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Abstract. We derive new upper bounds for the densities of measurable sets in Rn which avoid a
finite set of prescribed distances. The new bounds come from the solution of a linear programming
problem. We apply this method to obtain new upper bounds for measurable sets which avoid the
unit distance in dimensions 2, . . . , 24. This gives new lower bounds for the measurable chromatic
number in dimensions 3, . . . , 24. We apply it to get a short proof of a variant of a recent result of
Bukh which in turn generalizes theorems of Furstenberg, Katznelson, Weiss, Bourgain and Falconer
about sets avoiding many distances.
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1. Introduction

Let d1, . . . , dN be positive real numbers. We say that a subset A of the n-dimensional
Euclidean space Rn avoids the distances d1, . . . , dN if the distance between any two
points in A is never d1, . . . , dN . We define the upper density of a Lebesgue measurable
set A ⊆ Rn as

δ(A) = lim sup
T→∞

vol(A ∩ [−T , T ]n)
vol [−T , T ]n

.

In this expression [−T , T ]n denotes the regular cube in Rn with side 2T centered at
the origin. We denote the extreme density which a measurable set in Rn that avoids the
distances d1, . . . , dN can have by

md1,...,dN (R
n)=sup{δ(A) : A ⊆ Rn is measurable and avoids the distances d1, . . . , dN }.

In this paper we derive upper bounds for this extreme density from the solution of a
linear programming problem.

To formulate our main theorem we consider the function �n given by

�n(t) = 0

(
n

2

)(
2
t

) 1
2 (n−2)

J 1
2 (n−2)(t) for t > 0, �n(0) = 1, (1)
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Fig. 1.1. Graph of the function �4(t) =
2
t J1(t)

where J 1
2 (n−2) is the Bessel function of the first kind with parameter (n − 2)/2. To fix

ideas we plotted the graph of the function �4 in Figure 1.1.

Theorem 1.1. Let d1, . . . , dN be positive real numbers. Let A ⊆ Rn be a measurable set
which avoids the distances d1, . . . , dN . Suppose there are real numbers z0, z1, . . . , zN
which sum up to at least one and which satisfy

z0 + z1�n(td1)+ · · · + zN�n(tdN ) ≥ 0

for all t ≥ 0. Then the upper density of A is at most z0.

In Section 2 we provide a proof where we make essential use of basic harmonic analysis,
which we briefly recall. In the sections that follow we apply the main theorem in a variety
of situations: for sets avoiding one distance, sets avoiding two distances, and sets avoiding
many distances. For the history of these Euclidean distance problems we refer to the
surveys by Székely [19] and Székely and Wormald [20] and the references therein.

Sets avoiding one distance have been studied by combinatorialists because of their re-
lation to the measurable chromatic number of the Euclidean space. This is the minimum
number of colors one needs to color all points in Rn so that any two points at distance 1
receive different colors and so that points receiving the same color form Lebesgue mea-
surable sets; it will be denoted by χm(Rn). Since every color class of a coloring provides
a measurable set which avoids the distance 1, we have the inequality

m1(Rn) · χm(Rn) ≥ 1. (2)

For the plane it is only known that 5 ≤ χm(R2) ≤ 7, where the lower bound is due
to Falconer [10] and the upper bound comes e.g. from a coloring one constructs using a
tiling by regular hexagons with circumradius slightly less than 1. Erdős conjectured that



Fourier analysis, linear programming, and densities of distance avoiding sets 1419

m1(R2) < 1/4 so that (2) would yield an alternative proof of Falconer’s result. So far the
best known results on m1(R2) are the lower bound m1(R2) ≥ 0.2293 by Croft [7] and
the upper bound m1(R2) ≤ 12/43 ≈ 0.2790 by Székely [18]. In Section 3 we compute
new upper bounds for m1(Rn) for dimensions n = 2, . . . , 24 based on a strengthening of
our main theorem by extra inequalities. These new upper bounds form1(Rn) imply by (2)
new lower bounds for χm(Rn) in dimensions 3, . . . , 24.

If one considers sets which avoid more than one distance one can ask how N dis-
tances can be chosen so that the extreme density becomes as small as possible: what is
the value of inf{md1,...,dN (Rn) : d1, . . . , dN > 0} for fixed N? For planar sets avoiding
two distances Székely [18] showed that inf{md1,d2(R2) : d1, d2 > 0} ≤ m1,

√
3(R

2) ≤

2/11 ≈ 0.181818. In Section 4 we improve his result and show that inf{md1,d2(R2) :
d1, d2 > 0} ≤ 0.0724046.

Recently, Bukh [5], using harmonic analysis and ideas resembling Szémeredi’s regu-
larity lemma, showed that inf{md1,...,dN (Rn) : d1, . . . , dN > 0} drops to zero exponen-
tially in N : he shows that there is a number r , strictly greater than 1, which depends only
on N and n so that if

d2/d1 > r, d3/d2 > r, . . . , dN/dN−1 > r,

then md1,...,dN (Rn) ≤ (m1(Rn))N . This implies a theorem of Furstenberg, Katznelson,
and Weiss [13] that for every subset A in the plane which has positive upper density there
is a constant d so that A does not avoid distances larger than d . Their original proof used
tools from ergodic theory and measure theory. Alternative proofs have been proposed by
Bourgain [4] using elementary harmonic analysis and by Falconer and Marstrand [12]
using geometric measure theory. Bukh’s result also implies that md1,...,dN (Rn) becomes
arbitrarily small if the distances d1, , . . . , dN become sufficiently small. This is originally
due to Bourgain [4] and Falconer [11]. In Section 5 we give a short proof of a variant
of Bukh’s result using our main theorem, where we replace (m1(Rn))N by the weaker
estimate 2−N . We could improve this considerably, but we cannot get (m1(Rn))N . Still
our estimate is strong enough to give all the implications mentioned. Furthermore, our
proof has the additional advantage that it easily provides quantitative estimates on the
spacing r between the distances.

The idea of linear programming bounds for packing problems of discrete point sets in
compact metric spaces goes back to Delsarte [9] and it has been successfully applied to a
variety of situations. Cohn and Elkies [6] were the first who were able to set up a linear
programming bound for packing problems in noncompact spaces; by then no less than 30
years since Delsarte’s fundamental contribution had gone by. Our main theorem can be
viewed as a continuous analogue to their linear programming bound.

2. Proof of the main theorem

For the proof of our main theorem, elementary notions from harmonic analysis will be
important. We recall these here. For details we refer to, e.g., the book by Katznelson [14].
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A measurable, complex valued function f : Rn→ C is called periodic if it is invariant
under an n-dimensional discrete subgroup of Rn or, in other words, if there is a basis
b1, . . . , bn of Rn so that for all α1, . . . , αn ∈ Z we have f (x +

∑n
i=1 αibi) = f (x). The

set L = {
∑n
i=1 αibi : αi ∈ Z} is called the period lattice of f and L∗ = {u ∈ Rn :

x · u ∈ Z for all x ∈ L} is called the dual lattice of L.
The mean value of a periodic function f is given by

M(f ) = lim
T→∞

1
vol[−T , T ]n

∫
[−T ,T ]n

f (x) dx.

For two periodic functions f and g we write 〈f, g〉 = M(f g). We say that f is square-
integrable if 〈f, f 〉 < ∞. By ‖f ‖ =

√
〈f, f 〉 we denote its norm. If f and g are both

square-integrable, then 〈f, g〉 exists. For u ∈ Rn we define the Fourier coefficient f̂ (u) =
〈f, eiu·x〉. Here, x · y denotes the standard inner product on Rn.

Notice that the support of f̂ is a discrete set, namely it lies in the dual lattice of the
period lattice of f , scaled by 2π . If we let fy(x) = f (y + x) for a vector y ∈ Rn, then
f̂y(u) = f̂ (u)e

iu·y . For square-integrable, periodic functions f and g Parseval’s formula

〈f, g〉 =
∑
u∈Rn

f̂ (u) ĝ(u)

holds. The latter sum is meant to extend over the intersection of the supports of f̂ and ĝ.

Proof of Theorem 1.1. Let A be a measurable subset of Rn that avoids the distances
d1, . . . , dN . Denote by 1A its characteristic function 1A : Rn → {0, 1}. Without loss of
generality we can assume that 1A is a periodic function; in this case we say that A is
periodic.

Indeed, from any measurable set A which avoids the distances d1, . . . , dN we can
construct a periodic set which avoids the distances d1, . . . , dN and with upper density
arbitrarily close to the one of A. To do this we intersect A with a regular cube of side
2T so that vol(A ∩ [−T , T ]n)/vol[−T , T ]n is close to the upper density δ(A) and so
that vol[−T + d, T − d]n/vol[−T , T ]n, with d = max{d1, . . . , dN }, differs from 1 only
negligibly. Then we construct a new periodic set by tiling Rn with copies of A∩ [−T +d,
T − d]n centered at the points of the lattice 2TZn. Notice that, for a periodic set A, one
may replace the lim sup in the definition of δ(A) by a simple limit.

By A − y we denote the translation of the set A by the vector −y ∈ Rn, so that
1A−y(x) = 1A(x + y) = (1A)y(x). The following two properties are crucial:

〈1A, 1〉 = δ(A), (3)
〈1A−y, 1A〉 = δ(A ∩ (A− y)) for all y ∈ Rn. (4)

In particular, 〈1A, 1A〉 = δ(A) and 〈1A−y, 1A〉 = 0 for all vectors y of Euclidean norm
d1, . . . , dN . Notice 〈1A, 1〉 = 1̂A(0). By applying Parseval’s formula to (4), we can ex-
press it in terms of the Fourier coefficients of 1A, thus obtaining

1̂A(0) = δ(A),∑
u∈Rn
|1̂A(u)|2eiu·y = δ(A ∩ (A− y)) for all y ∈ Rn.
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Now we consider the function

ϕ(y) =
∑
u∈Rn
|1̂A(u)|2eiu·y = δ(A ∩ (A− y)), (5)

which is called the autocorrelation function (or two-point correlation function) of 1A.
By taking spherical averages we construct from it a radial function f whose values only
depend on the norm of the vectors. In other words, we set

f (y) =
1
ωn

∫
Sn−1

ϕ(‖y‖ξ) dω(ξ).

Here ω denotes the standard surface measure on the unit sphere Sn−1
= {ξ ∈ Rn :

ξ · ξ = 1} and ωn = ω(Sn−1) = (2πn/2)/0(n/2). Clearly, f (0) = δ(A), and f (y) = 0
whenever ‖y‖ ∈ {d1, . . . , dN }. Because of the formula (cf. Schoenberg [17, (1.6)], see
(1) for an explicit expression for �n)

1
ωn

∫
Sn−1

eiu·ξ dω(ξ) = �n(‖u‖)

we can represent f in the form

f (y) =
∑
t≥0

α(t)�n(t‖y‖),

where α(t) is the sum of |1̂A(u)|2 for vectors u having norm t , so the α(t)’s are real and
nonnegative. Furthermore, α(0) = |1̂A(0)|2 = δ(A)2 and

∑
t≥0 α(t) = f (0) = δ(A).

So the following linear program in the variables α(t) gives an upper bound for the
upper density of any measurable set which avoids the distances d1, . . . , dN :

sup
{
α(0) : α(t) ≥ 0 for all t ≥ 0,

∑
t≥0

α(t) = 1,

∑
t≥0

α(t)�n(tdk) = 0 for k = 1, . . . , N
}
. (6)

Above, all but a countable subset of the α(t)’s are zero. Note moreover that we used the
normalization

∑
t≥0 α(t) = 1. This linear program has infinitely many variables α(t) but

only N + 1 equality constraints. A dual of it is

inf{z0 : z0 + z1 + · · · + zN ≥ 1,
z0 + z1�n(td1)+ · · · + zN�n(tdN ) ≥ 0 for all t > 0}, (7)

which has N + 1 variables z0, z1, . . . , zN and infinitely many constraints. As usual, weak
duality holds between the linear programs (6) and (7): If α(t) satisfies the conditions in
(6) and if (z0, z1, . . . , zN ) satisfies the conditions in (7), then

α(0) ≤
∑
t≥0

α(t)(z0 + z1�n(td1)+ · · · + zN�n(tdN )) = z0,

which finishes the proof of our main theorem. ut
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3. Sets avoiding one distance

It is notable that the linear programming bounds for the extreme density of sets avoiding
exactly one distance allow for an analytic optimal solution. Since this problem is scaling
invariant we can assume that we consider sets avoiding the unit distance d1 = 1. Let jα,k
be the k-th positive zero of the Bessel function Jα . It is known that the absolute mini-
mum of the function �n is attained at jn/2,1 (see Andrews, Askey, and Roy [1, (4.6.2)],
and Watson [21, Chapter 15, §31]). So, the point (z0, z1) which is determined by the
equations

z0 + z1 = 1,
z0 + z1�n(jn/2,1) = 0,

provides the optimal solution for the linear program in Theorem 1.1. Hence,

z0 = �n(jn/2,1)/(�n(jn/2,1)− 1) ≥ m1(Rn), (8)

and this gives by (2) a lower bound for the measurable chromatic number, namely χm(Rn)
≥ 1 − 1/�n(jn/2,1). It is interesting to notice that this lower bound coincides with the
one provided by Bachoc et al. [2, Corollary 8.2], albeit with a shift of one dimension.
This shift is due to the fact that Bachoc et al. [2] study the problem of sets avoiding one
distance on the (n− 1)-dimensional unit sphere Sn−1

⊆ Rn, and the lower bound for the
measurable chromatic number χm(Rn) was obtained by upper bounding the density of
sets in the unit sphere which avoid the distance d where d goes to zero. So, we see now
that this limit process gives a lower bound for the measurable chromatic number of Rn−1

and not only for Rn.

3.1. Adding extra inequalities

It is possible to strengthen the main theorem and the resulting bound (8) by introducing
extra inequalities. Consider a regular simplex in Rn with edge length 1 having vertices
v1, . . . , vn+1. A set A ⊆ Rn which avoids the unit distance can only contain one vertex
of this regular simplex. So for the autocorrelation function ϕ of 1A defined in (5) we have

ϕ(v1)+· · ·+ϕ(vn+1) = δ(A∩(A−v1))+· · ·+δ(A∩(A−vn+1)) ≤ δ(A) = ϕ(0). (9)

Let O(Rn) be the n-dimensional orthogonal group, that is, the set of all n × n real
matrices Z such that ZtZ = I . Let µ denote the Haar measure over O(Rn) normalized
by µ(O(Rn)) = 1. Taking spherical averages of ϕ is the same as symmetrizing ϕ with
respect to the orthogonal group, i.e., for all y ∈ Rn,

f (y) =
1
ωn

∫
Sn−1

ϕ(‖y‖ξ) dω(ξ) =

∫
O(Rn)

ϕ(Zy) dµ(Z)

(this follows, e.g., from Theorem 3.7 in the book by Mattila [15]).
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Let f be, as above, the radial function obtained by the symmetrization of ϕ. For
a nonnegative real number t , we write f (t) for the common value of f for vectors of
length t . Then, by symmetrizing both sides of (9) with respect to the orthogonal group,
and since distances are preserved by the action of O(Rn), we conclude that the inequality

f (‖v1‖)+ · · · + f (‖vn+1‖) ≤ 1 (10)

can be used to strengthen our original linear program. Here, observe that we already took
into account the normalization f (0) = 1, introduced in (6).

If we center a regular simplex at the origin, the above inequality specializes to

(n+ 1)f (
√

1/2− 1/(2n+ 2)) ≤ 1,

which gives the following strengthening of the dual formulation (7):

inf{z0 + zc : zc ≥ 0, z0 + z1 + zc(n+ 1) ≥ 1,

z0 + z1�n(t)+ zc(n+ 1)�n(t
√

1/2− 1/(2n+ 2)) ≥ 0 for all t ≥ 0}.

In Table 3.1 we give the new upper bounds on m1(Rn) we get for n = 4, . . . , 24 by
solving the linear program on a computer (we discuss numerical issues at the end of
this section); these are improvements over the values which Székely and Wormald give
in [20]. This in turn gives new lower bounds for the measurable chromatic number for
n = 4, . . . , 24.

However, in dimension 2 we only get an upper bound of 0.287119. To improve
Székely’s bound of 12/43 ≈ 0.279069 in the plane, we replace the regular trian-
gle centered at the origin by more triangles. We use the following three triples of
squared norms (‖v1‖

2, ‖v2‖
2, ‖v3‖

2) for (10): (2.4, 2.4, 0.360314), (3.1, 3.1, 6.524038)
(3.7, 3.7, 7.417141), where the last coordinate of (a, b, c) is a root of 3(a2

+b2
+c2
+1)−

(a + b+ c+ 1)2. This condition ensures that the determinant of the positive semidefinite
Gram matrix  a 1

2 (a + b − 1) 1
2 (a + c − 1)

1
2 (a + b − 1) b 1

2 (b + c − 1)
1
2 (a + c − 1) 1

2 (b + c − 1) c


of the points v1, v2, v3 of a corresponding regular simplex vanishes. Solving the corre-
sponding linear program yields the new upper bound of 0.268412. We found the three
triples by considering all triples (a, b, c) with a, b = 0.1j with j = 0, . . . , 40.

In dimension 3 we use three quadruples (‖v1‖
2, ‖v2‖

2, ‖v3‖
2, ‖v4‖

2) of squared
norms for (10): (0.3, 0.4, 0.4, 0.417157), (1.9, 1.9, 1.9, 0.189372), (2, 2, 2, 0.225148),
where the last coordinate of (a, b, c, d) is a root of 3(a2

+ b2
+ c2
+ d2

+ 1) − 2(ab +
ac+ ad + bc+ bd + cd)− 2(a+ b+ c+ d). Solving the corresponding linear program-
ming problem yields the new upper bound of 0.165609. We found the three quadruples
by considering all triples (a, b, c, d) with a, b, c = 0.1j with j = 0, . . . , 40.
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n Best upper bound New upper Best lower bound New lower
for m1(Rn) bound for for χm(Rn) bound for

previously known m1(Rn) previously known χm(Rn)

2 0.279069 [18] 0.268412 5 [10]
3 0.187500 [20] 0.165609 6 [10] 7
4 0.128000 [20] 0.112937 8 [20] 9
5 0.0953947 [20] 0.0752845 11 [20] 14
6 0.0708129 [20] 0.0515709 15 [20] 20
7 0.0531136 [20] 0.0361271 19 [20] 28
8 0.0346096 [20] 0.0257971 30 [20] 39
9 0.0288215 [20] 0.0187324 35 [20] 54

10 0.0223483 [20] 0.0138079 48 [2] 73
11 0.0178932 [20] 0.0103166 64 [2] 97
12 0.0143759 [20] 0.00780322 85 [2] 129
13 0.0120332 [20] 0.00596811 113 [2] 168
14 0.00981770 [20] 0.00461051 147 [2] 217
15 0.00841374 [20] 0.00359372 191 [2] 279
16 0.00677838 [20] 0.00282332 248 [2] 355
17 0.00577854 [20] 0.00223324 319 [2] 448
18 0.00518111 [20] 0.00177663 408 [2] 563
19 0.00380311 [20] 0.00141992 521 [2] 705
20 0.00318213 [20] 0.00113876 662 [2] 879
21 0.00267706 [20] 0.00091531 839 [2] 1093
22 0.00190205 [20] 0.00073636 1060 [2] 1359
23 0.00132755 [20] 0.00059204 1336 [2] 1690
24 0.00107286 [20] 0.00047489 1679 [2] 2106

Table 3.1. Upper bounds for m1(Rn) and lower bounds for χm(Rn).

3.2. Numerical calculations

A few technical remarks concerning the numerical calculations are in order. For solving
the linear programs we use the software lpsolve [3] and we generate the input using
the program GP/PARI [16]. We discretize the conditions of the form

z0 + z1�n(t)+ zc(n+ 1)�n(t
√

1/2− 1/(2n+ 2)) ≥ 0 for all t ≥ 0

by discretizing the interval [0, 20] into steps of size 0.0005.
Now we demonstrate in the case n = 4 how we turn the numerical calculations into

a rigorous mathematical proof. The linear program has the optimal numerical solution
z0 = 0.0826818, z1 = 0.7660402, zc = 0.0302556. A lower bound of the minimum of
the function

z(t) = z0 + z1�4(t)+ 5zc�4(
√

2/5 t)
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in t ∈ [0, 20] is −0.00000006. The function z(t) is positive for t ≥ 20 because there we
have �4(t) ≥ −0.02 and �4(

√
2/5t) ≥ −0.04. Thus by adding 0.00000006 to z0 we

make sure that the new function z(t) is nonnegative. This only slightly affects the value
of the bound.

4. Planar sets avoiding two distances

In this section we quickly report on the problem of finding the smallest extreme den-
sity a measurable set in the plane can have which avoids exactly two distances, i.e.,
inf{md1,d2(R2) : d1, d2 > 0}. Székely [18] showed that this number is at most 2/11
by giving an upper bound for m1,

√
3(R

2). By solving the corresponding linear program
on the computer we improve his bound to m1,

√
3(R

2) ≤ 0.170213. By adjusting the dis-
tances we can improve this further: m1,j1,2/j1,1(R2) ≤ 0.141577 where j1,1 and j1,2 are
the first two positive zeros of the Bessel function J1.

By combining Bukh’s result, which we explained in the introduction, with our new
bound on m1(R2) from the previous section we can improve on this even further:

inf{md1,d2(R
2) : d1, d2 > 0} ≤ (m1(R2))2 ≤ 0.072046.

5. Sets avoiding many distances

In this section we give a proof of a variant of Bukh’s result [5, Theorem 1] about densities
of sets avoiding many distances. His proof is based on a so-called zooming out lemma
which resembles Szemerédi’s regularity lemma for dense graphs, whereas our proof is an
easy consequence of Theorem 1.1 and simple properties of the function �n.

Theorem 5.1. For every positive integer N there is a number r = r(N) strictly greater
than 1 such that for distances d1, . . . , dN with

d2/d1 > r, d3/d2 > r, . . . , dN/dN−1 > r (11)

we have md1,...,dN (Rn) ≤ 2−N .

In the proof of Theorem 5.1 some facts about the function �n will be useful. First, we
have

|J0(t)| ≤ 1, and |Jα(t)| ≤ 1/
√

2 for all α > 0 and t ≥ 0 (12)

(cf. (4.9.13) in Andrews, Askey, and Roy [1]). From this, it follows at once that
limt→∞�n(t) = 0 for n > 2. For n = 2 the same follows, e.g., from the asymptotic
expansion for Jα (cf. (4.8.5) in Andrews, Askey, and Roy [1]).

Moreover,
�n(t) ≥ −1/2 for all n ≥ 2 and t ≥ 0. (13)
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To see this, set α = (n− 2)/2. It is known that for α > −1/2 we have

Jα−1(t)+ Jα+1(t) =
2α
t
Jα(t)

(cf. Andrews, Askey, and Roy [1, (4.6.5)]). Combining this identity with (1) we obtain

�n(t) = 0(α + 1)
(

2
t

)α
t

2α
(Jα−1(t)+ Jα+1(t))

= �n−2(t)+ 0(α)

(
2
t

)α−1

Jα+1(t). (14)

Now, recall that the global minimum of �n is attained at jα+1,1, the first positive zero
of Jα+1 (cf. Section 3). From (14), we have �n(jα+1,1) = �n−2(jα+1,1). It follows that
the minimum of �n is at least the minimum of �n−2. To finish the proof of (13) we have
to check �2 and �3, which can be easily accomplished.

Proof of Theorem 5.1. GivenN > 0, set ε = 1/(N2N+1). Since�n(0) = 1 and since�n
is continuous, there is a number t0 > 0 such that �n(t) > 1 − ε for t ≤ t0. Likewise,
since limt→∞�n(t) = 0, there is a number t1 > t0 such that |�n(t)| < ε for t ≥ t1.

Set r = r(N) = t1/t0 and let distances d1, . . . , dN be given such that (11) is satisfied.
We claim that, for 1 ≤ j ≤ N ,

N∑
i=j

1
2N−i+1 ·�n(tdi) ≥ −

1
2N−j+2 − (N − j)ε.

Before we prove the claim, we show how to apply it. By taking j = 1 in the claim,
and since by our choice of ε we have −(N − 1)ε ≥ −1/2N+1, it follows that

N∑
i=1

1
2N−i+1 ·�n(tdi) ≥ −

1
2N
.

Now we may set z0 = 1/2N and zi = 1/2N−i+1 for i = 1, . . . ,N and apply Theorem 1.1,
proving our result.

To finish, we prove the claim by induction. For j = N , the statement follows imme-
diately from (13). Now, suppose the statement is true for some 1 < j ≤ N . We show that
it is also true for j − 1 by distinguishing two cases.

First, for t ≤ t0/dj−1, we see from the choice of t0 that �n(tdj−1) > 1 − ε. Using
this and the induction hypothesis, we then obtain

N∑
i=j−1

1
2N−i+1 ·�n(tdi) =

1
2N−j+2 ·�n(tdj−1)+

N∑
i=j

1
2N−i+1 ·�n(tdi)

≥
1− ε

2N−j+2 −
1

2N−j+2 − (N − j)ε

≥ −
1

2N−j+3 − (N − j + 1)ε.
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Now suppose t ≥ t0/dj−1. Observe that, for j ≤ i ≤ N , we have tdi ≥ t0di/dj−1 ≥

t0r = t1, hence |�n(tdi)| < ε. So, by using (13), we have

N∑
i=j−1

1
2N−i+1 ·�n(tdi) =

1
2N−j+2 ·�n(tdj−1)+

N∑
i=j

1
2N−i+1 ·�n(tdi)

≥ −
1

2N−j+3 − (N − j + 1)ε,

finishing the proof of the claim. ut
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