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Abstract. We construct irreducible graded representations of simply laced Khovanov–Lauda al-
gebras which are concentrated in one degree. The underlying combinatorics of skew shapes and
standard tableaux corresponding to arbitrary simply laced types has been developed previously by
Peterson, Proctor and Stembridge. In particular, the Peterson–Proctor hook formula gives the di-
mensions of the homogeneous irreducible modules corresponding to straight shapes.

1. Introduction

In [KL1, KL2], Khovanov and Lauda have introduced a new family of graded algebras
whose representation theory is related to categorification of quantum groups. Similar al-
gebras have been defined by Rouquier [Ro].

In this note we give an explicit construction of the irreducible graded representa-
tions of simply laced Khovanov–Lauda algebras which are concentrated in one degree.
These homogeneous representations turn out to be similar to seminormal representations
of affine Hecke algebras. In type A this can be explained using [BK] and intertwining
operators.

By-products of our construction are notions of skew shape and standard tableaux for
arbitrary simply laced types. Equivalent notions have been considered before by Peterson,
Proctor, Stembridge, and Fan [P1, P2, S1, S2, F, N1, N2]. In particular, the Peterson–
Proctor hook formula gives the dimensions of the homogeneous irreducible modules cor-
responding to straight shapes.

2. Khovanov–Lauda algebras

2.1. Definition

Let 0 be a graph without multiple edges and loops (cycles allowed). Denote the set of
vertices of 0 by I . If i, j ∈ I are connected by an edge, we will say that i and j are
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neighbors (in 0). We allow for I to be infinite and for 0 to contain cycles. To 0 we
associate a generalized Cartan matrix (aij )i,j∈I as in [Ka], so that

aij =

 2 if i = j ,
−1 if i and j are neighbors,
0 otherwise.

We fix an orientation on the edges of 0.
Let Q =

⊕
i∈I Zαi be a lattice with a basis {αi}i∈I labeled by I . Set

Q+ =
⊕
i∈I

Z≥0αi .

For α =
∑
i∈I miαi ∈ Q+ define the height of α as

ht(α) :=
∑
i∈I

mi .

The symmetric group Sd with basic transpositions s1, . . . , sd−1 acts on I d on the left
by place permutations. We have a decomposition of I d into Sd -orbits:

I d =
⊔
α∈Q+

ht(α)=d

Iα,

where
Iα := {i = (i1, . . . , id) ∈ I d | αi1 + · · · + αid = α}.

Fix an arbitrary ground field F and an element α ∈ Q+ of height d . The Khovanov–
Lauda algebra Rα is an associative Z-graded unital F -algebra, given by the generators

{e(i) | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1} (2.1)

and the following relations for all i, j ∈ Iα and all admissible r and s:

e(i)e(j) = δi,je(i),
∑
i∈Iα

e(i) = 1; (2.2)

yre(i) = e(i)yr ; (2.3)
ψre(i) = e(sri)ψr ; (2.4)
yrys = ysyr ; (2.5)

yrψs = ψsyr (r 6= s, s + 1); (2.6)

(yr+1ψr − ψryr)e(i) =

{
e(i) if ir = ir+1,
0 if ir 6= ir+1; (2.7)

(ψryr+1 − yrψr)e(i) =

{
e(i) if ir = ir+1,
0 if ir 6= ir+1; (2.8)
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ψ2
r e(i) =


0 if ir = ir+1,
e(i) if air ir+1 = 0,
(yr − yr+1)e(i) if ir → ir+1,
(yr+1 − yr)e(i) if ir+1 → ir ;

(2.9)

ψrψs = ψsψr (|r − s| > 1); (2.10)

(ψr+1ψrψr+1 − ψrψr+1ψr)e(i) =

 e(i) if ir+2 = ir → ir+1,
−e(i) if ir+1 → ir = ir+2,
0 otherwise.

(2.11)

The grading on Rα is defined by

deg(e(i)) = 0, deg(yre(i)) = 2, deg(ψre(i)) = −air ir+1 .

2.2. Basis Theorem

For each element w ∈ Sd fix a reduced expression w = si1 . . . sim and set

ψw := ψi1 . . . ψim .

In general, ψw is not independent of the choice of reduced expression of w.

Theorem 2.1 (Basis Theorem, [KL1, Theorem 2.5]). The elements

{ψwy
m1
1 . . . y

md
d e(i) | w ∈ Sd , m1, . . . , md ∈ Z≥0, i ∈ Iα} (2.12)

form an F -basis for Rα .

Denote by Pα the (commutative) subalgebra of Rα generated by y1, . . . , yd and all {e(i) |
i ∈ Iα}. By the Basis Theorem,

{y
m1
1 . . . y

md
d e(i) | m1, . . . , md ∈ Z≥0, i ∈ Iα}

is a basis of Pα .

2.3. Modules, weights, and characters

If V =
⊕

k∈Z V [k] is a Z-graded vector space, its graded dimension is

gdimV :=
∑
k∈Z
(dimV [k])qk ∈ Z[q, q−1].

Recall that Rα is a Z-graded algebra. All Rα-modules will be assumed graded, unless
otherwise stated. We will work in the category

Rα-mod = {finite-dimensional graded Rα-modules}.

Since all yre(i) are positively graded, the elements yr act nilpotently on all modules
M ∈ Rα-mod.
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For every i ∈ Iα and any M ∈ Rα-mod, the i-weight space of M is Mi := e(i)M.
We have a decomposition of (graded) vector spaces

M =
⊕
i∈Iα

Mi.

We say that i is a weight of M if Mi 6= 0, and refer to Iα as the set of weights for Rα .
Note by (2.4) that

ψrMi ⊆ Msri. (2.13)

Let Z[q, q−1][Iα] be the free Z[q, q−1]-module with basis {ei | i ∈ Iα}. The formal
character of the module M ∈ Rα-mod is

chM :=
∑
i∈Iα

(gdimMi)e
i.

The formal character map ch : Rα-mod → Z[q, q−1][Iα] factors through to give a
Z[q, q−1]-linear map from the Grothendieck group,

ch : K(Rα-mod)→ Z[q, q−1][Iα]. (2.14)

The following result shows that the characters of the irreducible Rα-modules are linearly
independent.

Theorem 2.2 ([KL1, Theorem 3.17]). The map (2.14) is injective.

2.4. Weight graph

Let 1 ≤ r < d and i ∈ Iα . We call sr an admissible transposition for i if ir and ir+1 are
distinct and not neighbors (i.e. if air ir+1 = 0). By (2.9), if i is a weight of M ∈ Rα-mod
and sr is an admissible transposition for i, then gdimMi = gdimMsri. This explains our
interest in the following combinatorial object.

Define the weight graphGα as the graph with the set of vertices Iα , and with i, j ∈ Iα

connected by an edge if and only if j = sri for some admissible transposition sr for i.
We want to describe the connected components of Gα .

Let i ∈ Iα , and a, b ∈ I be neighbors in 0. The {a, b}-sequence of i is the sequence
of a’s and b’s obtained by ignoring all entries of i different from a and b. For example,
the {1, 2} sequence of i = (1, 2, 2, 3, 4, 1, 2, 1) is (1, 2, 2, 1, 2, 1). Note that if sr is
an admissible transposition for i then the {a, b}-sequence of i is the same as the {a, b}-
sequence of sri for every pair of neighbors a, b ∈ I . So the {a, b}-sequences are invariants
of connected components of Gα . It turns out that these invariants are enough to describe
the components:

Proposition 2.3. Let i, j ∈ Iα . Then i and j belong to the same connected component
of Gα if and only if their {a, b}-sequences coincide for each pair of neighbors a, b ∈ I .



Representations of Khovanov–Lauda algebras 1297

Proof. We prove the result by induction on d = ht(α). Assume that i = (i1, . . . , id) and
j = (j1, . . . , jd) are elements of Iα so that the {a, b}-sequences of i and j coincide for
all pairs of neighbors a, b ∈ I . If d = 1 then i = j, and so i and j are in the same
connected component of Iα . If d > 1 let b = jd and let a be a neighbor of b. Let k be
maximal such that ik = b. None of ik+1, . . . , id is equal to a. Therefore i is connected to

i′ = sd−1 · · · sk+1ski = (i1, . . . , ik−1, ik+1, . . . , id , b).

Now i′ and j are in the same connected component since, by inductive assumption,
(i1, . . . , ik−1, ik+1, . . . , id) and (j1, . . . , jd−1) are in the same connected component of
Gα−αb . ut

2.5. Configurations and standard tableaux

We suggest ‘geometric’ objects called configurations to visualize connected components
of Gα . First, the 0-abacus is 0 ×R≥0, imagined as the abacus with the runners going up
on each vertex of 0. We picture the 0-abacus in R3 with the distance between neighboring
runners always equal to 1. For example, for 0 = D4 and 0 = A∞ the abaci look like this:
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The ‘beads’ of the abacus have shape depending on the runners. The bead on runner
i is ‘glued’ out of isosceles right triangles with hypotenuse of length 2 on the runner, and
the 90◦ vertex sticking towards the neighboring runner (and touching it). Examples of a
bead on runner 1 for type A3, a bead on runner i for type A∞, a bead on runner 2 for type
D4, and a bead on runner 1 for type A1 are:
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Note that if i has no neighbors, the shape of the bead is interpreted as just a segment of
length 2 (‘hypotenuse without triangles’).

Recall that α =
∑
i∈I miαi is a fixed element of Q+ of height d . A configuration of

type α is obtained by placing d beads on the runners of the 0-abacus, letting each bead
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slide down the runner as far as gravity takes it, so that there are a total of mi beads on
runner i for each i ∈ I . We note that configurations are essentially the same as heaps
defined by Viennot [V] (see also Stembridge [S1, S2]).

Let λ be a configuration. A tableau of shape λ or a λ-tableau is a bijection

T : {1, . . . , d} → {beads of λ}.

A bead B of λ is removable if it can be lifted off its runner without interfering with
other beads. If B is on runner i, this is equivalent to the requirement that there are no
beads on neighboring runners which are above B in λ. A λ-tableaux is called standard
if for each k, the bead T (k) is above the bead T (m) whenever m < k and T (m) is on a
neighboring runner. Equivalently, T is standard if and only if T (k) is a removable bead
for the configuration λ \ {T (k + 1), . . . , T (d)} for all 1 ≤ k ≤ d .

Let i = (i1, . . . , id) ∈ I
α . Place a bead on runner i1, then place a bead on runner i2,

and so on, finally placing the last bead on runner id . This procedure produces the configu-
ration of i, written con(i) = con0(i), and the standard tableaux T i of the corresponding
shape. For example:

in type A∞, T (0,−2,2)
=

−3 −2 −1 0 1 2 3 · · ·· · ·
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in type A∞, T (0,1,−1)
=

−3 −2 −1 0 1 2 3 · · ·· · ·
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in type D4, con(2, 1, 3, 4, 2) =
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The reader might note that in type A∞ configurations are closely related to the notation
for Young diagrams favored in [VK, O]. We will refer to this notation as the diagonal-
centric notation (occasionally this is also called the ‘Russian notation’).

For any λ-tableau T we denote by iT the element

iT = (iT1 , . . . , i
T
d ) ∈ I

α,

where iTk is the label of the runner occupied by the bead T (k) (1 ≤ k ≤ d). Now note that
the maps T 7→ iT and i 7→ T i are mutually inverse bijections between the set T (λ) of
standard λ-tableaux and the set of weights i ∈ Iα with con(i) = λ. Now we can interpret
Proposition 2.3 as the following statement:

Proposition 2.4. Two weights i, j ∈ Iα are in the same connected component of Gα if
and only if con(i) = con(j). Moreover, the maps T 7→ iT and i 7→ T i are mutually
inverse bijections between the set of standard λ-tableaux and the set of all weights i ∈ Iα

with con(i) = λ.

3. Homogeneous representations

We continue working with a fixed graph 0 and a fixed α =
∑
i∈I miαi ∈ Q+ of height d.

A module M ∈ Rα-mod is called homogeneous if it is concentrated in one degree, i.e.
M = M[k] for some k ∈ Z. (Another reasonable term to use could be pure representa-
tions.) The homogeneous irreducible modules are especially easy to understand. They are
labeled by ‘skew shapes’, and their formal characters are ‘sums of standard tableaux’ of
that shape.

3.1. Calibrated representations

First, we consider a seemingly different class of modules. A module M ∈ Rα-mod is
called calibrated if y1, . . . , yd act as zero on M . Other authors might use different termi-
nology here, for example Gelfand–Zetlin [Ch, OV], completely splittable [K1, K2, Ru],
seminormal [Ma], etc. Our goal is to classify irreducible calibrated modules following the
approach of [Ra, KR].

Proposition 3.1. Let M ∈ Rα-mod be an irreducible calibrated module, and i be a
weight of M . Then:

(i) there is no r with ir = ir+1;
(ii) there is no r such that ir , ir+1 are neighbors and ir+2 = ir ;

(iii) dimMi = 1;
(iv) the weights of M form one connected component of Gα .

Proof. (i) Assume ir = ir+1 and let v ∈ Mi be nonzero. Since M is calibrated, yr and
yr+1 act as zero, and (2.7) leads to a contradiction:

0 = (yr+1ψr − ψryr)e(i)v = e(i)v = v.
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(ii) Assume (ir , ir+1, ir+2) = (a, b, a), a and b are neighbors, and v ∈ Mi is nonzero.
By (2.4), ψr+1v ∈ Msr+1i and ψrv ∈ Msri. So, by (i), we have ψr+1v = 0 and ψrv = 0.
Using (2.11), we get a contradiction:

0 = (ψr+1ψrψr+1 − ψrψr+1ψr)v = ±v.

(iii) Assume towards a contradiction that v,w are two linearly independent elements
of Mi. As M is irreducible and calibrated, we may assume (up to rescaling) that v =
ψr1 . . . ψrkw and that k is minimal possible. It follows from (2.4) and (i) that sr1 . . . srk =1
in Sd . So we can use braid relations to rewrite

sr1 . . . srk = st1 . . . stm−2st st stm+1 . . . stk .

By (ii) and (2.11), ψr ’s acting on M also satisfy braid relations, so we can rewrite, using
also (2.9),

ψr1 . . . ψrkw = ψt1 . . . ψtm−2ψtψtψtm+1 . . . ψtkw = cψt1 . . . ψtm−2ψtm+1 . . . ψtkw

for some constant c, which must be nonzero, and hence c = 1. This contradicts the
minimality of k.

(iv) If i is a weight of M , and sr is an admissible transposition for i, then sri is also
a weight of M , thanks to (2.4) and (2.9). So all weights in the connected component of i
inGα appear inM . To see that there are no other weights, it suffices to show that if j and
srj are weights of M then sr is an admissible transposition for j.

So let v ∈ Mj , w ∈ Msrj be nonzero vectors. After rescaling, we may assume that
w = ψr1 . . . ψrkv, and let k be minimal possible. By (2.4) and (i), sr1 . . . srk = sr in Sd .
As in the proof of (iii), we deduce from the minimality of k that k = 1 and r1 = r , i.e.
w = ψrv. Similarly, we can write cv = ψrw for a nonzero constant c. So ψ2

r v 6= 0.
In view of (2.9), jr and jr+1 are not neighbors, whence sr is an admissible transposition
for j. ut

Corollary 3.2. Let M ∈ Rα-mod be an irreducible module. Then M is homogeneous if
and only if M is calibrated.

Proof. If M is homogeneous, then y1, . . . , yd act on M as zero since they have positive
degrees. Conversely, if M is calibrated, it follows from Proposition 3.1 that M is a span
of some ψr1 . . . ψrkv where v ∈ Mi for some i, and srm is an admissible transposition for
srm+1 . . . srk i, for all m = 1, . . . , k. It follows that the degree of each ψr1 . . . ψrkv is the
same as the degree of v, so M is homogeneous. ut

3.2. Construction of homogeneous modules

We now give an explicit construction of the homogeneous representations, which can be
thought of as a generalization of Young’s seminormal form [Ch] from type A∞ quivers
to an arbitrary quiver without loops and multiple edges.
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Let C be a connected component of Gα . We say that C is homogeneous if for each
i ∈ C the following condition holds:

if ir = is for some r < s then there exist t, u with
r < t < u < s such that air it = air ,iu = −1.

(3.1)

Lemma 3.3. Let C be a connected component of Gα .

(i) C is homogeneous if and only if the condition (3.1) holds for some i ∈ C.
(ii) C is homogeneous if and only if the conditions (i) and (ii) of Proposition 3.1 hold for

each i ∈ C.

Proof. (i) Condition (3.1) is a condition on the {a, b}-sequences of i which requires that

i = · · · a · · · a · · · only if i = · · · a · · · b · · · c · · · a · · ·

with b and c distinct neighbors of a. If this condition holds for one i ∈ C then, by
Proposition 2.3, it holds for all i ∈ C.

(ii) ‘⇒’: If (i) or (ii) of Proposition 3.1 is violated then there exists i ∈ C with

i = · · · aa · · · or i = · · · aba · · · ,

with b a neighbor of a. In either case i violates the condition in (3.1).
‘⇐’: If condition (3.1) is violated then there exists i ∈ C such that i looks like

Case 1: i = · · · a · · · a · · · ,

with a = ir = is and no neighbors of a in between, or

Case 2: i = · · · a · · · b · · · a · · · ,

with a = ir = is , b = it a neighbor of a and no other neighbors of a in between ir and is .
In Case 1, i is connected to

j = sis−1 · · · sir+1sir i = · · · aa · · · ,

which violates Proposition 3.1(i). In Case 2, i is connected to

j = (sit−1 · · · sir+1sir )(sit+1 · · · sis−2sis−1)i = · · · aba · · · ,

which violates Proposition 3.1(ii). ut

Theorem 3.4. Let C be a homogeneous connected component of Gα , and consider a
vector space S(C) with a homogeneous basis {vi | i ∈ C} labeled by the elements of C.
The formulas

e(j)vi = δi,jvi (j ∈ Iα, i ∈ C),

yrvi = 0 (1 ≤ r ≤ d, i ∈ C),

ψrvi =

{
vsri if sri ∈ C,
0 otherwise (1 ≤ r < d, i ∈ C)

define an action of Rα on S(C), under which S(C) is a homogeneous irreducible Rα-
module. Moreover, S(C) 6∼= S(C′) if C 6= C′, and every homogeneous irreducible Rα-
module is isomorphic to one of the modules S(C).
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Proof. It is straightforward to verify that the formulas above define operators which sat-
isfy the defining relations of Rα , and so S(C) is a well defined Rα-module. It is also
clear that it is concentrated in one degree, i.e. is homogeneous. The irreducibility of S(C)
follows from the definition of C as a connected component of Gα . If C 6= C′ then of
course S(C) is not isomorphic to S(C′) since they have different weights. Finally, if S
is an irreducible homogeneous Rα-module then by Corollary 3.2 and Proposition 3.1 the
formal character of S equals ch S(C) for some homogeneous connected component C,
and so S ∼= S(C) thanks to Theorem 2.2. ut

3.3. Skew shapes

By Theorem 3.4, the homogeneous connected components correspond to the homoge-
neous representations of Rα . The homogeneous connected components are characterized
by the properties (i) and (ii) from Proposition 3.1. The corresponding configurations can
be characterized as follows:

Definition 3.5. A configuration λ is called a skew shape if whenever B1 and B2 are two
beads of λ on the same runner then there are at least two beads on different neighboring
runners separating B1 from B2.

For example, in type A∞,
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are not skew shapes, while
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are skew shapes. Note that, up to a horizontal shift, skew shapes in type A∞ are obtained
by considering all usual skew shapes in the diagonal-centric notation and allowing all
beads to slide down as far as gravity will take them.
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If λ is a configuration, then Sd acts on the set of λ-tableaux by permutations of
{1, . . . , d}. Theorem 3.4 can now be restated as follows:

Theorem 3.6. Let λ be a skew shape, and T (λ) be the set of all standard λ-tableaux.
Consider a vector space S(λ) with a homogeneous basis {vT | T ∈ T (λ)}. The formulas

e(j)vT = δiT jvT (j ∈ Iα, T ∈ T (λ)),

yrvT = 0 (1 ≤ r ≤ d, T ∈ T (λ)),

ψrvT =

{
vsrT if srT is standard,
0 otherwise (1 ≤ r < d, T ∈ T (λ))

define an action of Rα on S(λ), under which S(λ) is a homogeneous irreducible Rα-
module. Moreover, S(λ) 6∼= S(λ′) if λ 6= λ′ and every homogeneous irreducible Rα-
module is isomorphic to one of the modules S(λ).

3.4. Characters and the Littlewood–Richardson rule

Let λ be a skew shape and let S(λ) be the corresponding irreducible homogeneous Rα-
module constructed in Theorem 3.6. Recall the maps i 7→ T i and T 7→ iT from §2.5.
Since vT is in the iT -weight space, and this weight space is one-dimensional, the formal
character of Rλα is

ch S(λ) =
∑

T ∈T (λ)
ei
T

, (3.2)

where the sum is over all standard tableaux T of shape λ.
Let β, γ ∈ Q+ be such that β+γ = α. The productRβ⊗Rγ is naturally a subalgebra

of Rα (cf. [KL1, §2.6]). IfM is a homogeneous Rα-module then its restriction to Rβ⊗Rγ
is homogeneous. It follows from (3.2) that

resRαRβ⊗Rγ S(λ) =
∑
µ⊆λ

S(µ)⊗ S(λ/µ), (3.3)

where the sum is over all configurations µ of type β which are obtained by consecutive
removals of removable beads from λ, and λ/µ is the configuration determined by the
beads of λ that are not in µ. The formula (3.3) is a generalization of the skew Schur
function formula from [Mac, (5.10)]:

sλ/µ(x, y) =
∑

λ⊇ν⊇µ

sλ/ν(x)sν/µ(y).

3.5. Minuscule elements and the hook formula

Finally, we explain a connection between skew shapes and the fully commutative ele-
ments in Coxeter groups studied by Stembridge [S2] and Fan [F]. A special class of fully
commutative elements called dominant minuscule elements will allow us to select straight
shapes from the class of skew shapes.
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Using notation of [Ka], let 8+ be the set of positive roots, < the dominance order,
P+ the set of dominant weights, and W be the Weyl group with simple reflections ri for
i ∈ I , so that W is the Coxeter group with Coxeter graph 0.

An elementw ∈ W is fully commutative if for every pair of noncommuting generators
ri and rj there is no reduced expression for w containing a subword of the form rirj ri .
An element w ∈ W is dominant minuscule if there is 3 ∈ P+ and a reduced expression
w = ri1 . . . rid such that

rik rik+1 . . . rid3 = 3− αik − αik+1 − · · · − αid (1 ≤ k ≤ d).

Using the terminology of §3.3, let λ be a skew shape and T (λ) the set of standard
λ-tableaux. If T ∈ T (λ) and iT = (i1, . . . , id), set

wλ := rid rid−1 . . . ri1 ∈ W. (3.4)

In view of Lemma 3.3 and Definition 3.5, skew shapes and standard tableaux can now
be interpreted as follows.

Proposition 3.7. The element wλ depends only on λ and does not depend on T ∈ T (λ).
Moreover:

(i) the right hand side of (3.4) is a reduced decomposition of wλ;
(ii) λ 7→ wλ is a bijection between the skew shapes with d boxes and the fully commu-

tative elements of W of length d;
(iii) for a fixed skew shape λ, the assignment (3.4) is a bijection between the standard

λ-tableaux and the reduced decompositions of wλ.

Dominant minuscule elements are known to be fully commutative (see e.g. [S2, Proposi-
tion 2.1]) and can be characterized in terms of their reduced expressions as follows.

Proposition 3.8 ([S2, Proposition 2.5]). If w = ri1 . . . rid ∈ W is a reduced expression,
then w is dominant minuscule if and only if the following two conditions are satisfied:

(i) between every pair of occurrences of a generator ri (with no other occurrences of
ri in between) there are exactly two terms (possibly equal to each other) that do not
commute with ri;

(ii) the last occurrence of each generator ri is followed by at most one generator that
does not commute with ri .

Now it is easy to see that in type A∞, skew shapes λ with wλ dominant minuscule are
(disjoint unions of) ‘straight’ shapes in the usual sense, i.e. Young diagrams drawn in the
diagonal-centric notation. This motivates the following definition. A skew shape λ is a
straight shape if wλ is dominant minuscule. Proposition 3.8 yields the following explicit
characterization of the straight shapes.

Lemma 3.9. Let λ be a configuration. Then λ is a straight shape if and only if the fol-
lowing conditions are satisfied:
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(i) between every pair of beads A, B on a runner i (with no beads on the runner i
betweenA and B) there are exactly two beads betweenA and B, which lie on runners
neighboring i (possibly on the same runner);

(ii) the bottom bead on a runner i has at most one bead below it on runners neighboring i.

Peterson and Proctor have given a hook-type formula for the number of standard tableaux
of a straight shape. The proof of this hook formula, and generalizations of it, can be found
e.g. in Nakada in [N2]. In view of Proposition 3.7(iii), the Peterson–Proctor hook formula
can be stated, in our context, as follows.

Theorem 3.10 (Peterson–Proctor Hook Formula). Let λ be a straight shape with d

beads. Using notation as in Theorem 3.6, the dimension of the corresponding representa-
tion of the Khovanov–Lauda algebra is

dim S(λ) = Card(T (λ)) =
d!∏

β∈8(wλ) ht(β)
,

where
8(w) := {β ∈ 8+ | w−1(β) < 0},

and Card(T (λ)) is the number of standard tableaux of shape λ.
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