, and set
Vw = Vi ... Vi,
In general, v, is not independent of the choice of reduced expression of w.
Theorem 2.1 (Basis Theorem, [KL1, Theorem 2.5]). The elements
{1//wy;"l ...y;”e(i) |we Sq, miy,...,mq € L>p, 1 € [¥} (2.12)
form an F-basis for Ry.
Denote by P, the (commutative) subalgebra of R, generated by yy, ..., yg and all {e(2) |

© € 1%}. By the Basis Theorem,
iy e@ I my, ... mg € Lsg, i € I%)

is a basis of P,.

2.3. Modules, weights, and characters

If V.= ,;z VIklis a Z-graded vector space, its graded dimension is

gdim V := > "(dim V[k])g* € ZIg.q7"].
keZ

Recall that R, is a Z-graded algebra. All Ry,-modules will be assumed graded, unless
otherwise stated. We will work in the category

Ry-mod = {finite-dimensional graded R,-modules}.

Since all y,e(z) are positively graded, the elements y, act nilpotently on all modules
M € R,-mod.
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For every ¢ € I* and any M € Ry-mod, the ¢-weight space of M is M; := e(1)M.
We have a decomposition of (graded) vector spaces

M =P M;.

iel®

We say that ¢ is a weight of M if M; # 0, and refer to I% as the set of weights for R,.

Note by (2.4) that
YrM; C M, ;. (2.13)

Let Z[g, g~ '1[I1%] be the free Z[q, ¢~ ']-module with basis {e* | 4 € I%}. The formal
character of the module M € R,-mod is

chM = Z (gdim Mi)ei.

iel®

The formal character map ch : Ry-mod — Zl[gq, q’l][l ] factors through to give a
Zlq, ¢~ '1-linear map from the Grothendieck group,

ch: K (Ry-mod) — Z[gq, g~ "[I%]. (2.14)

The following result shows that the characters of the irreducible Ry-modules are linearly
independent.

Theorem 2.2 ([KLI, Theorem 3.17]). The map 2.14) is injective.

2.4. Weight graph

Letl <r <dandi € I*. We call s, an admissible transposition for ¢ if i, and i, | are
distinct and not neighbors (i.e. if a;,;,,, = 0). By , if ¢ is a weight of M € R,-mod
and s, is an admissible transposition for %, then gdim M; = gdim M, ;. This explains our
interest in the following combinatorial object.

Define the weight graph G, as the graph with the set of vertices /¢, and with ¢, j € 1%
connected by an edge if and only if j = s,¢ for some admissible transposition s, for <.
We want to describe the connected components of G,.

Letz € 1% and a, b € I be neighbors in I". The {a, b}-sequence of i is the sequence
of a’s and b’s obtained by ignoring all entries of ¢ different from a and b. For example,
the {1, 2} sequence of = = (1,2,2,3,4,1,2,1) is (1,2,2, 1,2, 1). Note that if s, is
an admissible transposition for ¢ then the {a, b}-sequence of ¢ is the same as the {a, b}-
sequence of s,-¢ for every pair of neighbors a, b € I. So the {a, b}-sequences are invariants
of connected components of G,,. It turns out that these invariants are enough to describe
the components:

Proposition 2.3. Let 2,5 € I%. Then i and j belong to the same connected component
of G if and only if their {a, b}-sequences coincide for each pair of neighbors a, b € I.
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Proof. We prove the result by induction on d = ht(«). Assume that ¢ = (i1, ..., ig) and
7 = (1, ..., Ja) are elements of I* so that the {a, b}-sequences of ¢ and j coincide for
all pairs of neighbors a,b € I.If d = 1 then ¢ = j, and so ¢ and j are in the same
connected component of /*. If d > 1 let b = j; and let a be a neighbor of b. Let k be
maximal such that iy = b. None of ix11, ..., ig is equal to a. Therefore ¢ is connected to

. . ; . ; .
T =841 Sk15kt = (@1, oo Ik—1, ikg1s - - - ids D).

Now 4’ and j are in the same connected component since, by inductive assumption,
(A1y s ipk—1, k41, ---,iq) and (ji, ..., jg—1) are in the same connected component of
Go—uy- O

2.5. Configurations and standard tableaux

We suggest ‘geometric’ objects called configurations to visualize connected components
of G. First, the I"-abacus is T" x R, imagined as the abacus with the runners going up
on each vertex of I". We picture the I"-abacus in R? with the distance between neighboring
runners always equal to 1. For example, for I' = D4 and I' = A the abaci look like this:

b2 e =3 =2 -1 0 1 2 3

4

The ‘beads’ of the abacus have shape depending on the runners. The bead on runner
i is ‘glued’ out of isosceles right triangles with hypotenuse of length 2 on the runner, and
the 90° vertex sticking towards the neighboring runner (and touching it). Examples of a
bead on runner 1 for type A3, a bead on runner i for type Ao, a bead on runner 2 for type
Dy, and a bead on runner 1 for type A; are:

Note that if i has no neighbors, the shape of the bead is interpreted as just a segment of
length 2 (‘hypotenuse without triangles’).

Recall that @ = ), .; m;«; is a fixed element of Q of height d. A configuration of
type « is obtained by placing d beads on the runners of the I"-abacus, letting each bead
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slide down the runner as far as gravity takes it, so that there are a total of m; beads on
runner i for each i € I. We note that configurations are essentially the same as heaps
defined by Viennot [[V]] (see also Stembridge [S11[S2]).

Let A be a configuration. A fableau of shape A or a A-tableau is a bijection

T :{1,...,d} — {beads of A}.

A bead B of A is removable if it can be lifted off its runner without interfering with
other beads. If B is on runner i, this is equivalent to the requirement that there are no
beads on neighboring runners which are above B in A. A A-tableaux is called standard
if for each k, the bead T (k) is above the bead T (m) whenever m < k and T (m) is on a
neighboring runner. Equivalently, 7 is standard if and only if 7' (k) is a removable bead
for the configuration A\ {T'(k + 1),...,T(d)}forall 1 <k <d.

Lete = (i1, ...,ig) € I*. Place a bead on runner i, then place a bead on runner iy,
and so on, finally placing the last bead on runner i;. This procedure produces the configu-
ration of , written con(z) = conr(z), and the standard tableaux T of the corresponding
shape. For example:

in type Ao, 7022 =

in type Aco, TOL=D =

intype D4, con(2,1,3,4,2) =
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The reader might note that in type A, configurations are closely related to the notation
for Young diagrams favored in [VK| |O]. We will refer to this notation as the diagonal-
centric notation (occasionally this is also called the ‘Russian notation’).

For any A-tableau T we denote by i the element

il =al, .. iher”,

where i kT is the label of the runner occupied by the bead T (k) (1 < k < d). Now note that
the maps T +— 4’ and ¢ — T are mutually inverse bijections between the set 7 (1) of
standard A-tableaux and the set of weights ¢ € ¢ with con(Z) = A. Now we can interpret
Proposition [2.3|as the following statement:

Proposition 2.4. Two weights ©, 5 € I are in the same connected component of Gy if
and only if con(i) = con(j). Moreover, the maps T + i’ and & — T* are mutually
inverse bijections between the set of standard A-tableaux and the set of all weights 1 € 1*
with con(z) = A.

3. Homogeneous representations

We continue working with a fixed graph I' and a fixed @ = ), ; m;«; € Q. of heightd.
A module M € R,-mod is called homogeneous if it is concentrated in one degree, i.e.
M = M][k] for some k € Z. (Another reasonable term to use could be pure representa-
tions.) The homogeneous irreducible modules are especially easy to understand. They are
labeled by ‘skew shapes’, and their formal characters are ‘sums of standard tableaux’ of
that shape.

3.1. Calibrated representations

First, we consider a seemingly different class of modules. A module M € R,-mod is
called calibrated if y1, ..., yq act as zero on M. Other authors might use different termi-
nology here, for example Gelfand—Zetlin |Chl OV, completely splittable K1, K2, Rul,
seminormal [Mal], etc. Our goal is to classify irreducible calibrated modules following the
approach of [Ra, [KR].

Proposition 3.1. Let M € R,-mod be an irreducible calibrated module, and i be a
weight of M. Then:

(1) thereis nor withi, = iy41;
(ii) there is nor such that i, i,y are neighbors and i, 7 = ir;
(iii) dimM; = 1;
@v) the weights of M form one connected component of G.
Proof. (i) Assume i, = i, and let v € M; be nonzero. Since M is calibrated, y, and
Yr+1 act as zero, and leads to a contradiction:

0= r+1¥r — Vryr)e(@®v = e(i)v = v.
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(i) Assume (i;, iy+1, ir42) = (a, b, a), a and b are neighbors, and v € M; is nonzero.
By @.4), ¥r+1v € My, and ¥, v € M, 5. So, by (i), we have ¥, v = 0 and ¥, v = 0.
Using (2.T1), we get a contradiction:

0= (Ilfrﬁ—lwrwr-i-l - I/Mﬂr+11ﬂr)v = Fv.

(ii1) Assume towards a contradiction that v, w are two linearly independent elements
of M;. As M is irreducible and calibrated, we may assume (up to rescaling) that v =
Yy, ... ¥r, w and that k is minimal possible. It follows from and (i) that sy, ...s, =1
in S;. So we can use braid relations to rewrite

Spp oS =S84 - S,mfzstststmﬂ ce e Sy

By (ii) and (2.11)), v,’s acting on M also satisfy braid relations, so we can rewrite, using

also (2.9),
Ilfrl s Iﬂrkw = ‘(/ft] cee wlm72w11ﬁf¢l,,l+1 s wl‘kw = Cwl‘l s wt,,,,zwl‘er] s lﬂzkw

for some constant ¢, which must be nonzero, and hence ¢ = 1. This contradicts the
minimality of k.

(iv) If 2 is a weight of M, and s, is an admissible transposition for ¢, then s, is also
a weight of M, thanks to and (2.9). So all weights in the connected component of %
in G, appear in M. To see that there are no other weights, it suffices to show that if 5 and
srJ are weights of M then s, is an admissible transposition for j.

Soletv € Mj, w € M, ; be nonzero vectors. After rescaling, we may assume that
w = Yy, ... Ypv, and let k be minimal possible. By (2.4) and (i), sy, ... = s, in Sq.
As in the proof of (iii), we deduce from the minimality of k that k = 1 and r; = r, i.e.
w = Y,v. Similarly, we can write cv = ¥, w for a nonzero constant c¢. So I//rzv # 0.
In view of (2.9), j- and j,1 are not neighbors, whence s, is an admissible transposition
for 3. O

Corollary 3.2. Let M € R,-mod be an irreducible module. Then M is homogeneous if
and only if M is calibrated.

Proof. If M is homogeneous, then yq, ..., yg act on M as zero since they have positive
degrees. Conversely, if M is calibrated, it follows from Proposition that M is a span
of some ¥, ...V, v where v € M; for some %, and s,,, is an admissible transposition for
Stpil + e sn3, forallm =1, ..., k. It follows that the degree of each ¥, ...y, v is the
same as the degree of v, so M is homogeneous. O

3.2. Construction of homogeneous modules

We now give an explicit construction of the homogeneous representations, which can be
thought of as a generalization of Young’s seminormal form [Ch] from type A, quivers
to an arbitrary quiver without loops and multiple edges.
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Let C be a connected component of G,. We say that C is homogeneous if for each
2 € C the following condition holds:

if i, = iy for some r < s then there exist ¢, u with

1 3.1

r <t<u<ssuchthata;; =a ;,

Lemma 3.3. Let C be a connected component of G,.

(1) C is homogeneous if and only if the condition (3.1)) holds for some ¢ € C.
(i) C is homogeneous if and only if the conditions (i) and (ii) of Proposition[3.1] hold for
eachi € C.

Proof. (i) Condition (3.1) is a condition on the {a, b}-sequences of ¢+ which requires that
i:...a...a... Onlylf i:...a...b...c...a...

with b and ¢ distinct neighbors of a. If this condition holds for one ¢ € C then, by
Proposition[2.3] it holds for all i € C.
(i) ‘=": If (i) or (ii) of Proposition 3.1 is violated then there exists ¢ € C with

{=---aa--- or t1=---aba---,

with b a neighbor of a. In either case ¢ violates the condition in (3.1).
‘«<=": If condition (3.1) is violated then there exists ¢ € C such that Z looks like

Casel: t=---a---a---,
with a = i, = i; and no neighbors of @ in between, or
Case?2: i=---a---b--a---,

with a = i, = i, b = i; aneighbor of a and no other neighbors of a in between i, and is.
In Case 1, 7 is connected to

J=Si1- S8, i =---aa---,
which violates Proposition 3.1(i). In Case 2, ¢ is connected to
J=(ip—1 - Si, 115, ) (Sipq1 - Siy—2Si,— 1)t =---aba---,
which violates Proposition 3.1(ii). ]

Theorem 3.4. Let C be a homogeneous connected component of Gy, and consider a
vector space S(C) with a homogeneous basis {v; | © € C} labeled by the elements of C.
The formulas

e(Pv;=38;45v; (Jel* ieC),
ywu; =0 (1<r<d, 1€C),

vy 4 IifsyteC,
wrvi:{o‘ﬁ,’b f}’

otherwise (=r<d 10

define an action of Ry on S(C), under which S(C) is a homogeneous irreducible R-
module. Moreover, S(C) 2 S(C") if C # C', and every homogeneous irreducible R-
module is isomorphic to one of the modules S(C).
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Proof. 1t is straightforward to verify that the formulas above define operators which sat-
isfy the defining relations of R, and so S(C) is a well defined R,-module. It is also
clear that it is concentrated in one degree, i.e. is homogeneous. The irreducibility of S(C)
follows from the definition of C as a connected component of G,. If C # C’ then of
course S(C) is not isomorphic to S(C’) since they have different weights. Finally, if S
is an irreducible homogeneous R,-module then by Corollary and Proposition [3.1] the
formal character of S equals ch §(C) for some homogeneous connected component C,
and so § = S§(C) thanks to Theorem ]

3.3. Skew shapes

By Theorem the homogeneous connected components correspond to the homoge-
neous representations of R,. The homogeneous connected components are characterized
by the properties (i) and (ii) from Proposition [3.1] The corresponding configurations can
be characterized as follows:

Definition 3.5. A configuration X is called a skew shape if whenever By and B, are two
beads of A on the same runner then there are at least two beads on different neighboring
runners separating By from B,.

For example, in type Ao,

and

are skew shapes. Note that, up to a horizontal shift, skew shapes in type Ao, are obtained
by considering all usual skew shapes in the diagonal-centric notation and allowing all
beads to slide down as far as gravity will take them.
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If A is a configuration, then S; acts on the set of A-tableaux by permutations of
{1,...,d}. Theorem[3.4) can now be restated as follows:

Theorem 3.6. Let ) be a skew shape, and T (A) be the set of all standard A-tableaux.
Consider a vector space S(\) with a homogeneous basis {vr | T € T (L)}. The formulas

e(yvr = 8iijT Gel* TeTO),
yvr =0 (=r=d, TeT®)),

vy, ifs T is standard,
Vrur = {0 otherwise (I=r<d TeTO)
define an action of R, on S()\), under which S(X) is a homogeneous irreducible R-
module. Moreover, S(A) % S(\) if A # ) and every homogeneous irreducible R-
module is isomorphic to one of the modules S(}.).

3.4. Characters and the Littlewood—Richardson rule

Let A be a skew shape and let S(1) be the corresponding irreducible homogeneous Ry-
module constructed in Theorem. 6l Recall the maps 4 — T% and T +> 4! from §2.5
Since vy is in the 47 -weight space, and this weight space is one-dimensional, the formal
character of R” is
chsSy= Y. o, (3.2)
TeT(\)

where the sum is over all standard tableaux 7 of shape A.

Let B,y € Q4 besuchthat +y = a. The product Rg ® R,, is naturally a subalgebra
of Ry (cf. [KLI, §2.6]). If M is a homogeneous R,-module then its restriction to Rg ® Ry,
is homogeneous. It follows from (3.2)) that

resgl o, SO =Y S(1) ® SG/), (3.3)
1Ch

where the sum is over all configurations w of type 8 which are obtained by consecutive
removals of removable beads from A, and A/u is the configuration determined by the
beads of A that are not in p. The formula is a generalization of the skew Schur
function formula from [Mac! (5.10)]:

S,\/,L(X’)’)Z Z Sk/v(x)su/u()))-

A2V2u

3.5. Minuscule elements and the hook formula

Finally, we explain a connection between skew shapes and the fully commutative ele-
ments in Coxeter groups studied by Stembridge [S2] and Fan [F]. A special class of fully
commutative elements called dominant minuscule elements will allow us to select straight
shapes from the class of skew shapes.
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Using notation of [Kal, let & be the set of positive roots, < the dominance order,
P, the set of dominant weights, and W be the Weyl group with simple reflections r; for
2 € I, so that W is the Coxeter group with Coxeter graph I.

An element w € W is fully commutative if for every pair of noncommuting generators
r; and r; there is no reduced expression for w containing a subword of the form r;r;jr;.
An element w € W is dominant minuscule if there is A € P, and a reduced expression
w =7}, ...r;, such that

FigTigpy - Tigh = A — oy — iy — - —aj, (I =k =d).

Using the terminology of §3.3] let A be a skew shape and 7 (1) the set of standard
A-tableaux. If T € T(A) and 47 = (i1, ..., iq), set

wh =i, . ..ri, €W, (3.4)

In view of Lemma [3.3]and Definition[3.5] skew shapes and standard tableaux can now
be interpreted as follows.

Proposition 3.7. The element w* depends only on A and does not depend on T € T (}).
Moreover:

(1) the right hand side of is a reduced decomposition of w;
(i) A +— w is a bijection between the skew shapes with d boxes and the fully commu-
tative elements of W of length d;
(iii) for a fixed skew shape A, the assignment (3.4) is a bijection between the standard
A-tableaux and the reduced decompositions of w*.

Dominant minuscule elements are known to be fully commutative (see e.g. [S2| Proposi-
tion 2.1]) and can be characterized in terms of their reduced expressions as follows.

Proposition 3.8 ([S2, Proposition 2.5]). If w =r;, ...ri; € W is a reduced expression,
then w is dominant minuscule if and only if the following two conditions are satisfied:

(i) between every pair of occurrences of a generator r; (with no other occurrences of
ri in between) there are exactly two terms (possibly equal to each other) that do not
commute with r;;

(i) the last occurrence of each generator r; is followed by at most one generator that
does not commute with r;.

Now it is easy to see that in type A, skew shapes A with w* dominant minuscule are
(disjoint unions of) ‘straight’ shapes in the usual sense, i.e. Young diagrams drawn in the
diagonal-centric notation. This motivates the following definition. A skew shape X is a
straight shape if w” is dominant minuscule. Proposition 3.8| yields the following explicit
characterization of the straight shapes.

Lemma 3.9. Let X be a configuration. Then A is a straight shape if and only if the fol-
lowing conditions are satisfied:
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(i) between every pair of beads A, B on a runner i (with no beads on the runner i
between A and B) there are exactly two beads between A and B, which lie on runners
neighboring i (possibly on the same runner);

(1) the bottom bead on a runner i has at most one bead below it on runners neighboring i.

Peterson and Proctor have given a hook-type formula for the number of standard tableaux
of a straight shape. The proof of this hook formula, and generalizations of it, can be found
e.g. in Nakada in [N2]. In view of Proposition iii), the Peterson—Proctor hook formula
can be stated, in our context, as follows.

Theorem 3.10 (Peterson—Proctor Hook Formula). Let A be a straight shape with d
beads. Using notation as in Theorem[3.6] the dimension of the corresponding representa-
tion of the Khovanov-Lauda algebra is

d!

dim S(\) = Card(7 (V) = m
Bed(w)

where
d(w) :={B Py |w(B) <0},
and Card(7 (1)) is the number of standard tableaux of shape M.
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