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Abstract. We study solutions of the 2D Ginzburg–Landau equation

−1u+
1
ε2 u(|u|

2
− 1) = 0

subject to “semi-stiff” boundary conditions: Dirichlet conditions for the modulus, |u| = 1, and
homogeneous Neumann conditions for the phase. The principal result of this work shows that there
are stable solutions of this problem with zeros (vortices), which are located near the boundary and
have bounded energy in the limit of small ε. For the Dirichlet boundary condition (“stiff” problem),
the existence of stable solutions with vortices, whose energy blows up as ε→ 0, is well known. By
contrast, stable solutions with vortices are not established in the case of the homogeneous Neumann
(“soft”) boundary condition.

In this work, we develop a variational method which allows one to construct local minimizers of
the corresponding Ginzburg–Landau energy functional. We introduce an approximate bulk degree
as the key ingredient of this method; unlike the standard degree over the curve, it is preserved in the
weak H 1-limit.

1. Introduction and main results

In this work, we study solutions of the Ginzburg–Landau (GL) equation

−1u+
1
ε2 u(|u|

2
− 1) = 0 in A, (1.1)

where ε is a positive parameter (the inverse of the GL parameter κ = 1/ε), u is a complex-
valued (R2-valued) map, and A is a smooth, bounded, multiply connected domain in R2.
For simplicity, hereafter we assumeA is an annular type (doubly connected) domain of the
formA = �\ω, where� and ω are simply connected smooth domains and ω ⊂ � ⊂ R2.

Equation (1.1) is the Euler–Lagrange PDE corresponding to the energy functional

Eε(u) =
1
2

∫
A

|∇u|2 dx +
1

4ε2

∫
A

(|u|2 − 1)2 dx. (1.2)
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Equations of this type arise, e.g., in models of superconductivity and superfluidity. Addi-
tionally, (1.1) is viewed as a complex-valued version of the Allen–Cahn model for phase
transitions [31].

Solutions of (1.1) subject to Dirichlet boundary conditions, u = g on ∂A with fixed
S1-valued boundary data g, have been extensively studied in the past decade. Special
attention has been paid to solutions with isolated zeros (vortices). In contrast with the
Dirichlet problem, in the case of the homogeneous Neumann boundary condition, solu-
tions are typically vortexless; in particular, stable solutions with vortices have not been
found.

This work is devoted to finding the solutions of (1.1) subject to the “semi-stiff” bound-
ary conditions

|u| = 1 and u×
∂u

∂ν
= 0 on ∂A. (1.3)

These boundary conditions are intermediate between Dirichlet and Neumann in the fol-
lowing sense: any solution u ∈ H 1(A;R2) of (1.1, 1.3) is sufficiently regular [7], so it
can be written as u = |u|eiψ (locally) near the boundary. Then (1.3) means that Dirichlet
boundary conditions are prescribed for modulus, |u| = 1 on ∂A, and Neumann conditions
are prescribed for the phase, ∂φ/∂ν = 0 on ∂A.

Problem (1.1, 1.3) is equivalent to finding critical points of the energy functional (1.2)
in the space

J = {u ∈ H 1(A;R2); |u| = 1 a.e. on ∂A}. (1.4)

Our main objective is to study the existence of stable solutions of (1.1, 1.3) with vortices.
Since the problem is time independent, stable solutions are defined as (local) minimizers
of (1.2) in J . In other words, we are interested in whether the model (1.1, 1.3) stabilizes
vortices similarly to the Dirichlet problem or does not stabilize vortices analogously to
the Neumann problem. The boundary conditions (1.3) are not well studied, and this work,
along with studies [10, 19, 7, 8, 9], reveals their distinctive features, described later in the
Introduction.

Let us briefly review the existing results for the Dirichlet and Neumann boundary
value problems for equation (1.1). The first results on the existence of stable solutions
with vortices for the Dirichlet problem were obtained in [17, 18]. Stable solutions of (1.1)
with vortices were obtained and studied in [11] for star-shaped domains and prescribed
S1-valued boundary data with nonzero topological degree. In [11], the limiting locations
(as ε → 0) of the vortices of the global minimizers and other solutions with vortices
(if they exist) are described by means of a renormalized energy. Subsequently, these re-
sults were generalized to multiply connected domains in [33]. The existence of locally
minimizing and minmax solutions was established first in [23] and [24], then in more
detail and generality in [27] (see also [4, 15]). We refer the reader to [13], and references
therein, for the various results on the Dirichlet problem. As mentioned above, only vortex-
less stable solutions of (1.1) with the homogeneous Neumann boundary condition in 2D
are known. Moreover, all locally minimizing solutions are constant maps if A is convex
[20], or simply connected and ε is small [32]. The existence of nonconstant (but vortex-
less) locally minimizing solutions is established in [21] and [3]. In the recent work [15],
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a general result for the existence of (nonminimizing) solutions with vortices have been
found. Similarly to the Dirichlet problem, these solutions with vortices have energy that
blows up as ε→ 0.

Equation (1.1) (and functional (1.2)) is usually referred to as a simplified GL model
(without magnetic field). There is a large body of mathematical literature on the general
GL model with a magnetic field (e.g., [29, 5, 2, 28, 22]). Since (1.1) is obtained from the
general GL energy by setting the magnetic field equal to zero, it describes the persistent
currents in a 2D cross-section of a cylindrical superconductor (or in a 2D film). It was
observed in [11] that the degree of the boundary data on connected components of ∂A
creates the same type of “quantized vortices” as a magnetic field in type II superconduc-
tors or as angular rotation in superfluids. Despite a relatively simple form of equation
(1.1), it leads to a deep analysis of properties of its solutions similar to other fundamental
PDE’s in mathematical physics.

The boundary conditions (1.3) model, e.g., the surface of a superconductor coated
with a high temperature superconducting thin film. Generating a mathematical model of
persistent currents in such a superconductor then amounts to finding critical points of
functional (1.2) in the space J , when u = |u|eiψ on the boundary and |u| = 1, while the
phase ψ is “free”.

Boundary conditions (1.3) appeared in recent studies [10, 19, 8] of the minimization
problem for the GL functional (1.2) among maps from J with prescribed degrees on the
connected components of the boundary. The minimization of the energy (1.2) in J pro-
duces only constant solutions of (1.1, 1.3), similar to the case of the Neumann problem,
which corresponds to finding critical points of (1.2) in the entire space H 1(A;R2). An
obvious way of producing critical points with vortices is to impose two different degrees
q 6= p on ∂� and ∂ω; that is, to consider the minimization of Eε(u) in the set Jpq ⊂ J ,
where

Jpq := {u ∈ J ; deg(u, ∂ω) = p, deg(u, ∂�) = q}. (1.5)

Recall that the degree (winding number) of a map u ∈ H 1/2(γ ; S1) on γ (where γ is
either ∂ω or ∂�) is an integer given by the classical formula (cf., e.g., [12])

deg(u, γ ) =
1

2π

∫
γ

u×
∂u

∂τ
dτ, (1.6)

where the integral is understood via H 1/2-H−1/2 duality, and ∂/∂τ is the tangential
derivative with respect to the counterclockwise orientation of γ . (Throughout the paper
we assume the same orientation of ∂ω and ∂�.) Note that Jpq are connected components
of J (see [12]).

Simple topological considerations imply that critical points from Jpq must have at
least |p− q| vortices (with multiplicity). We emphasize that the existence of such critical
points is far from obvious. For example (see Section 2), there are no global minimizers
of Eε(u) in J01 and the weak limits of minimizing sequences do not belong to J01. This
simple example illustrates an important property of the sets Jpq , which is crucial for our
considerations: these sets are not weaklyH 1-closed, since the degree at the boundary may
change in the weakH 1-limit. Thus the direct methods of the calculus of variations cannot
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be used. On the other hand, the results of this work show that when p = q and there is no
topological reason for vortices to appear, local minimizers typically do have vortices.

As mentioned above, the vortex structure of solutions of (1.1) with Dirichlet and Neu-
mann boundary conditions is well studied. In contrast, only vortexless solutions of the
semi-stiff problem (1.1, 1.3) have been found [8, 19]. In [8], it was shown that minimizing
sequences for the corresponding minimization problem develop a novel type of so-called
“near-boundary” vortices, which approach the boundary and have finite GL energy in the
limit of small ε. However, such minimizing sequences do not converge to actual minimiz-
ers [9]. These studies lead to the natural question of whether there exist true solutions of
(1.1, 1.3) with near-boundary vortices. Unlike the minimizing sequences, such solutions
may model observable states of a physical system (e.g., persistent currents with vortices
and superfluids between rotating cylinders [16]). The following theorem, which is the
main result of this work, provides an answer to this question.

Theorem 1 (Existence of solutions with vortices of problem (1.1, 1.3)). For any integer
M > 0, there exist at least M distinct stable solutions of (1.1, 1.3) with (near-boundary)
vortices when ε < ε1 (ε1 = ε1(M) > 0). The vortices of these solutions are at distance
o(ε) from the boundary and have bounded GL energy in the limit ε → 0. The solutions
are stable in the sense that they are (local) minimizers of (1.2) in J .

To construct local minimizers of (1.2) in J , we represent J as the union of subsets
J (d)
pq (defined in (1.8) below), J =

⋃
p,q,d∈Z J

(d)
pq , and study the existence of global

minimizers in J (d)
pq . Furthermore, we show that each minimizer lies in J (d)

pq with its open
neighborhood. Therefore, the minimizers in J (d)

pq are distinct local minimizers in J .
Thus, the construction of solutions of (1.1, 1.3) is based on the study of the following

constrained minimization problem:

mε(p, q, d) := inf{Eε(u); u ∈ J (d)
pq }, (1.7)

where

J (d)
pq = {u ∈ Jpq; d − 1/2 ≤ abdeg(u) ≤ d + 1/2}, (1.8)

p, q and d are given integers, and abdeg(u) is the approximate bulk degree, introduced as
follows. Consider the boundary value problem

1V = 0 in A,
V = 1 on ∂�,
V = 0 on ∂ω.

(1.9)

Introduce abdeg( · ) : H 1(A;R2)→ R by the formula

abdeg(u) =
1

2π

∫
A

u× (∂x1V ∂x2u− ∂x2V ∂x1u) dx, (1.10)
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where V solves (1.9). In the particular case where A is a circular annulus, AR1R2 =

{x; R1 < |x| < R2}, abdeg(u) is expressed by

abdeg(u) =
1

log(R2/R1)

∫ R2

R1

(
1

2π

∫
|x|=ξ

u×
∂u

∂τ
ds

)
dξ

ξ
. (1.11)

For S1-valued maps, abdeg(u) becomes integer valued and the representation (1.11)
clarifies its interpretation as an average value of the standard degree. The definition (1.10)
is motivated by the following intuitive consideration: represent the standard degree over
the boundary ∂� via a “bulk” integral over the area of A for S1-valued maps and notice
that ifEε(u) ≤ 3 for some finite3 and sufficiently small ε, then u is “almost” S1-valued.

It was observed in [3] that for S1-valued maps in an annulus A, one can define the
topological degree deg(u,A) that classifies maps u ∈ H 1(A; S1) according to their 1-
homotopy type [34] (1-homotopy type is completely determined by the degree of the
restriction to a nontrivial contour). This definition was extended in [3] to maps that are not
necessarily S1-valued by considering u/|u| in a subdomainAu ⊂ A, which is obtained by
removing neighborhoods of the boundary ∂A and zeros (vortices) of u. Definition (1.11)
does not require the removal of vortices from A, and abdeg(u) is obtained by a simple
formula (unlike deg(u,A) in [3], where the domain of integration depends on u). Note
that in general abdeg(u) is not an integer. The most important fact for our considerations
is that abdeg(u) is continuous with respect to weak H 1-convergence, unlike the standard
degree in (1.6) (this issue for deg(u,A) was not addressed in [3]).

The minimization in problem (1.7) is taken over J (d)
pq , which is not an open set, and

therefore minimizers of (1.7) (if they exist) are not necessarily local minimizers of (1.2)
in J . Indeed, while Jpq is an open subset of J (hereafter we assume the topology
and convergence in J to be the strong H 1 unless otherwise specified), the constraint
abdeg(u) ∈ [d − 1/2, d + 1/2] defines a closed set with respect to both strong and weak
H 1-convergences. However, if we further consider a subset of maps with bounded energy
and choose ε small enough, then the constraint abdeg(u) ∈ [d − 1/2, d + 1/2] becomes
open due to the following proposition:

Proposition 2. Fix 3 > 0. There exists ε0 = ε0(3) > 0 such that if 0 < ε < ε0, then
for any integer d and any u ∈ H 1(A;R2) satisfying Eε(u) ≤ 3 the closed constraint
abdeg(u) ∈ [d − 1/2, d + 1/2] is equivalent to an open one, that is,

d − 1/2 ≤ abdeg(u) ≤ d + 1/2 ⇔ d − 1/2 < abdeg(u) < d + 1/2. (1.12)

(Actually, it will be shown that abdeg(u) is close to integers uniformly in u satisfying
Eε(u) ≤ 3 when ε is sufficiently small.) The following theorem is the main tool in
proving the existence of local minimizers.

Theorem 3 (Existence of minimizers of the constrained problem). For any integers p, q
and d > 0 [d < 0] with d ≥max{p, q} [d ≤min{p, q}] there exists ε1= ε1(p, q, d)> 0
such that the infimum in (1.7) is always attained when ε < ε1. Moreover

mε(p, q, d) ≤ I0(d,A)+ π(|d − p| + |d − q|), (1.13)



1502 L. Berlyand, V. Rybalko

where

I0(d,A) = min
{

1
2

∫
A

|∇u|2 dx; u ∈ H 1(A; S1) ∩ Jdd
}
. (1.14)

The value I0(d,A) is expressed by I0(d,A) = 2(πd)2/cap(A) via the H 1-capacity
cap(A) of the domain A.

The key difficulty is to establish the attainability of the infimum in (1.7), which is highly
nontrivial since the degree on ∂� and ∂ω is not preserved in the weakH 1-limit [8, 9]. We
show that the solutions of (1.1, 1.3), which are the minimizers of (1.7) (local minimizers
of (1.2) in J ) with p 6= d and any q (or q 6= d and any p) must have vortices. For fixed ε,
these vortices are located at a positive distance from ∂A and approach ∂A as ε→ 0.

Without loss of generality, throughout this work we always assume that d > 0 (other-
wise one can reverse the orientation of R2).

Theorem 1 follows from Theorem 3 and Proposition 2. The asymptotic behavior of
the local minimizers is established in

Theorem 4 (Asymptotic behavior of minimizers and their energies). Assume that the in-
tegers p, q and d satisfy the assumptions of Theorem 3. Then as ε→ 0 the minimizers uε
of (1.7) converge weakly in H 1(A), up to a subsequence, to a harmonic map u which
minimizes (1.14). Additionally,

Eε(uε) = I0(d,A)+ π(|d − p| + |d − q|)+ o(1) as ε→ 0, (1.15)

Eε(uε) =
1
2

∫
A

|∇uε|
2 dx + o(1) as ε→ 0. (1.16)

In particular, it follows from (1.15, 1.16) that there is no strong convergence of the mini-
mizers of (1.7) inH 1(A) as ε→ 0 unless π(|d−p|+ |d− q|) = 0. For p = q = d = 1,
the minimizers of problem (1.7) actually coincide with local minimizers of (1.2) in J11
established in [7]. While work [8] is primarily concerned with global minimizers in J11,
in its preprint version [7] the issue of local minimizers was raised. Namely it was ob-
served that the vortexless local minimizers of (1.2) in J11 can be obtained by adapting
the method of [28], that is, by seeking local minimizers that are H 1-close as ε → 0 to
those of problem (1.14) for S1-valued maps. This method, however, does not allow one
to find local minimizers with vortices.

The techniques of finding local minimizers and other critical points with vortices for
the GL functional (with and without magnetic field) are developed, e.g., in [4, 15, 23, 24,
27, 30]. These works establish solutions with vortices distanced from the boundary (inner
vortices) and use the reduction to an appropriate renormalized energy function of finitely
many variables. For instance, in [30] local minimizers with n vortices are obtained for
the full GL energy functional by restricting the minimization to some open sets of the
type Un = {(u,A); π(n − 1)|log ε| < G0

ε(u,A) < π(n + 1)|log ε|}, where G0
ε(u,A)

is the energy without external magnetic field. Then the “hard” part of the analysis is to
show that the infimum is attained inside Un. Similarly, the main difficulty in establishing
local minimizers of (1.2) in J is to show the attainability of the infimum in (1.7). Note
that in (1.7) we impose constraints on the approximate bulk degree abdeg(u) rather than
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the energy constraints and also prescribe degrees on the connected components of the
boundary.

The method proposed in our work does not use the renormalized energy. Indeed,
the asymptotic expansion of energy (1.15) (at least to the leading order as it is used for
the inner vortices) does not provide enough information on the location of vortices that
approach the boundary. The same difficulty was observed in [8] in the study of the ex-
istence/nonexistence of minimizers. We avoid the hard problem of construction of next
order renormalized energy (or equivalently next order in the expansion (1.15)) by a di-
rect construction of test functions with near-boundary vortices that approximate actual
minimizers. Our approach to problem (1.7) involves such tools as the Price Lemma [8]
and its “uniform” version (see Lemma 18) together with tight upper bounds explicitly
constructed for fixed (sufficiently small) ε.

Next, we summarize the distinctive features of the GL boundary value problem with
semi-stiff boundary conditions. The first interesting feature is the existence of solutions
with a new type of vortices called near-boundary vortices. Unlike the inner vortices,
whose energy blows up at the rate of |log ε|, the energy of near-boundary vortices is
bounded as ε→ 0 and they are located at a distance o(ε) from the boundary.

Secondly, the semi-stiff boundary conditions result in a lack of compactness. Namely,
as of now, the only way to find nonconstant minimizers is by searching for minimizers
in subsets J (d)

pq ⊂ J . These subsets, however, are not weakly H 1-closed and therefore a
weak H 1-limit of a minimizing sequence {u(k)} ∈ J (d)

pq may not lie in J (d)
pq , but rather in

J (d)

p′q ′
with p′ 6= p or (and) q ′ 6= p. Theorem 3 shows that if d > 0 and d ≥ max{p, q},

then (for small ε) any weak H 1-limit of a minimizing sequence {u(k)} ⊂ J (d)
pq always

belongs to J (d)
pq , despite the lack of weak H 1-closedness of J (d)

pq . In contrast, if d ≥ 0
and d < max{p, q} we have

Conjecture 5. Let d ≥ 0, d < max{p, q} (or d ≤ 0, d > min{p, q}) and let u be a weak
limit of a minimizing sequence for problem (1.7) (such a minimizing sequence exists and
bound (1.13) holds for any integer p, q, d). Then u 6∈ J (d)

pq when ε is sufficiently small.

In the simplest case, when d = 0 and either p = 1 and q = 0 or p = 0 and q = 1,
this conjecture is demonstrated by an argument quite similar to the nonexistence proof
in [7] for simply connected domains (see Sec. 2 below).

A more interesting example, which supports the conjecture above, follows from the
previously studied (global) minimization problem m̃ε = inf{Eε(u); u ∈ J11}. It was
shown in [7, 9] that if cap(A) ≥ π (subcritical/critical cases), then m̃ε is always attained,
whereas if cap(A) < π (supercritical case), then m̃ε is never attained for small ε. One can
see that the elements of minimizing sequences lie in J (1)

11 in subcritical/critical cases and
in J (0)

11 in the supercritical case. Moreover, the nonexistence of minimizers in problem
(1.7) for d = 0, p = q = 1 and small ε holds for any doubly connected domain (with
any capacity). (For cap(A) < π the proof is presented in [9]; this proof can be easily
generalized to cap(A) ≥ π .)
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We conclude the introduction by outlining the scheme of the proof of Theorem 3,
which employs a comparison argument. Fix an integer d > 0. First, we establish the
existence of minimizers in problem (1.7) for p = q = d by using the so-called Price
Lemma [8] (see Lemma 9 below), the uniform lower energy bound from Lemma 18 and
the upper bound from Lemma 16, which is obtained by considering S1-valued testing
maps. We show that these minimizers (which belong to J (d)

dd ) are vortexless. Next, we
argue by induction on the parameter æ(p, q) = |d − p| + |d − q|. This parameter is
naturally associated with the number of vortices—for example, for the above minimizers
in J (d)

dd , we have æ(d, d) = 0. Given an integer K ≥ 0, we assume the existence of
minimizers in problem (1.7) for p, q such that æ(p, q) ≤ K and p, q ≤ d (the induction
hypothesis) and prove the existence of minimizers for p, q such that æ(p, q) = K+1 and
p, q ≤ d . The first step in the induction procedure (when K = 0) is shown in Section 5.
The key technical point there is to construct a testing map v ∈ J (d)

d(d−1) such that

Eε(v) < Eε(u0)+ π, (1.17)

where u0 is a minimizer of (1.2) inJ (d)
dd . This map v is constructed by using the minimizer

u0 and Möbius conformal maps on the unit disk with a prescribed single zero near the
boundary. Then, given a minimizing sequence {u(k)} ⊂ J (d)

d(d−1) of problem (1.7) for
p = d , q = d − 1, we have, by (2.7) from Lemma 9 and (1.17),

Eε(u)+ π(|d − deg(u, ∂ω)| + |d − 1− deg(u, ∂�)|)

≤ lim
k→∞

Eε(u
(k)) < Eε(u0)+ π, (1.18)

where u is a weak H 1-limit of {u(k)} (possibly a subsequence). Then we estimate the left
hand side of (1.18) by the lower energy bound from Lemma 18 and the right hand side of
(1.18) by the upper energy bound from Lemma 16. Thus

I0(d,A)+ π(2|d − deg(u, ∂ω)| + |d − 1− deg(u, ∂�)| + |d − deg(u, ∂�)|)

< I0(d,A)+
3
2π. (1.19)

This implies that deg(u, ∂ω) = d, and either deg(u, ∂�) = d − 1 or deg(u, ∂�) = d.
In view of (1.18), the only possible case is actually deg(u, ∂�) = d − 1, since otherwise
u ∈ J (d)

dd and therefore Eε(u) ≥ Eε(u0), which contradicts (1.18). Thus u ∈ J (d)
d(d−1)

and u is a minimizer in J (d)
d(d−1). The proof of the existence of minimizers for p = d − 1,

q = d is quite similar. So we have shown that the existence of minimizers for æ(p, q) = 0
implies the existence of minimizers for æ(p, q) = 1. In the general case, when passing
from æ(p, q) ≤ K to æ(p, q) ≤ K + 1 in problem (1.7), we use the same idea but
it is technically much more involved. It requires the asymptotic analysis as ε → 0 of
minimizers upq of (1.7) with æ(p, q) = K , which is carried out in Section 6. Based on
the results of this asymptotic analysis, we construct testing maps v ∈ J (d)

p′q ′
(p′ = p,

q ′ = q − 1 or p′ = p, q ′ = q − 1) such that Eε(v) < Eε(upq) + π . This allows us to
employ the arguments similar to the reasoning in the first step of the induction procedure
to show the attainability of the infimum in (1.7).
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2. Preliminaries

Throughout the paper we use the following notations:

• The vectors a = (a1, a2) are identified with complex numbers a = a1 + ia2.
• a · b stands for the scalar product a · b = a1b1 + a2b2 =

1
2 (ab̄ + āb).

• a × b stands for the vector product a × b = a1b2 − a2b1 =
i
2 (ab̄ − āb).

• The orientation of simple (without self-intersecting) curves in R2 (in particular ∂ω and
∂�) is assumed to be counterclockwise. If L is such a curve, τ stands for the unit
tangent vector pointing counterclockwise, and ν is the outer unit normal vector such
that (ν, τ ) is direct.
• If h is a scalar function, then ∇⊥h = (−∂x2h, ∂x1h).
• Br(y) is the open disk of radius r centered at y, Br(y) = {x ∈ R2

; |x − y| < r}.

2.1. Properties of the solutions of (1.1, 1.3)

As shown in [7] by a bootstrap argument, any solution u ∈ H 1(A;R2) of problem (1.1,
1.3) is sufficiently regular (e.g., u ∈ C2(A) if A has a C2 boundary). By the maximum
principle we also have

Lemma 6. The function ρ(x) = |u(x)| satisfies ρ ≤ 1 in A.

Locally, away from its zeros, u can be written as u = ρeiφ with a real-valued phase φ.
We will also frequently make use of the current potential h related to the solution u of
(1.1, 1.3) by {

∇
⊥h = (u× ∂x1u, u× ∂x2u) in A,

h = 1 on ∂�.
(2.1)

Unlike the phase φ, the function h is defined globally onA (∇⊥φ is also defined globally),
and

∇h = −ρ2
∇
⊥φ when ρ > 0. (2.2)

The existence of a unique solution of problem (2.1) and its elementary properties are
established in the following

Lemma 7. There exists a unique solution h of problem (2.1). Moreover h = const on ∂ω,
and

1h = 2∂x1u× ∂x2u in A, (2.3)

div
(

1
ρ2∇h

)
= 0 when ρ > 0. (2.4)

Proof. The vector field F = (u × ∂x1u, u × ∂x2u) is divergence free. Indeed, since u is
a smooth solution of (1.1), we have divF = u × 1u = 0 in A. It follows that for any
simply connected domain W ⊂ A there is a unique (up to an additive constant) function
8 solving ∇⊥8 = F inW (this is the well known Poincaré lemma). Such a local solution
8 can be extended to a (possibly multi-valued) solution on A. Thanks to the fact that u
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satisfies (1.3) we have ∂8/∂τ = −F · ν = 0 on ∂A, i.e.8 takes constant values on every
connected component of the boundary. Thus 8 is actually a single-valued function. Then
h(x) = 8(x)−8(∂�)+ 1 is the unique solution of (2.1).

The verification of (2.3) is straightforward, and (2.4) follows directly from (2.2). ut

We will also use the following result, which is valid for any solution of the GL equation
(1.1) (not necessarily satisfying (1.3)).

Lemma 8 ([26]). Let u be a solution of the GL equation (1.1) such that |u| ≤ 1 and
Eε(u) ≤ 3, where 3 is independent of ε. Then

1− |u(x)|2 ≤
ε2C

dist2(x, ∂A)
(2.5)

and
|Dku(x)| ≤

Ck

distk(x, ∂A)
, (2.6)

where C, Ck are independent of ε.

2.2. Minimization among maps from J with prescribed degrees

Any minimizer of (1.2) in the set Jpq with prescribed integer degrees p and q is clearly
a solution of (1.1, 1.3). However, the existence of minimizers is a nontrivial problem. In
[10, 19, 7, 8, 9] the minimization problem for the Ginzburg–Landau functional (1.2) in
J11 was considered. In the case when A is a circular annulus, it was observed in [10] that
minimizers, if they exist, break the symmetry when the ratio of the outer and inner radii
of the annulus exceeds a certain threshold. By contrast, in the case when this ratio is suffi-
ciently close to 1, the existence of a unique minimizer and its symmetry are shown in [19].
The techniques in both [10] and [19] relied on the circular symmetry of the domain. A
more general approach based on the Price Lemma was proposed in [7, 8].

Lemma 9 (Price Lemma [8]). Let {u(k)} ⊂ Jpq be a sequence that converges to u
weakly in H 1(A;R2). Then

lim inf
k

1
2

∫
A

|∇u(k)|2 dx ≥
1
2

∫
A

|∇u|2 dx + π(|p − deg(u, ∂ω)| + |q − deg(u, ∂�)|),

or equivalently (by Sobolev embeddings),

lim inf
k

Eε(u
(k)) ≥ Eε(u)+ π(|p − deg(u, ∂ω)| + |q − deg(u, ∂�)|). (2.7)

Several proofs in this work are based on this lemma. With the help of Lemma 9, it was
shown in [8] that the infimum of (1.2) in J11 is always attained when cap(A) ≥ π . It was
also conjectured in [8] that when cap(A) < π and ε is sufficiently small the weak limit of
any minimizing sequence is not in the class of admissible maps, i.e. the global minimizer
does not exist. In [9] this nonexistence conjecture was proved by a contradiction argument
based on explicit energy bounds.
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While the existence/nonexistence of minimizers in Jpq for p = q = 1 is nontrivial
and the answer depends on cap(A) and also on ε, the case p = 0, q = 1 (and p = 1,
q = 0) is simple. Arguing as in [7] we can show that inf{Eε(u); u ∈ J01} is never
attained. Indeed, using the pointwise equality |∇uε|2 = 2∂x1uε × ∂x2uε + 4|∂z̄uε|2 and
the Jacobian degree formula we have

1
2

∫
A

|∇u|2 dx ≥

∣∣∣∣∫
A

∂x1u× ∂x2u dx

∣∣∣∣ = π |deg(u, ∂�)− deg(u, ∂ω)| = π

whenever u ∈ J01. On the other hand, by constructing an explicit minimizing sequence
in the spirit of [10] (see also [7]), we have inf{Eε(u); u ∈ J01} = π . Thus, if there exists
a minimizer u ∈ J01, then u ∈ H 1(A; S1) and u solves the GL equation (1.1). Then u
must be a constant map, which contradicts that u ∈ J01.

3. Properties of the approximate bulk degree

The degree of the restriction of maps from H 1(A; S1) to any smooth closed curve, in
particular ∂�, is preserved by the weak H 1-convergence. This follows from [34], or can
be shown directly using integration by parts as in (3.2) below (note that, for any S1-valued
map u, deg(u, ∂�) = deg(u, ∂ω) = deg(u,L), where L is an arbitrary smooth simple
curve in A enclosing ω). Thus we have the decomposition

H 1(A; S1) =
⋃
d∈Z
{u ∈ H 1(A; S1); deg(u, ∂�) = d} (3.1)

into disjoint sets, each of them being closed in the weak H 1-topology of H 1(A; S1).
Fix 3 > 0. In this section we consider maps u ∈ H 1(A;R2) in the level set

E3ε = {u; Eε(u) ≤ 3}.

We show that the approximate bulk degree abdeg(u) classifies maps u ∈ E3ε similarly
to the above classification (3.1) of S1-valued maps. We now establish the following basic
properties of abdeg(u):

(a) abdeg(u,A) = deg(u, ∂�) if u ∈ H 1(A; S1),
(b) |abdeg(u) − abdeg(v)| ≤ 2

π
‖V ‖C1(A)3

1/2
‖u − v‖L2(A) if u, v ∈ E3ε , where V is

defined in (1.9).

The property (b) plays a key role in our considerations. It implies that, unlike deg(u, ∂�),
abdeg(u,A) is preserved with respect to weak H 1-convergence in the following sense:

(c) If un ⇀ u in H 1(A;R2), then abdeg(un, A)→ abdeg(u,A).

The first property follows directly from the definition (1.10) of abdeg(u). Indeed, inte-
grating by parts in (1.10), we get

abdeg(u) =
1

2π

∫
∂�

u×
∂u

∂τ
ds −

1
π

∫
A

∂x1u× ∂x2uV dx = deg(u, ∂�) (3.2)

for any u ∈ H 1(A; S1) (∂x1u× ∂x2u = 0 a.e. in A since |u| = 1 a.e.). The property (b) of
abdeg(u) is proved in the following
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Lemma 10. For any u, v ∈ H 1(A;R2) we have

|abdeg(u)− abdeg(v)| ≤
1
π
‖V ‖C1(A)((Eε(u))

1/2
+ (Eε(v))

1/2)‖u− v‖L2(A).

Proof. Integrating by parts, we get

2π(abdeg(u)− abdeg(v)) =
∫
A

(u− v)× (∂x2u ∂x1V − ∂x1u ∂x2V ) dx

+

∫
A

v × (∂x2(u− v) ∂x1V − ∂x1(u− v) ∂x2V ) dx

=

∫
A

(u− v)× (∂x2u ∂x1V − ∂x1u ∂x2V ) dx

+

∫
A

(u− v)× (∂x2v ∂x1V − ∂x1v ∂x2V ) dx.

Then the statement of the lemma follows from the Cauchy–Schwarz inequality. ut

The main consequence of properties (a) and (b) of the function abdeg(u) is

Proposition 11. For sufficiently small ε, abdeg(u) is close to integers uniformly in u ∈
E3ε . More precisely,

(d) sup
u∈E3ε

dist(abdeg(u),Z)→ 0 as ε→ 0.

Remark 12. This proposition implies that, for small ε, Jpq∩E3ε admits a decomposition
into disjoint sets parametrized by d:

Jpq ∩ E3ε =
⋃
d∈Z

(J (d)
pq ∩ E

3
ε ).

Before proving this fact we note that Proposition 11 immediately implies Proposition 2
stated in the Introduction.

Proof of Proposition 11. According to (3.2) and Lemma 10 we have

sup
u∈E3ε

dist(abdeg(u),Z) ≤ sup
u∈E3ε

inf
v∈E30

|abdeg(u)−abdeg(v)| ≤
2
π
‖V ‖C13

1/2δε, (3.3)

where δε is the (nonsymmetric) distance

δε := sup
u∈E3ε

distL2(A)(u,E
3
0 ) (3.4)

between E3ε and

E30 =

{
u ∈ H 1(A; S1); E0(u) =

1
2

∫
A

|∇u|2 dx ≤ 3

}
.
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We now show that δε → 0 as ε→ 0. In view of (3.3) this yields the desired result. Assume
towards a contradiction that δεk ≥ c > 0 for a sequence εk → 0. By virtue of the Sobolev
embeddings, the supremum in (3.4) is attained on E3ε , i.e. δε = distL2(A)(uε, E

3
0 ), where

Eε(uε) ≤ 3. We can extract a subsequence of {uεk }, still denoted by {uεk }, that converges
to a map u weakly in H 1(A;R2). Thanks to Sobolev embeddings uεk → u strongly
in L2(A) and we have u ∈ H 1(A; S1), since

∫
A
(|uε|

2
− 1)2 dx ≤ 43ε2. Moreover,

E0(u) ≤ 3 by the lower weak semicontinuity of the Dirichlet integral. Thus u ∈ E30 and
δεk ≤ ‖u− uεk‖L2(A)→ 0. ut

The following lemma illustrates the relation of abdeg(u), which is not necessarily an inte-
ger, with the standard notion of degree over a closed curve. It provides a simple criterion
for the constraint abdeg(u) ∈ [d − 1/2, d + 1/2] in (1.7) to be satisfied in a particular
case when u is a solution of equation (1.1).

Lemma 13. Let L = {x ∈ A; V (x) = 1/2} denote the 1/2 level set of V , where V is the
solution of (1.9). (L is a smooth curve enclosing ω.) If a solution u of the GL equation
(1.1) satisfies |u| ≤ 1 in A and Eε(u) ≤ 3, then

(i) |u| ≥ 1/2 on L,
(ii) we have

abdeg(u) ∈ [d − 1/2, d + 1/2] ⇔ deg(u/|u|,L) = d (3.5)

when ε ≤ ε1, where ε1 = ε1(3) > 0 does not depend on u.

Remark 14. The choice of L in Lemma 13 is not unique. In fact, L can be any smooth
curve that encloses ω and lies strictly inside the domain.

Proof. Consider the domain

Aδ = {x ∈ A; δ < V (x) < 1− δ}, (3.6)

where 0 < δ < 1/2. Lemma 8 implies that u satisfies

|u| ≥ 1/2 on Aδ, (3.7)

when ε < ε′1 (ε′1 = ε
′

1(δ) > 0). This proves (i). We can now write u = ρeiψ (ρ = |u| >
1/2) on Aδ , and find an extension of ψ onto the entire domain A. To this end we will
consider a conformal image of A.

It is well known (see, e.g., [1]) that there is a conformal mapping G of A onto the
annulus O with R = exp(π/cap(A)) and 1/R as the outer and inner radii, respectively.
Moreover, G is explicitly given by G = exp( 2π

cap(A) (V − 1/2+ i9)), where 9 is a (multi-
valued) harmonic conjugate of V . Hence G maps Aδ onto the annulus G(Aδ) ⊂ O whose
outer and inner radii are R′ = exp( 2π

cap(A) (1/2− δ)) and 1/R′, respectively.

Now consider ψ̂(x) = ψ(G−1(x)) on G(Aδ). We can extend ψ̂ to the entire domain
O by reflections ψ̂(x) := ψ̂(x(R′)2/|x|2) when |x| ≥ R′ and ψ̂(x) := ψ̂(x/(R′|x|)2)

when |x| ≤ 1/R′. Thus∫
O
|∇ψ̂ |2 dx ≤

∫
G(Aδ)

|∇ψ̂ |2 dx +

∫
O\G(Aδ)

|∇ψ̂ |2 dx ≤ 2
∫
G(Aδ)

|∇ψ̂ |2 dx (3.8)
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when 0 < δ < 1/4. Then (3.8), the conformal invariance of the Dirichlet integral and
(3.7) imply ∫

O
|∇ψ̂ |2 dx ≤ 2

∫
G(Aδ)

|∇ψ̂ |2 dx = 2
∫
Aδ

|∇ψ |2 dx

≤ 8
∫
Aδ

ρ2
|∇ψ |2 dx ≤ 16Eε(u) ≤ 163. (3.9)

The desired extension of ψ onto A is now given by ψ̃(x) = ψ̂(G(x)). Using the
conformal invariance of the Dirichlet integral again, we see by (3.9) that Eε(eiψ̃ ) =
1
2

∫
A
|∇ψ̃ |2 dx = 1

2

∫
O |∇ψ̂ |

2 dx ≤ 83. Moreover, since ψ̃ = ψ on Aδ and ρ = |u| ≤ 1,
we obtain

‖u− eiψ̃‖2
L2(A)

=

∫
A\Aδ

|u− eiψ̃ |2 dx +

∫
Aδ

(ρ − 1)2 dx

≤ 4|A \ Aδ| +
∫
Aδ

(ρ2
− 1)2 dx ≤ 4(|A \ Aδ| +3ε2). (3.10)

Then, by choosing small δ and ε1 = ε1(δ) > 0 (ε1(δ) < ε′1), in view of Lemma 10, the
bounds Eε(eiψ̃ ) ≤ 83, Eε(u) ≤ 3 and (3.10), we get |abdeg(u) − abdeg(eiψ̃ )| < 1/2,
when ε < ε1. But abdeg(eiψ̃ ) = deg(eiψ̃ , ∂�) = deg(eiψ̃ ,L) = deg(u/|u|,L), due to
(3.2). Therefore if deg(u/|u|,L) = d, then abdeg(u) ∈ [d−1/2, d+1/2], and vice versa.
Thus (ii) is proved. ut

4. Minimization among S1-valued maps. Upper and lower bounds for problem (1.7)

Consider the minimization problem

I0(d,A
′) := inf{E0(u); u ∈ H

1(A′; S1), deg(u, ∂ω′) = deg(u, ∂�′) = d}, (4.1)

where E0(u) =
∫
A′
|∇u|2 dx, A′ = �′ \ ω′, and ω′, �′ are arbitrary smooth bounded

simply connected domains in R2 such that ω′ ⊂ �′. This problem is a particular case of
the minimization problem considered in [11, Chapter I].

Proposition 15 ([11]). There exists a unique (up to multiplication by constants with unit
modulus) solution u of the minimization problem (4.1), and u is a regular harmonic map
in A′ (i.e. −1u = u|∇u|2 in A′, u ∈ H 1(A′)) satisfying u× ∂u

∂ν
= 0 on ∂A′.

If A′ = A, then any minimizer u of (4.1) belongs to Jdd . By (3.2) we also have abdeg(u)
= d . This yields the following (optimal) bound for (1.7), in the case p = q = d.

Lemma 16. For any ε > 0 we have mε(d, d, d) ≤ I0(d,A).
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It is shown in [11, Chapter I] that I0(d,A) can be expressed by

I0(d,A) =
1
2

∫
A

|∇h0|
2 dx, (4.2)

where h0 is the unique solution of the linear problem
1h0 = 0 in A,
h0 = 1 on ∂�, h0 = const on ∂ω,∫
∂�

∂h0

∂ν
dσ = 2πd.

(4.3)

The solution V of (1.9) and h0 are related via h0 = 1+2πd(V−1)/cap(A), where cap(A)
stands for the H 1-capacity of A (see, e.g., [25]). Thus I0(d,A) = 2(πd)2/cap(A), and
this clearly holds for any doubly connected domain A′ in place of A. Therefore we have

Lemma 17. I0(d,A
′) depends continuously on cap(A′).

Using this simple result, we obtain the following lower bound for the GL energy of solu-
tions u ∈ J of the equation (1.1).

Lemma 18. There exists ε2 > 0 such that for any solution u ∈ Jlm of the GL equation
(1.1) satisfying Eε(u) ≤ 3 and abdeg(u) ∈ (d − 1/2, d + 1/2), we have

Eε(u) ≥ I0(d,A)−
π

2
+ π(|d − l| + |d −m|) (4.4)

whenever ε < ε2 (ε2 depends only on 3).

Proof. The maximum principle implies that |u| ≤ 1 on A. As in Lemma 13 we consider
the domain Aδ defined by (3.6) where δ < 1/2 is a positive parameter to be chosen later.
Since |u| ≤ 1 on A we can apply Lemma 8 to get the bound

|u| ≥ 1− ε in Aδ (4.5)

for ε < ε′2 (ε′2 = ε
′

2(δ,3) > 0). We introduce the map

ũ =
1

1− ε

{
u if |u| < 1− ε,
(1− ε)u/|u| otherwise.

(4.6)

By (4.5) we have |ũ| = 1 on Aδ and, according to Lemma 13, deg(ũ,L) = d when
ε < min{ε1, ε

′

2}. Consequently, the degrees of ũ on both connected components of ∂Aδ
are equal to d, so that 1

2

∫
Aδ
|∇ũ|2 dx ≥ I0(d,Aδ) (cf. (4.1)). Therefore, using the obvious

pointwise inequality |∇ũ|2 ≥ 2|∂x1 ũ× ∂x2 ũ| and integration by parts, we get

1
2

∫
A

|∇ũ|2 dx ≥
1
2

∫
Aδ

|∇ũ|2 dx +
∑
k=1,2

∣∣∣∣∫
A
(k)
δ

∂x1 ũ× ∂x2 ũ dx

∣∣∣∣
≥ I0(d,Aδ)+ π(|d − l| + |d −m|), (4.7)
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where A(k)δ (k = 1, 2) are the outer and the inner connected components of A \ Aδ . On
the other hand, it follows from (4.6) that |u| ≤ |ũ| ≤ 1. Therefore,

Eε(ũ) ≤
1

(1− ε)2
Eε(u). (4.8)

Bounds (4.7) and (4.8) yield (4.4) when δ is such that I0(d,Aδ) ≥ I0(d,A) − π/4 (cf.
Lemma 17) and ε is sufficiently small. �

5. From a vortexless minimizer to one with a single vortex

The main Theorem 3 is proved by induction on the “number of vortices” in minimizers.
More precisely, given an integer d > 0, we show the existence of minimizers of (1.7) for
p = q = d , then move on to the case p = d − 1, q = d and p = d , q = d − 1, etc.
The key point of the proof is the induction step, when the degree changes by one on ∂ω
or ∂�. This change in degree results in an additional vortex in a minimizer. For arbitrary
p and q satisfying the conditions of Theorem 3, this step is quite technical. This is why
we consider here a particular case of transition from p = q = d (no vortices) to p = d,
q = d − 1 (one vortex). The transition from p = q = d to p = d − 1 and q = d is quite
similar. We first establish

Lemma 19. Fix an integer d > 0. Then for sufficiently small ε, ε ≤ ε3 with ε3 > 0, the
infimum mε(d, d, d) in (1.7) is always attained, and mε(d, d, d) ≤ I0(d,A).

Proof. Let u be a weak H 1-limit of a minimizing sequence {u(k)} ⊂ J (d)
dd . Since any

minimizer v of problem (1.14) is an admissible testing map for problem (1.7), such a
minimizing sequence exists and by using Lemma 9 we obtain

Eε(u)+ π(|l − d| + |m− d|) ≤ lim inf
k→∞

Eε(u
(k)) ≤

1
2

∫
A

|∇v|2 dx = I0(d,A), (5.1)

where l = deg(u, ∂ω), m = deg(u, ∂�). Due to Proposition 2, we have abdeg(u) ∈
(d − 1/2, d + 1/2) when ε < ε0, therefore the first variation of (1.2) at u vanishes,
i.e. u is a solution of equation (1.1). Indeed, thanks to Lemma 10, we know that for any
w ∈ H 1

0 (A;R
2) with sufficiently small H 1-norm, u(k) + w is an admissible testing map

when k is large. Hence Eε(u + w) − Eε(u) = limk→∞(Eε(u
(k)
+ w) − Eε(u

(k))) ≥ 0
(where limk→∞ denotes any subsequential limit), and we are done. Now, since u is a
solution of (1.1), we can apply Lemma 18. Namely, we substitute (4.4) in (5.1) to get

|d − l| + |d −m| ≤ 1/4 (5.2)

for ε < min{ε0, ε2}, i.e. l = m = d (since l, m and d are integers). Thus the infimum in
(1.7) for p = q = d is always attained for sufficiently small ε. ut

Next, we perform the transition from the minimization problem (1.7) for p = q = d to
that for p = d , q = d − 1 and show that mε(d, d − 1, d) is always attained when ε is
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sufficiently small. This is done by comparing mε(d, d − 1, d) with the energy Eε(u) of a
minimizer u of (1.7) for p = q = d . We first describe the properties of such minimizers.

In Section 6, it is shown that for small ε any minimizer u of (1.7) for p = q = d is
vortexless (see Remark 24), i.e. u = ρeiψ with smooth ρ > 0 and ψ : A → R/2πdZ
(torus). It follows that we can write u = ρeidθ , where eiθ and ∇θ are smooth maps
defined globally on A. Then the boundary value problem (1.1, 1.3) can be rewritten in
terms of ρ and θ as follows: div(ρ2

∇θ) = 0 in A,
∂θ

∂ν
= 0 on ∂A,

(5.3)

−1ρ + d2
|∇θ |2ρ +

1
ε2 ρ(ρ

2
− 1) = 0 in A,

ρ = 1 on ∂A.
(5.4)

In view of (2.2), we also have

∇h = −dρ2
∇
⊥θ in A, (5.5)

where h is the solution of (2.1). It follows that (h, θ) defines orthogonal local coordinates
in a neighborhood of ∂�, thus straightening out the boundary. Indeed, it is straightforward
to verify that

1− h(∂ω) =
1

cap(A)

∫
A

∇h · ∇V dx = 2π abdeg(u)/cap(A),

while abdeg(u) ≥ d−1/2 > 0. Then, by applying the maximum principle to (2.4) we get
1 > h(x) > h(∂ω) in A. This in turn implies, by Hopf’s lemma, that ∂h/∂ν > 0 on ∂�;
i.e. the map (h, θ) : A → R × (R/2πZ) can be extended to a C1-diffeomorphism of a
one-sided neighborhood of ∂� onto its image. Thus, there are some δ > 0 and a domain
Gδ ⊂ A such that

x ∈ Gδ 7→ (h, θ) ∈ 5δ = (1− δ, 1)× (R/2πZ)

is a one-to-one correspondence which extends to a C1-diffeomorphism of Gδ onto
[1− δ, 1]× (R/2πZ).

The following proposition is crucial for the existence of minimizers of (1.7) for
p = d , q = d − 1. In particular, if combined with Lemma 16, it provides a bound
for mε(d, d − 1, d) independent of ε.

Proposition 20. Let u = ρeidθ , ρ > 0, be a minimizer of (1.7) for p = q = d . Assume
that ε is small enough that Proposition 2 holds with3 = I0(d,A). Then there is a testing
map v ∈ Jd(d−1) such that abdeg(v) ∈ (d − 1/2, d + 1/2) and

Eε(v)− Eε(u) < π. (5.6)
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In Section 7, a generalized version of Proposition 20 is used to show the existence of
minimizers with several vortices.

Proof of Proposition 20. We seek a testing map v of the form

v = ρwt , (5.7)

where wt ∈ Jd(d−1) will be defined below. The following lemma allows us to compare
the energy Eε(u) of u with that of v.

Lemma 21. If w ∈ H 1(G′;R2), G′ ⊂ A, is such that |w| = 1 on ∂G′, then∫
G′

(
|∇(ρw)|2 +

1
2ε2 (|ρw|

2
− 1)2

)
dx

=

∫
G′

(
|∇u|2 +

1
2ε2 (|u|

2
− 1)2

)
dx + 2L(d)ε (w,G′),

where

L(d)ε (w,G′) =
1
2

∫
G′
ρ2
|∇w|2 dx −

d2

2

∫
G′
|∇θ |2ρ2

|w|2 dx

+
1

4ε2

∫
G′
ρ4(|w|2 − 1)2 dx. (5.8)

This result is a version of the factorization argument from [14]; its proof is presented at
the end of this section.

Note that if G′ = Gδ we can rewrite the functional (5.8) by using local coordinates
(h, θ) as (cf. (5.5))

L(d)ε (w,Gδ) =
d

2

∫
5δ

|∂hw|
2ρ4 dh dθ +

1
2d

∫
5δ

(|∂θw|
2
− d2
|w|2) dh dθ

+
1

4ε2

∫
5δ

ρ2(|w|2 − 1)2
dh dθ

d|∇θ |2
. (5.9)

Instead of dealing with L(d)ε (w,Gδ) we will make use of simplified functional with a
quadratic penalty term and parameter λ = λ(ε, d) to be determined in (5.14) below,

Mλ(w) =
1

2d

∫
5δ

(d2
|∂hw|

2
+ |∂θw|

2) dh dθ

+
1

2d

∫
5δ

(λ|w − eidθ |2 − d2
|w|2) dh dθ. (5.10)

Note also that the integrand in the first term of L(d)ε (w,Gδ) has been multiplied here by
the factor ρ−4

≥ 1. The functional (5.10) can be simplified using separation of variables.
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Now consider the map wt that is given by wt = eidθ in A \ Gδ , and extended to Gδ
as a minimizer of the functional Mλ(w), with the following prescribed boundary data:

wt = e
idθFt (eiθ ) on ∂�, (5.11)

wt = e
idθ on ∂Gδ \ ∂�, (5.12)

Here λ ≥ 2d2, Ft (z) := Ct (z̄) (where the bar stands for the complex conjugate), Ct (z) =
z−(1−t)
z(1−t)−1 is the classical Möbius conformal map from the unit disk onto itself, and t < 1
is a positive parameter to be determined later. Since deg(Ft , S1) = −1 and deg(eiθ , ∂�)
= 1, the standard properties of the topological degree imply that if v is defined by (5.7),
then

deg(v, ∂�) = d − 1, deg(v, ∂ω) = d. (5.13)

The map wt is well defined, because the functional Mλ(w) with Dirichlet condition on
the boundary has a unique minimizer for λ ≥ 2d2. Moreover |wt | ≤ 2. Otherwise by
taking w̃t = wt min{1, 2/|wt |} in place of wt , the first term in (5.10) does not increase
while the second decreases, i.e. Mλ(w̃t ) < Mλ(wt ); a contradiction.

Note that under the choice

λ := max
{

9
2ε2 infGδ |∇θ |2

, 2d2
}

(5.14)

(|∇θ | > 0 on the closure of Gδ) we have

ρ2(|wt |
2
− 1)2 ≤ (|wt | − 1)2(|wt | + 1)2 ≤ |wt − eidθ |2(|wt | + 1)2

≤ 9|wt − eidθ |2 ≤ 2ε2λ|∇θ |2|wt − e
idθ
|
2 in Gδ,

thanks to the bounds |wt | ≤ 2 and ρ ≤ 1. It follows that L(d)ε (wt ,Gδ) ≤ Mλ(wt ). We
now see, by virtue of Lemma 21, that v = ρwt satisfies

Eε(v) ≤ Eε(u)+Mλ(wt ). (5.15)

We next obtain a representation for Mλ(wt ) through separation of variables. Namely,
expanding zdFt (z) on S1 as

zdFt (z) = (1− t)zd + t (t − 2)
∞∑
k=0

(1− t)kzd−k−1,

we seek wt as a Fourier series

wt = (1− tf−1(h))e
idθ
+ t (t − 2)

∞∑
k=0

(1− t)kfk(h)e−i(k−d+1)θ , (5.16)

where the coefficients fk(h) satisfy, according to (5.11, 5.12),

fk(1− δ) = 0, fk(1) = 1. (5.17)
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We substitute (5.16) into (5.10) to obtain

Mλ(wt ) =
t2π

d
8−1(f−1)+

t2π

d

∞∑
k=0

(t − 2)2(1− t)2k8k(fk), (5.18)

where

8k(fk) =

∫ 1

1−δ

(
d2
|f ′k(h)|

2
+ ((k − d + 1)2 + λ− d2)|fk(h)|

2) dh. (5.19)

Minimizing (5.19) under the conditions (5.17) we get

fk(h) =
ek+(h−1)

1− e(k−−k+)δ
+

ek−(h−1)

1− e(k+−k−)δ
, (5.20)

where k± = ± 1
d

√
(k − d + 1)2 + λ− d2. Therefore,

8k(fk) = d(k − d + 1)
(

1+
λ− d2

2k2 +O(1/k3)

)
as k→∞. (5.21)

Finally, using (5.21) in (5.18), we obtain

Mλ(wt ) ≤ π((1− t)2 − 1)2
∞∑
k=0

k(1− t)2k + 2πt2(λ− d2)

∞∑
k=1

(1− t)2k

k
+ Ct2

= π(1− 2t − 2t2(λ− d2) log(1− (1− t)2))+ (C + π)t2. (5.22)

Observe that the right hand side of (5.22) is strictly less than π when t > 0 is chosen
sufficiently small. By (5.15), for such t the map v = ρwt satisfies (5.6).

It remains only to show that abdeg(v) ∈ (d − 1/2, d + 1/2). To this end note that by
(5.16) and (5.20), wt → eidθ pointwise in Gδ as t → 0. Therefore ρwt → ρeidθ (= u)

weakly in H 1(A), so that abdeg(ρwt )→ abdeg(u). On the other hand, by Proposition 2,
we know that d− 1/2 < abdeg(u) < d+ 1/2. Thus, after possibly passing to a smaller t ,
v = ρwt satisfies the required property. ut

Now, under the conditions of Proposition 20, there exists a minimizing sequence
{u(k)} ⊂ J (d)

d(d−1) of testing maps from problem (1.7) for p = d , q = d − 1 such
that limk→∞ Eε(u

(k)) < mε(d, d, d) + π and u(k) weakly H 1-converges to a map
u ∈ J . Moreover, any minimizing sequence has a subsequence with the same proper-
ties. We show that any weak limit u is also an admissible map. Let l = deg(u, ∂ω) and
m = deg(u, ∂�). By virtue of Lemma 18 (in the same way as in Lemma 19 one shows
that u satisfies (1.1)) and Lemma 9 we have

I0(d,A)−
π

2
+ π(2|d − l| + |d − 1−m| + |d −m|)

≤ Eε(u)+ π(|d − l| + |d − 1−m|) < mε(d, d, d)+ π, (5.23)
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since abdeg(u) = limk→∞ abdeg(u(k)) ∈ [d − 1/2, d + 1/2]. Due to Lemma 19, we
have mε(d, d, d) ≤ I0(d,A) so that (5.23) implies that l = d and either m = d − 1 or
m = d . In the latter case, u becomes an admissible map in problem (1.7) for p = q = d
and therefore Eε(u) ≥ mε(d, d, d), which contradicts the last inequality in (5.23). Thus,
u ∈ Jd(d−1), abdeg(u) ∈ [d − 1/2, d + 1/2], i.e. u is in the set J (d)

d(d−1) of admissible
testing maps of problem (1.7) for p = d, q = d − 1.

Proof of Lemma 21. We have, using (5.4),∫
G′
|∇(ρw)|2 dx =

∫
G′
(ρ2
|∇w|2 +∇ρ · ∇(ρ(|w|2 − 1))+ |∇ρ|2) dx

=

∫
G′

(
ρ2
|∇w|2 + d2ρ2

|∇θ |2 +
1
ε2 ρ

2(ρ2
− 1)

)
dx

−

∫
G′

(
d2ρ2
|∇θ |2|w|2 +

1
ε2 ρ

2(ρ2
− 1)|w|2 − |∇ρ|2

)
dx.

Then simple algebraic manipulations yield the required result. ut

6. Asymptotic behavior of local minimizers

In the previous section, we established the existence of minimizers of (1.2) in J (d)
dd and

demonstrated the first induction step of the proof of Theorem 3 that involves a transition
from p = q = d to p = d , q = d − 1 in (1.7). (In fact, modulo the assumption
that minimizers in J (d)

dd are vortexless, we actually proved the existence of minimizers
in J (d)

(d−1)d and J (d)
d(d−1).) In order to show the induction step for any integer p ≤ d and

q ≤ d, we need to establish some properties of minimizers of (1.7). We are especially
interested in their behavior near the boundary. At this point, we assume we are given a
family {uε} of minimizers for (1.7) and

Eε(uε) ≤ 3 := I0(d,A)+ π(|d − p| + |d − q|). (6.1)

We suppose also that ε ≤ ε0, where ε0 = ε0(3) > 0 as in Proposition 2. It follows that
the maps uε are local minimizers of Eε(u) in J and therefore satisfy (1.1, 1.3).

Throughout this section we will use the notation ρε(x) = |uε(x)|, the function hε(x)
that is the unique solution of (2.1) (associated with uε), and the contour L as in Lemma
13. The contour L separates the two open subdomainsQ± in A, whereQ+ is the domain
enclosed by ∂� and L, and Q− = A \ (Q+ ∪ L). We also set Q±ε = {x ∈ Q

±
; ρ2

ε (x) ≤

1− ε1/2
}.

6.1. Proof of Theorem (4

Since |∇hε| ≤ |∇uε| (by Lemma 6), the family {hε} is bounded in H 1(A), and therefore
there is a sequence εk → 0 such that

hεk → h weakly in H 1(A) as k→∞. (6.2)
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In order to identify h, we make use of Lemma 8 to deduce that, up to a subsequence, the
maps uεk converge to an S1-valued map u in C1

loc(A). Since ∂x1u×∂x2u = 0 a.e. in A, we
have1hεk = 2∂x1uεk × ∂x2uεk → 0 in C0

loc(A), thus h is a harmonic function. Moreover,
h = 1 on ∂� and h = const on ∂ω. On the other hand,

abdeg(uεk ) =
1

2π

∫
A

∇hεk · ∇V dx →
1

2π

∫
A

∇h · ∇V dx =
1

2π

∫
∂�

∂h

∂ν
ds.

According to property (d) of abdeg( · ) (see Proposition 11 in Section 3), abdeg(uε)→ d

as ε → 0. Therefore h = h0 (where h0 is the unique solution of (4.3)) and the con-
vergence in (6.2) holds for the whole family {hε}. Thus, applying Lemma 8 again, we
obtain

hε → h0 in C1
loc(A) and weakly in H 1(A) as ε→ 0. (6.3)

By (6.1) and Lemma 8, the maps uε converge, up to a subsequence, to u ∈ H 1(A; S1)

in C1
loc(A) and weakly in H 1(A). Moreover, abdeg(u) = d and in view of (6.3), |∇u| =

|∇h0| a.e. in A. It follows that u is the solution of the minimization problem (1.14).
In order to demonstrate the energy expansion stated in Theorem 4, we argue as fol-

lows: by using the pointwise equalities |∇uε|2 = 2∂x1uε×∂x2uε+4|∂z̄uε|2 and |∇uε|2 =
−2∂x1uε × ∂x2uε + 4|∂zuε|2 and the pointwise inequality |∇uε| ≥ |∇hε|, we have

1
2

∫
A

|∇uε|
2 dx ≥ −

∫
Q+ε

∂x1uε × ∂x2uε dx + 2
∫
Q+ε

|∂zuε|
2 dx +

∫
Q−ε

∂x1uε × ∂x2uε dx

+ 2
∫
Q−ε

|∂z̄uε|
2 dx +

1
2

∫
A\(Q+ε ∪Q

−
ε )

|∇hε|
2 dx. (6.4)

Let us estimate the right hand side of (6.4) from below. Introducing σε(x) = max{ρ2
ε (x),

1− ε1/2
}, we have (by (2.3), (2.4))

div
(

1
σε(x)

∇hε

)
=

2
1− ε1/2

{
0 in A \ (Q+ε ∪Q

−
ε ),

∂x1uε × ∂x2uε otherwise.
(6.5)

Integrating (6.5) over Q+, we get, for sufficiently small ε,

2
1− ε1/2

∫
Q+ε

∂x1uε × ∂x2uε dx =

∫
∂�

∂hε

∂ν
ds −

∫
L

∂hε

∂ν

ds

ρ2
ε (x)

=

∫
∂�

uε ×
∂uε

∂τ
ds −

∫
L

uε

|uε|
×
∂

∂τ

uε

|uε|
ds = 2π(q − d),

where we have used Lemmas 8 and 13. Thus, we have∫
Q+ε

∂x1uε × ∂x2uε dx = (1− ε
1/2)π(q − d). (6.6)

Similarly, integrating (6.5) over Q− we obtain∫
Q−ε

∂x1uε × ∂x2uε dx = (1− ε
1/2)π(d − p). (6.7)
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In order to estimate the last term on the right hand side of (6.4), we write it as∫
A\(Q+ε ∪Q

−
ε )

|∇hε|
2 dx =

∫
A\(Q+ε ∪Q

−
ε )

|∇hε −∇h0|
2 dx +

∫
A

(2∇hε −∇h0) · ∇h0 dx

−

∫
Q+ε ∪Q

−
ε

(2∇hε −∇h0) · ∇h0 dx,

and note that by virtue of (6.1), the measure of Q+ε ∪Q
−
ε vanishes as ε→ 0, so that∫

A\(Q+ε ∪Q
−
ε )

|∇hε|
2 dx =

∫
A\(Q+ε ∪Q

−
ε )

|∇hε −∇h0|
2 dx +

∫
A

|∇h0|
2 dx + o(1). (6.8)

Thus (6.6–6.8, 6.4, 6.1) imply Eε(uε)→ E0(u)+ π(|d − p| + |d − q|). ut

As a byproduct of the above proof, by (6.6)–(6.8), (6.4) and (6.1), we get∫
A

(|uε|
2
− 1)2 dx = o(ε2), (6.9)∫

A\(Q+ε ∪Q
−
ε )

|∇hε −∇h0|
2 dx = o(1), (6.10)∫

Q+ε

|∂zuε|
2 dx = o(1),

∫
Q−ε

|∂z̄uε|
2 dx = o(1). (6.11)

6.2. Properties of minimizers of (1.7) for small ε

First, by using (6.9) and the methods from [11] we deduce that ρε converges to 1 uni-
formly on compacts in A. Moreover, we have

Lemma 22. For any µ > 0 we have

sup{dist(y, ∂A); y ∈ A, ρ2
ε (y) < 1− µ} = o(ε). (6.12)

Proof. Assume towards a contradiction that for a sequence εk → 0 and γ > 0 we have
ρ2
εk
(yk) < 1 − µ and dist(yk, ∂A) ≥ γ εk . Due to (2.6), |∇|uεk |

2
| ≤ α/εk in Bλεk (yk),

where 0 < λ < γ and α = α(λ) is independent of εk . It follows that |uεk (x)|
2 <

1− µ+ δα when x ∈ Bδεk (yk) and δ < λ. Then Bδεk (yk) ⊂ A and

1
ε2
k

∫
Bδεk (yk)

(|uεk |
2
− 1)2 dx ≥ π(µ− δα)2δ2 > 0,

as soon as 0 < δ < min{λ,µ/(2α)}. This contradicts (6.9). ut

Important properties of uε and hε, in the vicinity of the boundary ∂A, are established in

Lemma 23. For any 0 < µ < 1 and κ < 1 there are ε̂1(µ), ε̂2(µ, κ) > 0 such that if
ρ2
ε (y) ≤ 1− µ, then

(a) for ε < ε̂1(µ) we have: hε(y) ≥ 1+ µ/4 if dist(y, ∂�) < ε and
hε(y) ≤ hε(∂ω)− µ/4 if dist(y, ∂ω) < ε;
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(b) for ε < ε̂2(µ, κ) we have

1
2

∫
A∩Bε(y)

|∇uε|
2 dx ≥ κπ. (6.13)

Proof. Assume that either (a) or (b) is violated for a sequence εk → 0 and some y = yk
such that ρ2

εk
(yk) ≤ 1 − µ. According to Lemma 22, yk → ∂A. For definiteness we

suppose that yk → ∂�. Then (by Lemma 22)

dist(yk, ∂�) = o(εk). (6.14)

Let uε be extended in ω so that ‖uε‖H 1(�) ≤ C‖uε‖H 1(A) and |uε| ≤ 1 in �, where C
is independent of ε. Extend hε(x) inside the domain ω by hε = hε(∂ω). Following [8]
we rescale uεk and hεk by a conformal map that “moves” yk away from the boundary.
Fix a conformal mapping η from � onto the unit disk B1(0). We introduce the confor-
mal map ζk(z) = (z − η(yk))/(η̄(yk)z − 1) from B1(0) onto itself and set Uk(z) =
uεk (η

−1(ζk(z))), Hk(z) = hεk (η
−1(ζk(z))). It is easy to see that ‖Uk‖H 1(B1(0)) ≤ C and

‖Hk‖H 1(B1(0)) ≤ C with some C independent of k. Therefore, without loss of generality,
we can assume that Uk and Hk converge to limits U and H (respectively) weakly in H 1,
as k→∞.

Arguing as in [8] (Section 4), we can show that Uk → U in C1
loc(B1(0)) and that

1U = 0 in B1(0). Therefore, |U(0)|2 = limk→∞ |Uk(0)|2 = limk→∞ |uεk (yk)|
2
≤

1 − µ. We also have |U | = 1 a.e. on S1. We now show that ∂zU = 0 in B1(0). In-
deed, by the maximum principle, |U | < 1 in B1(0), hence maxBt (0) |Uk(z)|

2 < 1 − ε1/2
k

for any fixed 0 < t < 1 and sufficiently large k. It follows that for such k we have
η−1(ζk(Bt (0))) ⊂ Q+ε . Then, in view of (6.11), we get, by using the conformality of the
maps η−1 and ζk ,∫

Bt (0)
|∂zUk|

2 dx =

∫
η−1(ζk(Bt (0)))

|∂zuεk |
2 dx ≤

∫
Q+ε

|∂zuεk |
2 dx → 0.

This implies that ∂zU = 0 in B1(0).
In order to show (b), we use the pointwise equalities 1

2 |∇U |
2
= −∂x1U × ∂x2U +

2|∂zU |2 and ∂zU = 0 to obtain

1
2

∫
B1(0)
|∇U |2 dx = −

∫
B1(0)

∂x1U × ∂x2U dx = −πdeg(U, S1).

As U 6≡ const, we therefore have 1
2

∫
B1(0)
|∇U |2 dx ≥ π . It follows that there is 0 <

t < 1 such that
1
2

∫
Bt (0)
|∇U |2 dx > κπ. (6.15)

The image ζk(Bt (0)) of the disk Bt (0) is the disk Btk (ξk) with radius tk =
t (1−|η(yk)|2)
1−t2|η(yk)|2

centered at ξk =
η(yk)(1−t2)
1−t2|η(yk)|2

. According to (6.14), tk = o(εk) for k → ∞, hence
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η−1(Btk (ξk)) ⊂ Bεk (yk) ∩ A when k is sufficiently large. Then, by using the confor-
mal invariance and lower semicontinuity of the Dirichlet integral and bound (6.15), we
get ∫

Bεk (yk)∩A

|∇uεk |
2 dx ≥

∫
η−1(ζk(Bt (0)))

|∇uεk |
2 dx

=

∫
Bt (0)
|∇Uk|

2 dx > 2κπ as k→∞.

In order to show that hεk (yk) = Hk(0) > 1 + µ/4 when k → ∞ we note that the
system (2.1) is conformally invariant, i.e.

∇
⊥Hk = (Uk × ∂x1Uk, Uk × ∂x2Uk) in ζ−1

k (η(A)).

Then, bearing in mind the convergence properties of Uk , we find that Hk → H in
C1

loc(B1(0)) and

∇
⊥H = (U × ∂x1U,U × ∂x2U) = −

1
2∇
⊥(|U |2) in B1(0),

where we have used the fact that ∂zU = 0 in B1(0). Since H = |U | = 1 on ∂B1(0) we
have H = 3

2 −
1
2 |U |

2 in B1(0), therefore

lim
k→∞

hεk (yk) = lim
k→∞

Hk(0) = 3
2 −

1
2 |U(0)|

2
≥ 1+ µ/2.

This completes the proof of the lemma. ut

Remark 24. Lemma 23 implies that in the case when p = q = d minimizers of (1.7)
are vortexless for sufficiently small ε. Indeed, by Theorem 4 they H 1-strongly converge,
up to a subsequence, as ε → 0 to a minimizing harmonic map u ∈ J (d)

dd . On the other
hand, (6.13) exhibits the energy concentration property near zeros of minimizers, which
is incompatible with the strong H 1-convergence.

The following result, which describes the structure of the function hε for small ε,
plays a crucial role in the proof of the main technical result (Lemma 27) in Section 7.

Lemma 25. For sufficiently small ε, ε < ε4 (ε4 > 0), we have

(i) ρ2
ε (x) ≥ 1/2 when hε(∂ω) − 1/8 ≤ hε(x) ≤ 9/8 and hε(∂ω) < minL hε(x) ≤

maxL hε(x) < hε(∂�); if ρ2
ε (x) < 1/2, then either

dist(x, ∂�) < dist(L, ∂�) and hε(x) > 9/8,

or
dist(x, ∂ω) < dist(L, ∂ω) and hε(x) < hε(∂ω)− 1/8;

(ii) there exist x∗ε ∈ ∂� and x∗∗ε ∈ ∂ω such that ∂hε
∂ν
(x∗ε ) > 0 and ∂hε

∂ν
(x∗∗ε ) > 0.
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Proof. (i) follows from Lemma 22, Lemma 23 and the convergence properties of hε (as
ε → 0) established in the proof of Theorem 4. To prove (ii) we argue as follows. Let
ε̂2(µ, κ) be the best (biggest) constant in Lemma 23. Then ε̂2(µ, κ) is increasing in µ
and decreasing in κ . For j = 2, 3, . . . set

µ̂ε = 1/j when min
{
ε̂2

(
1

j + 1
,

j

j + 1

)
,

1
j + 1

}
≤ ε < min

{
ε̂2

(
1
j
,
j − 1
j

)
,

1
j

}
(this defines µ̂ε > 0 for all 0 < ε < min{ε̂2(1/2, 1/2), 1/2}). Then µ̂ε → 0 as ε → 0
and (6.13) is satisfied with κ = 1− µ̂ε when ρ2

ε (y) < 1− µ̂ε; the same is true when µ̂ε is
replaced with µε = max{µ̂ε, ε1/2

}. We pick a point x(1)ε inA such that ρ2
ε (x

(1)
ε ) < 1−µε;

then we pick a point x(2)ε in A \ B2ε(x
(1)
ε ) such that ρ2

ε (x
(2)
ε ) < 1 − µε, etc., unless for

some Kε we have ρ2
ε (x) ≥ 1 − µε on A \

⋃Kε
k=1 B2ε(x

(k)
ε ). By the construction of µε,

since the disks Bε(x
(k)
ε ) are disjoint,

1
2

∫
A

|∇uε|2 dx ≥
1
2

Kε∑
1

∫
A∩Bε(x

(k)
ε )

|∇uε|2 dx ≥ Kε(1− µε)π.

Therefore, by (6.1), we have a uniform bound Kε ≤ C. Arguing as in [11, Chapter IV,
Theorem IV.1] we can increase the radii of disks to ελ > 2ε (with λ independent of ε)
and take a subset Iε of {1, . . . , Kε} such that

⋃
k∈Iε

Bελ(x
k
ε ) ⊃

Kε⋃
k=1

B2ε(x
k
ε ) and dist(xk

′

ε , x
k
ε ) > 4ελ for different k, k′ ∈ Iε.

We also have
ρ2
ε (x) ≥ 1− µε in A \

⋃
k∈Iε

Bελ(x
k
ε ).

Assume hε and h0 are extended to the entire R2 by hε = hε(∂ω), h0 = h0(∂ω)

in ω, and hε = h0 = 1 in R2
\ �. Since ρ2

ε (x) ≥ 1 − µε ≥ 1 − ε1/2 in D(k)ε =

B2λε(x
(k)
ε ) \ Bλε(x

(k)
ε ), by (6.10) we have∫

D
(k)
ε

|∇hε|
2 dx ≤ 2

∫
D
(k)
ε

(|∇(hε − h0)|
2
+ |∇h0|

2) dx → 0 as ε→ 0.

Then, writing the integral over D(k)ε in polar coordinates centered at x(k)ε , and using Fu-
bini’s theorem, we can find λ(k)ε , λε ≤ λ(k)ε ≤ 2λε, such that∫

|x−x
(k)
ε |=λ

(k)
ε

|∇hε|
2 dσ = o(1/ε).

Therefore, by the Cauchy–Schwarz inequality,∫
|x−x

(k)
ε |=λ

(k)
ε

|∇hε| ds ≤ (2πλ(k)ε )
1/2
{∫
|x−x

(k)
ε |=λ

(k)
ε

|∇hε|
2 ds

}1/2

= o(1). (6.16)
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We now integrate (2.4) overQ+ \
⋃
k∈Iε

B
λ
(k)
ε
(x
(k)
ε ) using (6.16) and Lemma 13 to obtain∫

0ε

∂hε

∂ν
ds = 2πd +

∑
k∈I ′ε

∫
|x−x

(k)
ε |=λ

(k)
ε

∂hε

∂ν

ds

ρ2
ε

= 2πd − o(1) when ε→ 0.

Here I ′ε denotes the subset of indices k ∈ Iε such that B
λ
(k)
ε
(x
(k)
ε ) ∩Q+ 6= ∅, and 0ε =

∂� \
⋃
k∈I ′ε

B
λ
(k)
ε
(x
(k)
ε ). Therefore, there is x∗ε ∈ 0ε such that ∂hε

∂ν
(x∗ε ) > 0. Similarly, we

can show that on γε = ∂ω \
⋃
k∈Iε\I ′ε

B
λ
(k)
ε
(x
(k)
ε ) there is x∗∗ε such that ∂hε

∂ν
(x∗∗ε ) > 0. ut

7. Inductive proof of Theorem 3

Fix3 > 0 and an integer d > 0 such that3 > I0(d,A), and let æ0 be the greatest integer
such that

I0(d,A)+ πæ0 < 3.

Clearly, æ0 ≥ 0. In this section we show that, for small ε, the infimum in problem (1.7)
is always attained, provided the integers p, q satisfy

æ(p, q) ≤ æ0 and p ≤ d, q ≤ d, (7.1)

where æ(p, q) = |d − q| + |d − p|.

Proposition 26. Given an integer K ≤ æ0, let p ≤ d, q ≤ d be integers such that
æ(p, q) ≤ K . Then, for sufficiently small ε, the infimum in problem (1.7) is always at-
tained and

mε(p, q, d) ≤ mε(l, m, d)+π((l−p)+(m−q)) when p ≤ l ≤ d, q ≤ m ≤ d. (7.2)

Moreover, the inequality in (7.2) is strict unless l = p and m = q.

Proof. The proof is by induction in K . The basis of induction (K = 0) is established in
Section 5 (cf. Lemma 19). The demonstration of the induction step relies on the following
lemma, whose proof is at the end of this section.

Lemma 27. Assume the integers p and q satisfy (7.1), and for ε < ε5, ε5 > 0, there
exists a minimizer uε of problem (1.7) whose GL energy Eε(uε) satisfies (6.1). Then for
any ε < min{ε4, ε5} (where ε4 is as in Lemma 25) there exists vε ∈ Jp(q−1) such that
abdeg(vε) ∈ (d − 1/2, d + 1/2) and

Eε(vε) < mε(p, q, d)+ π. (7.3)

Similarly, in J(p−1)q there exists a testing map (still denoted vε) satisfying (7.3) and such
that abdeg(vε) ∈ (d − 1/2, d + 1/2).
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In view of Lemma 27, to prove the claim of Proposition 26 for K + 1 in place of K , it
suffices to show that mε(p, q − 1, d) is always attained for sufficiently small ε when-
ever p ≤ d, q ≤ d and æ(p, q) = K (the attainability of mε(p − 1, q, d) is proved
analogously). Let u be a weak H 1-limit of the minimizing sequence {u(k)} ⊂ J (d)

p(q−1).
According to Lemma 27, such a minimizing sequence exists. Moreover, this lemma, with
the induction hypothesis, implies

lim sup
k→∞

Eε(u
(k)) < mε(l

′, m′, d)+ π(l′ − p)+ π(m′ − (q − 1)) (7.4)

for any integers l′,m′ satisfying p ≤ l′ ≤ d, q−1 ≤ m′ ≤ d and æ(l′, m′) ≤ K . We know
that abdeg(u) = limk→∞ abdeg(u(k)) ∈ (d − 1/2, d + 1/2) when ε < ε0 (where ε0 =

ε0(3) is as in Proposition 2), hence u is a solution of the GL equation (1.1) (see arguments
in Lemma 19). Therefore, if we write lim infk→∞ Eε(u(k)) ≤ lim supk→∞ Eε(u

(k)) and
apply Lemma 9 and Lemma 18 successively to the left hand side, we find, using (7.4)
with l′ = m′ = d , that for sufficiently small ε,

I0(d,A)−
π

2
+ πæ(l, m)+ π(|l − p| + |m− (q − 1)|) ≤ mε(d, d, d)+ πæ(p, q − 1),

where l = deg(u, ∂ω), m = deg(u, ∂�). Thanks to Lemma 16, mε(d, d, d) ≤ I0(d,A).
Thus

|l− d| + |l−p| ≤ |p− d| + 1/2 and |m− d| + |m− (q − 1)| ≤ |(q − 1)− d| + 1/2.

Since l and m are integers, it follows that p ≤ l ≤ d and q − 1 ≤ m ≤ d . Now, assuming
l 6= p or m 6= q − 1, we use Lemma 9 and (7.4) with l′ = l, m′ = m to obtain

Eε(u)+π(l−p+m−(q−1)) ≤ lim inf
k→∞

Eε(u
(k)) < mε(l, m, d)+π(l−p+m−(q−1)),

i.e. Eε(u)<mε(l, m, d). On the other hand, u∈J (d)
lm , implying that Eε(u)≥mε(l, m, d):

this is a contradiction. Therefore, l = p and m = q − 1; i.e., u is an admissible testing
map in problem (1.7) and thus the infimum mε(p, q − 1, d) is always attained. ut

Proof of Lemma 27. For simplicity we drop the subscript ε. The underlying idea is to
modify the minimizer u of (1.7) in a neighborhood of ∂� as in Proposition 20 (see Sec-
tion 5). In general, u may have zeros now. Thus, the arguments need to be more deli-
cate. Loosely speaking, we construct a testing map v with an additional “vortex” located
“near” x∗, where x∗ is a point on ∂� such that ∂h

∂ν
(x∗) > 0 (cf. Lemma 25).

Step 1: Domain decomposition. Let 1−δ, where δ > 0, be a regular value of h (thanks to
Sard’s lemma this holds for almost all δ). Consider the subdomain of A where h > 1− δ.
There is a (unique) connected component Dδ of this subdomain such that ∂Dδ ⊃ ∂�.
Since h(∂�) = 1 > h(∂ω), when δ is sufficiently small, the boundary of Dδ contains
a connected component 0δ 6= ∂� enclosing ω. According to Lemma 25, if we choose
δ < δ0 (δ0 > 0), then the domain enclosed by 0δ and ∂�will lie away from the contourL;
i.e. 0δ also encloses L. Moreover, if ρ(x) (= |u(x)|) vanishes at a point x in this domain,
then h(x) > 1. Therefore, the minimum of h over the closure of the aforementioned
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domain cannot be attained at any interior point; otherwise, h satisfies div(ρ−2
∇h) = 0

in a neighborhood of that point, which is impossible. In other words, h > 1 − δ in the
domain enclosed by 0δ and ∂�; i.e., this domain coincides with Dδ . Thus, the boundary
of Dδ consists of exactly the two connected components ∂� and 0δ . Also, possibly for a
smaller δ0, the set P = {x ∈ Dδ; h(x) ≥ 1} is independent of δ (recall that δ < δ0 and
1 − δ is a regular value of h). Indeed, consider the set Sδ = {x ∈ A; h(x) > α} ∩ Dδ
(0 < δ < δ0), where α is a regular value of h and 1 < α < 9/8. The set Sδ consists of
a finite number n(δ) of connected components. Since Dδ ⊃ Dδ′ for δ > δ′, the function
n(δ) is nondecreasing, hence n(δ) = limδ′→0 n(δ

′) when 0 < δ < δ0 (for some δ0 > 0)
and Sδ = Sδ′ for δ, δ′ ∈ (0, δ0). It follows that 1 − δ < h < α in Dδ \ Dδ′ when
0 < δ′ < δ < δ0. For such δ and δ′ the function h satisfies div(ρ−2

∇h) = 0 in Dδ \Dδ′
(by Lemma 25), while h < 1 on the boundary of Dδ \ Dδ′ . Thus h < 1 in Dδ \ Dδ′ .
We now see that {x ∈ Dδ; h(x) ≥ 1} = P :=

⋂
δ′<δ0

Dδ′ , when 0 < δ < δ0, as
required.

Thus we have, for δ < δ0,

d ′ :=
1

2π

∫
0δ

∂h

∂ν

ds

ρ2 =
1

2π

∫
0δ

u

|u|
×
∂

∂τ

u

|u|
ds = deg(u, 0δ) > 0

(1− δ = h(0δ) is a regular value of h and h > 1− δ inDδ , while h satisfies div(ρ−2
∇h)

= 0 in Dδ \P , hence ∂h/∂ν > 0 on 0δ) and the integer d ′ is independent of δ. Therefore
u admits the representation u = ρeid

′θ in Gδ = Dδ \ P , where θ : Gδ → R/2πZ is a
smooth function and ρ > 0 in Gδ . Moreover, for every 0 < δ′ ≤ δ such that 1 − δ′ is a
regular value of h we have ∂θ/∂τ > 0 on 0δ′ (∇h = −d ′ρ2

∇
⊥θ and ∂h/∂ν > 0 on 0δ′ )

and the total variation V(θ, 0δ′) of θ on 0δ′ is V(θ, 0δ′) = 2π deg(eiθ , 0δ′) = 2π .
Without loss of generality, we can assume that u(x∗) = 1. Since ∂h

∂ν
(x∗) > 0, we have

|∇h| > 0 in A ∩ G′ for some neighborhood G′ of x∗. We also have ρ > 0 in A ∩G′
(possibly by choosing a smaller G′). Then, since ∇h = −d ′ρ2

∇
⊥θ , the map x 7→ (h, θ)

is a C1-diffeomorphism from A ∩G′ to its image. Clearly, we can assume that A ∩G′ is
a simply connected domain hence we can fix a single-valued branch of θ in A ∩G′ such
that θ(x∗) = 0. Set G′δ := {x ∈ A ∩ G′; 1 − δ < h < 1, θ ∈ (−δ, δ)}. By choosing
δ < δ0 small enough we have G′δ ⊂ G

′. We can also assume, without loss of generality,
that 1− δ is a regular value of h, since by Sard’s lemma 1− δ is a regular value of h for
almost all δ.

Next, we show that θ(x) does not take values from (−δ, δ)+2πZ inGδ \G′δ . Indeed,
choose some δ′ ∈ (0, δ) such that 1 − δ′ is a regular value of h, and consider the simply
connected domain {x ∈ Gδ \ G′δ; 1 − δ < h(x) < 1 − δ′}. Its boundary consists of the
segments 0′δ = 0δ \ (0δ ∩G

′
δ) and 0′

δ′
= 0δ′ \ (0δ′ ∩G

′
δ), and the shortest curves (where

θ = ±δ (mod 2πZ)) connecting 0′δ and 0′
δ′

along opposite faces ofG′δ . There is a single-
valued branch of θ in this domain such that δ ≤ θ ≤ 2π − δ on its boundary (∂θ/∂τ > 0
on 0δ and 0δ′ , and V(θ, 0δ) = V(θ, 0δ′) = 2π ). Since θ satisfies div(ρ2

∇θ) = 0 we
have δ ≤ θ ≤ 2π − δ everywhere in the domain by the maximum principle. By assuming
δ′ → 0 we get δ ≤ θ ≤ 2π − δ in Gδ \G′δ . Therefore, G′δ can be equivalently described
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Fig. 1. Domain decomposition.

as

x ∈ G′δ ⇔ x ∈ Gδ, 1− δ < h(x) < 1, θ(x) ∈ (−δ, δ)+ 2πZ. (7.5)

Thus we have A = G′δ ∪G
′′
δ ∪ (A \Gδ) (see Fig. 1), where G′′δ = Gδ \G

′
δ .

Step 2: Construction of the testing map. We construct the testing map v, which will have
the form

v =

{
u in A \Gδ,
ρwt in Gδ,

(7.6)

with wt = wt (h(x), θ(x)) is unknown for the moment. We impose the following bound-
ary conditions on ∂Gδ:

wt = e
id ′θ e

−iθ
− (1− tϕ(θ))

e−iθ (1− tϕ(θ))− 1
on ∂Gδ \ 0δ, (7.7)

wt = e
id ′θ on 0δ, (7.8)

where 0 ≤ ϕ ≤ 1 is a smooth 2π -periodic cut-off function such that ϕ(θ) = 1 when
θ ∈ (−δ/2, δ/2) + 2πZ and ϕ(θ) = 0 if θ 6∈ (−δ, δ) + 2πZ. Let wt = wt (h, θ) be a
smooth 2π -periodic (in θ ) map, defined in the strip 1 − δ ≤ h ≤ 1, which satisfies (7.7)
and (7.8), when h = 1 and h = 1 − δ, respectively. Then (7.6) defines a family of maps
v ∈ H 1(A;R2) for 0 < t < 1 such that |v| = 1 on ∂A and

deg(v, ∂�) = q − 1, deg(v, ∂ω) = p. (7.9)

We expand the right hand side of (7.7) into a series to get

eid
′θ e

−iθ
− (1− tϕ(θ))

e−iθ (1− tϕ(θ))− 1
= (1− tb−1(t))e

id ′θ
+ t

∑
k 6=−1

bk(t)e
−i(k−d ′+1)θ . (7.10)

We next set

wt (h, θ) = (1− tb−1(t)f−1(h))e
id ′θ
+ t

∑
k 6=−1

bk(t)fk(h)e
−i(k−d ′+1)θ , (7.11)
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where the functions fk are defined by (5.20) with k± = ±(1/d ′)
√
(k−d ′+1)2+λ−d ′2.

The positive parameters t < 1 and λ ≥ 2d ′2 are to be specified below. The coefficients
bk(t) have the following property:

|bk(t)− ck(t)| ≤ C(1+ |k|)−n, ∀n > 0, (7.12)

where C = C(n) is independent of t , ck = (t−2)(1− t)k for k ≥ 0, c−1 = 1, and ck = 0
for k < −1. The estimate (7.12) is obtained, in a standard way, by comparing the Fourier
coefficients in (7.10) with those of eid

′θ (e−iθ − (1− t))/(e−iθ (1− t)− 1).

Step 3: Verification of (7.3). Thanks to Lemma 21, we have (since |wt | = 1 on ∂Gδ due
to (7.7, 7.8))

Eε(v) = Eε(u)+ L
(d ′)
ε (wt ,Gδ)

where the functional L(d
′)

ε (w) is defined as in (5.8). We now show that, for sufficiently
small t ,

L(d
′)

ε (wt ,Gδ) < π. (7.13)

To this end, as in the proof of Proposition 20, we consider the quadratic functional

M ′λ(wt ) =
1
2

∫
Gδ

(d ′
2
|∂hwt |

2
+ |∂θwt |

2
+ λ|wt − e

iθ
|
2
− d ′

2
|wt |

2)ρ2
|∇θ |2 dx. (7.14)

(One can actually show that wt minimizes (7.14) under the boundary conditions (7.7,
7.8).) Since ∇h = −d ′ρ2

∇
⊥θ in Gδ and ρ ≤ 1 in A, we have∫

Gδ

ρ2
|∇wt |

2 dx ≤

∫
Gδ

(d ′
2
|∂hwt |

2
+ |∂θwt |

2)ρ2
|∇θ |2 dx. (7.15)

Moreover, if we put

λ = max
{

9
2ε2 min

G′δ
|∇θ |2

, 2d ′2
}
,

then, under the additional assumption that |wt | ≤ 2 in G′δ , the pointwise inequality
2ε2λ|wt − e

iθ
|
2
|∇θ |2 ≥ ρ2(|wt |

2
− 1)2 holds in G′δ (see the proof of Proposition 20).

Thus,

L(d
′)

ε (wt ,Gδ) ≤ M
′
λ(wt )+

1
4ε2

∫
G′′δ

ρ4(|wt |
2
− 1)2 dx. (7.16)

To obtain (7.13) we first note that

M ′λ(wt ) =
t2π

d ′

∞∑
k=−∞

|bk(t)|
28′k(fk), (7.17)

where the functional 8′k is defined just as 8k in (5.19) with d ′ in place of d. While
the representation (7.17) is analogous to (5.18), its justification is different because ∇h
vanishes at least at some points of the boundary of Gδ (and possibly somewhere in G′′δ ).
We rely on the following lemma, which directly implies (7.17).
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Lemma 28. Let f, g ∈ C1([1− δ, 1];C). Then for all integers n,m,

∫
Gδ

f (h)einθ g(h)eimθ ρ2
|∇θ |2 dx =


0 if n 6= m,
2π
d ′

∫ 1

1−δ
f (s)ḡ(s) ds if n = m.

Proof. By virtue of the pointwise equalities ∇h · ∇θ = 0 and div(ρ2
∇θ) = 0 in Gδ , for

any regular values α, β of h such that 1− δ ≤ α < β ≤ 1 and any integer n 6= m,∫
α<h<β

f einθ geimθ ρ2
|∇θ |2 dx =

−i

n−m

∫
α<h<β

∇θ · ∇ei(n−m)θf ḡρ2 dx

=
i

n−m

∫
α<h<β

div(ρ2
∇θ)f ḡei(n−m)θ dx

+
i

n−m

∫
α<h<β

∇θ · ∇h(f ′ḡ + f ḡ′)ei(n−m)θρ2 dx = 0, (7.18)

where all the integrals are over subsets of Gδ . If n = m we set F(h) =
∫ r
α
f (s)ḡ(s) ds.

Then, since |∇h| = d ′ρ2
|∇θ |, we have∫

α<h<β

f (h)ḡ(h)ρ2
|∇θ |2 dx =

1

d ′2

∫
α<h<β

∇(F (h)) · ∇h
dx

ρ2

=
1

d ′2
F(β)

∫
h=β

∂h

∂ν

ds

ρ2 −
1

d ′2

∫
α<h<β

div
(

1
ρ2∇h

)
F(h) dx

=
2π
d ′

∫ β

α

f (s)ḡ(s) ds. (7.19)

Here we have also used the fact that div(ρ−2
∇h) = 0 in Gδ . The statement of the lemma

is then obtained by passing to the limits α→ 1− δ and β → 1 in (7.18, 7.19). ut

Using (7.12) in (7.17), we compute

M ′λ(wt ) =
t2π

d ′

∞∑
k=−∞

|ck(t)|
28′k(fk)+O(t

2) = π((1− t)2 − 1)2
∞∑
k=0

k(1− t)2k

+ 2πt2(λ− d ′2)
∞∑
k=1

(1− t)2k

k
+O(t2) = π − 2πt + o(t). (7.20)

Simple but tedious computations also show that

wt = e
id ′θ

+ t (t−2)e(1−d
′)((h−1)/d ′−iθ)

∞∑
k=1

((1−t)e(h−1)/d ′−iθ )k
(

1+
λ− (d ′)2

2kd ′
(h−1)

)
+O(t)

= eid
′θ
+ t (t − 2)e(1−d

′)((h−1)/d ′−iθ)/(1− (1− t)e(h−1)/d ′−iθ )+O(t),
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uniformly in θ and h ∈ (1− δ, 1). Here we have used (7.11), (7.12) and the explicit form
of the functions fk . This yields

|wt − e
id ′θ
| ≤ Ct when θ 6∈ (−α, α)+ 2πZ, (7.21)

for any 0 < α < 2π , where C is independent of t . From (7.21), we see that the second
term in (7.16) is of order O(t2) as t → 0. Combined with (7.20) this proves (7.13).

Final step. The bound (7.16) is established under the assumption that |wt | ≤ 2 in
G′′δ . Note that this inequality can always be achieved by replacing wt with w̃t :=
wt min{1, 2/|wt |}. This change increases neither the first term in (7.16) nor the second
one. Thus, in order to complete the proof of the lemma, we need to show only that the
map v defined by (7.6) satisfies d − 1/2 ≤ abdeg(v) ≤ d + 1/2 when t is chosen suffi-
ciently small. Indeed, due to (7.21),wt weaklyH 1-converges to eid

′θ . Therefore the norm
‖u−v‖L2(A) tends to 0 when t → 0. Then, according to Lemma 10, for small t , abdeg(v)
is close to abdeg(u), while d − 1/2 < abdeg(u) < d + 1/2 and we are done. ut
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[11] Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Birkhäuser (1994)
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