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Abstract. By exploiting Perelman’s pseudolocality theorem, we prove a new compactness theorem
for Ricci flows. By optimising the theory in the two-dimensional case, and invoking the theory of
quasiconformal maps, we establish a new existence theorem which generates a Ricci flow starting
at an arbitrary incomplete metric, with Gauss curvature bounded above, on an arbitrary surface. The
criterion we assert for well-posedness is that the flow should be complete for all positive times; our
discussion of uniqueness also invokes pseudolocality.

1. Introduction; Ricci flows on surfaces

Consider a smooth flow g(t) of Riemannian metrics on a manifold M, for t lying within
some time interval. We call g(t) a Ricci flow—a concept introduced by Hamilton in [11]—
if it satisfies the nonlinear PDE

∂g

∂t
= −2 Ric(g) (1.1)

where Ric(g) is the Ricci curvature of g at time t . One can view this equation as a type of
heat equation for the metric g(t), as discussed, for example, in [20]. When the manifold
M is of dimension two, the Ricci curvature of a metric g can be written in terms of its
Gauss curvature K as

Ric(g) = Kg.

In particular, the Ricci flow preserves the conformal class in this dimension.
Given an initial metric ḡ on a closed manifold Mn, Hamilton showed in [11] that

there exists a Ricci flow g(t) for t ∈ [0, T ], for some T > 0, with g(0) = ḡ. The proof
was subsequently simplified by DeTurck [6]. See [20] for further details.

Dropping the assumption that M is compact, Shi [17] proved that if ḡ is a complete
initial metric of bounded curvature, then a complete Ricci flow g(t) exists on M for t ∈
[0, T ], for some T > 0, with g(0) = ḡ and with bounded curvature for each t ∈ [0, T ].
Here, by complete flow, we mean that (M, g(t)) is complete for each t ∈ [0, T ].

In the case that M is two-dimensional, there is a wider literature. First, if M is a
manifold with boundary (this is the only point in this paper that a manifold is permitted to
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have boundary) then as one might guess by viewing (1.1) as a type of heat equation, one
could solve the Ricci flow equation with appropriate boundary conditions. A result in this
direction, requiring that the boundary has zero geodesic curvature initially, and flowing
with this condition preserved, has been given by Brendle [3]. Second, by exploiting the
conformal invariance of the flow in two dimensions, and writing (1.1) as an equation
for the conformal factor u of a metric e2u

|dz|2, one recovers the so-called fast diffusion
equation

∂u

∂t
= e−2u1u, (1.2)

where1 = ∂2/∂x2
+∂2/∂y2 is the Laplacian with respect to the local complex coordinate

z = x + iy. (Beware that more than one equation is referred to as the fast diffusion equa-
tion in the literature.) This equation arises in a number of contexts in physics, and there is
an extensive literature focussing on the case that (M, ḡ) is conformally C, which we do
not attempt to survey. One highlight is the result of Daskalopoulos and del Pino [5] which,
in the language of the present paper, proves the existence of solutions with arbitrary con-
formal initial metric on C, the solutions being highly nonunique. Related results also
appear in the paper of DiBenedetto and Diller [7], and in papers of Esteban, Rodrı́guez
and Vázquez (see for example [16] where some of this work is surveyed).

In this paper, we prove a new compactness theorem for Ricci flows, valid in all di-
mensions (Theorem 2.1) by exploiting Perelman’s pseudolocality theorem [14]. Roughly
speaking, the theorem will give us appropriate subconvergence of a sequence of Ricci
flows even when the curvature is unbounded at t = 0, assuming that the initial metrics of
each flow satisfy some weak notion of convergence. We discuss that core result in detail
in Section 2; one consequence, relevant to the present discussion, is that it can be opti-
mised in the two-dimensional case using the better curvature pinching results one has in
this dimension and the theory of conformal and quasiconformal maps, to prove a Ricci
flow existence theorem for arbitrary metrics on arbitrary Riemann surfaces, with the sole
hypothesis that the Gauss curvature be bounded above.

In contrast to the result of Shi, say, we permit the initial metric to be incomplete, but
our solutions become complete instantaneously, and we make the case that this condition
is the natural one for well-posedness.

Theorem 1.1 (2D existence theorem). Let M be a smooth surface equipped with a
smooth metric ḡ which need not be complete, but has Gauss curvatureK bounded above.
Then there exist T > 0 dependent only on the supremum of K(ḡ), and a smooth Ricci
flow G(t) onM, for t ∈ [0, T ], such that G(0) = ḡ, but G(t) is complete for t ∈ (0, T ].

The issue of well-posedness of Ricci flows with incomplete initial metrics constitutes a
second theme of this paper (the first being our compactness result, Theorem 2.1) and the
one we focus on in this section.

Remark 1.2. It will be clear from the proof of Theorem 1.1 that we may choose T to be
any positive number for whichK(ḡ) < 1/(2T ). This can be seen to be sharp by consider-
ing an initial surface (M, ḡ) which is a round 2-sphere. If K(ḡ) is weakly negative, then
the solution can be extended for all t ∈ [0,∞).
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Remark 1.3. If one were ultimately only interested in two-dimensional Ricci flows, then
one would try to exploit the conformal invariance of the Ricci flow in this dimension
throughout the proof rather than passing via a compactness theorem valid in all dimen-
sions as we do here.

Remark 1.4. The assumption that ḡ is smooth could be relaxed if required.

One can view the flowG(t) of the theorem as a smooth flow which undergoes singular
behaviour in the limit t ↓ 0. In particular, we propose the flows arising in this theorem
as natural analogues of the reverse bubbling harmonic map heat flows constructed in [18]
and [2].

Although Theorem 1.1 is sufficiently general to handle some rather bizarre initial
metrics, it is useful to consider some rather simple examples to gain some intuition.

Example 1.5. Suppose (M, ḡ) is the standard 2-disc. Then the theorem and Remark 1.2
tell us that there exists a Ricci flowG(t) starting at this manifold which is instantaneously
complete, and exists for all time. After some further work, one could show that after a
short time t , the flow (M,G(t)) will look in the middle roughly like a flat disc of radius
1 − r , where r behaves like t2, but at the edge like a metric of very negative constant
curvature. Points close to the edge are shot apart very rapidly. More precisely, it will be a
byproduct of the discussion in Section 5 that if h is the complete conformal metric onM
of constant curvature −1 (the Poincaré metric) then for all x, y ∈M,

dG(t)(x, y) ≥
√

2t dh(x, y), (1.3)

where dg(x, y) represents the geodesic distance between x and y with respect to the
metric g.

Theorem 1.1 is sufficiently general that even when we work on the disc, and thus can
write ḡ = e2ū

|dz|2 for some global conformal factor ū, the behaviour of ū near “infinity”
can be extremely wild. For example, if one takes a compact hyperbolic surface, punctures
it a few times, and blows up the metric conformally near some of the punctures to give,
say, Euclidean ends, then when one lifts the resulting metric to its universal cover D,
the conformal factor oscillates wildly without the Gauss curvature ever having to become
very positive.

Example 1.6. Suppose that (M, ḡ) is the standard flat Euclidean 2-plane with a point
removed. Again, Theorem 1.1 gives us a Ricci flow starting with this incomplete initial
metric, which exists for all time. After a short time t , the flow looks roughly like a plane
with a disc of radius r ∼ t2 removed and replaced with a complete cusp of curvature
decreasing to −1/(2t) towards the end. Now, points close to the puncture are shot apart
as t increases from zero. One could check that if A and A1/2 are the punctured discs
consisting of all points inM within a distance 1 and 1/2 of the puncture (with respect to
ḡ) respectively, and h is the complete conformal metric of constant curvature −1 on A,
then for sufficiently small t > 0, and for all x, y ∈ A1/2, we must have

dG(t)(x, y) ≥
√

2t dh(x, y). (1.4)
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In fact, this particular flow can be written essentially explicitly as a Ricci soliton, although
this special feature would typically disappear if we perturbed the initial metric a little.

These examples may give the misleading impression that we should try to make sense
of a boundary of our Riemann surfaces. In fact, the issue of boundary conditions has
been directly replaced by the assertion that the flows are complete for positive times. One
might also be misled that the existence theorem takes some global conformal factor and
somehow sets it to infinity at “infinity”. One could keep in mind the simple example in
which (M, ḡ) is the flat Euclidean space. The unique complete, bounded curvature Ricci
flow starting at this configuration can be shown to be the stationary one.

We propose the condition of instantaneous completeness as the correct one for well-
posedness. For instance, in Example 1.5, one might think that one could feed large
amounts of metric in at infinity with a certain amount of freedom to give many differ-
ent rotationally symmetric solutions starting at the flat disc, which are all instantaneously
complete and have bounded curvature away from t = 0. However, there is a unique such
flow:

Theorem 1.7. Suppose that g(t) is a smooth rotationally symmetric Ricci flow on the
2-disc D, for t ∈ [0, T ], with bounded curvature on [ε, T ] for all ε ∈ (0, T ], and such
that

(i) g(0) = ḡ, the metric of the flat unit disc;
(ii) g(t) is complete for t ∈ (0, T ].

Then g(t) = G(t) for all t ∈ [0, T ], where G(t) is the flow discussed in Example 1.5.

Remark 1.8. Similarly, it looks a priori as if in Example 1.6, the metric near the puncture
could blow up in a variety of ways. However, again, one can find very reasonable unique-
ness classes. The analogue of Theorem 1.7, which can be proved in a similar way, is that
the flow of Example 1.6 is the unique smooth rotationally symmetric Ricci flow starting
at the punctured plane which is instantaneously complete and has bounded curvature for
t ≥ ε, with ε > 0 arbitrary.

Note that in the uniqueness statements of Theorem 1.7 and Remark 1.8, we allow
any competing flow g(t) to have Gauss curvature unbounded above, as well as below,
as t ↓ 0. To control flows with such uncontrolled curvature, we will need to invoke
Perelman’s pseudolocality theorem again; the proofs are simplified if one also assumes an
upper curvature bound. The requirement that competitors are rotationally symmetric will
only be used to get some very rudimentary control on the asymptotics of the conformal
factor, and can be weakened.

Remark 1.9. Without the condition of instantaneous completeness, the solution G(t)
found by Theorem 1.1 is certainly not unique, as one could take, for instance, the station-
ary solutions in Examples 1.5 and 1.6 above. However, G(t) is a maximal solution in the
sense that if g(t) is any other smooth Ricci flow with g(0) = G(0), then g(t) ≤ G(t)

throughout M for as long as the two flows both exist. This will be apparent from the
proof, since the flow G(t) will arise as a limit of flows gi(t), constructed in Section 4,
which could be used as barriers for an arbitrary alternative flow g(t).
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As a result of this remark, when proving uniqueness results such as in Theorem 1.7
and Remark 1.8, the only difficulty is in proving that our solution is minimal as well as
maximal. We will address this in Section 5. By inspection of the proofs there, one can see
that we could extend the ideas to give a uniqueness result for fairly general initial metrics,
but not yet of the generality of the existence result Theorem 1.1.

So far in this introduction we have focussed on the existence and uniqueness of Ricci
flows on surfaces, with the existence part coming from a compactness result valid in
all dimensions. We now briefly discuss and motivate that compactness result—Theorem
2.1—before giving details in the next section. Loosely speaking, Hamilton [13] proved
that Ricci flows with uniformly bounded curvature (and uniform injectivity radius con-
trol) are compact (see Theorem B.5). To address problems such as the existence of Ricci
flows with incomplete initial metrics, we require compactness not covered by this result.
For example, to construct directly the flow of Example 1.6, one could imagine taking a
sequence of complete metrics ḡi on the punctured plane R2

\ {0} which approximate the
flat metric ḡ on R2 away from the puncture (for example, we might ask that ḡi and ḡ agree
on R2

\ Bḡ(0, ε) for sufficiently large i depending on ε > 0) and then considering Shi’s
Ricci flows gi(t) with gi(0) = ḡi . Given the right compactness theorem which could han-
dle the necessarily unbounded curvature of these flows at t = 0 (as i → ∞) one could
hope to pass to a subsequence and extract a limiting Ricci flow agreeing with ḡ|R2\{0} at
t = 0, with the required properties. We turn now to make this precise, and prove such a
compactness theorem in greater generality.

Added in proof: In the years since this paper was submitted, there have been further investigations
into the instantaneously complete Ricci flows we introduced here. In particular, a uniqueness result
was proved in [9] and a more refined existence result can be found in [10].

2. Pseudolocality compactness theorem

In order to state the theorem of this section, we require the notion of smooth, pointed
(Cheeger–Gromov) convergence with the unusual feature that the limit is not assumed to
be complete. We give a precise definition and some important basic consequences of this
convergence, for manifolds and flows, in Appendix B. As we describe there, we use the
notation 99K to emphasise the possibility that the limit might be incomplete, since in that
situation we lose the uniqueness of limits: one can take a subdomain of any one limit to
give another smaller limit.

The following theorem gives a compactness for Ricci flows gi(t) which may have
unbounded curvature at t = 0 as i → ∞, but whose initial metrics gi(0) enjoy a weak
local convergence as i →∞ to a metric ḡ. Two limits,GM(t) andGN (t), are produced,
both of which could be said to represent Ricci flows starting at (M, ḡ), in some sense.

Theorem 2.1. Suppose (M, ḡ, q) is a smooth pointed Riemannian manifold, not nec-
essarily complete, and that (Mi, gi(t), qi) is a sequence of smooth, pointed, complete
Ricci flows for t ∈ [0, T ], T > 0, with uniformly bounded curvature away from t = 0
in the sense that there exists a function M on (0, T ] (independent of i) such that for all
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t0 ∈ (0, T ], |Rm(gi(t))| ≤ M(t0) for all t ∈ [t0, T ]. Suppose further that

(Mi, gi(0), qi) 99K (M, ḡ, q). (2.1)

Then there exists a smooth Ricci flow GM(t) on M, for t ∈ [0, T ], with GM(0) = ḡ,
such that after passing to a subsequence in i, we have

(Mi, gi(t), qi) 99K (M,GM(t), q)

on [0, T ] as i →∞, where we can take the same diffeomorphisms ϕi in the definition of
this convergence as in the definition of (2.1).

Moreover, there exists a smooth manifold N , a smooth complete Ricci flow GN (t)
on N , for t ∈ (0, T ], and a point Q ∈ N such that

(Mi, gi(t), qi)→ (N ,GN (t),Q) (2.2)

on the smaller time interval (0, T ] as i → ∞, and with the property that for all t0 ∈
(0, T ], |Rm(GN (t))| ≤ M(t0) for all t ∈ [t0, T ].

There exists a map I : M → 6 ⊂ N , sending q to Q, which is an isometry from
(M,GM(t)) to (6,GN (t)) for each t ∈ (0, T ]. If ψi are the diffeomorphisms from
the definition of the convergence (2.2)—and ϕi are still the diffeomorphisms from the
definition of the convergence (2.1)—then ψ−1

i ◦ ϕi → I smoothly on compact subsets
ofM as i →∞.

In order to digest this result more easily, one could imagine (M, ḡ) to be the flat unit
2-disc as in Example 1.5. If we hoped to construct a Ricci flow continuation of this metric
which was complete for t > 0, then we might try to do so by taking a limit of complete
Ricci flows gi(t) whose initial metrics gi(0) approximated ḡ in some sense. For example,
imagine gi(0) to be the metric ḡ on most of the interior, but made complete by blowing
up nearer and nearer to the edge as i →∞.

One problem which arises with this approach is that we could lose the initial condi-
tion in the limit i →∞. In other words, because the curvature of gi(0) will typically be
blowing up as i → ∞, the time for the flow gi(t) to move far from ḡ on some interior
region might be decreasing to zero as i → ∞. It turns out that this could really happen
if the approximating flows gi(t) were not assumed to be complete. However, by virtue
of the completeness, we can invoke a remarkable recent “pseudolocality” result of Perel-
man [14] which will prevent this loss of initial condition. We briefly clarify and survey
pseudolocality, and some consequences, in Appendix A.

Although Theorem 2.1 escapes the issue of “loss of initial conditions”, a result of this
generality cannot escape the problem of “loss of completeness”. For example, in the dis-
cussion above of constructing a flow starting at the flat unit 2-disc, the initial metrics gi(0)
have been made complete by blowing them up near the edge, but there is no guarantee
that this stretching must diffuse into the interior sufficiently fast as t increases from zero
to force any limiting flow to be complete. In the language of the theorem, the limitGM(t)

could end up as the stationary flow GM(t) = ḡ for all t , or some other incomplete flow:
6 could be strictly smaller than N .
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More generally, if GM(t) is ever complete, then we can replace M by a subdomain,
and reapply the theorem to get the same limit (N ,GN (t)) but a smaller 6. However,
(M,GM(t)) always arises as a part of a larger complete flow (N ,GN (t)) for t > 0, and
in Section 3, we will restrict to a situation in which we can establish that GM(t) is itself
complete for t > 0, or equivalently thatN = 6 so that (M,GM(t)) and (N ,GN (t)) are
isometric for t > 0. In that case, we proposeGM(t) as the natural Ricci flow continuation
of (M,GM(t)).

Proof of Theorem 2.1. Throughout this proof, ε > 0 will be the positive constant whose
existence is asserted by the pseudolocality result Corollary A.5. Given a point x0 ∈M,
let r > 0 be sufficiently small so that Bḡ(x0, 2r) ⊂⊂M and (εr)2 ≤ T . After picking
k ∈ N, by reducing r > 0 further if necessary (roughly speaking so that Bḡ(x0, 2r) looks
sufficiently like a Euclidean ball) and by exploiting the definition of the convergence
(2.1) (denoting the diffeomorphisms associated to that convergence by ϕi still) we may
also assume, for sufficiently large i, that |∇ lRm(gi(0))| ≤ r−2 on Bgi (0)(ϕi(x0), r), for
l ∈ {0, . . . , k}, and that Vol(Bgi (0)(ϕi(x0), r)) ≥ (1− ε)ωnrn, where ωn is the volume of
the unit ball in Euclidean n-space.

This puts us in a position to apply Corollary A.5 to deduce that for all t ∈ [0, (εr)2]
and x ∈ Bgi (0)(ϕi(x0), εr), we have |∇kRm(gi(t))|(x) ≤ Cr−2−k for sufficiently large i.

Note that strictly speaking, the statement of Corollary A.5 required the curvature of
gi(0) to be bounded, which we have not assumed. However, by readjusting t = 0 an
arbitrarily small amount, we are free to draw the same conclusions in our situation.

Let us abuse notation by denoting also by gi(t) the flows on or withinM obtained by
pulling back the gi(t) by the diffeomorphisms ϕi . By what we have seen, for all k ∈ N
and �̂ ⊂⊂M, there exists T̂ ∈ (0, T ] (depending on �̂) and C < ∞ (depending on �̂
and k) such that

|∇
kRm(gi(t))|(x) ≤ C

for (x, t) ∈ �̂× [0, T̂ ] and sufficiently large i.
By virtue of this curvature control, we may work directly with the Ricci flow equation

(1.1) (cf. Lemma 2.4 in [13] and the remarks following its proof) to argue that there exists
a Ricci flow Ĝ(t) on �̂ for t ∈ [0, T̂ ] such that Ĝ(0) = ḡ on �̂, and after passing to a
subsequence in i,

gi(t)→ Ĝ(t) (2.3)

smoothly locally on �̂× [0, T̂ ]. In particular, we have the convergence

(Mi, gi(t), qi) 99K (�̂, Ĝ(t), q), (2.4)

on [0, T̂ ] as i →∞, whenever �̂ 3 q, using the diffeomorphisms ϕi .
A first consequence of this convergence, arrived at by taking any �̂ ⊂⊂M containing

q and setting t̄ := T̂ is that there exists t̄ ∈ (0, T ] for which the injectivity radius of gi(t̄)
at qi is bounded below by a positive constant independent of i.

This puts us in a situation in which we can apply Hamilton’s compactness of Ricci
flows (Theorem B.5) with the time zero of that theorem corresponding to time t̄ in the
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present situation. That theorem gives us a manifold N , a complete Ricci flow GN (t)
on N , for t ∈ (0, T ], and a point Q ∈ N such that

(Mi, gi(t), qi)→ (N ,GN (t),Q) (2.5)

on (0, T ] as i →∞. We denote the diffeomorphisms involved in this convergence by ψi .
By restricting the convergence statements (2.4) and (2.5) to some fixed t ∈ (0, T̂ ] (to

give convergence in the sense of Definition B.1) and applying Lemma B.3, we find that
there exists a map Î : (�̂, Ĝ(t)) → (N ,GN (t)) isometric onto its image, which, after
taking another subsequence, arises as the smooth limit, on compact subsets of �̂, ofψ−1

i ◦

ϕi . Clearly, the map Î can be taken to be independent of the t ∈ (0, T̂ ], since the diffeo-
morphismsψi and ϕi have no t dependency. Consequently, we may extend Ĝ(t) smoothly
to the whole time interval [0, T ], on �̂, by pulling back the metricGN (t) under Î . More-
over, we then have the flow convergence (2.4) on the whole time interval [0, T ].

Now that Ĝ(t) is defined on a time interval independent of �̂, we may exhaustM by
such subsets �̂, and thus extend Ĝ(t) to a Ricci flow GM(t) on the whole of M, with
GM(0) = ḡ. Moreover, we may extend the maps Î to give a map I : M→ N which is
an isometry from (M,GM(t)) to its image in (N ,GN (t)) for all t ∈ (0, T ], and arises
as a smooth local limit of ψ−1

i ◦ ϕi , after taking a diagonal subsequence. ut

We mentioned after the statement of Theorem 2.1 that we cannot generally expect that
6 = N in that theorem. In this paper, we will only try to apply the theorem in the case
that Mi ⊂M is a sequence of subdomains exhausting M, and the diffeomorphisms ϕi
associated to the convergence (2.1) are the identity on their domains �i ⊂ M. In fact,
we will always arrange that on any � ⊂⊂M, we have gi(0) = ḡ on � for sufficiently
large i. Even in this special situation, it can happen that 6 6= N , as we now demonstrate.

Example 2.2. Let (M, ḡ) be the flat unit two-dimensional disc D, and let Mi = M.
Choose gi to be metrics onMi which agree with ḡ onD1−1/i , the disc of radius 1− 1/i,
but so that (Mi, gi) is isometric to flat Euclidean 2-space. These metrics, being flat, are
stationary Ricci flows gi(t) for t ∈ [0, 1], say. After setting q to be the origin in D, we
may apply Theorem 2.1. Clearly, (N ,GN (t)) is again the stationary Ricci flow which is
flat Euclidean 2-space for all t ∈ [0, 1]. However, 6 is just a unit disc within this space.

More elaborate examples could have M and 6 simply connected, but N multiply
connected, for example. The particular example of Example 2.2 has been chosen to con-
trast with our next theorem, in the next section, in which we will make further hypotheses
in order to guarantee that 6 = N .

3. Surface flow compactness theorem

In this section we specialise Theorem 2.1 to the case that the dimension n ofM is two, and
the metrics gi(0) are each conformally equivalent to ḡ. As we mentioned in the introduc-
tion, the flows gi(t) for t > 0 will then also be conformally equivalent to ḡ because n = 2.

The main result in this situation is that despite the discussion in Section 2, and Ex-
ample 2.2 in particular, we will then be sure that GM(t) is complete. This will then
simplify and substantially strengthen the conclusions.
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One rough way of viewing this result is that complete flows gi(t) for which the initial
gi(0) approximate ḡ, must experience great stretching of lengths as t increases from 0, in
order for their limit GM(t) to send any ‘boundary’ of (M, ḡ) instantaneously to infinity,
and make this ‘pseudolocality limit’ instantaneously complete. Some concrete estimates
of this form, for concrete examples, were given in Examples 1.5 and 1.6.

Theorem 3.1. Suppose thatM is a smooth surface equipped with a metric ḡ, which need
not be complete, and thatMi ⊂M is a sequence of subdomains exhaustingM.

Suppose that gi(t) is a sequence of smooth complete Ricci flows onMi , for t ∈ [0, T ],
T > 0, each conformally equivalent to ḡ, with uniformly bounded curvature away from
t = 0 in the sense that there exists a functionM on (0, T ] (independent of i) such that for
all t0 ∈ (0, T ], |K(gi(t))| ≤ M(t0) for all t ∈ [t0, T ].

Suppose further that for all �̂ ⊂⊂M, we have gi(0) = ḡ on �̂ for sufficiently large i.
Then there exists a smooth Ricci flow G(t) on M, for t ∈ [0, T ], which is complete

for t > 0, such that after passing to a subsequence in i, we have

gi(t)→ G(t) (3.1)

smoothly locally inM×[0, T ] as i →∞. In particular,G(0) = ḡ, and for all t0 ∈ (0, T ],
|K(G(t))| ≤ M(t0) when t ∈ [t0, T ].

Of course, the local convergence (3.1) makes sense over the whole of M, because gi(t)
will eventually be defined on any given compact subset ofM.

Before starting the proof, we survey what needs to be done, and assemble some tools.
Under the hypotheses of this theorem, for any sequence of compact�i ⊂M exhaust-

ing M, with q ∈ �i , we can pass to a subsequence in i for the sequences in the theorem
(leaving the sequence �i intact) and be sure that �i ⊂ Mi and gi(0) = ḡ on �i for
each i. In particular, letting ϕi : �i →Mi be the identity map, and setting qi := q for
each i, we find that (2.1) is satisfied, and we may apply Theorem 2.1.

All we need check is that when we do this, we have 6 = N , or equivalently that
GM(t) is complete for each t ∈ (0, T ]. The G(t) of the present theorem would then be
the GM(t) of Theorem 2.1.

The first thing to do is to reduce to the case that M is simply connected. Let us
suppose that we have satisfied the stronger hypotheses of Theorem 3.1 but still have
6 6= N when applying Theorem 2.1. We will show that if we take M̃ to be the uni-
versal cover of M (writing π : M̃ → M for the projection), pick q̃ ∈ π−1(q), define
M̂i = π−1(Mi) ⊂ M̃, and lift the metric ḡ to M̃ and the flows gi(t) to M̂i , then
when Theorem 2.1 is applied to this lifted situation to give a new pointed Ricci flow
(N̂ , Ĝ(t), Q̂), a new flow G̃M̃(t), a new subset 6̃ ⊂ N̂ and a new map Ĩ : M̃ → 6̃,
then again we must have 6̃ 6= N̂ .

Indeed, one can construct a covering map N̂ → N which is a local isometry from
(N̂ , Ĝ(t)) → (N ,G(t)) for any t ∈ (0, T ], and which sends Q̂ to Q, in the following
way. Fix t ∈ (0, T ]. A point x ∈ N̂ , once written x = exp

Q̂,Ĝ(t)
(v) for some v ∈ T

Q̂
N̂ ,

is sent to expQ,G(t)(v), after T
Q̂
N̂ and TQN have been identified using I ◦ π ◦ Ĩ−1.
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The map Ĩ : M̃→ N̂ is the lift of I ◦ π : M̃→ N , lifting Q to Q̂. Therefore, the
projection N̂ → N restricted to 6̃ can be written explicitly as I ◦ π ◦ Ĩ−1.

In particular, the image of 6̃ under the projection N̂ → N is 6, and we must have
6̃ 6= N̂ .

The argument so far has not used the conformal equivalence of the metrics gi(t) and ḡ,
which we will shortly exploit to show that 6 = N , and in particular that N̂ is simply
connected. Without the conformal equivalence, N̂ could be as large as the universal cover
ofN , but could be as small asN , even in the case thatN is not simply connected. For an
example of this latter phenomenon we make the following construction.

Example 3.2. Take M =Mi = D
2, the two-dimensional disc, with qi = q the origin,

and ḡ the standard flat metric. Define gi(0) to be exactly the standard flat metric on
D1−1/i , but so that metrically, (D, gi(0)) is the cylinder (−∞, i] × S1 capped on the
end {i}× S1, with q ∈ {0}× S1. It is then possible to show that the limit (N ,GN (t)) is a
cylinder R× S1 for all t ∈ (0, T ]. SinceM is simply connected, we must have N̂ = N ,
which is not simply connected, so we have gained topology in the limit as i →∞, despite
the special situation.

As desired, we have reduced to proving that 6 = N , or equivalently that GM(t) is
complete, under the additional assumption thatM is simply connected. By the uniformi-
sation theorem, (M, ḡ) is then conformally one of S2, C or D.

Moreover, by the definition of the convergence (2.2), N must be orientable, and we
may see it also as a Riemann surface with respect to the unique conformal structure arising
from any of the metrics GN (t), t ∈ (0, T ]. The map I : M → N may then be viewed
as a conformal injection between Riemann surfaces. (When we say conformal, we mean
strictly conformal. That is, the differential vanishes nowhere.)

The following elementary lemma shows that the above observations dramatically re-
strict the situations we can be in.

Lemma 3.3. Suppose I : M → N is a conformal injection from a simply connected
Riemann surfaceM to a Riemann surfaceN . Then we are in precisely one of the follow-
ing situations:

(i) M = N = S2 and I : S2
→ S2 is a Möbius map;

(ii) M = N = C, and I : C→ C is a Möbius map;
(iii) M = C, N = S2 and I : C→ S2 omits one point;
(iv) M = D.

Proof. The universal cover Ñ of N must also be either S2, C or D, and the map I may
be lifted to a conformal injection Ĩ : M→ Ñ . Keeping in mind Liouville’s theorem, if
M = S2 then we must have Ñ = S2, and we find ourselves in case (i) above.

Similarly, if M = C, then Liouville tells us that we cannot have Ñ = D. Either
N = S2—in which case by removing the singularity at infinity in M we end up in case
(iii)—or Ñ = C, and for similar reasons, we have Ĩ Möbius and we end up in case (ii).

ut

Finally, we prove and recall some lemmata concerning quasiconformal maps.



Ricci flow compactness via pseudolocality 1439

Lemma 3.4. Suppose U : R→M is a smooth map between Riemann surfaces, which
is diffeomorphic onto its image, and preserves orientations. Let z and u be local com-
plex coordinates on the domain and target, the notation u also being used to denote the
map U in the complex coordinate. Let G and g be smooth metrics on the domain and
target which are compatible with the conformal structures. Then at any point inR where
|u∗g −G|G ≤ 1, we have

|uz̄|

|uz|
≤ 4|u∗g −G|G. (3.2)

We note that the left-hand side of (3.2) is invariantly defined. The quantity |u∗g−G|G is
the norm of the tensor u∗g −G with respect to the metric G.

Proof. Locally, let us write G = σ 2
|dz|2, where |dz|2 := dx2

+ dy2, z = x + iy, and
write g = ρ2

|du|2. The pull-back u∗g can be written in terms of the Hopf differential and
energy density as

u∗g = ρ2uzuz̄dz
2
+ ρ2(|uz|

2
+ |uz̄|

2)|dz|2 + ρ2ūzūz̄dz̄
2,

and so

|u∗g −G|2G =
8ρ4

σ 4 |uz|
2
|uz̄|

2
+ 2

[
ρ2

σ 2 (|uz|
2
+ |uz̄|

2)− 1
]2

.

Therefore, if |u∗g −G|G ≤ 1, we have∣∣∣∣ρ2

σ 2 (|uz|
2
+ |uz̄|

2)− 1
∣∣∣∣ ≤ 1
√

2
,

and in particular,
ρ2

σ 2 (|uz|
2
+ |uz̄|

2) ≥ 1−
1
√

2
>

1
4
,

say. Consequently, in this case, we have

|u∗g −G|G ≥

√
8ρ2

σ 2 |uz| |uz̄| ≥

√
8(ρ2/σ 2)|uz| |uz̄|

4(ρ2/σ 2)(|uz|2 + |uz̄|2)

≥
1
2
|uz| |uz̄|

|uz|2 + |uz̄|2
≥

1
4
|uz̄|

|uz|
, (3.3)

since by hypothesis, the Riemann surfaces are oriented such that |uz̄| < |uz| rather than
the other way round. ut

We also need a Schwarz-type lemma for quasiconformal maps, which is a form of Mori’s
Theorem.

Lemma 3.5. Let u : D→ D be a smooth map from the unit disc in C to itself, diffeomor-
phic onto its image, orientation preserving, and with quasiconformal constant less than
K ≥ 1, that is, for which

|uz̄|

|uz|
≤
K − 1
K + 1

.

If u(0) = 0, then
|u(z)| ≤ 16|z|1/K for all z ∈ D.
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Proof. By the Riemann mapping theorem, we can write u = ξ ◦ U , where U : D → D

is a smooth bijection with quasiconformal constant less than K , with U(0) = 0, and
ξ : D → D is a univalent (holomorphic, injective) map, with ξ(0) = 0. By Mori’s
Theorem [1, p. 47], we have

|U(z)| ≤ 16|z|1/K for all z ∈ D,

and by the Schwarz–Pick lemma,

|ξ(z)| ≤ |z| for all z ∈ D.

Composition then gives the lemma. ut

Proof of Theorem 3.1. By the discussion following the statement of Theorem 3.1, our
goal is to show that 6 = N , that is, I : M→ N is onto, and we need only consider the
case thatM is simply connected.

By Lemma 3.3, we need only consider the case that M = D, and the case that both
M = C and N = S2. This latter case may be discounted immediately since when N
arising as a limit in (2.2) is compact, we must have Mi = N for sufficiently large i by
the definition of convergence, and henceM = N : the theorem is obvious for compactM.

We may then assume for the remainder of the proof that M = D. Let us assume that
N 6= 6 and try to arrive at a contradiction. In this case, it must be possible to pick y ∈ 6
and a simply connected neighbourhood of y (compactly contained in N ) which we may
view conformally as the unit disc D ⊂ C (with y at its origin) such that the disc D1/32 of
radius 1/32 about y (with respect to the standard flat metric onD) in that same conformal
chart intersects N \6.

Within any compact subdomain of6, the maps ψi given by Theorem 2.1 are converg-
ing to I−1 smoothly, so they are quasiconformal maps with quasiconformal constants con-
verging to 1. However, by definition of the convergence (2.2), we may invoke Lemma 3.4
to see that even the mapsψi restricted toD are quasiconformal maps intoMi ⊂M = D,
with quasiconformal constants tending to one. In other words, forK > 1 arbitrarily close
to 1, after a change in orientation if necessary, we have

sup
D

|∂̄ψi |

|∂ψi |
≤
K − 1
K + 1

for sufficiently large i.

Moreover, because y was chosen to lie within 6, we must have ψi(y) → I−1(y) ∈

M = D, and by making a conformal reparametrisation of M, we may assume that
I−1(y) = O ∈ D, the origin.

When this fact is combined with the quasiconformality and Lemma 3.5, we find that
for sufficiently large i, we have ψi(D1/32) ⊂ D3/4 ⊂ D = M, say. In particular,
ψ−1
i (D3/4) intersectsN \6 for all sufficiently large i. However, on any �̂ ⊂⊂M = D,

we have ψ−1
i → I uniformly as i →∞, and so ψ−1

i (D3/4) ⊂ 6 for sufficiently large i,
a contradiction. ut
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4. Ricci flows with incomplete initial metrics

We now wish to use our compactness theorems to prove Theorem 1.1, giving the existence
of a Ricci flow starting at an arbitrary metric of Gauss curvature bounded above. Given
Theorem 3.1, we are left with the problem of finding appropriate Ricci flows gi(t) (on an
appropriate exhaustionMi) which approximate the initial metric ḡ at time zero.

Proof of Theorem 1.1. In the case that M is compact, the theorem follows from Hamil-
ton’s classical existence theorem, with the control of the maximal existence time in terms
of the supremum of K following from the maximum principle. (See [20] for a discus-
sion of these issues.) Therefore, for the remainder of the proof, we assume that M is
noncompact.

Let us define
K̄ = max{sup

M
K(ḡ), 0},

a weakly positive upper bound for the Gauss curvature of ḡ. The first step will be to
approximate ḡ by complete, conformally equivalent initial metrics ḡi on appropriate
Mi ⊂ M exhausting M as i → ∞, where ḡi agree with ḡ over any compact subset
of M for sufficiently large i, and where each has Gauss curvature bounded above by K̄ ,
and below by some number which may depend on i.

To do this, we take any sequence of subdomains Mi ⊂ M with smooth (one-
dimensional) boundaries, such that Mi ⊂⊂ Mi+1 for all i, and Mi exhausts M as
i →∞. Next we take the unique complete conformal metric on Mi of curvature −1 on
the surfaceMi , and shrink it homothetically to give a metric hi of perhaps very negative
curvature, so that

hi ≤ e
−2ḡ onMi−1 for i > 1. (4.1)

We will define the metrics ḡi on Mi as interpolations between hi and ḡ|Mi
as we

now describe. Define a function wi : Mi → R by the relation

hi = e
2wi ḡ.

By (4.1), we have wi ≤ −1 onMi−1.
We observe that wi(x)→∞ as x ∈Mi tends to any point on the boundary ∂Mi . In

fact, although we do not need finer asymptotics, we observe that wi(x) will blow up like
(minus) the logarithm of the distance of x to the boundary measured with respect to ḡ. To
see this, consider the conformal map ϕi : D → M̃i from the unit disc to the universal
cover of Mi , given by the Uniformisation Theorem. This map pulls back the complete
conformal metric on M̃i of curvature −1 to the Poincaré metric on D, whose conformal
factor blows up logarithmically in the distance to the boundary, measured with respect
to the flat metric |dz|2. By exploiting the Kellogg–Warschawski Theorem [15], one finds
that ϕi extends smoothly (and without degeneration) to a map from the closure D̄ to the
universal cover of the closure M̄i , and hence the pull-back under ϕi of the lift of ḡ is
metrically equivalent to |dz|2. It follows that wi(x) blows up logarithmically with respect
to ḡ as claimed.
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One consequence is that

{wi ≤ 1} = {hi ≤ e2ḡ} ⊂Mi is compact. (4.2)

Choose a smooth cut-off function 9 : R→ R with the properties that 9(s) = 0 for
s ≤ −1,9(s) = s for s ≥ 1, and9 ′′(s) ≥ 0 for all s. Automatically, we have 0 ≤ 9 ′ ≤ 1
and 9(s) ≥ s for all s. We then define

ḡi = e
29(wi )ḡ.

Throughout Mi , we have ḡi ≥ e2wi ḡ = hi , so for each i, ḡi inherits the completeness
of hi .

Where ḡ has a significantly larger conformal factor than the metric hi , in the sense
that wi ≤ −1, we have ḡi = ḡ. In particular, ḡi = ḡ onMi−1.

On the other hand, where wi ≥ 1, we have ḡi = e2wi ḡ = hi . In particular, we have
ḡi = hi off the subset {wi ≤ 1} ⊂Mi , which is compact by (4.2).

These considerations show that outside the compact set where−1 ≤ wi ≤ 1, we have
K(ḡi) ≤ K̄ , and K(ḡi) bounded below by some i-dependent constant. We would now
like to check that this is also true where −1 ≤ wi ≤ 1, the region where the two metrics
hi and ḡ|Mi

are interpolated.
Let us work locally with respect to a local complex coordinate z = x + iy, and write

ḡ = e2u
|dz|2 and hi = e2vi |dz|2, so that wi = vi − u. We also write 1z and ∇z for

the Laplacian and gradient with respect to the local flat metric |dz|2 := dx2
+ dy2—for

example,1z = ∂2/∂x2
+ ∂2/∂y2. The Gauss curvature of a metric e2a

|dz|2 is−e−2a1a,
so the fact that hi has negative curvature implies 1zvi ≥ 0, or equivalently −1zwi ≤
1zu. Because 9 ′′ ≥ 0 and 9 ′ ∈ [0, 1], we may then bound the Gauss curvature of the
metrics ḡi according to

K(ḡi) = −e
−2(9(wi )+u)1z(9(wi)+ u)

= −e−2(9(wi )+u)(9 ′′(wi)|∇zwi |
2
+9 ′(wi)1zwi +1zu)

≤ −e−2(9(wi )+u)(1−9 ′(wi))1zu = e−29(wi )(1−9 ′(wi))K(ḡ)

≤ e−29(wi )(1−9 ′(wi))K̄ ≤ K̄. (4.3)

An i-dependent lower bound on the set {−1 ≤ wi ≤ 1} ⊂Mi is automatic by compact-
ness.

As desired, we have constructed complete, conformal initial metrics ḡi on our subdo-
mains Mi ⊂M, with Mi ⊂⊂Mi+1, and with Mi exhausting M as i → ∞, so that
ḡi = ḡ onMi−1 (i > 1) and in particular so that ḡi = ḡ on any compact subset ofM for
sufficiently large i, and where each metric ḡi has Gauss curvature bounded above by K̄ ,
and below by some number which may depend on i.

We now argue that there exists T > 0 dependent only on K̄ such that for each i, there
exists a Ricci flow gi(t) onMi for t ∈ [0, T ] with gi(0) = ḡi , and each flow has bounded
Gauss curvature (above and below) uniformly in i, over any time interval compactly con-
tained in (0, T ]. (Certainly, the curvature of gi(0) will typically be unbounded below as
i →∞.)
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The claimed existence of G(t) will then follow from Theorem 3.1.
By Shi’s Ricci flow existence theorem and Shi’s derivative estimates (see [17] and

[20]) there exists, for each i, a Ricci flow gi(t)with gi(0) = ḡi on a maximal time interval
[0, Ti) (for some Ti ∈ (0,∞]) with bounded curvature on any time interval compactly
contained in [0, Ti), but, if Ti <∞, with unbounded curvature as t ↑ Ti .

Under Ricci flow, one may compute that the Gauss curvature obeys the equation

∂K

∂t
= 1K + 2K2.

(More generally, in any dimension, the scalar curvature satisfies a nonlinear heat equation
—see [20].) When the curvature of a Ricci flow is bounded, one may apply the maximum
principle (more precisely, the comparison principle) to such equations governing bounded
functions (cf. [8]—generally for Ricci flow we require the boundedness of the full sec-
tional curvature rather than just the Ricci curvature). Indeed, we may compare solutions
of this PDE with solutions of the ODE dk/dt = 2k2 to get upper and lower bounds on
the solution K . Because the curvature of our flows gi(t) is bounded before we approach
time Ti , we are thus able to deduce that for all t ∈ [0, Ti), if K̄ = 0, then

−
1
2t
≤ K(gi(t)) ≤ 0,

whilst if K̄ > 0, then

−
1
2t
≤ K(gi(t)) ≤

1
K̄−1 − 2t

.

In particular, choosing any T > 0 in the case that K̄ = 0, or choosing any T ∈ (0, 1
2 K̄
−1)

in the case that K̄ > 0, we can be sure that the curvature is bounded within any compact
time interval in (0, T ], and in particular that Ti > T for all i.

We have finally established enough about the flows gi(t) to conclude the existence of
G(t) with an application of Theorem 3.1. ut

Remark 4.1. As an alternative to the approach in this section, one could lift to the uni-
versal cover M̃ of M—either D or C—and prove existence there. The construction of
the metrics ḡi can then be made somewhat more explicit. In this case, one would need to
make precise a uniqueness theorem for maximal solutions in order to be sure that the flow
G(t) on M̃ retains the symmetry of G(0) which allows it to be quotiented to give a flow
down onM. Note that the flows gi(t) on M̃ would not enjoy this symmetry in general.

5. Uniqueness of surface flows

In this section, we give a proof of Theorem 1.7 and comment on the analogous claim of
Remark 1.8. We already mentioned in Remark 1.9 that any Ricci flow G(t) produced by
Theorem 1.1 must be maximal, and so we only need to show that any competing flow g(t)
cannot drop below G(t).
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Proof of Theorem 1.7. Our basic wish is to useG(t) itself as a barrier from below for g(t).
To state this more precisely, let z = x + iy be the standard global complex coordinate
on the unit disc D in C, and write g(t) = e2u

|dz|2 and G(t) = e2v
|dz|2. Then u(·, 0) =

v(·, 0) = 0 on D, and we need to show only that

u(·, t) ≥ v(·, t) (5.1)

on D for later times t . Let us observe now that because g(t) is rotationally symmetric,
complete, and has bounded curvature for t > 0, we must have

u(x, t)→∞ as x → ∂D, (5.2)

for any t > 0. (This is the only time in the proof that we use the rotational symmetry
of g(t).)

It is easy to check that for λ ∈ (0, 1), the function vλ : D1/λ× [0, T ]→ R defined by
vλ(x, t) = v(λx, t) + ln λ gives rise to a Ricci flow e2vλ |dz|2 on D1/λ. Incidentally, this
flow is isometric to G(t); here it has been written with respect to dilated coordinates. We
will show that for λ < 1 arbitrarily close to 1, and for t > 0 sufficiently small, depending
on λ, we must have

vλ(x, t) ≤ 0 ≤ u(x, t) for all x ∈ D, (5.3)

and hence by virtue of the comparison principle applied to the equation (1.2) satisfied
by u and vλ (keeping in mind (5.2)) we would then have vλ(x, t) ≤ u(x, t) for all x ∈ D,
and all t ∈ [0, T ]. Since λ can be made arbitrarily close to 1, we would then be able to
obtain (5.1). Note that by taking λ a little larger than 1, so that vλ lies above u, we could
show, for this particular example, the general fact from Remark 1.9 thatG(t) is a maximal
solution.

We are therefore reduced to proving (5.3), and since the first inequality there is obvi-
ous (because v(·, t)→ 0 uniformly on Dλ as t ↓ 0) we need only show that

u(x, t) ≥ 0 (5.4)

for t > 0 sufficiently small, on the whole of D, or equivalently that g(t) ≥ ḡ. A priori,
the function u could even be unbounded below in the limit t ↓ 0, and a first step will be
to prove that u is bounded below uniformly in x and t .

After defining h : D × (0, T ]→ R by

h(x, t) = ln
2

1− |x|2
+

1
2

ln(2t),

the metric e2h
|dz|2 is a Ricci flow which at time t is the Poincaré metric scaled to have

constant curvature−1/2t . We will now show that this is a barrier from below for g(t)—in
other words, that

h(x, t) ≤ u(x, t) for all t ∈ (0, T ] and x ∈ D. (5.5)
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To see this, we again rewrite the flow with respect to the adjusted conformal factor
hλ(x, t) = h(λx, t)+ ln λ, now defined on D1/λ. For arbitrarily small ε ∈ (0, T ], u(·, ε)
must be bounded below (by virtue of (5.2)) and thus there exists δ > 0 (small) such that
hλ(·, δ) ≤ u(·, ε) on D. By applying the comparison principle again, and using the fact
that for each x ∈ D, hλ(x, t) is an increasing function of t , we deduce that

u(·, ε + t) ≥ hλ(·, δ + t) ≥ hλ(·, t).

Allowing ε to decrease to zero, and then λ to increase to one, we establish (5.5).
The lower bound (5.5) gives us good control on u from below near the boundary

of D. To get better control nearer the interior, we will exploit the pseudolocality of The-
orem A.1. For all x0 ∈ D, we may apply that theorem to g(t) with r0 > 0 less than, but
arbitrarily close to r := 1− |x0| to deduce that

|K|(x0, t) ≤ (εr)
−2 for all t ∈ [0, (εr)2]. (5.6)

Note here that by reducing the ε > 0 of that theorem if necessary, we may assume
that g(t) is defined on the whole time interval [0, ε2] ⊃ [0, (εr)2]. Also, as in our pre-
vious application of pseudolocality, we should adjust time zero forwards an arbitrarily
small amount so that the curvature of g(t) may be assumed to be bounded.

By rewriting the Ricci flow equation (1.1) or (1.2) as

∂u

∂t
= −K,

we deduce from (5.6) that

|u(x0, t)| ≤ t (εr)
−2
≤ 1 for t ∈ [0, (εr)2]. (5.7)

For later times, when t ≥ (εr)2, we can switch to the lower bound (5.5) to deduce that

u(x0, t) ≥ h(x0, t) = ln
2

1− (1− r)2
+

1
2

ln(2t)

≥ ln
1
r
+

1
2

ln(2(εr)2) =
1
2

ln 2+ ln ε.
(5.8)

By combining (5.7) and (5.8), we see that u(x, t) is bounded below by the constant
min{−1, 1

2 ln 2+ ln ε} for all x ∈ D and t ≥ 0.
It remains to convert this lower bound into the stronger bound (5.4), and for this we

use integral estimates with respect to the flat metric ḡ. Since u(x, t)→ 0 for each x ∈ D
as t ↓ 0, and u is bounded below, we must have∫

D

[−u(·, t)]+→ 0 as t ↓ 0, (5.9)

where [s]+ := max{s, 0}. Let ϕ ∈ C∞(R, [0, 1]) satisfy ϕ(s) = 0 for s ≤ 0 and ϕ′ ≥ 0,
and define ψ : R→ [0,∞) by

ψ(s) =

∫ s

−∞

ϕ.
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It may help to think of ϕ as being a smooth approximation to the Heaviside function.
Since 0 ≤ ψ(s) ≤ [s]+, we have∫

D

ψ(−u(·, t))→ 0 as t ↓ 0. (5.10)

By virtue of (5.2), for each t > 0, we know that ψ(−u(·, t)) = 0 in a neighbourhood of
the boundary, so we may compute, using (1.2),

d

dt

∫
D

ψ(−u) = −

∫
ψ ′(−u)ut = −

∫
ψ ′(−u)e−2u1u

= −

∫
e−2u
|∇u|2(ψ ′′(−u)+ 2ψ ′(−u)) ≤ 0. (5.11)

Returning to (5.10) we deduce that∫
D

ψ(−u(·, t)) = 0 for all t ,

and since we can make ψ as close to [·]+, uniformly, as we like (by choosing ϕ to lie
only a little below the Heaviside function) we finally deduce that u(·, t) ≥ 0 for all t as
desired. ut

We end this section by making some comments on the uniqueness of the Ricci flow start-
ing at the punctured plane, as claimed in Remark 1.8. Essentially the same argument as
we have just employed will show that there too, any competing flow g(t) must satisfy
g(t) ≥ ḡ for t ≥ 0, and as part of this, the direct analogue of (5.5) is to compare the
conformal factor u, near the puncture and for small t > 0, to that of a hyperbolic cusp,
expanding from nothing under the Ricci flow. (This comparison is best done now with a
simple ODE argument rather than the comparison principle, as we could have done also
in the proof of Theorem 1.7.) The concluding argument that G(t) can be seen as a lower
bound for g(t) (as well as an upper bound) is in fact a little easier in this case since it is
possible to construct a sequence of incomplete Ricci solitons on R2

\ {0} increasing to
the flow G(t), which can all easily be seen to serve as lower barriers for any g(t), given
that g(t) ≥ ḡ and that g(t) blows up with respect to ḡ near the puncture. It is not clear
that the additional details will be of use to address the general uniqueness problem, so we
omit them.

A. Appendix: Pseudolocality

One of the basic tools at the heart of our compactness results in Sections 2 and 3, and
the uniqueness of Section 5, is Perelman’s pseudolocality theorem [14, Theorem 10.3],
which we briefly survey in this appendix. We use ωn to denote the volume of the unit ball
in Euclidean n-space, and Rm to denote the curvature tensor.
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Theorem A.1. For each n ∈ N, there exists ε > 0 depending on n such that for all
r0 > 0, if g(t) is a complete, bounded curvature Ricci flow for t ∈ [0, T ], where 0 < T ≤

(εr0)
2, on an n-dimensional manifold M containing some point x0, and if, with respect

to g(0),

(i) |Rm| ≤ r−2
0 on B(x0, r0),

(ii) Vol(B(x0, r0))/r
n
0 ≥ (1− ε)ωn,

then
|Rm|(x, t) ≤ (εr0)−2 for t ∈ [0, T ] and distg(t)(x, x0) < εr0.

Remark A.2. The original statement of this theorem in [14] did not make clear that com-
pleteness is required. In fact, the result is false without that assumption. In particular, this
theorem is not a local result (see [21]). Immediately after the statement of the result
in [14], Perelman asks whether the hypothesis (ii) could be dropped. The answer is no, as
we demonstrate in [21].

Remark A.3. Theorem A.1 gives curvature control at points in the ball Bg(t)(x0, εr0), at
each time. However, by exploiting the most basic control on the stretching of lengths un-
der Ricci flow (see [20] or [12]) we know that the length of a path on which the curvature
|Rm| is bounded by M over a time interval of order 1/M , can increase only by a factor
F depending only on n. In particular, in Theorem A.1, for each t ∈ [0, T ] ⊂ [0, (εr0)2],
we have Bg(0)(x0, εr0/F ) ⊂ Bg(t)(x0, εr0). One consequence is that by reducing ε, the
conclusion of the theorem remains valid also for points x ∈Mwith distg(0)(x, x0) < εr0.

Once one has control on the curvature, one can control its higher covariant deriva-
tives also. Indeed, simpler versions of the arguments used to prove Shi’s local derivative
estimates (see for example [4]) yield the following.

Lemma A.4. Suppose that (Mn, g(t)) is a Ricci flow for t ∈ [0, T ], not necessarily
complete, and that x ∈ M, r > 0 and Bg(0)(x, r) ⊂⊂ M. Suppose that |Rm(g(t))| ≤
r−2 in Bg(0)(x, r)× [0, T ], and for k ∈ N, that |∇ lRm(g(0))| ≤ r−2−l in Bg(0)(x, r) for
all l ∈ {1, . . . , k}. Then for any η ∈ (0, 1), there exists C <∞ depending on k, n, η and
an upper bound for T/r2, such that

|∇
lRm(g(t))| ≤ Cr−2−l in Bg(0)(x, ηr)× [0, T ] for l ∈ {1, . . . , k}.

Combining Theorem A.1, Remark A.3 and Lemma A.4 gives the following.

Corollary A.5. For each k, n ∈ N, there exists ε > 0 depending on n and C < ∞

depending on n and k, such that for all r0 > 0, if g(t) is a complete, bounded curva-
ture Ricci flow for t ∈ [0, T ] with 0 < T ≤ (εr0)

2, on an n-dimensional manifold M
containing some point x0, and if, with respect to g(0),

(i) |∇ lRm| ≤ r−2−l
0 on B(x0, r0) for l ∈ {0, . . . , k},

(ii) Vol(B(x0, r0))/r
n
0 ≥ (1− ε)ωn,

then
|∇
kRm(g(t))|(x) ≤ Cr−2−k

0 for t ∈ [0, T ] and x ∈ Bg(0)(x0, εr0).
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One use of this result, in Section 2, is to obtain a local compactness of Ricci flows which
are similar in some local region initially. However wild a Ricci flow begins outside this
local region, the interior of the region is protected in a uniform manner. This contrasts
sharply with the situation for more classical parabolic equations such as the linear heat
equation.

B. Appendix: Convergence and compactness of manifolds and flows

Let us clarify the notion of convergence of pointed Riemannian manifolds we will be
using; we will take the unusual step of avoiding the assumption that the limit is complete,
and will use an unusual notation 99K to emphasise this. Otherwise, the definition follows
Cheeger and Gromov.

Definition B.1 (Smooth pointed convergence of manifolds). A sequence (Mi, gi, qi)

of smooth, complete, pointed Riemannian manifolds (that is, Riemannian manifolds
(Mi, gi) and points qi ∈Mi) is said to converge smoothly to the smooth, pointed mani-
fold (N ,G,Q), written

(Mi, gi, qi) 99K (N ,G,Q) as i →∞,

if there exist

(i) a sequence of compact sets �i ⊂ N exhausting N (that is, so that any compact set
K ⊂ N satisfies K ⊂ �i for sufficiently large i) with Q ∈ int(�i) for each i;

(ii) a sequence of smooth maps ϕi : �i →Mi which are diffeomorphic onto their image
and satisfy ϕi(Q) = qi for all i,

such that
ϕ∗i gi → G smoothly locally on N as i →∞. (B.1)

In the case that (N ,G) is complete, we write

(Mi, gi, qi)→ (N ,G,Q).

It is sometimes important to keep in mind that if we have the convergence in (B.1),
then the norm over compact subsets of N of ϕ∗i gi − G, and all its covariant derivatives,
must converge to zero as i →∞, when we compute norms and Levi-Civita connections
with respect to any fixed background metric, or indeed with respect to ϕ∗i gi .

Remark B.2. The notation 99K is used to emphasise the unfamiliar situation that the limit
is not assumed to be complete. Working within this generality has the consequence that
the limit is not unique. One could always take a subdomain of the limit (containing Q) to
give a new limit. One must also be aware that the curvature of (Mi, gi) in a ball of fixed
radius centred at qi might not be bounded uniformly in i.

The following lemma is the generalisation of the standard fact that there can be at most
one complete limit of a sequence of complete pointed manifolds. (We emphasise that
manifolds, for us, are assumed always to be connected.)
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Lemma B.3. Suppose that (Mi, gi, qi) is a sequence of smooth, complete, pointed Rie-
mannian manifolds such that

(Mi, gi, qi)→ (N ,G,Q) (B.2)

(with the limit complete) and

(Mi, gi, qi) 99K (�, g, q) (B.3)

(a possibly incomplete limit) as i → ∞. Then there exists a map I : (�, g) → (N ,G)
which is an isometry onto its image, and sends q to Q. Moreover, if ψi are the diffeomor-
phisms in the definition of the convergence (B.2), and ϕi are the diffeomorphisms in the
definition of the convergence (B.3), then after taking a subsequence, we may assume that

ψ−1
i ◦ ϕi → I smoothly as i →∞

on arbitrary compact subsets of �.

Proof. Let us adopt the shorthand Ji := ψ−1
i ◦ ϕi . Note that Ji(q) = Q. We must take a

subsequence in the lemma precisely to ensure that the linear map (Ji)∗ : Tq� → TQN
converges as i → ∞. The limit then provides an identification of Tq� and TQN which
we will use implicitly in some of what follows.

By definition of the convergence (B.2) and (B.3), we have

J ∗i (G)→ g smoothly locally on � as i →∞. (B.4)

By tautologically rewriting

Ji = expJi (q),(Ji )∗g ◦ exp−1
q,g

near q, for sufficiently large i (where Tq� and TQN have been identified using Ji) and
exploiting the convergence

expJi (q),(Ji )∗g → expQ,G

near the ‘origin’, we find that

Ji → expQ,G ◦ exp−1
q,g

smoothly near q, and the limit is then necessarily an isometry.
We have shown that q belongs to the set A ⊂ � defined by

A := {p ∈ � | Ji converges smoothly to an isometry in some neighbourhood of p},

where the isometry is with respect to g on � and G on N .
A minor adaptation of the argument above shows that whenever a point p is inA, then

Ji converges to an isometry in any geodesic ball in (�, g) centred at p which is compactly
contained in � and has radius less than the injectivity radius at p. This entire geodesic
ball must then lie withinA. In particular, since� is connected (being a manifold) we have
A = �, and we have established the smooth local convergence of Ji to a local isometry
I : � → N . Since Ji is a diffeomorphism, the map I must be injective, and hence a
global isometry onto its image. ut

We will use the following notion of convergence of pointed flows.
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Definition B.4 (Convergence of flows). Let (Mi, gi(t)) be a sequence of smooth, com-
plete flows for t in some time interval I ⊂ R. Let qi ∈Mi for each i. Let (N ,G(t)) be
a smooth flow for t ∈ I and let Q ∈ N . We say that

(Mi, gi(t), qi) 99K (N ,G(t),Q) on I as i →∞

if there exist

(i) a sequence of compact �i ⊂ N exhaustingN and satisfyingQ ∈ int(�i) for each i;
(ii) a sequence of smooth maps ϕi : �i → Mi , diffeomorphic onto their image, and

with ϕi(Q) = qi ,

such that
ϕ∗i gi(t)→ G(t) smoothly locally on N × I as i →∞.

In the familiar situation that (N ,G(t)) is complete for every t , we shall use the stan-
dard notation

(Mi, gi(t), qi)→ (N ,G(t),Q).

Finally, we record that in [13]—see also [12]—Hamilton proved the following com-
pactness theorem for Ricci flows with controlled curvature and injectivity radius, which
we use in Section 2.

Theorem B.5 (Hamilton’s compactness theorem for Ricci flows). LetMi be a sequence
of manifolds of dimension n, and let qi ∈Mi for each i. Suppose that gi(t) is a sequence
of complete Ricci flows on Mi for t ∈ I, where either I = (a, b) and −∞ ≤ a < 0 <
b ≤ ∞, or I = (a, b] and −∞ ≤ a < 0 ≤ b <∞. Suppose that

1. for every compact subset 0 ⊂ I and s > 0, there exists C = C(0, s) such that
|Rm(gi(t))|(x) ≤ C for all i ∈ N, t ∈ 0 and x ∈ Bgi (t)(qi, s);

2. infi inj(Mi, gi(0), qi) > 0.

Then there exist a manifold N of dimension n, a smooth complete Ricci flow G(t) on N
for t ∈ I, and a point Q ∈ N such that, after passing to a subsequence in i,

(Mi, gi(t), qi)→ (N ,G(t),Q) on I as i →∞.
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