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Abstract. We show that phase space bounds on the eigenvalues of Schrödinger operators can be
derived from universal bounds recently obtained by E. M. Harrell and the author via a monotonicity
property with respect to coupling constants. In particular, we provide a new proof of sharp Lieb–
Thirring inequalities.
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1. Introduction

We consider the eigenvalues Ej (α) of a one-parameter family of Schrödinger operators

H(α) = −α1+ V (x) (1.1)

on Rd for constants α > 0. For simplicity we suppose that V (x) is a continuous function
of compact support and we denote its negative part by V−(x). It is a well-known fact (see
e.g. [3, 9] and references therein) that for all σ ≥ 0,

lim
α→0+

αd/2
∑

Ej (α)<0

(−Ej (α))
σ
= Lcl

σ,d

∫
Rd
V−(x)

σ+d/2 dx (1.2)

with Lcl
σ,d , called the classical constant, given by

Lcl
σ,d = (4π)

−d/2 0(σ + 1)
0(σ + d/2+ 1)

. (1.3)

Lieb–Thirring inequalities are inequalities of the form

αd/2
∑

Ej (α)<0

(−Ej (α))
σ
≤ Lσ,d

∫
Rd
V−(x)

σ+d/2 dx (1.4)
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for some constant Lσ,d ≥ Lcl
σ,d and are widely discussed in the literature (see e.g. [3, 9,

11]). A longstanding question is when (1.4) holds with Lσ,d = Lcl
σ,d . The most general

result is due to Laptev and Weidl [10] who proved that Lσ,d = Lcl
σ,d for all σ ≥ 3/2 and

d ≥ 1. Their proof is based on a dimensional reduction of Schrödinger operators with
operator valued potentials, which allows them to make use of the bound for σ = 3/2,
d = 1 which has been first proven by Lieb and Thirring [12]. For a simplified proof see
also [2]. On the other hand, by analyzing the spectra of harmonic oscillators Helffer and
Robert [8] have shown that Lσ,d > Lcl

σ,d for σ < 1 while de la Bretèche showed that
these spectra are in agreement with the conjecture Lσ,d = Lcl

σ,d for σ ≥ 1 [4].
Recently, Harrell and the author have established universal trace inequalities for ab-

stract self-adjoint operators H modelled on Schrödinger operators [7]. If G is another
self-adjoint operator, then under suitable domain conditions (see Corollary 2.3 of [7])∑

Ej∈J

((z− Ej )
2
〈[G, [H,G]]φj , φj 〉 − 2(z− Ej )〈[H,G]φj , [H,G]φj 〉)

= 2
∑
Ej∈J

∫
κ∈J c

(z− Ej )(z− κ)(κ − Ej ) dG
2
jκ (1.5)

where J denotes a subset of the discrete spectrum of H and J c its complement and the
measure dG2

jκ corresponds to the matrix elements of the operator G with respect to the
spectral projections onto J and J c (see [7] for the details). Exploiting this identity we
prove the following

Theorem 1.1. Let V (x) be a continuous function of compact support. Then the mapping

α 7→ αd/2
∑

Ej (α)<0

(−Ej (α))
2 (1.6)

is non-increasing for all α > 0. Consequently,

αd/2
∑

Ej (α)<0

(−Ej (α))
2
≤ Lcl

2,d

∫
Rd
V−(x)

2+d/2 dx (1.7)

for all α > 0.

The link between universal inequalities and semiclassical estimates has been first made
in [6] where it has been shown for the Dirichlet Laplacian −1D on a bounded domain
D ⊂ Rd that the mapping

t 7→ td/2 tr(e−t1D ) (1.8)

is always decreasing and therefore bounded by its semiclassical limit, that is,

tr(e−t1D ) ≤ (4πt)−d/2|D|. (1.9)

Harrell and Hermi have extended this technique to Riesz means of the Dirichlet Lapla-
cian [5]. In [7] it has been pointed out that the monotonicity of mappings like (1.8) is a
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universal property of a large family of “trace-controllable” functions (as precisely defined
in [7]) of Schrödinger operators and we shall derive in the present paper a corresponding
universal property of one-parameter families of Schrödinger operators. Our second result
extends this property to Schrödinger operators of the form (1.1) with confining potentials
V (x) such that ∫

Rd
e−tV (x) dx <∞ (1.10)

for all t > 0. We provide a monotonicity result implying the Golden–Thompson inequal-
ity (see e.g. [13]) for Schrödinger operators (1.1):

Theorem 1.2. If (1.10) holds, then for all t > 0 the mapping

α 7→ αd/2 tr(e−tH(α)) (1.11)

is non-increasing for all α > 0. Consequently, for all α > 0,

tr(e−tH(α)) ≤ (4παt)−d/2
∫

Rd
e−tV (x) dx <∞. (1.12)

2. Proof of main results

The key for proving our main results is the trace formula for self-adjoint operators proved
in [7]. For convenience we reformulate this result for the operator H(α) in a slightly dif-
ferent and, as we believe, more transparent way. To make the present paper self-contained
we give an elementary proof of the trace formula. For simplicity, we consider only the case
of purely discrete spectra (more relevant for Theorem 1.2). In the presence of continuous
spectrum one uses the spectral integral as in [7].

Theorem 2.1 (Trace formula for H(α)). Suppose that H(α) given in (1.1) has a spec-
trum consisting of eigenvalues Ek = Ek(α) with associated eigenfunctions φk forming
an orthonormal basis of the underlying Hilbert space L2(Rd). Then for any function
f : R→ R,

d
∑
Ej

f (Ej )+ 2α
∑∑
Ej 6=Ek

Tjk
f (Ek)− f (Ej )

Ek − Ej
= 0 (2.1)

provided all sums are finite where

Tjk = Tkj =

∣∣∣∣ ∫Rd
φj∇φk dx

∣∣∣∣2 (2.2)

denote the kinetic energy matrix elements.
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Proof. Let xa , a = 1, . . . , d , denote cartesian coordinates in Rd and Da = ∂/∂xa . The
first identity we derive in the following is due to canonical commutation (or integration
by parts) and the completeness of eigenfunctions. Indeed, for all j ,

1 = −2
∫

Rd
xaφjDaφj dx = −2

∑
k

∫
Rd
xaφjφk dx

∫
Rd
φkDaφj dx. (2.3)

Taking the scalar product of H(α)φj = Ejφj with φk and vice versa we derive, after
subtracting both expressions, the gap formula

(Ek − Ej )

∫
Rd
xaφjφk dx = −2α

∫
Rd
(Daφj )φk dx. (2.4)

We note that the r.h.s. is zero for degenerate eigenvalues. Therefore after summing over
all coordinates in (2.3) we get the sum rule

d = 4α
∑
Ek 6=Ej

Tjk

Ek − Ej
. (2.5)

Multiplying (2.5) by f (Ej ), summing over j and symmetrizing the double sum we finally
obtain (2.1). ut

Applying Theorem 2.1 to f (E) = (z−E)2 forE < z and f (E) = 0 otherwise we recover
(1.5) with G being the multiplication operator xa after summing over all coordinates as
shown in [6, 7]:∑

Ej<z

(d(z− Ej )
2
− 4α(z− Ej )Tj ) = 4α

∑
Ej<z

∑
Ek≥z

Tjk
(z− Ej )(z− Ek)

Ek − Ej
(2.6)

with
Tj =

∑
Ek

Tjk =

∫
Rd
|∇φj |

2 dx.

Remark 2.2. Formula (2.5) can also be easily derived from second order perturbation
theory. Indeed, for a fixed vector v ∈ Rd consider the operator H = (−i

√
α∇ + γ v)2

+ V (x). Obviously, the addition of a constant vector potential does not change the
eigenvalues, and second order perturbation (i.e. first order in γ 2v2 and second order in
−2i
√
α γ v∇) yields (2.5) when choosing v to be the canonical unit vectors ea and then

summing over all a = 1, . . . , d . The author thanks R. Seiringer for indicating this proof.

Choosing f appropriately in Theorem 2.1 we may now prove our main results.
Proof of Theorem 1.1. We note that for any α > 0 the operator H(α) has at most a
finite number of negative eigenvalues. Obviously, the r.h.s. in (2.6) is negative. Making
the dependence on the parameter α explicit we have therefore for all z ≤ 0 the inequality

α
∑

Ej (α)<0

(z− Ej (α))
2
−

4
d
α2

∑
Ej (α)<0

(z− Ej (α))Tj (α) ≤ 0. (2.7)

The functions Ej (α) are non-positive, continuous and increasing. Furthermore, let∞ ≥
α1 ≥ α2 ≥ · · · > 0 denote the values at which Ej (α) appears. Ej (α) is continuously



Universal monotonicity of eigenvalue moments 1351

differentiable for α 6= αk and by the Feynman–Hellmann theorem
d

dα
Ej (α) = Tj (α). (2.8)

Taking z = 0, inequality (2.7) then reads

α
∑

Ej (α)<0

(−Ej (α))
2
+

2
d
α2 d

dα

∑
Ej (α)<0

(−Ej (α))
2
≤ 0.

For any α ∈ ]αN+1, αN [ the number of eigenvalues is constant and therefore
d

dα

(
αd/2

∑
Ej (α)<0

(−Ej (α))
2
)
≤ 0,

proving the theorem. ut

Remark 2.3. Strictly speaking, the Feynman–Hellmann theorem only holds for non-
degenerate eigenvalues. In the case of degenerate eigenvalues one has to take the right
basis in the corresponding eigenspace and to change the numbering if necessary (see
e.g. [14]).

Proof of Theorem 1.2. Choose f (E) = e−tE and t > 0. Since f ′(E) = −tf (E) is
concave it follows that

f ′(sEj + (1− s)Ek) ≥ sf ′(Ej )+ (1− s)f ′(Ek).

Using the symmetry of Tjk we get

d
∑
Ej (α)

f (Ej (α))+ 2α
∑
Ej (α)

f ′(Ej (α))Tj (α) ≤ 0

and we conclude as in the proof of Theorem 1.1. ut

3. Extensions and discussion

It has already been shown in [6, 5, 7] that one can obtain trace inequalities for the func-
tions f (E) = (z− E)σ with σ ≥ 2. In fact we have the following result:

Corollary 3.1. Let f : R → R be a C1 function with support on the negative half axis
such that f ′ is concave. Under the conditions of Theorem 1.1 the mapping

α 7→ αd/2
∑

Ej (α)<0

f (Ej (α)) (3.1)

is non-increasing for α > 0. In particular, for all σ ≥ 2,

α 7→ αd/2
∑

Ej (α)<0

(−Ej (α))
σ (3.2)

is non-increasing for α > 0. Consequently,

αd/2
∑

Ej (α)<0

(−Ej (α))
σ
≤ Lcl

σ,d

∫
Rd
V−(x)

σ+d/2 dx. (3.3)
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Proof. Since f is of class C1 we may rewrite the trace formula (2.1) as follows (note that
Tjj = 0):

d
∑
Ej

f (Ej )+ 2α
∑
Ej

∑
Ek

Tjk

∫ 1

0
f ′(sEj + (1− s)Ek) ds = 0.

The concavity of f ′ implies that∫ 1

0
f ′(sEj + (1− s)Ek) ds ≥

1
2
f ′(Ej )+

1
2
f ′(Ek).

Using the symmetry of Tjk and f ′(E) = 0 for E ≥ 0 we get

d
∑

Ej (α)<0

f (Ej (α))+ 2α
∑

Ej (α)<0

f ′(Ej (α))Tj (α) ≤ 0.

As in the proof of Theorem 1.1 we use the Feynman–Hellmann theorem to prove (3.1).
ut

Remark 3.2. The sharp Lieb–Thirring inequality (3.3) follows also from (1.7) of Theo-
rem 1.1 via the Aizenman–Lieb monotonicity principle [1]. However, the monotonicity
of the mapping (3.2) is a stronger and new result.

Remark 3.3. Theorems 1.1 and 1.2 are also valid in the presence of magnetic fields, i.e.
H(α) = −α(−i∇ +A(x))2+V (x), and in the case of matrix valued potentials, since all
commutation relations remain unchanged and the trace formula (2.1) still holds [6, 7].

Remark 3.4. We cannot expect that the monotonicity holds for moments with σ < 2.
For example, consider the d-dimensional harmonic oscillator with eigenvalues Ej (α) =√
α (2j1+· · ·+2jd +d) for natural numbers j1, . . . , jd . We want to study the behaviour

of the eigenvalue moments

Sσ (α) =
∑

Ej (α)<1

(1− Ej (α))σ .

Then for all α ∈ [(d + 2)−2, d−2] we have

αd/2Sσ (α) = α
d/2(1− d

√
α)σ .

It is easy to see that the derivative of the above expression (with respect to α) is strictly
positive at α = (d + 2)−2 for all 0 ≤ σ < 2. This behaviour persists also for the sum of
the first two eigenvalues. Indeed, for all α ∈ [(d + 4)−2, (d + 2)−2] we have (taking into
account the multiplicity of the second eigenvalue)

Sσ (α) = (1− d
√
α)σ + d(1− (d + 2)

√
α)σ .

Then the function pσ (α) := αd/2Sσ (α) has a strictly positive derivative at α = (d+4)−2

for all 0 ≤ σ < 2. Obviously, for σ = 2 the derivatives at these points vanish.
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