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Abstract. The hypersurface in C3 with an isolated quasi-homogeneous elliptic singularity of type
Ẽr , r = 6, 7, 8, has a natural Poisson structure. We show that the family of del Pezzo surfaces of
the corresponding type Er provides a semiuniversal Poisson deformation of that Poisson structure.

We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface.
To this end, we first deform the polynomial algebra C[x1, x2, x3] to a noncommutative algebra with
generators x1, x2, x3 and the following three relations labeled by cyclic parmutations (i, j, k) of
(1, 2, 3):

xixj − t · xjxi = 8k(xk), 8k ∈ C[xk].

This gives a family of Calabi–Yau algebras At(8) parametrized by a complex number t ∈ C× and
a triple 8 = (81,82,83) of polynomials of specifically chosen degrees.

Our quantization of the coordinate ring of a del Pezzo surface is provided by noncommutative
algebras of the form At(8)/〈〈9〉〉, where 〈〈9〉〉 ⊂ At(8) stands for the ideal generated by a central
element 9 which generates the center of the algebra At(8) if 8 is generic enough.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1371
2. Poisson deformations of a quasi-homogeneous surface singularity . . . . . . . . . . . 1377
3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383
4. Three-dimensional Poisson structures . . . . . . . . . . . . . . . . . . . . . . . . . . 1391
5. Poisson (co)homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1393
6. Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1400
7. Calabi–Yau deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1401
8. From Poisson to Hochschild cohomology . . . . . . . . . . . . . . . . . . . . . . . . 1406
9. Appendix: computer calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1414

1. Introduction

1.1. Poisson structures on del Pezzo surfaces

We remind the reader that a del Pezzo surface is a smooth projective surface S that is ob-
tained by blowing up ` sufficiently general points in CP2, where 0 ≤ ` ≤ 8, or CP1

×CP1.
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Let S be such a del Pezzo surface with canonical bundle KS , resp. anticanonical bundle
K−1
S . A regular section π ∈ 0(S,K−1

S ) is a bivector that gives S a Poisson structure (any
bivector π on a surface automatically has a vanishing Schouten bracket: [π, π] = 0). We
say that a regular section π ∈ 0(S,K−1

S ) is nondegenerate provided the divisor of zeros
of π is a reduced smooth curve.

In this paper we consider the most interesting case where ` = 6, 7, or 8, and where π
is assumed to be a nondegenerate section. Then a simple application of the adjunction
formula shows that the zero locus of π is an elliptic curve E ⊂ S. Furthermore, X :=
S r E is an affine surface equipped with an algebraic symplectic structure provided by
the (closed) 2-form π−1

∈ 0(S r E,KS).
There are two Poisson algebras naturally associated with the data (S, π). The first al-

gebra is C[X], the coordinate ring of the affine symplectic surface X. The second algebra
is a graded algebra

R =
⊕
n≥0

Rn, Rn := 0(S, (K−1
S )⊗n), (1.1.1)

the homogeneous coordinate ring associated with the anticanonical bundle, an ample line
bundle on S. One can use a construction of Kaledin to make R a Poisson algebra as
follows.

Choose a local nowhere vanishing section φ ∈ 0(U,K−1
S ) on a Zariski open subset

U ⊂ S. Let Lh(φ) := [iπ (dh), φ] denote the Lie derivative of the bivector φ with respect
to iπ (dh), the Hamiltonian vector field associated with a regular function h onU . Further,
write {−,−}π for the Poisson bracket on U induced by the bivector π . Then, following
[Ka], one defines a Poisson bracket {−,−}R : Rn × Rm → Rn+m, m, n ≥ 0, by the
formula

{f φn, gφm}R := {f, g}π ·φn+m+(mgLf (φ)−nfLg(φ))·φn+m−1, ∀f, g ∈ 0(U,OU ).

It is straightforward to verify that the resulting bracket is independent of the choice of a
nowhere vanishing section φ on U .

To relate the Poisson algebras C[X] andR, writeK for the total space of the canonical
bundle KS . Thus K is a 3-dimensional variety equipped with a natural C×-action. By
definition, one has a graded algebra isomorphism R = C[K] := 0(K,OK) such that the
grading on C[K] comes from the C×-action. Further, there is a diagram

X = S r E
i:=π−1

↪−−−−→ K
p
� S, (1.1.2)

where the second map p is the line bundle projection and the first map is a section of p
over S r E provided by the symplectic form.

One can show that the map i = π−1, in the diagram, is a closed imbedding. Moreover,
the corresponding restriction morphism i∗ : R = C[K] → C[X] induces an algebra
isomorphism R/(π − 1)

∼
−→ C[X], where (π − 1) denotes the ideal generated by the

element π−1 ∈ R1⊕R0. The element π−1 being nonhomogeneous, the grading on the
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algebraR does not descend to a grading on the quotient algebra. However, the ascending
filtration F≤mR :=

⊕
n≤mRm on R induces a well-defined ascending filtration F qC[X]

that makes the coordinate ring C[X] a filtered algebra.
Let R C[X] :=

∑
n≥0 FnC[X] · tn ⊂ C[X] ⊗ C[t] be the Rees algebra of the fil-

tered algebra C[X]. This is a graded algebra equipped with a canonical graded algebra
imbedding C[t] ↪→ R C[X] such that R C[X]/(t−1) ∼= C[X]. Furthermore, the Poisson
bracket on C[X] induces one on the Rees algebra.

We leave to the reader the proof of the following simple result:

Proposition 1.1.3. There is a natural graded Poisson algebra isomorphism 4 :
R C[X]

∼
−→ R such that

• The canonical algebra imbedding C[t] ↪→ R C[X] gets transported, via 4, to the
graded algebra homomorphism C[t] ↪→ R induced by the assignment t 7→ π .
• The isomorphism R C[X]/(t − 1) ∼= C[X] gets transported, via 4, to the algebra

isomorphism C[K]/(π − 1)
∼
−→ C[X]. ut

The proposition shows how the Poisson algebras C[X] andR can be recovered from each
other. Therefore, quantization (i.e., noncommutative deformation) problems for these two
algebras are essentially equivalent.

In the rest of the paper, we will concentrate on the problem of quantizing the affine
symplectic surfaceX = SrE by constructing noncommutative deformations of the Pois-
son algebra C[X], to be viewed as coordinate rings of ‘noncommutative affine surfaces’.
Noncommutative deformations of the Poisson algebra R, to be viewed as homogeneous
rings of ‘noncommutative projective surfaces’, may then be obtained by applying the Rees
algebra construction to the corresponding noncommutative deformations of C[X].

1.2. Noncommutative surfaces

The general theory of noncommutative projective surfaces has been initiated in the late
80’s by Artin and Schelter [AS]. Many deep results were obtained later, in the papers
[ATV], [AV], [BSV], [C1], [Le], and [St1].

The general philosophy of noncommutative surfaces, either projective or affine, was
outlined by M. Artin in [A]. According to that philosophy in the affine case, one tries
to construct a noncommutative algebra B that plays the role of ‘coordinate ring’ of an
(affine) noncommutative surface X. It turns out that, in typical examples, the algebra B
often appears in the form B = A/〈〈9〉〉. Here, A is an auxiliary associative algebra which
is somehow more accessible than B, and 〈〈9〉〉 denotes a two-sided ideal in A gener-
ated by a normal (often central) element 9 ∈ A. It has been remarked by M. Artin [A]
that there should be some more conceptual a priori explanation of the appearance of the
algebra A and of the element 9.

The aim of the present paper is to propose such an explanation. Our approach is
based on the concept of Calabi–Yau (CY) algebra, introduced recently (cf. e.g. [Bo], [Gi],
and Definition 1.4.1 below). This approach is consistent with the point of view of string



1374 Pavel Etingof, Victor Ginzburg

theory where 3-dimensional CY varieties are considered to be more fundamental than 2-
dimensional surfaces. Thus, a 2-dimensional surface should be viewed as a hypersurface
in an ambient CY 3-fold which, in the affine case, is typically taken to be C3 and, in the
projective case, is taken to be the total space of the canonical bundle of the surface.

The best way to understand what kind of noncommutative algebraic structures should
be analogous to the structures of CY geometry is to consider a ‘quasi-classical approx-
imation’ first. A noncommutative CY algebra of dimension 3 reduces, quasi-classically,
to the coordinate ring C[M] of an affine 3-dimensional variety M . Such a variety comes
equipped with an algebraic volume form vol ∈ �3(M), that keeps track of the CY struc-
ture, and with a Poisson bracket, that ‘remembers’ about the noncommutative deforma-
tion, up to first order. A key point is that these two pieces of data must be related. Specifi-
cally, it was explained by Dolgushev [Do] that the correct quasi-classical analogue of the
CY condition is the requirement that the Poisson bracket on M be unimodular, that is,
such that any Hamiltonian vector field on M preserves the volume form vol, i.e. has the
vanishing divergence.

It is easy to show that any unimodular Poisson bracket on a 3-fold with trivial first de
Rham cohomology is determined by a single regular function φ ∈ C[M] (see §4). The
function φ is unique up to a constant summand and it is automatically central with respect
to the corresponding Poisson bracket. Furthermore, this function generates, generically,
the whole Poisson center.

We turn now to noncommutative surfaces inside our noncommutative CY variety.
Quasi-classically, giving such a surface amounts to giving a Poisson hypersurfaceX⊂M .
For M = C3, for instance, that means, in the generic case, that the equation of the hy-
persurface X must be given by a function contained in the Poisson center of C[M]. In
the situation where the Poisson center reduces to C[φ] we conclude that our function is a
polynomial in φ. Hence, the only hypersurfaces which may arise in the process of quasi-
classical degeneration of a noncommutative story are, essentially, the level sets of φ. By
redefining φ, one may assume without loss of generality that the surface is the zero set
of φ, so the corresponding coordinate ring is C[X] = C[M]/(φ).

The discussion above suggests that C[M], the coordinate ring of the CY 3-fold, gets
deformed via a quantization to a noncommutative CY algebra A in such a way that the
function φ gets deformed to a central (more generally, normal) element 9 ∈ A. There-
fore, the coordinate ring of the corresponding surface gets deformed to a noncommutative
algebra of the form B = A/〈〈9〉〉.

This provides a reason for the appearance of the objectsA and9 we were looking for.

1.3. Quantizing del Pezzo surfaces

In this paper, we study hypersurfaces in the CY variety M = C3, equipped with the stan-
dard volume form dx∧dy∧dz. Thus, we have C[M] = C[x, y, z]. As we have mentioned
earlier, associated with any φ ∈ C[x, y, z], there is a Poisson structure onM . Specifically,
the Poisson brackets of coordinate functions are given by the explicit formulas

{x, y} =
∂φ

∂z
, {y, z} =

∂φ

∂x
, {z, x} =

∂φ

∂y
. (1.3.1)
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It is immediate to verify that φ is a central element with respect to the above bracket.
Therefore, C[x, y, z]/(φ), a quotient by the principal ideal generated by φ, inherits the
structure of a Poisson algebra.

Definition 1.3.2. We write Aφ := C[x, y, z] for the Poisson algebra with bracket (1.3.1),
and let Bφ := Aφ/(φ) be the quotient Poisson algebra with induced bracket.

It is interesting to take φ a (quasi-) homogeneous polynomial with an isolated singu-
larity at the origin. In the special case where degφ ≤ deg x + deg y + deg z, the equation
φ = 0 defines a Poisson surface with either simple Kleinian, or elliptic singularity.

We study both commutative and noncommutative deformations of the correspond-
ing Poisson algebra Bφ . We show that all Poisson algebra deformations are essentially
obtained by deforming the polynomial φ (see Theorem 2.5.3). In the elliptic case, for
instance, any such deformation gives the coordinate ring of an affine surface obtained by
removing an elliptic curve from an appropriate projective del Pezzo surface.

Our approach to noncommutative deformations of elliptic singularities is motivated
by the ideology explained in §1.2. Specifically, we simultaneously deform both the cor-
responding surface φ = 0 and the ambient CY variety C3. This way, we construct a flat
family of noncommutative CY algebras At(8) of dimension 3, which provide a defor-
mation of the Poisson algebra Aφ , and a family of central elements 9 ∈ At(8). The
noncommutative algebras of the form At(8)/〈〈9〉〉 thus provide a flat deformation of the
Poisson algebra Bφ . In analogy with the Poisson case, these noncommutative algebras
may be thought of as ‘coordinate rings’ of noncommutative del Pezzo surfaces.

There were a few other approaches to the problem of quantization of del Pezzo sur-
faces in the literature. One of them was proposed by M. Van den Bergh, in the paper
[VB3], which gives a construction of the category of coherent sheaves on a ‘would be’
noncommutative (projective) del Pezzo surface. The connection between this approach
and our approach is given by Chapter 12 of [VB3]. Namely, it is shown there that if one
blows up six points in a quantum plane and then takes the affine part (the complement
of the elliptic curve), then the coordinate ring is of the form A/(n), where A is a filtered
deformation of an AS-regular algebra and n is a normalizing element. We expect that this
ring is the E6-deformation considered in this paper, and that a similar approach works
for E7 and E8.

A different construction, which is explicit but works only for a very special class of
degenerate noncommutative del Pezzo surfaces, was proposed in [EOR].

Our present approach works in the general case, and is both quite simple and explicit.
As a first step, we introduce a family of associative algebras At(8) to be the algebras with
three generators, x, y, z, subject to three defining relations of the form

[x, y]t =
∂8

∂z
, [y, z]t =

∂8

∂x
, [z, x]t =

∂8

∂y
. (1.3.3)

In this formula, 8 runs over a certain explicitly defined family of noncommutative cyclic
potentials, t is a complex parameter, and we have used the notation [u, v]t := uv− t · vu.



1376 Pavel Etingof, Victor Ginzburg

Remark 1.3.4. It is interesting to note that relations in (1.3.3) look very similar to the
formulas for the Poisson bracket (1.3.1), at least formally. The analogy goes much further
since the actual formula for 8 (see (3.4.1)–(3.4.2)) is quite similar to the formula for the
polynomial φ ∈ C[x, y, z] that gives the equation of an affine del Pezzo surface (see
(2.5.1)–(2.5.2)).

Next, we prove one of our main results (see §§3.3–3.4), saying that At(8) is a Calabi–
Yau algebra of dimension 3 and that, for sufficiently general parameters, the center of
At(8) has the form C[9], a free polynomial algebra generated by an element 9 uniquely
determined up to a constant summand. We show further that the family of noncommuta-
tive algebras of the form Bt(8,9) := At(8)/〈〈9〉〉 provides the required quantization
of del Pezzo surfaces. It is also quite remarkable that, in a sense, any flat infinitesimal
deformation of the Poisson algebra Bφ can be obtained by the above construction (cf.
Theorem 3.4.4).

In Section 3.5, we discuss the special case of homogeneous potentials. In this case,
the algebras At(8) and Bt(8,9) have natural gradings. The graded algebra At(8) is
nothing but an Artin–Schelter regular algebra of dimension 3. These algebras, also known
as Sklyanin algebras, have been intensively studied in the literature (see [AS], [ATV],
[AV] and references therein). In particular, they were classified in D. Stephenson’s Ph.D.
thesis [St2] (see also [St3]). The best understood case is that of singularities of type E6,
resp. E7, corresponding to quadratic, resp. cubic, Sklyanin algebras. The E8-case has not
been studied so well (cf. however [St1]).

The graded algebra Bt(8,9) may be thought of as the homogeneous coordinate ring
of a noncommutative elliptic singularity. There seems to be an interesting and largely un-
explored theory of graded matrix factorizations for noncommutative elliptic singularities.
In Section 3.6, we introduce a few basic results (cf. also [KST]) and formulate Conjecture
3.6.8.

In the general case of an arbitrary, not necessarily homogeneous, potential 8 the al-
gebra At(8) comes equipped with a natural ascending filtration and one may form the
corresponding Rees algebra. This way, one obtains a class of graded algebras that has
been considered earlier, especially in type E6 (see [BSV] and [C1], [C2]). Nonetheless,
an explicit expression for the central element 9 ∈ At(8), or the corresponding homoge-
neous central element of the Rees algebra, is quite complicated even in type E6 (see §9
and [R]).

Remark 1.3.5. It would be interesting to establish a connection between our approach to
noncommutative del Pezzo surfaces and the results of Chan–Kulkarni [CK].

1.4. Definition of Calabi–Yau algebras

We will work with unital associative, not necessarily commutative, C-algebras, to be re-
ferred to as ‘algebras’. We write ⊗ = ⊗C, dim = dimC, etc.

Definition 1.4.1 ([Gi]). An algebra A is said to be a Calabi–Yau algebra of dimension
d ≥ 1 provided it has finite Hochschild dimension, and there are A-bimodule isomor-
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phisms

ExtkA-bimod(A,A⊗ A)
∼=

{
A if k = d,
0 if k 6= d.

(1.4.2)

The image of 1A ∈ A under such an isomorphism gives a central element in
ExtdA-bimod(A,A⊗ A), called the noncommutative volume on A.

Example 1.4.3. Let X be a smooth connected affine complex algebraic variety of di-
mension d . A noncommutative volume for the algebra A = C[X], the coordintate ring
of X, is the same thing as a nowhere vanishing section of the line bundle ΛdTX =
ExtdOX×X (OX,OX×X). Thus, A is a Calabi–Yau algebra if and only if X is a Calabi–
Yau variety.

Remark 1.4.4. Following Van den Bergh [VB1], it may be natural to consider a wider
class of twisted CY algebras which satisfy a weaker version of (1.4.1) requiring that
the group ExtkA-bimod(A,A ⊗ A) be zero for k 6= d and, for k = d, this Ext-group be
an arbitrary invertible A-bimodule U , not necessarily U = A. Twisted CY algebras
correspond geometrically to arbitrary Gorenstein varieties whose dualizing sheaf is a not
necessarily trivial line bundle.

One should be able to develop an analogue of the theory of CY algebras in this more
general framework. In such a theory, the role of d8, an exact noncommutative cyclic
1-form associated with a cyclic potential 8 (cf. §3.1 and [Gi, §3.5]) is expected to be
played by a suitable noncommutative cyclic 1-form with coefficients in U−1, an inverse
A-bimodule.

In the special case of graded algebras, any invertible graded A-bimodule U must be
a rank 1 free left A-module. The right A-action on U is then given, in terms of a left
A-module isomorphism U ∼= A, by the formula ua = u · σ(a) for u ∈ U , a ∈ A, where
σ is an algebra automorphism of A. In the framework of Sklyanin algebras, this has the
effect that the central element 9 of the CY algebra gets replaced by a normal element in
a twisted CY algebra (cf. [ATV]).

2. Poisson deformations of a quasi-homogeneous surface singularity

2.1. Deformations and cohomology

Deformations of an algebraic object A are often controlled by the vector space H 2(A),
the second cohomology group for an appropriate cohomology theory. That means, in
particular, that associated with such a deformation, i.e. with a family of objects {As |
s ∈ S} parametrized by a scheme S, one has a canonical classifying, Kodaira–Spencer
type, linear map

KSs : TsS → H 2(As), s ∈ S, (2.1.1)

where TsS stands for the Zariski tangent space to the scheme S at a point s. A tangent
vector v ∈ TsS determines a 1-parameter infinitesimal first order deformation of the
object As . The image of v under the classifying map KSs is called the Kodaira–Spencer
class of that deformation.
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Definition 2.1.2. A family {As | s ∈ S}, parametrized by a smooth scheme S, is said to
be a (smooth) semiuniversal1 deformation provided the classifying map is a vector space
isomorphism for any s ∈ S.

Obstructions to deformations of an object A are often controlled by H 3(A), the
third cohomology group. A standard result of deformation theory ensures the existence
of a formal semiuniversal deformation of A with base S = H 2(A) provided one has:
(1) dimH 2(A) < ∞ and, moreover, (2) H 3(A) = 0. However, a formal semiuniversal
deformation of A sometimes exists even if H 3(A) 6= 0. If the semiuniversal deformation
exists, one says that the deformations of A are unobstructed.

Given an associative, resp. commutative associative or Poisson, algebra A, one can
define its Hochschild cohomology HH q

(A) := Ext qA-bimod(A,A) (Gerstenhaber), resp.
Harrison cohomology, Harr q

(A) (cf. [Lo] and references therein), or Poisson cohomol-
ogy PH q

(A) (cf. [GK, Appendix] and §5.1 below). By definition, in degree zero for an
associative algebra A one has HH 0(A) = Z(A), the center of A. Similarly, for a Pois-
son algebra with Poisson bracket {−,−} : A × A → A, we have PH 0(A) = Z(A) :=
{z ∈ A | {z, a} = 0, ∀a ∈ A}, is the Poisson center of A.

Also, for the corresponding degree zero Hochschild, resp. Poisson, homology, one
has HH 0(A) = Acyc := A/[A,A], the commutator quotient space, resp. PH 0(A) =

A/{A,A}.

Flat deformations of an associative, resp. commutative associative or Poisson, al-
gebra A are controlled by the second Hochschild cohomology group HH 2(A), resp.
Harr2(A) or PH 2(A) (cf. [GK]). Thus, one may consider flat deformations of such an
algebra A. Observe that a flat family of Poisson algebras is in particular a flat family of
commutative algebras. This corresponds, in terms of cohomology, to the existence for any
Poisson algebra A of a canonical linear map can : PH 2(A)→ Harr2(A).

Now, let A be a Calabi–Yau algebra of dimension d in the sense of Definition 1.4.1.
According to [VB2], a choice of noncommutative volume forA induces a Poincaré duality
type isomorphism

HH q(A) ∼−→ HH d− q
(A). (2.1.3)

Following [CBEG], we introduce a BV operator 1 : HH q
(A) → HH

q−1(A), ob-
tained by transporting the Connes differential B, on Hochschild homology, to Hochschild
cohomology via the duality isomorphism (2.1.3).

One may consider first order deformations of the CY algebra A within the class of
Calabi–Yau algebras. The Kodaira–Spencer classes of all such deformations form a vector
subspace in HH 2(A), which turns out to be equal to

Ker[1 : HH 2(A)→ HH 1(A)].

1 The term “semiuniversal deformation” is often used for deformations parametrized by arbitrary
(not necessarily smooth) formal schemes. In this paper, we will consider only smooth semiuniversal
deformations, and for this reason will not explicitly mention that they are smooth.
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In the special case of Calabi–Yau algebras of dimension d = 3, there is a chain of
maps

κ : Acyc
(2.1.3)
−−−�
∼

HH 3(A)
1
−→ Ker[1 : HH 2(A)→ HH 1(A)], (2.1.4)

where we have used that Image(1) ⊂ Ker(1), since 12
= 0.

Let A = A(8) be a Calabi–Yau algebra of dimension 3 defined by a potential 8 (see
§3.1). An arbitrary infinitesimal variation 8 8+ ε8′ (where ε2

= 0) of the potential
yields an infinitesimal deformation of A. We show in §7.3 below (cf. also [BT]) that
such a deformation is automatically flat; moreover, it is a deformation within the class of
Calabi–Yau algebras. Let 8′cyc ∈ Acyc denote the class of 8′ in the commutator quotient.
Then it is not difficult to prove the following proposition, whose proof is left to the reader.

Proposition 2.1.5. The Kodaira–Spencer class in Ker[1 : HH 2(A)→ HH 1(A)] of the
deformation A(8)  A(8 + ε8′) is equal to κ(8′cyc), the image of 8′cyc under the
composite map (2.1.4). ut

2.2. Quasi-homogeneous surface singularities.

Let the multiplicative group C× act on C3 with positive integral weights a ≤ b ≤ c. This
makes the coordinate ring C[x, y, z] of C3, a nonnegatively graded algebra with homo-
geneous generators of degrees deg x = a, deg y = b, deg z = c. Thus, φ ∈ C[x, y, z] is
a (weighted-, equivalently, quasi-) homogeneous polynomial of weight degφ = d if and
only if one has eu(φ) = d · φ, where

eu := ax
∂

∂x
+ by

∂

∂y
+ cz

∂

∂z
(2.2.1)

denotes the Euler vector field that generates the C×-action.
Associated with any polynomial φ ∈ C[x, y, z] with an isolated singularity is its

Jacobi ring J(φ) := C[x, y, z]/( ∂φ
∂x
,
∂φ
∂y
,
∂φ
∂z
). If φ is (weighted-) homogeneous of weight

d, then 0 ∈ C3 is the only singular point. Furthermore, the Jacobi ring acquires a natural
grading J(φ) =

⊕
m≥0 J(m)(φ). For the corresponding Hilbert–Poincaré polynomial, one

easily finds the formula (cf. §5.3)∑
m≥0

um · dim J(m)(φ) =
(ud−a − 1)(ud−b − 1)(ud−c − 1)

(ua − 1)(ub − 1)(uc − 1)
. (2.2.2)

SetMφ := φ−1(0) ⊂ C3. Specializing the RHS of (2.2.2) at u→ 1, we get a formula

dim J(φ) = µ :=
(d − a)(d − b)(d − c)

abc
, (2.2.3)

for the Milnor number of the isolated singularity (at the origin) of the hypersurface Mφ .
Let a ≤ b ≤ c < d be an arbitrary quadruple of positive integers such that

gcd(a, b, c, d) = 1. According to Kyoji Saito [Sa, Theorem 3], one has the following
result.



1380 Pavel Etingof, Victor Ginzburg

Theorem 2.2.4 (Saito). Assume that the rational function associated with the quadruple
(a, b, c; d) by the formula on the right of (2.2.2) is a polynomial (i.e. has no poles).
Then the surface Mφ has an isolated singularity at the origin, for any general enough
homogeneous polynomial φ ∈ C[x, y, z] of degree d. ut

2.3. Simple Kleinian and elliptic singularities

Let Pa,b,c = (C3 r {0})/C× denote the weighted projective plane corresponding to
the C×-action with weights (a, b, c), where gcd(a, b, c) = 1. Restricting the projec-
tion C3 r {0} → Pa,b,c to the punctured hypersurface, one obtains a map Mφ r {0} �
P(Mφ) ⊂ Pa,b,c. This way Mφ r {0} becomes a principal C×-bundle over P(Mφ), a
projective curve. The type of the hypersurface Mφ is closely related to the integer

$ := d − a − b − c. (2.3.1)

There is a complete list of all hypersurfaces with $ = −1, 0, 1 (see [Sa]). According
to K. Saito, for any such hypersurface, one hasMφr{0} ∼= H$ /0. Here,H$ is the total
space of the C×-bundle associated with the canonical line bundle on a curve C$ , and 0
is a discrete group of bundle automorphisms. Depending on whether $ = −1, 0, or +1,
the curve C$ is either the projective line P1(C), the affine line C, or the upper half-plane,
respectively. Moreover, in each case, the group 0 is a discrete subgroup of the group of
motions of C$ , viewed as a Riemann surface with the natural metric, and the 0-action on
H$ is induced by the natural 0-action on C$ .

In the case $ = −1, the surface Mφ has a simple A,D,E (Kleinian) singularity,
while the case $ = 0 corresponds to simple elliptic singularities Ẽ6, Ẽ7, Ẽ8 (for a
reducible curve, all components must be rational). Specifically, one has the following
classical result (cf. e.g. [B], and §6.1 below).

Proposition 2.3.2. Let the variables x, y, z have degrees 0 < a ≤ b ≤ c such that
gcd(a, b, c) = 1.

(i) Let φ ∈ C[x, y, z] be an irreducible homogeneous polynomial of degree degφ ≤
a + b + c. Then the projective curve φ(x, y, z) = 0 is either rational or elliptic.

(ii) Let d ≤ a + b + c be such that, for a general homogeneous polynomial φ of degree
d , the projective curve φ(x, y, z) = 0 is elliptic. Then d = a + b + c, and we have:
• One of the following holds:

a b c d p := d/a q := d/b r := d/c µ

E6 case 1 1 1 3 3 3 3 8
E7 case 1 1 2 4 4 4 2 9
E8 case 1 2 3 6 6 3 2 10

(2.3.3)

moreover, the integers (p − 1, q − 1, r − 1) give the lengths of three legs of the
corresponding extended Dynkin diagram of type Ẽ6, Ẽ7, or Ẽ8.
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• The homogeneous equation of the corresponding elliptic curve can be brought to
the canonical form

φτ (x, y, z) =
xp

p
+
yq

q
+
zr

r
+ τ · xyz = 0, where τ ∈ C×. (2.3.4)

We note that in the setting of (2.3.3) one has

1
p
+

1
q
+

1
r
=
a

d
+
b

d
+
c

d
=
a + b + c

d
= 1.

Remark 2.3.5. The case $ = 1 turns out to be closely related to 14 exceptional singu-
larities (Dolgachev singularities) arising in degenerations of K3 surfaces.

2.4.

Let C× act on C3 with weights 0 < a ≤ b ≤ c, where gcd(a, b, c) = 1. Associated with
φ ∈ C[x, y, z] we have the Poisson algebra Bφ (see Definition 1.3.2).

The following theorem will be proved in Subsection 5.5 using some results of Piche-
reau ([P], explained in §5.4).

Theorem 2.4.1. For a (quasi-) homogeneous polynomial φ with an isolated singularity,
we have:

(i) The Hochschild cohomology of Bφ is

HH
q
(Bφ) ∼= X

q
Bφ ⊕ u

2
· C q

[u]⊗ J(φ), deg u = 1.

(ii) The Poisson cohomology of Bφ is

PH 0(Bφ) = C,

PH 1(Bφ) = J($)(φ),

PH 2(Bφ) = J($)(φ)⊕ J(φ),

PH k(Bφ) = J(φ), k ≥ 3.

Here, in part (i), X
q
Bφ denotes the algebra of polyderivations of the algebra Bφ (cf.

§4.1), and in part (ii) we use the notation (2.3.1).
Theorem 2.4.1(ii) shows that the group PH 3(Bφ) does not vanish. Nonetheless, there

is an explicit Poisson deformation of the Poisson algebra Bφ such that the tangent space to
the base of that deformation is identified with PH 2(Bφ) = J($)(φ)⊕ J(φ). Specifically,
the space J(φ), the second direct summand, parametrizes deformations of the Poisson
algebra Bφ obtained by deformations of the polynomial φ. Any nontrivial deformation
of this kind gives a nontrivial deformation of Bφ , viewed as a commutative algebra (with
the Poisson structure disregarded; cf. relation to Harrison cohomology below).

On the other hand, the space J($)(φ), the first direct summand in the decomposition
PH 2(Bφ) = J($)(φ)⊕J(φ), parametrizes deformations which change the Poisson struc-
ture on Bφ while keeping the commutative algebra structure unaffected. To see this, we
use results of Pichereau [P] (see also formula (5.5.1)). According to [P], elements of the
direct summand J($)(φ) ⊂ PH 2(Bφ)may be represented by bivectors of the form f ·π,
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where f ∈ Bφ is a homogeneous element of degree $ , and π is the Poisson bivector
that gives the Poisson bracket (1.3.1) on Bφ . We will see in the course of the proof of
Theorem 2.4.1 that the family of bivectors of the form π+f ·π, f ∈ J($)(φ), yields the
required family of nontrivial deformations of the Poisson structure on Bφ , parametrized
by the vector space J($)(φ).

The direct sum decomposition HH 2(Bφ) = X2Bφ ⊕ u · J(φ), in Theorem 2.4.1(i),
corresponds to the Hodge decomposition of Hochschild cohomology (cf. [Lo, §4.5]). The
second direct summand is equal to Harr2(Bφ), the second Harrison cohomology group
of the algebra Bφ . By general deformation theory, the latter group is the base of the
semiuniversal unfolding of the quasi-homogeneous isolated singularity φ = 0. Thus, the
canonical morphism can : PH 2(Bφ)→ Harr2(Bφ), which sends a Poisson deformation
to the corresponding deformation of the underlying commutative algebra, may be identi-
fied with the second projection J($)(φ)⊕ J(φ)→ J(φ). This agrees with the discussion
of the preceding paragraph: the direct summand which corresponds to Poisson deforma-
tions of Bφ induced by deformations of the polynomial φ projects isomorphically onto
the group Harr2(Bφ). On the other hand, the direct summand J($)(φ), which corresponds
to deformations of the Poisson structure which do not change the commutative algebra
structure, projects to zero.

Note that if$ = −1, the case of Kleinian singularity, Theorem 2.4.1 yields PH 1(Bφ)

= 0 and PH 2(Bφ) = Harr2(Bφ) = J(φ). It is easy to see that, in this case, the map can
reduces to the identity.

2.5. Poisson deformations of elliptic singularities

Given a triple (p, q, r) of positive integers, introduce a triple of polynomials

P =
1
p
· xp + α1 · x

p−1
+ · · · + αp−1 · x ∈ C[x],

Q =
1
q
· yq + β1 · y

q−1
+ · · · + βq−1 · y ∈ C[y], (2.5.1)

R =
1
r
· zr + γ1 · z

r−1
+ · · · + γr−1 · z ∈ C[z].

Further, we let

φ
τ,ν
P,Q,R := τ · xyz+ P(x)+Q(y)+ R(z)+ ν ∈ C[x, y, z], τ ∈ C×, ν ∈ C. (2.5.2)

The family of polynomials φτ,νP,Q,R depends on (p−1)+(q−1)+(r−1)+2 = p+q+r−1
complex parameters αi, βj , γk, τ, ν. If all the parameters, except τ , vanish, this family
specializes to a homogeneous polynomial φτ = φτ,00,0,0 of the form (2.3.4).

Recall that, for any polynomial φ ∈ C[x, y, z], the equation φ(x, y, z) = 0 defines an
affine Poisson surface in C3, with coordinate ring Bφ .

Theorem 2.5.3. Let (a, b, c) and (p, q, r) be the integers associated to one of the three
casesE`, ` = 6, 7, 8, of table (2.3.3), and let φτ be the corresponding polynomial (2.3.4).
Then
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(i) For the Milnor number dim J(φτ ) = µ, we have

µ =
(a + b)(a + c)(b + c)

abc
= p + q + r − 1. (2.5.4)

(ii) The equations φτ,νP,Q,R (x, y, z) = 0 give a flat µ-parameter family of affine del Pezzo
surfaces of the corresponding type E`, ` = 6, 7, 8.

(iii) The family of Poisson algebras {Bφ | φ = c · φ
τ,ν
P,Q,R , c ∈ C×} provides a semiuni-

versal Poisson deformation of Bφτ , the coordinate ring of the corresponding elliptic
singularity (2.3.4).

In the next section, we will state a ‘quantum analogue’ of Theorem 2.5.3 with Poisson
algebras being replaced by noncommutative algebras.

Remark 2.5.5. Observe that the family of Poisson algebras Bφ , in part (iii), depends on
µ + 1 parameters. The reason is that, although the underlying surface φτ = 0 does not
depend on the extra parameter c ∈ C×, the corresponding Poisson structure does.

Proof of Theorem 2.5.3. Part (i) is a simple consequence of the equations d = a + b + c
and p = d/a, q = d/b, r = d/c, combined with formula (2.2.3). Part (ii) is a well known
classical result (cf. [D]).

Next, let S = C2
× Sp × Sq × Sr × C×. Here, the parameters τ, ν form coordinates

in the first factor C2, the affine linear spaces Sp, Sq , Sr are spanned by the corresponding
polynomials in (2.5.1), and the parameter c gives a coordinate on the last factor C×. Thus,
members of the family {Bφ | φ = c · φ

τ,ν
P,Q,R , c ∈ C×} are parametrized by points of S.

Let o ∈ S be the point corresponding to vanishing parameters ν, c, P,Q,R, i.e., to the
Poisson algebra Bφτ .

To prove (iii), we must show that the classifying map for our family of Poisson al-
gebras induces a vector space isomorphism ToS

∼
−→ PH 2(Bφτ ). According to Theorem

2.4.1 (cf. also the discussion at the beginning of this subsection), we have PH 2(Bφτ ) =

J(φτ )⊕C, where the direct summand C corresponds to the 1-dimensional space J($)(φτ ).
By part (i), we compute

dimPH 2(Bφτ ) = dim J(φτ )+ 1 = µ+ 1 = (p − 1)+ (q − 1)+ (r − 1)+ 3 = dim S.

It is easy to see that the map ToS → J(φτ )⊕C we are interested in is the natural map
sending a polynomial c ·φτ,νP,Q,R to its residue class in the Jacobi ring. This map is injective.
Hence, it must be an isomorphism, due to the above equality of dimensions. ut

3. Main results

3.1. Algebras defined by a potential

Let V be a C-vector space with basis x1, . . . , xn, and let F = T V = C〈x1, . . . , xn〉 be the
corresponding free tensor algebra. The commutator quotient space Fcyc = F/[F,F ] is a
C-vector space with the natural basis formed by cyclic words in the alphabet x1, . . . , xn.

Elements of Fcyc are referred to as potentials.



1384 Pavel Etingof, Victor Ginzburg

Let8 ∈ Fcyc. For each j = 1, . . . , n, one defines ∂j8 ∈ F, the corresponding partial
derivative of the potential, by the formula

∂j8 :=
∑
{s | is=j}

xis+1 xis+2 . . . xir xi1 xi2 . . . xis−1 ∈ C〈x1, . . . , xn〉.

We extend this definition to arbitrary elements ξ = (ξ1, . . . , ξn) ∈ Cn by C-linearity, i.e.
we put ∂ξ8 := ξ1 · ∂18 + · · · + ξn · ∂n8. This way, we get a linear map V ∗ → T V ,
ξ 7→ ∂ξ8.

Many interesting examples of Calabi–Yau algebras arise from the following construc-
tion of algebras associated with a potential (cf. [Gi]). Given 8 ∈ Fcyc, introduce an
associative algebra

A(8) := F/〈〈∂8〉〉 = C〈x1, . . . , xn〉/〈〈∂i8〉〉i=1,...,n, (3.1.1)

a quotient of F by the two-sided ideal generated by all n partial derivatives ∂i8, i =
1, . . . , n, of the potential 8.

3.2. Filtered setting

Let each of the generators xk , k = 1, . . . , n, be assigned some positive degree deg xk =
dk ≥ 1. This makes V a graded vector space, with homogeneous basis xk , k = 1, . . . , n.
Thus, the tensor algebra F = T V = C〈x1, . . . , xn〉 acquires a graded algebra structure
with respect to the induced total grading F =

⊕
r≥0 F

(r) (not to be confused with the
standard grading on the tensor algebra; the latter corresponds to the special case where
deg xk = 1 for all k).

One may also view F as a filtered algebra, with an increasing filtration C = F≤0
⊂

F≤1
⊂ · · · given by F≤r = F (0) ⊕ · · · ⊕ F (r). The filtration, resp. grading, on F gives

rise to a filtration F≤kcyc , k = 0, 1, . . . , resp. grading Fcyc =
⊕

r F
(r)
cyc, on the commutator

quotient space Fcyc.

The increasing filtration on F induces a filtration C = A≤0(8) ⊂ A≤1(8) ⊂

A≤2(8) ⊂ · · · on the quotient algebra A(8). In the special case where 8 is, in effect,
homogeneous, our algebra inherits a grading A(8) =

⊕
m≥0 A(m)(8).

Given a filtered algebraAwith filtration by finite-dimensional vector spaces, we write

P(A) :=
∑
m∈Z

dim(gr(m)A) · um ∈ Z[[u]]

for the Hilbert–Poincaré series of the associated graded algebra grA =
⊕

m≥0 gr(m)A.
An ascending filtration, resp. grading, onA induces a filtrationHH q

≤m(A), resp. grad-
ing HH q

(A) =
⊕

m∈ZHH
q
(m)(A), on each Hochschild cohomology group.

A family of nonnegatively filtered algebras is said to be a semiuniversal filtered family
provided the associated graded algebras form a flat family and, moreover, the classifying
map gives an isomorphism TsS

∼
−→ HH 2

≤0(As) for all s ∈ S. There is a similar definition
in the case of graded algebras.

The above discussion also applies to filtered, resp. graded, Poisson algebras and Pois-
son cohomology.
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3.3. Quantization of the Poisson algebras Aφ and Bφ

In the three sections below, we are going to state four theorems which are the main results
of this paper. The proofs of these theorems will be given later, mostly in §§7, 8.

Fix a triple of integers 0 < a ≤ b ≤ c such that gcd(a, b, c) = 1.We will be interested
in (not necessarily commutative) algebras with three generators. We put F = C〈x, y, z〉
and view F as a graded algebra such that deg x = a, deg y = b, deg z = c.

It will be convenient to introduce the following

Definition 3.3.1. An element 8 ∈ Fcyc is called a CY-potential provided A(8) is a
Calabi–Yau algebra of dimension 3.

The basic example of a homogeneous CY-potential of degree d = a + b + c is 8 =
xyz− yxz ∈ F

(d)
cyc . In this case, one easily finds that A(8) = C[x, y, z].

We will be mostly interested in general, not necessarily homogeneous, potentials of
degree d = a + b + c.

Theorem 3.3.2. Let (a, b, c) be a triple of positive integers and 8(d) a homogeneous
CY-potential of degree d = a + b + c. Then, for any potential 8′ ∈ F<dcyc , one has:

(i) The sum 8 = 8(d) + 8′ is a CY-potential, and the Hilbert–Poincaré series of the
corresponding filtered algebra,

P(A(8)) =
1

(1− ua)(1− ub)(1− uc)
,

coincides with the Hilbert–Poincaré series of the graded algebra C[x, y, z].
(ii) There exists a nonscalar central element 9 ∈ A≤d(8).

Theorem 3.3.2 is proved in Subsection 8.3.
The equation in part (i) of the theorem shows that any algebra of the form A(8),

where 8 is a nonhomogeneous potential whose leading term is a CY-potential of degree
a + b+ c, may be thought of as a ‘noncommutative analogue’ of the polynomial algebra
C[x, y, z]. Further, a Calabi–Yau structure (i.e. a noncommutative volume) on the algebra
may be thought of as a noncommutative deformation of a unimodular Poisson structure
on the polynomial algebra. As we will see in §4 below, any such unimodular Poisson
algebra must be of the form Aφ for an appropriate polynomial φ ∈ C[x, y, z]. Moreover,
the polynomial φ is necessarily a central element for the Poisson structure.

This suggests viewing a central element 9 ∈ A(8) as a noncommutative analogue of
the polynomial φ. Thus, one may view any algebra of the form

B(8,9) := A(8)/〈〈9〉〉, 9 ∈ Z(A(8)), (3.3.3)

(a quotient of the CY algebra A(8) by the two-sided ideal generated by the central ele-
ment 9) as a noncommutative analogue of a Poisson algebra of the form Bφ = Aφ/(φ).
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3.4. Noncommutative del Pezzo surfaces

For the rest of Section 3 we assume that (a, b, c) is one of the triples from table (2.3.3)
and recall the nonhomogeneous polynomials φτ,νP,Q,R of degree d = a + b + c defined in
(2.5.2). According to Theorem 2.5.3(ii), the algebra Bφ, φ = φ

τ,ν
P,Q,R , gives the coordinate

ring of an affine del Pezzo surface.
On the other hand, Theorem 3.3.2(ii) ensures the existence of nontrivial central el-

ements in the noncommutative algebra A(8). Therefore, it is natural to look for cyclic
potentials 8 of the form similar to one given by formula (2.5.2), and to view the corre-
sponding algebras B(8,9), in (3.3.3), as quantizations of those del Pezzo surfaces.

To implement this program, fix complex parameters t, c. To each triple P ∈ C[x],
Q ∈ C[y], R ∈ C[z], of polynomials given by formulas (2.5.1), of degrees p, q, r,
respectively, we associate the potential

8
t,c
P,Q,R = xyz− t · yxz+ c · [P(x)+Q(y)+ R(z)] ∈ Fcyc. (3.4.1)

Clearly, 8t,cP,Q,R is a nonhomogeneous potential of degree d. The corresponding algebra
A(8t,cP,Q,R ) is a filtered algebra with generators x, y, z, and the following three relations:

xy− t ·yx = c ·
dR(z)

dz
, yz− t ·zy = c ·

dP (x)

dx
, zx− t ·xz = c ·

dQ(y)

dy
. (3.4.2)

We need the following

Definition 3.4.3. Let X be an irreducible variety, thought of as a variety of ‘parameters’.
We say that a property (P) holds for generic parameters x ∈ X if there exists a countable
family, {Ys}, of closed subvarieties Ys ( X such that (P) holds for any x ∈ X r

⋃
s Ys .

Recall formula (2.5.4) for the Milnor number µ = dim J(φ) of an elliptic singularity.
The two theorems below are our main results about noncommutative del Pezzo surfaces.

Theorem 3.4.4. For generic parameters (t, c, P,Q,R), formula (3.4.1) gives a CY-po-
tential, and we have:

(i) The algebras A(8t,cP,Q,R ), with relations (3.4.2), form a semiuniversal filtered family
of associative algebras that depends on µ parameters.

(ii) The algebras of the form B(8t,cP,Q,R , 9), where 9 ∈ A≤d(8t,cP,Q,R ) is a nonscalar
central element, give a semiuniversal family of associative algebras that depends on
µ+ 1 parameters.

A sketch of proof of Theorem 3.4.4 is given in Subsection 8.5.
Our presentation for the algebras B(8,9) in terms of generators and relations is not

completely explicit yet, since we have not explicitly described the central elements 9.
This can be done by a direct computation which has been carried out by Eric Rains (see
§9 and [R]).

Part (1) of the next theorem gives a ‘parametrization’ of noncommutative del Pezzo
algebras similar to the one provided, in the commutative (Poisson) case, by Theorem
2.5.3(iii).



Noncommutative del Pezzo surfaces and Calabi–Yau algebras 1387

Theorem 3.4.5. For any generic homogeneous potential 8(d) of degree d = a + b + c
and an arbitrary potential 8′ ∈ F<dcyc , the sum 8 = 8(d) +8′ is a CY-potential, and the
following holds:

(1) There exists a potential of the form 8
t,c
P,Q,R (cf. (3.4.1)) such that one has a filtered

algebra isomorphism A(8) ∼= A(8t,cP,Q,R ).
(2) The center of A(8) is a free polynomial algebra C[9] generated by an element 9 ∈

A≤d(8), and one has grZ(A(8)) ∼= Z(A(8(d))).

Theorem 3.4.5 is proved in Subsection 8.3.

3.5. Noncommutative elliptic singularities

Let (a, b, c) be one of the triples from table (2.3.3). In this subsection, we are interested
in the special case where the polynomials P,Q,R (cf. (2.5.1)) reduce to their leading
terms. In that case, the corresponding potential 8t,c := 8

t,c
P,Q,R , and the central element

9 ∈ A≤d(8t,c), both become homogeneous elements of degree deg8t,c = deg9 =
a + b + c = d.

Explicitly, we have (cf. also §9 and [R])

Case 8t,c ∈ F
(d)
cyc 9 ∈ Z(A(d)(8t,c))

E6 xyz− t · yxz+ c( x
3

3 +
y3

3 +
z3

3 ) c · y3
+
t3−c3

c3+1
(yzx + c · z3)− t · zyx

E7 xyz− t · yxz+ c( x
4

4 +
y4

4 +
z2

2 ) (t
2
+ 1)xyxy − t4+t2+1

t2−c4 (t · xy2x + c2
· y4)+ t · y2x2

E8 xyz− t · yxz+ c( x
6

6 +
y3

3 +
z2

2 ) too long

(3.5.1)

Let χ(u) denote the rational function on the RHS of formula (2.2.2). Further, let
ϒ ∈ HH 3(A(8)) denote the image of 1 ∈ HH 0(A(8)) under the isomorphism in (2.1.3),
resp. 1 denote the BV-operator, associated with a noncommutative volume on the CY
algebra A(8) (cf. Definition 1.4.1).

Theorem 3.5.2. Let (a, b, c) be as in table (3.5.1). Then, for any generic homogeneous
potential 8 of degree d = a + b + c, one has:

(i) There exists a potential of the form 8t,c, as in table (3.5.1), such that one has a
graded algebra isomorphism A(8) ∼= A(8t,c).

(ii) Each group HH k(A(8)), k ≤ 3, is a free C[9]-module with the Hilbert–Poincaré
series

P(HH k(A(8))) =



1
1− ud

if k = 0, 1,

1
ud

[
χ(u)

1− ud
− 1

]
if k = 2,

χ(u)

ud(1− ud)
if k = 3.
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(iii) The BV-operator kills ϒ and induces the bijections

1 : HH 3(A(8))/C · ϒ ∼
−→ HH 2(A(8)), resp. 1 : HH 1(A(8))

∼
−→ HH 0(A(8)).

Theorem 3.5.2 is proved in Subsection 8.4.

Remarks 3.5.3. (1) Part (ii) of the theorem is a generalization of a result of Van den
Bergh [VB2]. The factor ud in denominators of the formulas is due to the fact that
degϒ = −d. We also recall that any Calabi–Yau algebra of dimension 3 has no Hoch-
schild cohomology in degrees > 3.

(2) For a result related to part (i) see also [BT, Proposition 5.4].

Associated with a nonzero homogeneous central element 9 ∈ A(8), of degree d,
there is the corresponding quotient algebra B(8,9) (cf. (3.3.3)), which inherits a graded
algebra structure. According to [ATV] and [St1], the element 9 is not a zero divisor
in A(8); furthermore, the algebra B(8,9) is a noetherian domain of Gelfand–Kirillov
dimension two.

Let Db(B(8,9)) be the bounded derived category of finitely generated graded left
B(8,9)-modules. One also introduces Tails(B(8,9)) ⊂ Db(B(8,9)), a full trian-
gulated subcategory of tails, whose objects are complexes with finite-dimensional coho-
mology (cf. [NVB]).

Recall next that, for any algebra of the form B(8,9) as above, there exists a triple
(E,L, σ ), where E is an elliptic curve, L is a positive line bundle on E, and σ is an
automorphism of E, such that one has a graded algebra isomorphism (see [ATV], [St1])

B(8,9) =
⊕
m≥0

0(E,L⊗ σ ∗L⊗ · · · ⊗ (σm−1)∗L). (3.5.4)

The graded algebra on the right of (3.5.4) is a σ -twisted homogeneous coordinate ring
of E. Therefore, the algebra B(8,9)may be thought of as a flat graded noncommutative
deformation of the affine cone over the elliptic curve E.

LetDbCoh(E) be the bounded derived category of coherent sheaves on E. According
to a result due to Artin and Van den Bergh [AV], there is a triangulated equivalence

DbCoh(E) ∼= Db(B(8,9))/Tails(B(8,9)). (3.5.5)

3.6. Matrix factorizations on a noncommutative singularity

Given a nonnegatively graded algebra A and a central homogeneous element 9 ∈ A, of
degree d > 0, one may introduce Dgr(A,9), a triangulated category of graded matrix
factorizations (see [Or1]). An object of Dgr(A,9) is a diagram

M =
(
M+

g
++
M−

g′

kk
)
, g ◦g′ = 9 · IdM− , g

′
◦g = 9 · IdM+ , (3.6.1)
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whereM+,M− is a pair of finite rank free graded A-modules and g, g′ is a pair of graded
A-module morphisms of degrees 0 and d, respectively.

We take A = A(8) and apply a noncommutative version of results due to Orlov
[Or1], [Or2]. This way, one obtains the following (cf. also [KST]).

Theorem 3.6.2. (i) There is a triangulated equivalence

DbCoh(E) ∼= Dgr(A(8),9).

(ii) Any maximal Cohen–Macaulay graded B(8,9)-module has a 2-periodic free
graded A(8)-module resolution.

Sketch of proof of Theorem 3.6.2. It is known that A(8), being a graded Calabi–Yau al-
gebra, is automatically a Gorenstein, Artin–Schelter regular algebra of dimension 3 (see
[BT], [ATV]). Further, the central element 9 is not a zero divisor in A(8), by construc-
tion. It follows that the quotient B(8,9) = A(8)/〈〈9〉〉 is an Auslander–Gorenstein
algebra of dimension 2, by [Le].

Let Perf(B(8,9)) denote the full triangulated subcategory in Db(B(8,9)) of per-
fect complexes, i.e. of bounded complexes of free graded left B(8,9)-modules of fi-
nite rank. Following Orlov [Or1], one introduces a quotient categoryDsing

gr (B(8,9)) :=
Db(B(8,9)/Perf(B(8,9)), the triangulated category of a homogeneous singularity.

An immediate generalization of [Or1, Theorem 3.9] yields the following result:

Proposition 3.6.3. Let A =
⊕
j≥0Aj be a graded noetherian algebra with A0 = C. As-

sume that A is a Gorenstein, Artin–Schelter regular algebra of dimension n. Let 9 ∈ An
be a homogeneous central element which is not a zero divisor. Then there is a triangulated
equivalence

D
sing
gr (A/〈〈9〉〉) ∼= Dgr(A,9).

Proof. The proof is based on the fact that A/〈〈9〉〉 is an Auslander–Gorenstein algebra of
dimension n− 1, by [Le]. This ensures that an analogue of [Or1, Proposition 1.23] holds
in our present noncommutative setting. The rest of the proof of [Or1, Theorem 3.9] then
goes through, and Proposition 3.6.3 follows. ut

Next, we apply [Or2, Theorem 2.5] to the algebra B(8,9). This way, we obtain a trian-
gulated equivalence

D
sing
gr (B(8,9)) ∼= Db(B(8,9))/Tails(B(8,9)). (3.6.4)

On the other hand, applying the equivalence of Artin and Van den Bergh, (3.5.5), and
using the isomorphism in (3.5.4), we deduce that the quotient category on the right of
(3.6.4) is equivalent to DbCoh(E). This, combined with Proposition 3.6.3, yields part (i)
of Theorem 3.6.2.

The proof of part (ii) is similar to the proof of the corresponding well-known result in
commutative algebra, due to D. Eisenbud [Ei]. ut
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Example 3.6.5. One of the simplest examples is the case of a cubic curve Eτ ⊂ P2
=

P(C3), with homogeneous equation of the form (cf. (2.3.4))

ψτ (x, y, z) := x3
+ y3

+ z3
+ τ · xyz, τ ∈ C∗. (3.6.6)

Motivated by [ATV] and [LPP], to any point u ∈ P2 with homogeneous coordinates
(α, β, γ ), one associates the following 3 × 3-matrix D, as well as the corresponding
adjoint D\, the matrix formed by the 2× 2-minors of D:

D :=

αx βz γy

γ z αy βx

βy γ x αz

 , D\ =

α2yz− βγ x2 γ 2xy − αβz2 β2xy − αγy2

β2xy − αγ z2 α2yz− βγy2 γ 2yz− αβx2

γ 2xz− αβy2 β2yz− αγ x2 α2xy − βγ z2

 .
We have an identityD ·D\ = D\ ·D = detD · Id. Assume that α, β, γ are all nonzero

and put D′ := − 1
αβγ
·D\. Thus, we obtain an equation D ·D′ = D′ ·D = − detD

αβγ
· Id.

Further, from the definition of D one computes

detD = (α3
+ β3

+ γ 3)xyz− αβγ (x3
+ y3

+ z3).

Therefore, assuming that the triple (α, β, γ ) is such that α3
+ β3
+ γ 3

= τ · αβγ , we
may write detD = −αβγ · ψτ . We deduce that whenever ψτ (α, β, γ ) = 0 (cf. (3.6.6)),
one has D · D′ = ψτ · Id = D′ · D. This way, we have constructed a family of graded
matrix factorizations

Mu =

(
C[x, y, z]⊕3

D --
C[x, y, z]⊕3

D′
mm

)
∈ Dgr(C[x, y, z], ψτ ), u ∈ Eτ ,

(3.6.7)
parametrized by the points u = (α, β, γ ) ∈ Eτ with nonvanishing coordinates.

There is an important class of point modules over the algebra A(8) introduced in
[ATV]. A point module has a grading P =

⊕
k≥0 P

(k) such that P (0) = C and dimP (k)

≤ 1 for any k. Given an integer r > 0, we let P≤r := P/
⊕

k>r P
(k) denote the r-

truncation of P .
Following [ATV], one proves that any point module P is annihilated by9, hence may

be viewed as a B(8,9)-module. Further, it is not difficult to show that there exists r > 0
such that the map P 7→ P≤r assigning to a point module its r-truncation gives a bijection
between the moduli spaces of point modules and r-truncated point modules, respectively.
Let ro be the minimal such r .

We expect that Example 3.6.5 can be generalized to a noncommutative setting. Specif-
ically, let 8 be a homogeneous CY-potential of degree d = a + b+ c, and let 9 ∈ A(8)
be a homogeneous central element of degree d.

Conjecture 3.6.8. To any point module P over the algebra B(8,9) one can associate
naturally a matrix factorization M(P) = (M+,M−), as in (3.6.1), where rkM± =
dimP≤ro .
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In the E6-case, one has ro = d − 1 = 2 and dimP≤ro = d = 3. Moreover, it was shown
in [ATV] that point modules are parametrized by the points of the corresponding elliptic
curve E. In that case, our conjectural matrix factorizationM(P) should reduce to (3.6.7),
where u ∈ E stands for the parameter of the point module P .

4. Three-dimensional Poisson structures

4.1. Some notation and conventions

Given a (not necessarily smooth) finitely generated commutative C-algebra A, write�1A

for the A-module of Kähler differentials of A, and let � q
A := Λ

q
A(�

1A) be the graded
commutative algebra of differential forms, equipped with the de Rham differential d.
For each p = 1, 2, . . . , we also have XpA = HomA(�

pA,A), the space of skew p-
polyderivations A ∧C · · · ∧C A→ A.

Set X0A := A =: �0A. The graded space X
q
A :=

⊕
p≥0 XpA has a natural structure

of Gerstenhaber algebra with respect to the Schouten bracket [−,−] : XpA × XqA →
Xp+q−1A. Associated with a polyderivation η ∈ XpA, there is a Lie derivative operator
Lη : � q

A→ �
q−p+1A, resp. contraction operator iη : � q

A→ �
q−pA. These operators

make � q
A a Gerstenhaber X

q
A-module.

Let A = C[M] be the coordinate ring of a smooth affine variety M, with tangent
bundle TM, resp. cotangent bundle T ∗M. Then we have canonical isomorphisms X

q
A =

0(M,
∧ q

TM), resp. � q
A = 0(M,

∧ q
T ∗M). We will also use the notation X

q
(M),

resp. � q
(M), for these spaces.

4.2. Unimodular Poisson structures

Any Poisson bracket {−,−} : A×A→ A on a (not necessarily smooth) finitely generated
commutative algebra A determines (and is determined by) a bivector π ∈ X2A, via the
formula

{f, g} := 〈df ∧ dg, π〉, ∀f, g ∈ A. (4.2.1)

The Jacobi identity for the bracket {−,−} is equivalent to the equation [π, π] = 0 in X3A.
Associated with any f ∈ A, there is a Hamiltonian derivation ξf := {f,−} ∈ X1A;

it is easy to check that ξf = [π, f ].
LetM be a smooth affine variety of dimension n, with a trivial canonical bundle. Let

vol ∈ �n(M) be a nowhere vanishing volume n-form. Contraction with vol yields an
isomorphism

Xp(M)
∼
−→ �n−p(M), η 7→ iηvol, p = 0, . . . , n. (4.2.2)

A Poisson bracket on the algebra A = C[M] is said to be unimodular provided the
divergence (with respect to the volume vol) of any Hamiltonian vector field vanishes, i.e.,
for any f ∈ C[M], we have div(ξf ) = (Lξf vol)/vol = 0. This means that the volume
form is preserved by the Hamiltonian flow generated by the vector field ξf .

One has the following standard result.
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Lemma 4.2.3. Given an arbitrary bivector π ∈ X2(M), on a 3-dimensional smooth
variety M, let α := iπvol, a 1-form. Then we have:

(i) The condition that π be a Poisson bivector is equivalent to the equation α ∧ dα = 0.
(ii) π gives a unimodular Poisson bracket⇔ Lπvol = 0⇔ dα = 0.

Proof. For any η ∈ Xp(M), one has i[π,η] = [Lπ , iη], where [−,−] stands for the
super-commutator. Further, using Cartan’s identity Lπ = iπd− diπ we get

i[π,η] = iπdiη − diπ iη − (−1)piηiπd+ (−1)piηdiπ .

We take p = 2 and apply the operations on each side of the identity to the 3-form vol.
Clearly, d vol = 0 and also iπ iηvol = iηiπvol = iηα = 0. Hence, we find

i[π,η]vol = iπdiηvol+ iηdα + diπα = 〈π, diηvol〉 + 〈η, dα〉. (4.2.4)

Now let η = π and let ϒ be the 3-vector inverse to vol. Then π = iαϒ. So, 〈π, dα〉 =
〈iαϒ, dα〉 = 〈ϒ, α ∧ dα〉. Hence, we obtain i[π,π ]vol = 2〈ϒ, α ∧ dα〉. Thus, we see that
[π, π] = 0 if and only if α ∧ dα = 0. This yields part (i) since the pairing in (4.2.1) gives
a Poisson bracket if and only if [π, π] = 0.

There is also an alternative more geometric proof of (i) as follows. A bivector π
gives a Poisson structure on M if and only if [π, π] = 0, which holds if and only if the
distribution in TM (of generic rank 2) spanned by π is integrable. For α = iπvol, the
same distribution may be alternatively described as the distribution defined by the kernels
of the 1-form α. The latter distribution is integrable if and only if α satisfies the Frobenius
integrability condition α ∧ dα = 0.

The unimodularity property in part (ii) is equivalent to the equation

0 = div(ξf ) · vol = Lξf vol = d(iξf vol), ∀f ∈ C[M]. (4.2.5)

We have
ξf = idfπ = idf (iαϒ) = idf∧αϒ. (4.2.6)

Therefore, we get iξf vol = df ∧ α, hence d(iξf vol) = −df ∧ dα. We see that (4.2.5)
amounts to the equation df ∧ dα = 0 for any regular function f . This holds if and only
if dα = 0. ut

4.3. Unimodular Poisson structures on C3

Fix a smooth 3-dimensional manifold with a nowhere vanishing volume form vol ∈
�3(M) and a regular function φ ∈ C[M].

Associated with dφ, an exact 1-form, one has a bivector π ∈ X2(M) such that
iπvol = dφ. By Lemma 4.2.3, this bivector gives rise to a unimodular Poisson bracket
{−,−}φ on C[M]. Explicitly, the bracket is determined by the equation

{f, g}φ · vol = dφ ∧ df ∧ dg, ∀f, g ∈ C[M]. (4.3.1)

We now specialize to the case where M = C3 is a vector space with coordinates
x, y, z, and vol = dx ∧ dy ∧ dz is the standard volume form.
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Corollary 4.3.2. Let {−,−} be a unimodular polynomial Poisson structure on C[x, y, z].
Then:

(i) There exists a polynomial φ ∈ C[x, y, z] such that the Poisson bracket of linear
functions is given by formula (1.3.1).

(ii) We have C[φ] ⊂ Z(C[x, y, z]). If the Poisson bracket is nonzero, then any element
f ∈ Z(C[x, y, z]) is algebraic over the subalgebra C[φ], i.e. there exists a nonzero
polynomial P ∈ C[t1, t2] such that P(φ, f ) = 0.

Proof. Recall that any polynomial closed 1-form on C3 is exact. Hence, any unimodu-
lar Poisson bracket on the algebra C[M] = C[x, y, z] is of the form (4.3.1) for some
polynomial function φ ∈ C[M]. The corresponding Poisson bivector π is given by

π = idφϒ =
∂φ

∂x
·
∂

∂y
∧
∂

∂z
+
∂φ

∂y
·
∂

∂z
∧
∂

∂x
+
∂φ

∂z
·
∂

∂x
∧
∂

∂y
, whereϒ :=

∂

∂x
∧
∂

∂y
∧
∂

∂z
.

(4.3.3)
Part (i) and the inclusion in part (ii) follow.

Next, let f ∈ C[x, y, z] be such that C(φ, f ), the field of rational functions generated
by the polynomials φ and f , has transcendence degree 2 over C. Then there exists a point
u ∈ C3 such that dφ|u and df |u are linearly independent covectors.

Now, formula (4.3.1) shows that f is a central element with respect to the Poisson
bracket if and only if dφ ∧ df = 0. Hence, for f ∈ Z(C[x, y, z]), the covectors dφ|u
and df |u must be proportional, and part (ii) follows. ut

Remark 4.3.4. For a polynomial φ such that the ring C[φ] is algebraically closed in
C[x, y, z], Corollary 4.3.2(ii) yields C[φ] = Z(C[x, y, z]). This condition holds for in-
stance for any irreducible polynomial (cf. [P, Proposition 4.2] for a similar result in a
special case).

5. Poisson (co)homology

5.1. Poisson cohomology and the LKB complex

Poisson homology PH q(A), resp. cohomology PH q
(A), of a Poisson algebraA is defined

as the homology of the total complex associated with a double complex, DP q, q(A) =
Λ

q
A(D q�1A), resp. DP q, q(A) = HomA(DP q, q(A),A) (cf. [GK, Appendix]). Here,
D q�1A denotes the cotangent complex of A, the latter being viewed as a commutative
associative algebra (cf. [GK, formula (A.4)]).

The bigraded space DP q, q(A) comes equipped with a natural Gerstenhaber (i.e.
graded Poisson) algebra structure, of bidegree (0,−1), which gives rise to a Gersten-
haber algebra structure on PH q

(A) (see [GK]). Also, PH 0(A) = Z(A) and for each
j = 0, 1, . . . , the group PH j (A), resp. PHj (A), comes equipped with a natural Z(A)-
module structure.

Let π ∈ X2A be the biderivation associated with the Poisson bracket (cf. (4.2.1)). The
Lie derivative Lπ : � q

A→ �
q−1A, resp. Lπ : X

q
A→ X

q+1A, makes the graded space
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�
q
A, resp. X

q
A, a complex called the homological, resp. cohomological, Lichnerowicz–

Koszul–Brylinski complex (LKB complex) of the Poisson algebra A (cf. [Br]).
The canonical projection D q�1A � �1A induces a map DP q, q(A) � DP0, q(A) =

�
q
A, and also the dual map X

q
A → DP

q, q(A). These maps provide morphisms be-
tween the LKB and Poisson cohomology complexes, respectively. Furthermore, unlike
the case of the Hochschild complex, the map X

q
A → DP

q, q(A) turns out to be a DG
Gerstenhaber algebra morphism.

If the scheme SpecA is smooth then the projection D q�1A � �1A is a quasi-
isomorphism. It follows that each of the morphisms DP q, q(A) → �

q
A and X

q
A →

DP
q, q(A) is a quasi-isomorphism as well. In that case, Poisson (co)homology of A may

be computed via the corresponding LKB complex, that is (cf. [GK]), we have

PH q(A) = H q
(�

q
A,Lπ ), resp. PH

q
(A) = H

q
(X

q
A,Lπ ).

Observe that the de Rham differential d : � q
A→ �

q+1A anticommutes with the op-
erator Lπ , hence induces a well-defined operator d : PH q(A)→ PH q+1(A) on Poisson
homology (cf. [Xu]).

Assume next that SpecA is a manifold of pure dimension n, equipped with a nowhere
vanishing volume form vol ∈ �nA. Define a differential δ : X

q
A→ X

q−1A by transport-
ing the de Rham differential d : � q

A → �
q+1A via the isomorphism X

q
A
∼
−→ �n−

q
A

(cf. (4.2.2)). Then, by [Xu, Proposition 4.5 and Theorem 4.8], we have

Proposition 5.1.1. Let SpecA be smooth of pure dimension n. For any unimodular Pois-
son bivector π ∈ X2A, one has:

(i) The isomorphism in (4.2.2) intertwines the Lπ -actions on polyvector fields and on
differential forms; it induces a degree reversing Z(A)-module isomorphism PH q(A)
∼
−→ PH n− q

(A).

(ii) The differential δ anticommutes with Lπ ; it descends to a well-defined BV-type dif-
ferential δ : PH q

(A)→ PH
q−1(A). ut

5.2. Poisson homology of a complete intersection

Let I ⊂ A be a Poisson ideal in a Poisson algebra A, so we have {I, A} ⊂ I . We set
B = A/I. Thus, B is a Poisson algebra and SpecB is a closed Poisson subscheme in
SpecA.

The following is a Poisson analogue of a similar result known in the case of Hoch-
schild cohomology (cf. e.g. [LR]).

Proposition 5.2.1. Assume that the Poisson scheme SpecA is smooth and, moreover,
the Poisson subscheme SpecB is a locally complete intersection in SpecA. Then
Lπ (I

n
· �mA) ⊂ In+1

· �m−1A for any m, n ≥ 0, and there is a direct sum decom-
position

PH k(B) =
⊕

0≤2j≤k

H k−2j (I j ·�
q
A/I j+1

·�
q
A,Lπ ), ∀k ≥ 0.
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Proof. The first statement is verified by a direct computation. Further, the assumption that
SpecB be a locally complete intersection ensures that I/I 2 is a projective B-module,
and the cotangent complex of SpecB may be represented by a length two complex of
amplitude [−1, 0],

D q�1B
qis
' [I/I 2 d

→ B ⊗A �
1A].

Hence, the Poisson double complex is quasi-isomorphic to a double complex with the
following terms:

DPp,q(B)
qis
' Λ

q
B(Dp�

1B) = Λ
q
B([I/I

2][1]⊕ B ⊗A �1A)

=

⊕
0≤j≤q

([Symj (I/I 2)][j ]⊗A �q−jA)

=

⊕
0≤j≤q

(I j ·�q−jA/I j+1
·�q−jA)[j ]. ut

5.3. Poisson cohomology of a hypersurface

Below, we will be mostly interested in Poisson cohomology of an algebra of the form
B := C[M]/(φ) whereM is a smooth Poisson variety and φ ∈ C[M] a regular function
contained in the Poisson center. In that case, one can give a slightly different description
of Poisson (co)homology of the algebra B, which is more explicit than the one provided
by Proposition 5.2.1.

Observe first that contraction with the 1-form dφ provides a differential idφ : X
q
(M)

→ X
q−1(M) in the corresponding Koszul complex.

Remark 5.3.1. The Jacobi ring of φ may be identified withH 0(X
q
(M), idφ). The latter

group is the only nontrivial cohomology group of the Koszul complex, provided φ has
isolated singularities. This way, using the Euler–Poincaré principle, one proves formula
(2.2.2).

Let π ∈ X2(M) be a Poisson bivector.

Lemma 5.3.2. For any φ ∈ Z(C[M]), the map Lπ is C[φ]-linear and it anticommutes
with idφ .

Proof. In general, for any function f and a bivector π , one has the standard identity

Lπ ◦ idf + idf ◦Lπ = Lidf π = ξf . (5.3.3)

Now, the function φ is central with respect to the Poisson bracket given by a bivector π if
and only if idφπ = 0. In that case the maps Lπ and idφ anticommute. The C[φ]-linearity
statement is clear. ut

Proposition 5.3.4. Let φ ∈ Z(C[M]) be a central regular function on M. Assume that
φ has only isolated singularities and that there exists a vector field eu ∈ X1(M) such
that eu(φ) = c · φ, where c is a nonzero constant. Then, for the Poisson cohomology
of the algebra Bφ := C[M]/(φ), there is a convergent first quadrant spectral sequence
E
p,q

2 ⇒ grp PH
p+q(Bφ), with E1-term of the form
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. . . . . . . . . . . . . . .

X4(Bφ)

Lπ

OO

0

Lπ

OO

0

Lπ

OO

J(φ)eu

Lπ

OO

J(φ)

Lπ

OO

X3(Bφ)

Lπ

OO

0

Lπ

OO

J(φ)eu

Lπ

OO

J(φ)

Lπ

OO

X2(Bφ)

Lπ

OO

J(φ)eu

Lπ

OO

J(φ)

Lπ

OO

X1(Bφ)

Lπ

OO

J(φ)

Lπ

OO

X0(Bφ)

Lπ

OO

(5.3.5)

where the leftmost column is the LKB complex of the Poisson algebra Bφ , and J(φ) de-
notes the Jacobi ring of φ (cf. §2.2).

Proof. Put A := C[M] and let DA q
= A ⊗ C[τ ]/(τ 2) denote a graded super-commu-

tative algebra such that A is an even subalgebra placed in degree zero, and τ is an odd
generator of degree−1. We introduce a differential ∇ : DA q

→ DA q+1, which is defined
as an odd super-derivation, ∇ = φ∂/∂τ , that annihilates the subalgebra A and is such
that ∇(τ ) = φ. Clearly, one can view the resulting DG algebra as a 2-term complex

A
φ·
−→ A with the differential given by multiplication by the function φ. Therefore, we

have H0(DA) = Bφ and Hj (DA) = 0 for any j 6= 0.
Next, we make DA a Poisson DG algebra by extending the Poisson bracket {−,−}

on A by τ -linearity. This way, DA becomes a Poisson DG algebra which is quasi-iso-
morphic to Bφ . Thus, for the Poisson cohomology, we have PH q

(Bφ) ∼= PH
q
(DA),

where the cohomology on the right-hand side denotes the hyper-cohomology involving
the differential ∇, on DA.

It will be convenient to use geometric language and write DA = C[Y ], where Y =
M × C is a smooth affine Poisson super-manifold of super-dimension (dimM|1). The
corresponding Poisson cohomology may be computed, according to general principles, as
a hyper-cohomology of the LKB double complex for the Poisson DG super-manifold Y .
This way, we deduce

PH
q
(A) ∼= PH

q
(DA) ∼= H q

(X
qDA,∇ + Lπ ),

where the differential ∇ is induced by the same named differential on the DG algebraDA
itself, and the differential Lπ comes from the Poisson structure on C[M].
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Let t denote an even coordinate on the total space, T ∗Y , dual to the odd coordinate τ
on Y . Thus, we get X

q
(Y ) = X

q
(M) ⊗ C[t, τ ]/(τ 2), where the variable t is assigned

grade degree +2. With this notation, the LKB complex takes the form(
X

q
(M)⊗ C[t, τ ]/(τ 2), φ ·

∂

∂τ
+ t · idφ + Lπ

)
. (5.3.6)

Let Tφ := TM|φ−1(0) denote the restriction of the tangent bundle of M to the (not
necessarily smooth) hyper-surface φ−1(0) ⊂M. Thus, Tφ is a vector bundle on φ−1(0)
of rank dimM, and we let Λ

q
φ := 0(φ−1(0),Λ

q
Tφ) ∼= Bφ ⊗A X

q
A be the corresponding

exterior algebra viewed as a graded algebra such that the space Bφ ⊗A X1A is placed in
degree +1.

Restriction to φ−1(0) combined with the specialization τ 7→ 0 gives a natural algebra
projection

pr :
(

X
q
(M)⊗C[t, τ ]/(τ 2), φ ·

∂

∂τ
+t ·idφ+Lπ

)
� (Λ

q
φ⊗C q

[t], t ·idφ+Lπ ). (5.3.7)

It is easy to see that the differential in (5.3.6) descends to the differential t · idφ on Λ
q
φ ⊗

C[t]. Moreover, the map pr is a quasi-isomorphism of DG algebras.
Thus, we conclude that the Poisson cohomology of Bφ may be computed as hyper-

cohomology of the DG algebra represented by the following mixed complex:
. . . . . . . . .

Λ2
φ

Lπ

OO

idφ // Λ1
φ

Lπ

OO

idφ // Λ0
φ

Lπ

OO

Λ1
φ

Lπ

OO

idφ // Λ0
φ

Lπ

OO

Λ0
φ

Lπ

OO

(5.3.8)

We view (5.3.8) as a bicomplex, K , with two differentials, idφ and Lπ . Associated
with this bicomplex, there is a standard first quadrant spectral sequence (Ep,qr , dr) such
that E1 = H

q
(K, idφ) and the differential d1 is induced by Lπ .

We first analyze the horizontal differential idφ . Let 3(q) : Λ
q
φ → · · · → Λ1

φ → Λ0
φ

denote the complex in the q-th row of diagram (5.3.8) where, for any j = 0, 1, . . . , q,
the term Λ

j
φ is placed in degree j . The E1 page of the spectral sequence of the bicomplex

(5.3.8) takes the required form (5.3.5) thanks to the sublemma below. ut

Sublemma 5.3.9. (i) We have H q(3(q), idφ) = XqBφ .

(ii) The complex3(q) is acyclic in all degrees j 6= 0, 1, or q. Moreover,H 0(3(q), idφ) =

J(φ) and, if q > 1, then also H 1(3(q), idφ) = J(φ).
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Proof of Sublemma. To prove (i), recall that, in general, for any complete intersection
N ⊂ M where M is smooth, each polyderivation of the algebra C[N ] is induced by
a section of the vector bundle ΛpTM|N . We take N = Mφ := φ−1(0). It follows
that each polyderivation θ : Bφ ∧ · · · ∧ Bφ → Bφ comes from a section s ∈ Λ

p
φ =

0(Mφ,ΛpTM|Mφ
). An extension of s to a section s̃ ∈ 0(M,ΛpTM) gives a polyderiva-

tion θ̃ : A∧· · ·∧A→ A such that θ̃ (φ, a1, . . . , ap−1) ∈ φ ·A for any a1, . . . , ap−1 ∈ A.
In geometric language, the latter condition translates into the equation idφs = 0, for the
original section s. This proves (i).

Assume now that the function φ has an isolated singularity. Then the complex

X(q) : Xq(M)
idφ
−→ Xq−1(M)

idφ
−→ · · · −→ X1(M)

idφ
−→ X0(M)

is exact everywhere except possibly at the leftmost and rightmost terms. Furthermore, the
cokernel at the rightmost term equals J(φ).

By definition, we have a short exact sequence of complexes 0 → X(q) → X(q) →
3(q) → 0, where the morphism X(q) → X(q) is given by multiplication by the func-
tion φ. From the corresponding long exact sequence of cohomology, we deduce that
H j (3(q), idφ) = 0 unless j 6= 0, 1, q. Moreover, since H 0(X(q), idφ) = J(φ), the fi-
nal part of the long exact sequence reads

0 = H 1(X(q), idφ)→ H 1(3(q), idφ)→ J(φ) φ·
→ J(φ)→ H 0(3(q), idφ)→ 0.

(5.3.10)
Now, by our assumptions, we have φ ∈ C · idφeu. Therefore, the image of φ in the

Jacobi ring J(φ) vanishes. Thus, the map J(φ) → J(φ) induced by multiplication by φ
is equal to zero. This, combined with the exact sequence (5.3.10), yields part (ii) of the
sublemma. In addition, an easy diagram chase shows that the preimage of the element
1 ∈ J(φ) under the isomorphism H 1(3(q), idφ)

∼
−→ J(φ) (cf. (5.3.10)) corresponds to the

class of the vector field eu. ut

5.4. Poisson cohomology of the algebra Aφ

We now specialize to the setting of §2.2. Thus, let 0 < a ≤ b ≤ c be a triple of integers
with gcd(a, b, c) = 1. Write eu for the corresponding Euler vector field (2.2.1) on M =
C3, and ϒ for the standard 3-vector (see (4.3.3)).

Given a homogeneous polynomial φ ∈ C[M] = C[x, y, z], write π := idφϒ (cf.
(4.3.3)), and let Aφ denote the corresponding Poisson algebra (cf. Definition 1.3.2).

A. Pichereau has found all Poisson cohomology groups of the algebra Aφ explicitly
(see [P]). To state some of her results set µ := dim J(φ) and choose homogeneous el-
ements 1, f1, . . . , fµ−1 ∈ C[x, y, z] such that their residue classes modulo the Jacobi
ideal form a C-basis of the vector space J(φ). View the elements idfkϒ ∈ X2(C3), k =

1, . . . , µ− 1, as elements of the LKB complex for the algebra Aφ .

Proposition 5.4.1 (Pichereau). For any homogeneous polynomial φ with an isolated sin-
gularity of degree a+ b+ c, the Poisson cohomology of Aφ vanishes in degrees ≥ 4, and
one has:
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(i) PH 0(Aφ) = C[φ]. Furthermore, the group PH 1(Aφ) = C[φ]eu is a rank 1 free
C[φ]-module with generator eu.

(ii) The group PH 3(Aφ) is a rankµ free C[φ]-module with basisϒ, f1 ·ϒ, . . . , fµ−1 ·ϒ ,
resp. PH 2(Aφ) is a free C[φ]-module with basis idf1ϒ, . . . , idfµ−1ϒ, π. ut

5.5. Poisson cohomology of a quasi-homogeneous singularity

Pichereau has also computed cohomology groups of the LKB complex for the (singular)
Poisson algebra Bφ associated with a quasi-homogeneous polynomial φ ∈ C[x, y, z]
of an arbitrary weight d > 0. Specifically, she shows that XpBφ = 0 for all p > 2.
Furthermore, the cohomology of the LKB-differential Lπ is as follows (see [P]):

H 0(X
q
Bφ) = C, H 1(X

q
Bφ) = J($)(φ)eu, H 2(X

q
Bφ) ∼= J($)(φ)π, (5.5.1)

where J($)(φ) is viewed, in the notation of the previous subsection, as the span of the
basis elements fj with deg fj = $ .

Proof of Theorem 2.4.1. We begin with part (ii) of the theorem. Our Poisson bivector has
the form π = idφϒ . Therefore, for any f ∈ Aφ we have Lπ (f ) = ξf = idf∧dφϒ ⊂

idφ(X
2(Aφ)). It follows that, for any p ≥ 1, the vertical differential Lπ : Ep,p1 =

J(φ) → E
p,p+1
1 = J(φ)eu, in the spectral sequence (5.3.5), vanishes. Thus, the E2

page of the spectral sequence reads

. . . . . . . . . . . . . . .

H 4(X
q
Bφ, Lπ ) 0 0 J(φ)eu J(φ)

H 3(X
q
Bφ, Lπ ) 0 J(φ)eu J(φ)

H 2(X
q
Bφ, Lπ ) J(φ)eu J(φ)

H 1(X
q
Bφ, Lπ ) J(φ)

H 0(X
q
Bφ, Lπ )

(5.5.2)

Here, the cohomology in the leftmost column is provided by formula (5.5.1), hence
vanish in degrees > 2. Thus, we see that all differentials dr : Ep,qr → E

p−r+1,q+r
r ,

r ≥ 3, have zero range, and the statement of part (ii) follows.
The case of Hochschild cohomology is quite similar. Write HH q

(−) = HH
q
(−, b),

where we have explicitly indicated the Hochschild differential b. Then, using the notation
∇ = φ ∂

∂τ
, we get

HH
q
(Bφ, b) = HH

q
(DA,∇ + b) = HH q

(C[Y ],∇ + b) = H
q
(X

q
(Y ),∇),

where the last isomorphism is due to the Hochschild–Kostant–Rosenberg theorem applied
to the smooth super-scheme Y .

One can now repeat the argument in the proof of Proposition 5.3.4 and replace the
complex (X q

(Y ),∇) by a smaller complex (Λ q
φ⊗C[t], t · idφ), which is quasi-isomorphic

to it (cf. (5.3.7)). This way, we see that the Hochschild cohomology of the algebra Bφ may
be computed as hyper-cohomology of the complex similar to (5.3.8), where the vertical
differential Lπ is replaced by zero. This yields part (i). ut
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Remark 5.5.3. (i) Theorem 2.4.1 shows that the Poisson cohomology groups of the al-
gebra Bφ are nonzero in all degrees ≥ 2, in particular, these groups are not the same as
the cohomology groups of the LKB complex (cf. (5.5.1)). That agrees with the fact that
the surface Mφ = Spec Bφ has a singularity.

(ii) Let f ∈ Aφ . For any p = 1, 2, . . . , the image of the element f in J(φ) gives
a class in Ep,p2 (cf. (5.5.2)). An explicit lift of that class to a 2p-cocycle in the total
complex associated with the corresponding bicomplex (5.3.8) is provided by the element
f + idfϒ ∈ Λ0

φ⊕Λ2
φ . Indeed, we have Lπf = ξf = idf∧dφϒ (cf. (4.2.6)). Further, using

(5.3.3), the fact that Lπϒ = 0 and unimodularity of the Poisson bivector π (Lemma
4.2.3), we get Lπ idfϒ = Lidf πϒ = Lξfϒ = 0. Thus, we compute

(Lπ + idφ)(f + idfϒ) = Lπf + Lπ idfϒ + idφidfϒ = idf∧dφϒ + 0+ idφ∧dfϒ = 0.

Similarly, for a homogeneous function f ∈ Aφ of degree deg f = k, the element
($ − k)fϒ + f eu ∈ Λ3

φ ⊕ Λ1
φ gives, for each p = 1, 2, . . . , a (2p + 1)-cocycle in the

total complex associated with the corresponding bicomplex (5.3.8). To see this, one may
use the identity π ∧ eu = degφ · ϒ to obtain the following equation (see [P, formula
(27)]):

Lπ (f eu) = (k −$)fπ − degφ · φ · idfϒ = (k −$)fπ mod (φ).

Further, we have idφeu = eu(φ) = (a + b + c)φ. Thus, we find that, in Λ
q
φ =

X
q
(M)/(φ), one has

(Lπ + idφ)[($ − k)fϒ + f eu] = ($ − k)f idφϒ + Lπ (f eu)+ f eu(φ)

= ($ − k)f π + (k −$)fπ mod (φ) = 0.

6. Classification results

6.1. Proof of Proposition 2.3.2

Assume that the curve is not rational. Let a ≤ b ≤ c.
If all the degrees are equal, then they are equal to 1, and degφ ≤ 3. In this case, the

statement is classical (the E6 case).
Now assume that the degrees are not equal to each other. In this case the leading

power of z is ≤ 2. If this power were 1, the curve would be rational, so it is 2. Consider
two cases.

Case 1: a < b = c. In this case z2 comes together with zy and y2, so for generic
coefficients, by making a linear change of y, z, we can kill z2 and y2, so the leading term
in z will be linear. This shows that the curve is rational, a contradiction.

Case 2: a ≤ b < c. Then the leading term in z is z2, so we get 2c ≤ a + b + c,
hence c ≤ a + b. After a change of variable the equation of the curve can be written as
z2
= g(x, y), where g is homogeneous of degree 2c ≤ 2(a + b). Consider two cases.
Case 2a: a = b. In this case, g has degree 3 or 4. If the degree of g is 3, then a =

b = 2, c = 3, and then the curve is rational, because the point (x, y, z) is equivalent to
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(x, y,−z) in the weighted projective space. Thus it remains to consider the case when
deg g = 4, and thus a = b = 1, c = 2. In this case, for generic coefficients we do get an
elliptic curve (the E7 case).

Case 2b: a < b. Then the terms that can be present in g(x, y) are y3 and terms that
contain y in power≤ 2. Thus for the curve not to be rational, the term y3 must be present.
So 2c = 3b, and thus b ≤ 2a. If b = 2a, then a = 1, b = 2, c = 3, d = 6, and for
generic coefficients we indeed get an elliptic curve (the E8 case). On the other hand, if
b < 2a, then g cannot contain quadratic terms in y (the only possible quadratic terms
are y2, xy2, x2y2, and none of them has the right degree). The only linear term in y that
can occur in g is x3y, in which case the curve is given by z2

= y3
+ x3y, in weighted

projective space of weights (4, 6, 9). This curve is rational, because the point (x, y, z) is
equivalent to (x, y,−z). Otherwise, the curve is z2

= y3
+ xp, 4 ≤ p ≤ 5, in weighted

projective space with weights (6, 2p, 3p). If p = 5, the curve is rational since (x, y, z) is
equivalent to (x, y,−z). If p = 4, the curve is given by the equation z2

= y3
+ x4, with

weights (3, 4, 6), and the curve is rational since (x, y, z) is equivalent to (x, εy, z), where
ε is a cubic root of unity. ut

6.2. Proof of Theorem 3.4.5(1)

Let Y ′ be the space of all nonhomogeneous potentials of degree a + b + c, and Y be
the space of all nonhomogeneous commutative polynomials of that degree. Let G′ be the
group of degree preserving automorphisms of C〈x, y, z〉. Then we have the following
exact sequence of G′-modules:

0→ U → Y ′→ Y → 0,

where U is a 1-dimensional representation spanned by xyz − yxz in the E6 case, and a
2-dimensional representation spanned by xyz − yxz and xyxy − x2y2 in the E7 and E8
cases.

Also, let G be the group of degree preserving automorphisms of C[x, y, z]. We have
an exact sequence

1→ H → G′→ G→ 1,
where H = 1 in the E6 case, and H = Ga consisting of elements x → x, y → y, z →

z + b(xy − yx) in the E7 and E8 cases. It is easy to see that a generic element of U
is equivalent under H to γ (xyz − yxz). Thus to prove the theorem, it suffices to show
that the expressions xyz + c · [P + Q + R] (cf. (2.5.2)) give normal forms of generic
elements in Y under the action of G. But this is a classical fact from the theory of del
Pezzo surfaces (see [D]). ut

7. Calabi–Yau deformations

7.1. The DG algebra D(8)

Let F = C〈x1, . . . , xn〉 be a free algebra on n homogeneous generators x1, . . . , xn, where
deg xi > 0 for all i = 1, . . . , n. We view F either as a graded or as a filtered algebra, as
in §3.2. We shall refer to the grading on F as a weight grading.
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Associated with any potential 8 ∈ Fcyc, we have introduced in [Gi, §1.4] a free
graded associative algebra D(8) =

⊕
r≥0 D(8)r with 2n + 1 homogeneous generators

x1, . . . , xn, y1, . . . , yn, t. We have D(8)0 = F . The algebra D(8) comes equipped with
a differential ∂ : D(8) q→ D(8) q−1 such that H 0(D(8)) = F/∂(D1(8)) = A(8).

In the case where 8 is a homogeneous potential of degree d > max{deg xi | i =
1, . . . , n}, there is an additional weight grading on D(8) such that the generators y1, . . . ,

yn, t are assigned degrees deg yi := d − deg xi, and deg t := d . This way, multiplication
by elements of D(8)0 makes each component D(8)r a graded left F -module D(8)r =⊕

s>0 D(s)(8)r , where the s-grading denotes the weight grading.
The precise definition of the DG algebra D(8) is not essential for us at the moment.

The important points are the following four properties:

• The differential on D(8) and the weight grading are determined by the po-
tential 8, while the algebra structure and the r-grading do not involve the
potential. (7.1.1)
• For each r = 0, 1, . . . , the homogeneous component D(8)r is a free F -

module, and if 8 is homogeneous, then dimC(D(s)(8)r) <∞, ∀s ≥ 0. (7.1.2)
• If H j (D(8)) = 0 for all j > 0, then 8 is a CY-potential. (7.1.3)
• If 8 is a homogeneous CY-potential then the differential ∂ preserves the

weight grading on D(8); moreover, H j (D(8)) = 0 for all j > 0, i.e. the
converse to (7.1.3) holds as well. (7.1.4)

Here, (7.1.1)–(7.1.2) are immediate from the definition of D(8), while (7.1.3)–(7.1.4)
follow from [Gi, Theorem 5.3.1], which is one of the main results of that paper.

For each i = 1, . . . , n, write di := deg xi > 0, and let AutF denote the group of de-
gree preserving automorphisms of the algebra F . Given d ≥ 3, let CY3(d, d1, . . . , dn) ⊂

F
(d)
cyc be the set of homogeneous CY-potentials of some fixed degree d ≥ 3.

Lemma 7.1.5. (i) The set CY3(d, d1, . . . , dn) is AutF -stable; moreover, it is the in-
tersection of an at most countable family of Zariski open (possibly empty) subsets
in F (d)cyc .

(ii) For all 8 ∈ CY3(d, d1, . . . , dn), the algebras A(8) have the same Hilbert–Poincaré
series.

Proof. For any 8 ∈ F (d)cyc , we may split the differential ∂ on the DGA D(8) into compo-
nents ∂8r,s : D(s)(8)r → D(s)(8)r−1, where each D(s)(8)r is a finite-dimensional vector
space, by (7.1.2). Since ∂2

= 0, for any r, s ≥ 0 one has dim Image ∂8r+1,s ≤ dim Ker ∂8r,s .
According to property (7.1.4), 8 is a CY-potential iff the DGA D(8) has no nonzero

cohomology in positive degrees. Thus, we have

CY3(d, d1, . . . , dn) =

{
8 ∈ F (d)cyc

∣∣∣∣ dim Image ∂8r+1,s ≥ dim Ker ∂8r,s, and
∂81,s has maximal rank, ∀r > 0, s ≥ 0

}
. (7.1.6)

The set on the right is clearly the intersection of a countable family of Zariski open subsets
in F (d)cyc . Part (i) follows. Part (ii) is [Gi, Proposition 5.4.7]. ut
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7.2. Deformation setup

In this and the following subsection, we develop a formalism that will be used in the
proofs of our main results.

Given a vector space V , we write V [[~]] for the space of formal power series in an
indeterminate ~ with coefficients in V . In particular, we have C[[~]], the ring of formal
power series. A C[[~]]-module is said to be topologically free if it is isomorphic to a
module of the form V [[~]], where V is a C-vector space. Such a module is clearly a flat
C[[~]]-module, complete in the ~-adic topology.

Let K =
⊕

r≥0Kr be a complex of topologically free C[[~]]-modules, equipped
with a C[[~]]-linear continuous differential d : K q → K q−1. Put K := K/~ ·K . This is
a complex of C-vector spaces, with induced differential d : K q→ K q−1.

We recall the following standard result.

Lemma 7.2.1. If the complex (K, d) is acyclic in positive degrees then:

(i) The complex (K, d) is acyclic in positive degrees.
(ii) The cohomology group H 0(K, d) is a flat C[[~]]-module.

(iii) The projection K � K induces an isomorphism

H 0(K, d)/~ ·H 0(K, d)
∼
−→ H 0(K, d). ut

We will also use a graded analogue of the above lemma, where the variable ~ is assigned
grade degree 1. Thus, let K be a complex of graded C[~]-modules Kr =

⊕
s≥0 Ks

r ,
with homogeneous, C[~]-linear differential d : Kr → Kr−1. Put K := K/~K , resp.
K ′ := K/(~ − 1)K , and let d, resp. d ′, be the induced differential on K , resp. on K ′.
For each r , the grading on Kr induces a filtration on K ′r . Replacing each term Kr by its
completion K̂r :=

∏
s≥0K

s
r and applying Lemma 7.2.1 to the resulting complex yields

the following elementary result.

Lemma 7.2.2. Assume, in the above setting, that each Kr is a free graded C[~]-module
such that dimCKs

r < ∞ for all r, s, and that H r(K, d) = 0 for any r > 0. Then
H r(K ′, d ′) = 0 for all r > 0. Furthermore, the natural map K → grK ′ induces an
isomorphism H 0(K, d)

∼
−→ grH 0(K ′, d ′). ut

Below, it will be necessary to work with C[[~]]-algebras, that is, with associative alge-
bras B equipped with a central algebra imbedding C[[~]] ↪→ B. A C[[~]]-algebra B
which is complete in the ~-adic topology will be referred to as an ~-algebra. Abusing
terminology, we call such an algebra flat if it is topologically free as a left (equivalently,
right) C[[~]]-module.

We reserve the notation F~ for the ~-algebra F [[~]]. We have a canonical isomor-
phism of free C[[~]]-modules F~/[F~, F~] ∼= Fcyc[[~]]. This way, for any potential

8 = 80 + ~ ·81 + ~2
·82 + · · · ∈ (F [[~]])cyc = Fcyc[[~]], (7.2.3)

where 8j ∈ Fcyc, one may define the ~-algebras

A~(8) := F~/〈〈∂i8〉〉i=1,...,n, resp. D~(8) =
⊕
r≥0

D~(8)r .
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Here, D~(8) is a DG ~-algebra with C[[~]]-linear differential, of degree −1; moreover,
D~(8)0 = F~ and A~(8) = H 0(D~(8)). There are natural ‘~-analogues’ of properties
(7.1.1)–(7.1.4).

Corollary 7.2.4. Let 8 be a potential as in (7.2.3). Then:

(i) For each r = 0, 1, . . . , the component D~(8)r is a free F~-module. In the case
where all 8j are homogeneous of the same degree d, the homogeneous component
D(s)(8)r is a finite rank free C[[~]]-module, for any s ≥ 0.

(ii) Reduction modulo ~ induces a DG algebra isomorphism D(80)
∼
−→ D~(8)/~ ·

D~(8) which, in the homogeneous case, is compatible with the weight gradings
on each side.

Proof. Part (i) follows from an ‘~-analogue’ of property (7.1.2); part (ii) follows from
definitions. ut

7.3. Formal deformations of potentials

For any vector space, resp. algebra, C let C((~)) be the vector space, resp. algebra, of
formal Laurent series with coefficients in C. In particular, we put k = C((~)), the field of
Laurent series.

It is clear that k⊗C[[~]] F~ = F((~)). Moreover, Fcyc[[~]] ⊂ Fcyc((~)) = [F((~))]cyc.

Therefore, any potential 8 ∈ Fcyc[[~]] may also be viewed as a potential for the k-
algebra F((~)). Thus, one may view k as a ground field and form a k-algebra A(8) =
F((~))/〈〈∂j8〉〉j=1,...,n. To emphasize the fact that the latter is a k-algebra, we will write
Ak(8) := A(8). There is an obvious k-algebra isomorphism Ak(8) = k⊗C[[~]] A~(8).

We begin with the following result which says that being a CY-potential is an ‘open
condition’.

Proposition 7.3.1. Fix a homogeneous CY-potential 80 ∈ F
(d)
cyc .

(i) For any (not necessarily homogeneous) element 8′ ∈ Fcyc[[~]], the sum 8 = 80 +

~ ·8′ is a Calabi–Yau potential for the algebra F((~)). Furthermore, A~(8) is a flat
~-algebra and the natural projection yields an algebra isomorphism

A(80)
∼
−→ A~(8)/~ · A~(8).

(ii) For any element8′ ∈ F<dcyc , the sum8 = 80+8
′ is a CY-potential for the algebra F .

Furthermore, the natural projection yields a graded algebra isomorphism

A(80)
∼
−→ gr A(8).

We remark that part (ii) of Proposition 7.3.1 is due to Berger and Taillefer [BT]; cf. also
[Gi, Corollary 5.4.4] for an alternative approach.

Proof of Proposition 7.3.1. To prove (i), let K := D~(8). Corollary 7.2.4(i) ensures that
the assumptions of Lemma 7.2.1 hold for K . It follows from property (7.1.4) and Lemma
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7.2.1(i) that the DG algebra D~(8) is acyclic in positive degrees. Hence, the DG algebra
Dk(8) = k ⊗C[[~]] D~(8) is acyclic in positive degrees as well. Thus, property (7.1.3)
implies that 8 is a Calabi–Yau potential. Now, Lemma 7.2.1(ii) ensures that A~(8) is a
flat ~-algebra, and Lemma 7.2.1(iii) completes the proof of Proposition 7.3.1(i).

Now, we prove part (ii) of Proposition 7.3.1 by an argument involving Rees algebras
that will also be used later in this section. Let F q

~ := F [~] = C[~] ⊗ F . We assign the
variable ~ degree +1. This, together with the grading F =

⊕
s F

(s), makes F q
~ a graded

C[~]-algebra, the Rees algebra of F , the latter being viewed as a filtered algebra. Thus,
(F

q
~)cyc is a graded C[~]-module.
Next, write a decomposition 8′ = 8(d−1)

+8(d−2)
+ · · · +8(0) into homogeneous

components 8(r) ∈ F
(r)
cyc, r = 1, . . . , d. Introduce a new homogeneous potential (of

degree d) for the graded algebra F q
~ = F [~] as follows:

8~ := 80 + ~ ·8(d−1)
+ ~2
·8(d−2)

+ · · · + ~d ·8(0) ∈ (F q
~)cyc = Fcyc[~]. (7.3.2)

One has a DG algebra D
q
~(8

~) =
⊕

r,s≥0 D
(s)

~ (8~)r with differential D
( q)
~ (8~)r →

D
( q)
~ (8~)r−1 defined in terms of the homogeneous potential 8~. For each r ≥ 0, the

component D
( q)
~ (8~)r is a free graded C[~]-module and the differential is a morphism of

graded C[~]-modules. Further, we have DG algebra isomorphisms (cf. Corollary 7.2.4(ii))

D
q
~(8

~)/(~−1)·D
q
~(8

~)
∼
−→ D(8), resp. D

q
~(8

~)/~·D q
~(8

~)
∼
−→ D(80). (7.3.3)

Here, the DG algebra on the right is acyclic in positive cohomological degrees by (7.1.4),
since 80 is a homogeneous CY-potential. Hence, the DG algebra on the left is acyclic in
positive cohomological degrees, by Lemma 7.2.2. Also, from (7.3.3), we deduce

H 0(D
q
~(8

~)/(~−1) ·D
q
~(8

~)) ∼= A(8), resp. H 0(D
q
~(8

~)/~ ·D q
~(8

~)) ∼= A(80).

Thus, the last statement of Lemma 7.2.2 yields the algebra isomorphism A(80) ∼=

gr A(8). ut

7.4. The case: n = 3

We put F = C〈x, y, z〉 and assign the generators x, y, z positive weights (a, b, c). Let
d := a + b + c.

First of all, we know that 80 := xyz − yxz is a CY-potential of degree d . In other
words, we have 80 ∈ CY3(d, a, b, c). We recall Definition 3.4.3, and deduce

Corollary 7.4.1. (i) A generic homogeneous potential 8 ∈ F (d) is a CY-potential; the
Hilbert–Poincaré series of the corresponding graded algebra A(8) is equal to that
of the algebra C[x, y, z].

(ii) For any 8′ ∈ F<dcyc , the sum 8 = xyz − yxz + 8′ is a CY-potential; moreover, the
natural projection yields a graded algebra isomorphism

C[x, y, z]
∼
−→ gr A(8).
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Proof. Part (ii) follows from Proposition 7.3.1(ii). Further, we observe that the set
CY3(d, a, b, c) contains 80, hence is nonempty. Therefore, part (i) follows from Lemma
7.1.5. ut

Recall that k = C((~)). Since CY3(d, a, b, c) 6= ∅ for d = a + b + c, from Proposition
7.3.1(i) we deduce

Lemma 7.4.2. For any element 8′ ∈ Fcyc[[~]], the sum 8 = xyz − yxz + ~ · 8′ is a
CY-potential for the k-algebra F((~)). Furthermore, the ~-algebra A~(8) with relations

xy − yx = ~ ·
∂8′

∂z
, yz− zy = ~ ·

∂8′

∂x
, zx − xz = ~ ·

∂8′

∂y
(7.4.3)

is a flat formal deformation of the polynomial algebra C[x, y, z]. ut

Reducing the flat deformation of the lemma modulo ~2, one obtains in a standard way
a Poisson bracket on C[x, y, z]. To describe this Poisson bracket, consider the natural
abelianization map

C〈x, y, z〉cyc � C[x, y, z], f 7→ f ab.

Further, expand the potential in Lemma 7.4.2 as a power series in ~ and write

8 = xyz− yxz+ ~ ·81 + ~2
·82 + · · · , 8j ∈ C〈x, y, z〉cyc. (7.4.4)

It is easy to show that the Poisson bracket on C[x, y, z] arising from the flat deformation
of Lemma 7.4.2 is given by formula (1.3.1); specifically, we have

{−,−} = {−,−}φ where φ := (81)
ab
∈ C[x, y, z], (7.4.5)

the image under the abelianization map of the degree 1 term in the ~-power series expan-
sion of 8.

8. From Poisson to Hochschild cohomology

8.1. Deforming central elements

We fix a triple of positive weights (a, b, c). Put F = C〈x, y, z〉 and assign the gener-
ators x, y, z some positive weights a, b, c, respectively. This gives the ascending filtra-
tion F≤m, m = 0, 1, . . . , on F , as in §3.2. Further, we introduce a variable ~ of degree
zero and use the notation F≤m~ := (F≤m)[[~]], resp. F≤mcyc [[~]], for the corresponding
induced filtrations on the ~-algebra F~, resp. (F~)cyc = (Fcyc)[[~]]. Thus, given a po-
tential 8 ∈ (F~)≤mcyc , we get a filtered ~-algebra A~(8). Note that these filtrations on F~,
(F~)cyc, and A~(8) are not exhaustive, rather, e.g.,

⋃
m≥0 A≤m~ (8) is dense in A~(8)

with respect to the ~-adic topology.
Now, we put d = a + b + c, and we recall the notation k = C((~)), resp. Ak(8) =

k⊗C[[~]] A~(8) and Definition 1.3.2.
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Proposition 8.1.1. (i) For any potential 8 ∈ (F~)≤dcyc of the form (7.4.4), with 80 =

xyz− yxz, the ~-algebra A~(8) contains a central element 9 ∈ A≤d~ (8) such that
9 (mod ~) = (81)

ab.

Assume, in addition, that (81)
ab is a homogeneous polynomial of degree a + b + c with

an isolated singularity. Then we have:

(ii) There is a bigraded k-algebra isomorphism

HH
q
(Ak(8)) ∼= k⊗PH q

(Aφ) where φ := (81)
ab
∈ C[x, y, z].

(iii) The center of A~(8) is Z(A~(8)) = C[9][[~]], a free topological ~-algebra in one
generator, and HH 1(Ak(8)) = k[9]Eu, is a rank one free k[9]-module generated
by the Euler derivation.

Proof of Proposition 8.1.1(i). Let R = C[u] be a graded polynomial algebra where the
variable u is assigned grade degree 1. Below, we consider R as a ground ring, and write
R[x, y, z] = C[x, y, z, u], a polynomial R-algebra. Given a commutative R-algebra A
we use the notation � q

RA, resp. X
q
RA, for the algebra of relative differential forms with

respect to the subalgebra R ⊂ A, resp. R-linear polyderivations of A.
Given a filtered algebra B we write RB

q
=
∑
m≥0 B

≤m
· um for the corresponding

Rees algebra, a flat graded R-algebra. Thus, associated with the filtered algebra F , resp.
F~, one has a graded R-algebra RF , resp. a graded R[[~]]-algebra RF~.

Now, fix a potential8 =
∑

~j8j ∈ (F~)≤dcyc, as in (7.4.4), and for each j = 1, 2, . . . ,

write 8j = 8
(d)
j + 8

(d−1)
j + · · · + 8

(0)
j , where 8(m)j ∈ F

(m)
cyc . We introduce a new

homogeneous potential of degree d similar to the one in (7.3.2) (but where the role of ~
is now played by the variable u),

8u = xyz−yxz+

∞∑
j=1

~j ·8uj ∈ RFcyc[[~]], where8uj :=
d∑

m=0

um ·8
(d−m)
j ∈ R(d)Fcyc.

Associated with the potential 8, resp. 8u, we have a filtered ~-algebra A~(8), resp.
graded R[[~]]-algebra A~(8u). Clearly, there is a natural graded ~-algebra isomorphism
RA~(8) ∼= A~(8u).

One can prove R-analogues of Corollary 7.4.1 and of Lemma 7.4.2. This way, one
deduces that the natural projection A~(8u)/~ ·A~(8u)

∼
−→ R[x, y, z] is a graded algebra

isomorphism. Thus, the algebra A~(8u) provides a C×-equivariant flat formal defor-
mation (where ~ is the deformation parameter and where the C×-equivariant structure
comes from the grading) of RA := R[x, y, z], the latter being viewed as a Poisson R-
algebra with an R-bilinear Poisson bracket arising from the polynomial φu := (8u1)

ab

(cf. (7.4.5)).
Recall next that to any formal deformation-quantization of a commutative algebra A

one can associate a Poisson bivector π~ ∈ X2A[[~]] that represents the Kontsevich class
of the deformation. The Kontsevich correspondence is known to respect equivariant struc-
tures arising from a reductive group action by Poisson automorphisms. Furthermore, ac-
cording to a result of Dolgushev [Do], the bivector π~ gives a unimodular Poisson struc-
ture if and only if the corresponding deformation-quantization gives a flat family of CY
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algebras. These results by Kontsevich and Dolgushev can be easily generalized to the
setting of (flat) R-algebras.

Now, put RA~ := RA[[~]] and let π~ ∈ X2
RRA~ be a Poisson bivector that repre-

sents the Kontsevich class of the deformation-quantization of RA provided by the non-
commutativeR[[~]]-algebra A~(8u). We know, byR-analogues of Corollary 7.4.1 and of
Lemma 7.4.2, that this deformation is indeed a flat family of CY R-algebras. Therefore,
we conclude that the R[[~]]-bilinear Poisson bracket {−,−} onRA~ associated with the
bivector π~ is unimodular. Moreover, since the Kontsevich correspondence respects the
C×-equivariant structure arising from the grading on A~(8u), resp. on RA~, we deduce
that the Poisson bracket associated with the bivector π~ respects the grading on the alge-
bra RA~, i.e. deg{f, g} = deg f + deg g for any homogeneous elements f, g ∈ RA~
(where deg ~ = 0 as before).

Next, one uses an R-analogue of Corollary 4.3.2(i) to show that there exists a formal
series of the form ψ = ~ · ψ1 + ~2

· ψ2 + · · · , ψj ∈ RA, such that, in X2
RRA[[~]], one

has π~ = idψϒ . Here, ϒ ∈ X3
RRA is the standard 3-vector given by formula (4.3.3).

Thus, degϒ = −(a + b + c) = −d . It follows that each element ψj ∈ RA(d) must be
homogeneous of degree d . It is also immediate from (7.4.5) that, for the first term in the
expansion of ψ , one has

ψ1 = (8
u
1)

ab. (8.1.2)

We introduce RA((~)), a commutative R((~))-algebra. One may obviously view ψ

as an element of RA((~)). Associated with this element, there is a Poisson R((~))-algebra
RAψ (cf. Definition 1.3.2). Clearly,RAψ ∼= R((~))⊗R[[~]]RA~, and the Poisson bracket
on RAψ is nothing but the R((~))-bilinear extension of the Poisson bracket on the ~-
algebra RA~. Similarly, associated with the potential 8u, we have an R((~))-algebra
A(8u) := R((~))⊗R[[~]] A~(8u).

At this point, one applies Kontsevich’s formality theorem [K1] (cf. also [CVB]). The
theorem yields a graded R((~))-algebra isomorphism

HH
q
(A(8u)) ∼= PH

q
(RAψ ). (8.1.3)

In degree zero, in particular, we get algebra isomorphisms Z(A(8u)) ∼= Z(RAψ ) =
R((~))[ψ]. We deduce that the center of A(8u) is generated by a degree d homogeneous
element. Multiplying by a power of ~, we may assume without loss of generality that this
central element has the form 1 ⊗ 9u ∈ R((~)) ⊗R[[~]] A

(d)

~ (8u), where 9u ∈ A
(d)

~ (8u)

is such that 9u (mod ~) = ψ . Notice further that the ~-algebra A~(8u) has no ~-torsion
since 8u is a CY-potential (see Proposition 7.3.1(i)). It follows that the map A~(8u)→
A(8u), a 7→ 1 ⊗ a, is injective and therefore 9u must be a nonzero central element of
the algebra A~(8u).

By construction, the original potential8 is obtained by specializing the homogeneous
potential 8u at u = 1. Thus we see that specializing the central element 9u at u = 1 one
obtains a central element 9 ∈ A(8), as required in the statement of Proposition 8.1.1(i).

ut
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8.2. Proof of Proposition 8.1.1(ii)–(iii)

Part (ii) is also an easy consequence of the Kontsevich isomorphism (8.1.3). However,
assuming the statement of part (i) holds, one can give an alternative proof of part (ii)
which does not involve the formality theorem. To this end, we exploit an adaptation of an
argument used by Van den Bergh in the proof of [VB2, Theorem 4.1].

Recall that π = idφϒ (cf. (4.3.3)). First, we need the following corollary of Piche-
reau’s results.

Lemma 8.2.1. The algebra PH q
(Aφ) is a graded commutative algebra with generators

φ ∈ PH 0(Aφ), eu ∈ PH 1(Aφ), θ1 = idf1ϒ, . . . , θµ−1= idfµ−1ϒ,

π ∈ PH 2(Aφ), ϒ ∈ PH 3(Aφ),

and defining relations

eu ∪ π = d · φ · ϒ, eu ∪ ϒ = π ∪ ϒ = 0, θi ∪ θj = θi ∪ π = 0, ∀i, j. (8.2.2)

Proof. For any polynomial f ∈ C[x, y, z], we have eu ∧ idfϒ = eu(f ) · ϒ . Hence,
we deduce eu ∧ idφϒ = d · φ · ϒ . Similarly, eu ∧ idfkϒ = (deg fk) · fk · ϒ for any
k = 1, . . . , µ − 1. The statement readily follows from this by using the description of
Poisson cohomology given in Proposition 5.4.1. ut

Next, we let A~(8) ⊃ ~ · A~(8) ⊃ ~2
· A~(8) ⊃ · · · be the standard ~-adic filtration.

The latter may be extended in a unique way to a descending Z-filtration on the algebra
Ak(8) such that multiplication by ~−1 shifts the filtration by one and such that for the
associated graded algebra, we have gr Ak(8) = C[x, y, z][~, ~−1].

The resulting associated graded Poisson bracket on gr Ak(8) is easily seen to be
the C[~, ~−1]-bilinear extension of the Poisson bracket {−,−}φ, on Aφ , where φ =
(81)

ab. In other words, we have a Poisson C[~, ~−1]-algebra isomorphism gr Ak(8) ∼=
Aφ[~, ~−1].

Associated with the above defined descending filtration on the algebra Ak(8), there
is a standard spectral sequence with the first term (cf. [VB2, p. 224])

E1 = PH
q
(gr Ak(8)) = C[~, ~−1]⊗ PH

q
(Aφ) ⇒ grHH

q
(Ak(8)). (8.2.3)

Following an idea of Van den Bergh, we prove

Lemma 8.2.4. Each of the elements from the set of generators of the algebra PH q
(Aφ)

given in Lemma 8.2.1 can be lifted to an element in HH q
(Ak(8)) in such a way that

analogues of relations (8.2.2) hold for the lifted elements as well.

Proof of Lemma. Set Ak = Ak(8). By Proposition 8.1.1(i) we have HH 0(Ak) = k[9].
Furthermore, the central element 9 ∈ Ak provides a lift of the element φ ∈ Aφ, due to
equation (8.1.2).
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To lift cohomology classes of degree 3, we compare two duality isomorphisms pro-
vided by Proposition 5.1.1(i) and by (2.1.3), respectively:

g : Aφ/{Aφ,Aφ} = PH 0(Aφ)
∼
−→ PH 3(Aφ),

G : Ak/[Ak,Ak] = HH 0(Ak)
∼
−→ HH 3(Ak).

Observe that any element f ∈ Aφ/{Aφ,Aφ} can be trivially lifted to an element
F ∈ Ak/[Ak,Ak]. It follows easily that any class of the form g(f ) ∈ PH 3(Aφ) admits a
lift of the formG(F) ∈ HH 3(Ak). Further, let B(F ) ∈ HH 1(Ak) be the image of F under
the Connes differential B : HH 0(Ak) → HH 1(Ak). Then one shows that G(B(F )) ∈
HH 2(Ak), the image of B(F ) under the duality (2.1.3), provides a lift of the class idfϒ ∈
PH 2(Aφ). In particular, each of the Poisson cohomology classes π = idφϒ, resp. θk =
idfkϒ , k = 1, . . . , µ− 1, in PH 2(Aφ) (see Lemma 8.2.1) has a lift5 = G(B(9)), resp.
2k = G(B(Fk)), in HH 2(Ak).

Finally, one lifts the class eu ∈ PH 1(Aφ) to the corresponding Euler derivation Eu of
the graded algebra Ak.

It follows from our construction that all of the relations from (8.2.2), except possibly
the first one, automatically hold for the lifted elements, for degree reasons. Also the re-
maining relation holds for it is a formal consequence of [Gi, Theorem 3.4.3(i)] and the
equation Eu(9) = d ·9. ut

According to the lemma, the assignment sending our generators of the algebra PH q
(Aφ)

to the corresponding generators of the algebra HH q
(Ak(8)) can be extended to a well-

defined graded k-algebra map ρ : k⊗ PH q
(Aφ)→ HH

q
(Ak(8)).

We claim that the map ρ is an isomorphism. To prove this, we exploit [VB2, Lem-
ma 5.2]. That lemma, combined with our Lemma 8.2.4, implies that the spectral sequence
in (8.2.3) degenerates at E1. We deduce that, for the filtration on HH q

(Ak(8)) coming
from the spectral sequence, one has

grHH
q
(Ak(8)) ∼= E1 = C[~, ~−1]⊗ PH

q
(Aφ). (8.2.5)

Observe further that the lifts constructed in Lemma 8.2.4 are compatible with the fil-
trations involved. Moreover, each term of the filtration is complete in the ~-adic topology.
This, together with isomorphism (8.2.5), immediately implies, as explained at the top of
page 224 in [VB2], that the map ρ must be a bijection. That completes the proof of part
(ii) of Proposition 8.1.1 and, at the same time, yields part (iii) (cf. Proposition 5.4.1(i)).

ut

8.3. Proof of Theorems 3.3.2 and 3.4.5

Part (i) of Theorem 3.3.2 follows directly from Corollary 7.4.1(ii) and Proposition 7.3.1(ii).
Next, we prove the existence of a central element in A(8) from Theorem 3.3.2(ii) for

generic potentials 8 ∈ F≤dcyc , where d = a + b + c. To this end, one may replace the
ground field C by a larger field and follow the strategy of Van den Bergh [VB2, §5]. Thus,
we let our ground field be of the form K((~)) for a certain field K .
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We assume (as we may) that the coefficitients in the expansion of 8 as a linear com-
bination of cyclic monomials in x, y, z are algebraically independent over Q. Then, fol-
lowing [VB2, §5], we may assume that the potential has the form 8 = xyz − yxz +∑
j>0 ~j ·8j , where8j ∈ F≤dcyc . In such a case, Proposition 8.1.1(i) ensures the existence

of a central element 9 ∈ A≤d(8), and we are done.
The proof of part (ii) of Theorem 3.3.2 in the general case is based on a continuity

argument. We will use the same notation concerning Rees algebras as in the proof of
Proposition 8.1.1(i).

Thus, given a potential 8 = 8(d) +8(d−1)
+ · · · +8(0) of degree ≤ d , we replace it

by a degree d homogeneous potential 8u = 8(d)+ u ·8(d−1)
+ · · · + ud ·8(0) ∈ RFcyc,

where deg u = 1. Further, given 9̃u ∈ RF (d) let 9u ∈ A(8u) denote the image of 9̃
under the projection RF (d) � A(d)(8u). The condition that 9u ∈ A(8u) be a central
element of the algebra A(8u) amounts to the following three constraints on 9̃u:

v · 9̃u − 9̃u · v ∈ ∂8(D
(d+deg v)(8u)1), ∀v ∈ {x, y, z}. (8.3.1)

The commutator on the left is taken in the algebra RF, and ∂8 : D(d)(8u)1 → D(d)(8u)0
= RF stands for the differential in the DG algebra D(8u).

Let 4 ⊂ RF (d)cyc × P(RF (d)) be the set of pairs (8u,C · 9̃u), where 8u ∈ RF (d)cyc is
a homogeneous CY-potential and the element 9̃u, generating the line C · 9̃u ⊂ RF (d),
satisfies (8.3.1). According to (7.1.6), for each r ≥ 0, the dimension of the vector space
∂8(D

(r)(8u)1) is a (finite) integer independent of the choice of a CY-potential 8u ∈
RF (d)cyc . It follows that the first projection 4→ RF (d)cyc , (8

u,C · 9̃u) 7→ 8u, is a proper
morphism. The image of this morphism is dense in RF (d)cyc since we have already es-
tablished the existence of central elements in A(8≤d) for generic potentials. We con-
clude that the map 4→ RF (d)cyc is surjective, and our claim follows by the specialization
u 7→ 1, 8u 7→ 8, and 9u 7→ 9. ut

Proof of Theorem 3.4.5. Part (1) has been proved earlier, in §6.2. To prove (2), we re-
peat the argument used in the proof of Theorem 3.3.2 in the case of generic potentials.
This way, we see that the required statement follows from the statement of Proposition
8.1.1(iii) about the center of the algebra Ak(8). ut

8.4. Proof of Theorem 3.5.2

The statement of part (i) is a graded version of the corresponding statement of Theorem
3.4.5(1). Thus, it follows from the latter theorem.

To prove part (ii), we may again reduce the statement to the case where the ground
field is k = C((~)). Furthermore, we may assume the potential8 to be of the form (7.4.4)
and such that (81)

ab
∈ C[x, y, z] is a generic homogeneous polynomial of degree d.

Our assumptions on the triple (a, b, c) ensure that such a polynomial has an isolated
singularity. Thus, we are in a position to apply Proposition 8.1.1(ii). The statement of
Theorem 3.5.2(ii) then follows from that proposition and from the corresponding results
about Poisson cohomology proved by Pichereau and summarized in Proposition 5.4.1.
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We now prove Theorem 3.5.2(iii). We keep the above setting, in particular, we have k
as the base field. Thus,A = Ak(8) is a Calabi–Yau algebra and we know thatHH 1(A) =

k[9]Eu, by Proposition 8.1.1(iii).
Let vol ∈ HH 3(A) denote the image of 1 ∈ Z(A) = HH 0(A) under the duality

isomorphism (2.1.3). Then the duality gives a k[9]-module isomorphism HH 1(A)
∼
−→

HH 2(A) that sends Eu ∈ HH 1(A) to iEuvol ∈ HH 2(A). Therefore, using the equation
Eu(9) = d · 9 and standard calculus identities in the framework of Hochschild coho-
mology (cf. [Lo, §4.1]), for any k ≥ 0, we compute (where dot denotes cup-product on
Hochschild cohomology)

B(9k · iEuvol) = B ◦ iEu(9
k
· vol) = (B ◦ iEu + iEu ◦B)(9

k
· vol)

= LEu(9
k
· vol) = k ·9k−1

· Eu(9) · vol+9k · LEuvol

= kd ·9k · vol+ d ·9k · vol = (k + 1)d ·9k · vol.

Since (k + 1)d 6= 0 for any k = 0, 1, . . . , from the calculation above we deduce that the
Connes differential gives a bijection B : HH 2(A)

∼
−→ HH 3(A). By duality, this implies

that the BV-differential yields a bijection 1 : HH 1(A)
∼
−→ HH 0(A). That proves one of

the two isomorphisms of Theorem 3.5.2(iii).
To prove the other isomorphism, we observe that A is a nonnegatively graded algebra

with degree zero component equal to k. Hence, by [EG, Lemma 3.6.1], we get an exact
sequence of Hochschild homology

0→ k→ HH 0(A)
B
−→ HH 1(A)

B
−→ HH 2(A)

B
−→ HH 3(A)→ 0. (8.4.1)

Applying duality (2.1.3), we obtain an exact sequence of Hochschild cohomology

0→ k · ϒ → HH 3(A)
1
−→ HH 2(A)

1
−→ HH 1(A)

1
−→ HH 0(A)→ 0. (8.4.2)

We have shown earlier that the last map1 on the right in this exact sequence is a bijection.
This forces the first map 1 on the left to be a surjection, and we are done. ut

Remark 8.4.3. There are also Poisson cohomology counterparts of exact sequences
(8.4.1)–(8.4.2). The counterpart of (8.4.1) follows, using Cartan’s homotopy formula
Leu = d ◦ ieu + ieu ◦d, from the fact that the operator Leu acts on �jAφ with posi-
tive weights, for any j 6= 0. The analogue of (8.4.2) can be deduced from this by duality
(cf. Proposition 5.1.1).

Further, an explicit description of the group PH 2(Aφ) given by Pichereau [P] shows
that the map δ : PH 3(Aφ) → PH 2(Aφ), equivalently, the map d : PH 0(Aφ) →

PH 1(Aφ), is surjective as well. This, combined with spectral sequence (8.2.5), may be
used to obtain an alternative proof of Theorem 3.5.2(iii).
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8.5. Sketch of proof of Theorem 3.4.4

We begin with part (i). First of all we introduce a space of deformation parameters similar
to the one used in the proof of Theorem 2.5.3. Specifically, let SA be the space of tuples
(t, c, P,Q,R). We have dim SA = (p − 1)+ (q − 1)+ (r − 1)+ 2 = µ, by (2.5.4).

For each s = (t, c, P,Q,R) ∈ SA we let As := A(8t,cP,Q,R ) be the corresponding
algebra. This is a filtered algebra, with an associated graded algebra grAs . Hence there is
an induced ascending filtration HH q

≤m(As) on Hochschild cohomology, resp. homology,
groups of As . Proving Theorem 3.4.4(i) amounts to showing that there exists a subset
U ⊂ SA, of sufficiently general parameters, such that for any s ∈ U, the Kodaira–Spencer
map induces an isomorphism

KSs : TsSA
∼
−→ HH 2

≤0(As), ∀s ∈ U (⊂ SA). (8.5.1)

To this end, we first use the classification result from Theorem 3.4.5(1). The theorem
implies that for any choice of subset F ◦cyc ⊂ Fcyc, of generic potentials in the sense of
Definition 3.4.3, the set U := {(t, c, P,Q,R) ∈ SA | 8

t,c
P,Q,R ∈ F

◦
cyc} is nonempty and,

moreover, it is a subset of generic parameters in SA, in the sense of Definition 3.4.3 again.
We have the following diagram (cf. (2.1.4)):

TsSA

KSs
��

pr // (As)cyc

B
����

HH 2(As) HH 1(As)
(2.1.3)

(8.5.2)

In this diagram, the map pr is the tautological projection that sends a variation of
the potential, viewed as an element of C〈x, y, z〉cyc, to its image in (As)cyc. Observe
further that the isomorphism (2.1.3) at the bottom of the diagram gives a bijection between
HH≤dq (As) andHH d− q

≤0 (As). Furthermore, Proposition 2.1.5 ensures that diagram (8.5.2)
commutes.

In order to prove (8.5.1) for the algebra As associated with a potential 8 = 8
t,c
P,Q,R

with generic coefficients, we may (and will) assume that our base field is k = C((~)) and
that our potential has the form (7.4.4). We put φ := (81)

ab (cf. (7.4.5)) and let Aφ be the
corresponding Poisson algebra.

There is an analogue of diagram (8.5.2) for the Poisson algebra Aφ instead of the al-
gebraAs . Furthermore, there is a spectral sequence like (8.2.5) for each of the Hochschild
(co)homology groups in (8.5.2). Its E1-term is the corresponding Poisson (co)homology
group in the Poisson analogue of (8.5.2).

First of all, applying Proposition 8.1.1(ii) we get dimHH 2
≤0(As) = dimPH 2

≤0(Aφ).
Now, for any homogeneous element f and k ≥ 0, we have deg(φk ·idfϒ) = kd+deg f −
(a + b + c) = deg f + (k − 1)d. Therefore, using Proposition 5.1.1 and the notation of
Proposition 5.4.1(ii), we find that the elements df1, . . . , dfµ−1, dφ form a C-basis of the
vector space PH≤d1 (Aφ). Thus, we deduce

dimHH 2
≤0(As) = dimPH 2

≤0(Aφ) = dimPH
≤d
1 (Aφ) = µ = dim SA. (8.5.3)
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Thus, to complete the proof of part (i) it suffices to show that the map (8.5.1) is
surjective. From diagram (8.5.2), we see that this would follow provided we prove the
surjectivity of the composite map B ◦pr : TsSA → HH

≤d
1 (As). Using the spectral se-

quence in (8.2.5) we reduce the latter statement to proving surjectivity of a similar map
TsSA → PH

≤d
1 (Aφ) for Poisson algebras. But this is clear since there are obvious ele-

ments in fj ∈ SA = C2
× Sp × Sq × Sr (cf. §2.5, proof of Theorem 2.5.3) such that the

1-forms df1, . . . , dfµ−1, dφ give a basis of the vector space PH≤d1 (Aφ).

The proof of Theorem 3.4.5(ii) proceeds in a similar way. We omit the details. ut

9. Appendix: computer calculation

In the E6 case the relations in the algebra A(8t,cP,Q,R ) take the following form:

xy − qyx − tz2
+ c1z+ c2,

yz− qzy − tx2
+ a1x + a2,

zx − qxz− ty2
+ b1y + b2.

The corresponding central element 9 was computed by Eric Rains using MAGMA. It
reads

t (q + 1)(t (t3 + 1)y3
+ (q3

− t3)yzx − q(t3 + 1)zyx + t (q3
− t3)z3)

− t (q2
+ qt3 + q + 2t3 + 1)b1y

2

+ (qt3 − q2)a1yz+ t
3(q + 1)b1zx + (q

3
+ qt3)a1zy

+ q(q + 1)t3c1yx + t (2qt3 + t3 − q4
− q3

− q2)c1z
2

− ((q3t + 2q2t + qt)a2 + q
2a2

1 + qt
2b1c1)x

− t ((q3b2 + 2q2
+ qt3 + 2q + t3 + 1)b2 + qta1c1 − t

2b2
1)y

− t ((q4
+ 2q3

+ 2q2
− qt3 + q − t3)c2 + qt

2c2
1 + qta1b1)z.

We refer to [R] for more complicated formulas in the E7 and E8 cases.

Remark. We were informed by the referee that such formulas were also obtained by a
computer calculation in D. Stephenson’s thesis.

Acknowledgments. We are grateful to Mike Artin and Eric Rains for useful discussions. We also
thank Eric Rains for allowing us to reproduce his computer computations in the appendix to this
paper. We are grateful to the referee for comments and references. The work of E.G. was partially
supported by the NSF grant DMS-0504847. The work of V.G. was partially supported by the NSF
grant DMS-0601050.
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