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Abstract. Floor diagrams are a class of weighted oriented graphs introduced by E. Brugallé and
the second author. Tropical geometry arguments lead to combinatorial descriptions of (ordinary
and relative) Gromov–Witten invariants of projective spaces in terms of floor diagrams and their
generalizations. In a number of cases, these descriptions can be used to obtain explicit (direct or re-
cursive) formulas for the corresponding enumerative invariants. In particular, we use this approach
to enumerate rational curves of given degree passing through a collection of points on the complex
plane and having maximal tangency to a given line. Another application of the combinatorial ap-
proach is a proof of a conjecture by P. Di Francesco–C. Itzykson and L. Göttsche that in the case
of a fixed cogenus, the number of plane curves of degree d passing through suitably many generic
points is given by a polynomial in d, assuming that d is sufficiently large. Furthermore, the proof
provides a method for computing these “node polynomials”.

A labeled floor diagram is obtained by labeling the vertices of a floor diagram by the integers
1, . . . , d in a manner compatible with the orientation. We show that labeled floor diagrams of genus
0 are equinumerous to labeled trees, and therefore counted by the celebrated Cayley formula. The
corresponding bijections lead to interpretations of the Kontsevich numbers (the genus-0 Gromov–
Witten invariants of the projective plane) in terms of certain statistics on trees.
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Introduction

The primary purpose of this paper is to advertise a general paradigm for solving a large
class of problems of classical enumerative geometry. Although the main ingredients of the
approach described herein have already appeared in the literature, a coherent presentation,
complete with new convincing applications, has been lacking. Our goal is to fill the gap,
and in doing so win over a few converts.

A typical problem of enumerative geometry asks for the number of geometric objects,
say complex algebraic varieties of specified kind, which satisfy a number of incidence or
tangency constraints. In many cases (admittedly subject to limitations, both technical and
intrinsic), one can reduce such a problem to its tropical counterpart, that is, to the problem
of weighted enumeration of certain polyhedral complexes known as tropical varieties.
This reduction constitutes the first phase of a solution.

The goal of the second phase, which can be called discretization, is to replace piece-
wise-linear objects of tropical geometry by purely combinatorial ones. If this is done
successfully, one obtains a manifestly positive combinatorial rule (similar in spirit to the
various Littlewood–Richardson-type rules in Schubert Calculus) that identifies the answer
to the original geometric problem as the number of combinatorial objects of a particular,
complicated but explicit, kind.

The third and final phase is one of purely combinatorial enumeration of the relevant
discrete objects. Ideally, albeit seldom, it yields a formula for the numbers in question, or
some associated generating function. Otherwise, a recursion would do, or else an equation
(algebraic, differential, or functional) for the generating function. At the very least, one
would like to relate the objects to be enumerated to some more familiar combinatorial
gadgets, placing the problem within a well developed context.

In this paper, we discuss this approach as it applies to the problem of enumerating
plane complex algebraic curves with given properties, or more precisely, the problem
of computing the Gromov–Witten invariants, both ordinary and relative, of the complex
projective plane P2. Recall that the Gromov–Witten invariant Nd,g is the number of irre-
ducible curves of degree d and genus g passing through a fixed generic configuration of
3d + g − 1 points on P2. A more general relative Gromov–Witten invariant Nd,g(λ, ρ)
is the number of such curves which, besides passing through appropriately many generic
points, satisfy tangency conditions with respect to a given line L. The two integer parti-
tions λ and ρ describe the degrees of tangency at two generic collections of points on L;
the points in the first collection are fixed while those in the second one are allowed to vary
along L.

The tropical reduction for the problem of computing the Gromov–Witten invariants
Nd,g (resp., Nd,g(λ, ρ)) is accomplished by means of the correspondence theorem estab-
lished in [27] (resp., [29]); see Theorem 3.8 (resp., Theorem 3.12). Even though this is the
most substantial step among the three required for a solution, we discuss it in less detail
as the topic is already well covered in the existing literature.

For the problem of computing the invariants Nd,g , the discretization reduction has
recently been given by E. Brugallé and the second author [8] (see also an excellent ex-
position [7], in French), by establishing a bijection between the tropical curves in ques-
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tion and certain markings (“decorations”) of a particular kind of weighted acyclic graphs
called floor diagrams; see Theorem 3.7. This result extends to the relative setting as well;
see Theorem 3.17.

Apart from a review of the aforementioned results, the bulk of this paper is dedi-
cated to the “third phase” of combinatorial enumeration, as it applies to the problem at
hand. Even though the general problem of (weighted) enumeration of marked floor dia-
grams appears too unwieldy to allow for an explicit solution, the latter can be achieved
in a number of particular instances. In Theorem 4.10, we enumerate irreducible rational
curves of given degree passing through a collection of points on the complex plane and
having maximal tangency to a given line; the point of tangency can be either prescribed or
left unspecified. We also compute the relative Gromov–Witten invariants associated with
nonsingular or uninodal curves (Corollaries 4.4 and 4.5), and with curves passing through
a triple of collinear points (Corollary 4.7).

If the number of nodes δ = (d − 1)(d − 2)/2 − g is fixed while d varies, determin-
ing Nd,g as a function of d is a classical problem with venerable history; see Section 5
and references therein. In 1994, P. Di Francesco and C. Itzykson hypothesized [14] that,
for δ fixed and d sufficiently large, the Gromov–Witten invariant Nd,g (or equivalently
the corresponding Severi degree) is a polynomial in d (necessarily of degree 2δ). A more
explicit version of this conjecture was proposed by L. Göttsche [19]. The cases δ ≤ 6
of Göttsche’s conjecture were established by I. Vainsencher [41]; then S. Kleiman and
R. Piene [22] extended these results to δ ≤ 8. In Section 5, we give a proof of this con-
jecture based on the combinatorial rule of Theorem 1.6. (Alternative proofs have been
proposed in unpublished preprints by Y. Choi [13], A.-K. Liu [26], and Y.-J. Tzeng [40].)
We stress that our proof does not merely establish polynomiality of Severi degrees: it pro-
vides a method for computing those “node polynomials” explicitly and directly, without
resorting to interpolation. Our method has been implemented, with a few improvements,
by F. Block [6], who computed the node polynomials for all δ ≤ 13.

We reformulate the rule given in [8] in the language of labeled floor diagrams ob-
tained by labeling the vertices of a floor diagram of degree d by the integers 1, . . . , d in a
manner compatible with orientation. This point of view, applied consistently throughout
the paper, is not merely a matter of language or convenience. In Theorem 6.1, we show
that labeled floor diagrams of degree d and genus g = 0 are equinumerous to labeled trees
on d vertices, and hence counted by the celebrated Cayley formula. The corresponding
bijections between labeled floor diagrams and trees yield interpretations of the numbers
Nd,0 in terms of certain statistics on trees.

Two well known recursive formulas for the Gromov–Witten invariants of the projec-
tive plane are due to M. Kontsevich [23] (for Nd,0) and to L. Caporaso and J. Harris [10]
(for Nd,g(λ, ρ)), respectively; see Section 7.3. Each of these formulas can in principle
be obtained directly from the corresponding combinatorial rule (Theorem 1.6 and The-
orem 3.18, respectively). While the derivation of the Caporaso–Harris recursion is rela-
tively straightforward (see [2, 7]), deducing Kontsevich’s formula (7.2) seems to require
substantial technical effort aimed at replicating the original argument of Kontsevich in a
purely combinatorial setting.
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The paper by Caporaso and Harris contains two recursive formulas: the recursion
[10, Theorem 1.1] for the number of all (not necessarily irreducible) curves with given
properties, and another recursion in [10, Section 1.4] for the relative Gromov–Witten
numbers Nd,g(λ, ρ). The first recursion does not lead to a manifestly positive rule for the
numbersNd,g(λ, ρ) as it has to be followed by an involved inclusion-exclusion procedure
to restrict the count to irreducible curves. The second recursion can in principle be used
to obtain a positive rule, albeit an exceedingly cumbersome one.

The paper is organized as follows. Section 1 introduces labeled floor diagrams, and
culminates in a reformulation of the main result of [8] (see Theorem 1.6) in this language.
Section 2 reviews the basics of plane tropical curves. Section 3 discusses various versions
of the correspondence theorems, both geometric and combinatorial. Applications to com-
putation of relative Gromov–Witten invariants are presented in Section 4. The proof of the
polynomiality conjecture of Di Francesco–Itzykson and Göttsche is given in Section 5.
Section 6 is devoted to enumeration of labeled floor diagrams and related objects. In Sec-
tion 7, we formulate a number of conjectures and open problems. In Section 8, we briefly
discuss the related problem of determining the Welschinger invariants for real plane al-
gebraic curves.

In order to make the text accessible to both algebraic geometers and enumerative com-
binatorialists, we tried to make it as self-contained as possible, and in particular introduce
the basic relevant background without referring to outside sources.

1. Labeled floor diagrams and their markings

1.1. Preliminaries on floor diagrams

We use standard combinatorial terminology; see, e.g., [24, 37, 38].

Definition 1.1 (Labeled floor diagram and its multiplicity). Let d > 0 and g ≥ 0 be
integers. A (connected) labeled floor diagram D of degree d and genus g is a connected
oriented graph G = (V ,E) on a linearly ordered d-element vertex set V together with a
weight function w : E→ Z>0 such that the following conditions are satisfied:

• (Genus) The edge set E consists of d + g − 1 edges. Equivalently, the first Betti
number of G is equal to g, assuming that G is stripped of orientation and viewed as a
topological space (a 1-dimensional simplicial complex).
• (Compatibility with linear ordering on V ) Each edge in E is directed from a vertex u

to a vertex v > u. Thus G is acyclic, and in particular has no loops. Multiple edges are
allowed.
• (Divergence) For each vertex v ∈ V , we have

div(v) :=
∑
v

e
−→◦

w(e)−
∑
◦

e
−→v

w(e) ≤ 1, (1.1)

where the first sum (respectively, the second one) is over all edges e directed away
from v (respectively, towards v).



Labeled floor diagrams for plane curves 1457

The number
µ(D) = µC(D) =

∏
e∈E

(w(e))2 (1.2)

is called the (complex) multiplicity of a labeled floor diagram D.

Remark 1.2. An (unlabeled) floor diagram, introduced in [8] (in a more general setting
of curves in CPn), is essentially a labeled floor diagram considered up to an isomorphism
of weighted oriented graphs. There are also other discrepancies with the setup in [8],
but they can be viewed as a matter of convention. In this paper, we work exclusively with
labeled floor diagrams. In our opinion, this approach is more natural from a combinatorial
perspective.

All labeled floor diagrams with ≤ 4 vertices are listed in Appendix A. Each vertex set
is ordered left to right; each edge is oriented towards the right.

Example 1.3. An example of a labeled floor diagram D is shown below:

g g g g2- j

*
- (1.3)

This labeled floor diagram has degree d = 4 and genus g = 1. It has d = 4 vertices,
d + g − 1 = 4 edges, vertex divergencies div(v) equal to 1, 1, 0,−2, respectively, and
multiplicity µ(D) = 4.

Definition 1.4 (Marking of a labeled floor diagram). LetD be a labeled floor diagram of
degree d and genus g, as in Definition 1.1. A marking ofD is a “combinatorial decoration”
of D obtained by the following procedure. (We will illustrate the steps of this procedure
using the diagram from Example 1.3.)

Step 1. For each vertex v ∈ V , introduce 1− div(v) (cf. (1.1)) new distinct vertices,
and connect v with each of them by a single edge directed away from v:

g g g g2- j

*
-

@
@
@@R w @

@
HHHH

PPPPPP
@R
HHj
PPPqw w w

Step 2. Split each original edge e ∈ E in two, by inserting an extra vertex in the
middle of e; the resulting two edges inherit e’s orientation and weight:

g g g g2 2- -
j

*

*

j
- -w ww w
@
@
@@R w @

@
HH

HH

PPPPPP
@R
HHj
PPPqw w w

Let G̃ = (Ṽ , Ẽ) denote the acyclic directed graph obtained after Steps 1–2. It is easy to
see that G̃ has 3d + g − 1 vertices and 3d + 2g − 2 edges.

Step 3. Extend the linear ordering on V to Ṽ so that, as before, each edge in Ẽ is
directed from a smaller to a larger vertex:
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22
g g g gw w w w w ww w- - - j

*
- - - -

* j
q

The resulting object D̃ is called a marked floor diagram, or a marking of the original
labeled floor diagram D. Thus D̃ is a directed graph G̃ = (Ṽ , Ẽ) as above, together with
a linear order on Ṽ that extends the linear order on V . More precisely, we consider D̃ up
to an automorphism that fixes V , so that linear orderings on Ṽ which produce isomorphic
weighted directed graphs are viewed as the same marking of D.

The number of markings of D is denoted by ν(D).

Example 1.5. In our running example (see (1.3)), we have ν(D) = 6. These six markings
can be obtained from the diagram in (1.4) by relocating the right endpoint of the edge
connecting the 6th vertex (counting from the left) to the 10th vertex to any of the five
alternative positions.

Note that switching the 4th and 5th vertices does not change the marking since it
produces an isomorphic object.

For many more examples, see Appendix A.
Since the vertex set Ṽ is linearly ordered, it is convenient to identify it with {1, . . . ,

3d + g − 1}. (This also takes care of the isomorphism issue.) Also, we do not have to
indicate the orientation of the edges once the ordering of vertices has been fixed. So for
example the marked floor diagram D̃ above can just as well be drawn without the arrows:

22
g g g gw w w w w ww w (1.4)

We note that even though the underlying graph G̃ of a marked floor diagram D̃ is
naturally a Hasse diagram of a partially ordered set, it would be incorrect to define the
markings of D simply as linear extensions of this poset because such a definition would
ignore the condition of compatibility of a linear extension with the original linear order
on V .

1.2. Combinatorial rules for Gromov–Witten invariants and Severi degrees

The following result can be seen to be a restatement, in the language introduced above,
of the first claim in [8, Theorem 1].

Theorem 1.6. The Gromov–Witten invariant Nd,g is equal to

Nd,g =
∑
D
µ(D)ν(D), (1.5)

the sum over all labeled floor diagrams D of degree d and genus g.

To rephrase, the number Nd,g is obtained by enumerating marked floor diagrams D̃ of
degree d and genus g, each taken with its multiplicity µ(D̃) = µ(D).
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The origins of Theorem 1.6 lie in the realm of tropical geometry. They are discussed in
Section 3.1, following a review of the relevant background on tropical curves in Section 2.

Example 1.7. The values of µ(D) and ν(D) for all diagrams D with d ≤ 4 are listed in
Appendix A. The formula (1.5) then gives:

N1,0 = 1 · 1 = 1 (unique line through two generic points in C2),
N2,0 = 1 · 1 = 1 (unique conic through five generic points in C2),
N3,0 = 1 · 5+ 4 · 1+ 1 · 3 = 12 (rational cubics through eight generic points in C2),
N4,0 = 1 · 40+ 4 · 8+ · · · + 1 · 15 = 620 (rational quartics, 11 generic points in C2),
N3,1 = 1 · 1 = 1 (unique cubic through nine generic points in C2),
N4,1 = 1 · 26+ 4 · 4+ · · · + 1 · 6 = 225 (elliptic quartics, 12 generic points in C2),
N4,2 = 1 · 3+ 1 · 5+ · · · + 4 · 2 = 27 (genus 2 quartics, 13 generic points in C2),
N4,3 = 1 · 1 = 1 (unique quartic through 14 generic points in C2).

Several approaches have been suggested to the computation of the Gromov–Witten
numbers Nd,g , most notably the Caporaso–Harris recursive algorithm [10]; see also [15,
19, 22, 41, 42]. The values Nd,g for small d and g have been tabulated many times over
(see ibid.); we do it again in Figure 1.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Nd,0 1 1 12 620 87304 26312976
Nd,1 0 0 1 225 87192 57435240
Nd,2 0 0 0 27 36855 58444767
Nd,3 0 0 0 1 7915 34435125
Nd,4 0 0 0 0 882 12587820
Nd,5 0 0 0 0 48 2931600
Nd,6 0 0 0 0 1 437517

Fig. 1. Gromov–Witten invariants Nd,g for d ≤ 6 and g ≤ 6.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Nd,0 1 1 1 1 1 1
Nd,1 0 3 12 27 48 75
Nd,2 0 0 21 225 882 2370
Nd,3 0 0 15 675 7915 41310
Nd,4 0 0 0 666 36975 437517
Nd,5 0 0 0 378 90027 2931831
Nd,6 0 0 0 105 109781 12597900

Fig. 2. Severi degrees Nd,δ for d ≤ 6 and δ ≤ 6. The numbers in italics include reducible curves.

Closely related to the numbers Nd,g are the Severi degrees Nd,δ , defined as follows:
Nd,δ is the number of (possibly reducible) degree d plane curves which have δ nodes
and pass through a generic configuration of d(d + 3)/2− δ points on the plane. Figure 2
shows the values Nd,δ for small d and δ.
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For an irreducible plane curve of degree d, genus g, and δ double points, we have

δ + g = (d − 1)(d − 2)/2;

for this reason, the number of nodes δ is called the cogenus of a curve (be it irreducible or
not). It follows from Bezout’s theorem that a degree d nodal curve of cogenus δ ≤ d − 2
must be irreducible; hence

Nd,δ
= Nd,(d−1)(d−2)/2−δ for d ≥ δ + 2. (1.6)

More generally, the Severi degrees can be recovered from the Gromov–Witten numbers
by the following well known (and easy to justify) procedure. Fix a finite set M of cardi-
nality d(d + 3)/2 − δ; we can think of M as an indexing set for a point configuration.
Split M into an unordered disjoint union of subsets M =

⋃
j Mj ; each such choice of

a splitting corresponds to a distribution of the points in a configuration among the irre-
ducible components of a curve. Then pick integers dj > 0 (to serve as degrees of those
components) and δj ≥ 0 (their cogenera) so that the following natural conditions are
satisfied: ∑

j

dj = d, (1.7)∑
j

δj +
∑
{j,j ′}

dj dj ′ = δ (1.8)

(the second sum is over unordered pairs of distinct indices j and j ′),

each Mj has cardinality |Mj | = dj (dj + 3)/2− δj . (1.9)

Using the notation gj = (dj − 1)(dj − 2)/2− δj , we then have

Nd,δ
=

∑
M=

⋃
Mj

∑
(dj ,δj )

∏
j

Ndj ,gj , (1.10)

the sum over all unordered splittingsM =
⋃
Mj and all choices of dj ’s and δj ’s satisfying

(1.7)–(1.9).

Example 1.8 (The Number of the Beast). The number of 4-nodal plane quartics through
ten generic points isN4,4

= 666, computed as follows. Direct inspection shows that there
are precisely two kinds of splittings of a 10-element set M that work for d = δ = 4:

• M=M1∪M2 with |M1|=2, d1=1, δ1=0, g1=0, |M2|=8, d2=3, δ2=1, g2=0
(a line through two points and a rational cubic through eight points);
• M=M1 ∪M2 with |M1| = |M2| = 5, d1 = d2 = 2, δ1 = δ2 = 0, g1 = g2 = 0

(two conics, each passing through five points in a configuration).

This yields N4,4
=
(10

2

)
N1,0N3,0 +

1
2

(10
5

)
N2

2,0 = 45 · 1 · 12+ 1
2 · 252 · 12

= 666.
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Combining formula (1.10) with Theorem 1.6, we obtain the following combinatorial
rule.

Corollary 1.9. The Severi degree Nd,δ is equal to

Nd,δ
=

∑
M=

⋃
Mj

∑
(dj ,δj ,Dj )

∏
j

µ(Dj )ν(Dj ), (1.11)

the sum over all unordered splittings M =
⋃
Mj of the set {1, . . . , d(d + 3)/2 − δ}, all

choices of integers dj > 0 and δj ≥ 0 satisfying (1.7)–(1.9), and all collections of labeled
floor diagrams Dj , each of respective degree dj and genus gj = (dj − 1)(dj − 2)/2− δj ,
and supported on the vertex set Mj .

To rephrase, the combinatorial rule for Severi degrees is the same as for the Gromov–
Witten numbers Nd,g except that one needs to drop the condition that the labeled floor
diagrams involved be connected.

2. Tropical curves

Let us review the basic notions of tropical curves, both abstract and parametrized; see [21,
27, 28] for further details.

Throughout this section, C̄ is a topological space homeomorphic to a compact one-
dimensional cell complex, i.e., a finite graph. We will assume that the underlying graph
of C̄ has no loops, no vertices of degree 2, and at least one vertex of degree ≥ 3 in each
connected component.

Definition 2.1 (Valencies). A small neighborhood of a point c ∈ C̄ is homeomorphic to
a union of k distinct rays in an affine space emanating from the same origin. We call k
the valency of c; accordingly, c is called k-valent. All but finitely many points in C̄ are
2-valent. Let C denote the subset of C̄ obtained by removing all the (finitely many) points
of valency 1 (the univalent vertices).

Definition 2.2 (Tropical curves). A tropical structure on C is an inner complete metric
on C. It can be described by specifying the lengths of all the edges of the underlying
graph; these lengths are +∞ for the edges incident to the removed univalent vertices
(the unbounded edges), and are positive real numbers for the remaining (bounded) edges.
A space C as above endowed with a tropical structure is called a (nonparametrized, or
abstract) tropical curve. Such a tropical curve is irreducible if C is connected. We call the
first Betti number of C the genus of the tropical curve.

Example 2.3. Figure 3(a) shows a graph C̄ with 12 univalent and 12 trivalent vertices,
and with 12 bounded and 12 unbounded edges. Figure 3(b) shows an irreducible tropical
curve of genus g = 1 obtained from C̄ by removing the univalent vertices and assigning
the lengths `1, . . . , `12 to its bounded edges.
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(a)

a a a
a a a a a
a a a a a a

a a a a a a a
a a a

(b)

a
a a a
a a a a

a a a a

`1
`2

`3
`4

`5

`6
`7

`8

`9

`10
`11 `12

Fig. 3. A graph and a related tropical curve.

Definition 2.4 (Tropical morphisms and plane tropical curves). A map h : C → Rn is
called a tropical morphism if it satisfies the following properties:

• h is affine along each edge e in C. To be precise, let a ∈ C be an endpoint of e (thus
a is not univalent); then there is a vector 1a(e)∈Rn such that the restriction of h to e
is given by

h(c) = h(a)+ `(a, c)1a(e);

here `(a, c) denotes the length of the segment [a, c] of the edge e.
• the vectors 1a(e) have integer coordinates;
• for a fixed vertex a, the vectors 1a(e) satisfy the balancing condition (cf. [28])∑

e

1a(e) = 0, (2.1)

where the sum is taken over all edges e adjacent to a.

From now on we focus on the case n= 2. A morphism from a tropical curve C to R2 is
called a (parametrized) plane tropical curve, or a tropical curve in R2.

Such a curve assigns positive integer weights to the edges in C, as follows. The weight
w(e) of an edge e is the greatest common divisor of the coordinates of the integer vec-
tor 1a(e). In view of (2.2) below, this does not depend on the choice of a.

The sets h(C) ⊂ R2 obtained as the images of tropical morphisms were originally
introduced by Aharony, Hanany, and Kol [1] under the name of (p, q)-webs.

Example 2.5 (cf. Example 2.3). Figure 4 shows the image of a particular morphism
(a plane tropical curve) h : C → R2 where C is the tropical curve from Figure 3. The
weights of all edges are 1 except for one edge of weight 2 (the edge whose length is `10).
The integer vectors1a(e) can be read off from the picture as follows:1a(e) isw(e) times
the primitive vector of the segment or ray representing e, pointing away from the image
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�
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�
�
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�
�
�
�
�

��

@
@

@
@

@@

�
�

��

2

Fig. 4. The image of a plane tropical curve.

of a. Thus in this example, the values taken by1a(e) are (0,±1), (±1, 0), (±1,±1), and
(0,±2).

If e is a bounded edge, i.e., an edge connecting two vertices a and b in C, then

1a(e)+1b(e) = 0. (2.2)

If e is unbounded, then it has a unique endpoint a ∈ C; consequently, the notation1(e) =
1a(e) is unambiguous. LetE◦ denote the set of all unbounded edges. It follows from (2.1)
and (2.2) that ∑

e∈E◦

1(e) = 0.

Definition 2.6 (Degree of a plane tropical curve). For a vector v=(p, q) ∈ Z2, set

〈v〉 = max(p, q, 0).

The (projective) degree of a plane tropical curve h : C → R2 is defined by

degh =
∑
e∈E◦

〈1(e)〉. (2.3)

Thus the degree depends on the map h—unlike the genus, which only depends on the
curve C.

To illustrate, the plane curve in Example 2.5 has degree d = 4.

Remark 2.7. For all curves h to be considered in this paper (say of degree d), the col-
lection of vectors {1(e)}e∈E◦ consists of d copies of each of the three vectors (−1, 0),
(0,−1), and (1, 1), so that formula (2.3) yields degh = d .



1464 Sergey Fomin, Grigory Mikhalkin

3. The combinatorial correspondence theorems

3.1. Combinatorial rule for the ordinary Gromov–Witten invariants

The correspondence theorem of Tropical Geometry [27] reduces the problems of counting
plane complex curves with prescribed properties to the appropriate tropical versions of the
same problems, that is, to (weighted) enumeration of certain plane tropical curves. In this
section, we describe a setting that leads to a bijection between such tropical curves and
some purely combinatorial objects, namely marked floor diagrams of Section 1. Combin-
ing the two constructions, we then obtain a “combinatorial correspondence theorem” that
allows one to answer questions in enumerative geometry of the complex plane in direct
combinatorial terms.

Definition 3.1 (Elevators). Let h : C → R2 be a plane tropical curve. An edge e in C
(either bounded or unbounded) is called an elevator of h if the image h(e) ⊂ R2 is
vertical, i.e., if the vector(s) 1a(e) are nonzero and parallel to (0, 1). The two possible
orientations of an elevator e are naturally called up and down.

Definition 3.2 (Floor diagram of a plane tropical curve). A floor of a plane tropical
curve h : C → R2 is a connected component (inC) of the union of all edges which are not
elevators. The floor diagram of h is an oriented weighted graphD(h) obtained from C by
removing (the interiors of) all unbounded edges, collapsing each floor to a single vertex,
orienting all remaining edges (which correspond to bounded elevators) downwards, and
keeping their weights. Thus, the vertices of D(h) correspond to the floors, and the edges
to the bounded elevators (directed downwards).

Example 3.3 (cf. Examples 2.3 and 2.5). The plane tropical curve h : C → R2 whose
image is shown in Figure 4 has eight elevators: four bounded and four unbounded. They
are precisely the eight vertical edges in Figure 3(b), which are represented by the eight
vertical segments and rays in Figure 3(a).

The four floors of h are formed by the horizontal edges of C as shown in Figure 3(b).
The floor diagram D(h) is obtained by removing the unbounded edges, contracting each
floor to a point, directing the four remaining edges downwards, and assigning weights
1, 1, 1, 2 to them. The result is a diagram isomorphic to the one shown in (1.3).

In general, a floor diagram of a plane tropical curve may not admit a labeling sat-
isfying the conditions in Definition 1.1, so it might not correspond to any labeled floor
diagram in the sense of that definition. In particular, the acyclicity condition and the diver-
gence condition (1.1) cannot be guaranteed. It turns out however that the floor diagrams
of plane curves passing through point configurations of certain kind always satisfy the
requisite conditions, as we explain next.

Definition 3.4 (Vertically stretched configurations). A (3d − 1+ g)-element set

P = {(x1, y1), (x2, y2), . . . , (x3d−1+g, y3d−1+g)} ⊂ R2
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is called a vertically stretched (d, g)-configuration if

x1 < · · · < x3d−1+g, y1 < · · · < y3d−1+g,

min
i 6=j
|yi − yj | > (d3

+ d) ·max
i 6=j
|xi − xj |.

(3.1)

Such a configuration P comes equipped with a “downward” linear order in which higher
points precede the lower ones.

Remark 3.5. The conditions in Definition 3.4 can be relaxed by removing the second
string of inequalities, changing the coefficient d3

+ d, and/or removing the min and
the max. We do not make an attempt to determine the weakest possible conditions that
ensure the desired properties of associated tropical curves; instead, we chose the version
that makes subsequent arguments as simple as possible.

We say that a plane tropical curve passes through a configuration P ⊂ R2 if the image
of the curve contains P , i.e., h(C) ⊃ P .

The following key lemma is a restatement of a result that can be extracted from [9,
Section 5].

Lemma 3.6. Let P be a vertically stretched (d, g)-configuration, and h an irreducible
plane tropical curve of degree d and genus g passing through P . Then:

• each floor of h contains a unique point in P;
• the linear ordering of the floors induced from P makes D(h) a labeled floor diagram

of degree d and genus g (cf. Definition 1.1);
• each elevator of h contains a unique point in P;
• the linear ordering of the floors and elevators induced from P produces a marking

of D(h), denoted by D̃(h,P) (cf. Definition 1.4).

To amplify, such a curve h has exactly d floors, so that D(h) has d vertices; each floor is
contractible, so D(h), like h, has genus g; the graph D(h) is acyclic; and it satisfies the
divergence condition.

Thus, each of the d floors of h is a graph of a continuous piecewise-linear function,
with slopes at the left and right ends equal to 0 and 1, respectively. See Figure 5.

In fact, much more is true.

Theorem 3.7. Let P be a vertically stretched (d, g)-configuration. Then the mapping
h 7→D̃(h,P) establishes a bijective correspondence between the irreducible plane tropi-
cal curves of degree d and genus g passing through P and the marked floor diagrams of
degree d and genus g.

Proof. Let D̃ be a marking of a labeled floor diagram D of degree d and genus g. We
need to show that D̃ = D̃(h,P) for a unique plane tropical curve h of the same degree
and genus passing through P . To do that, let us describe the structure of such a curve
in concrete detail. Its construction from a given marked floor diagram D̃ and a point
configuration P will then proceed by “reverse engineering”.
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Fig. 5. Marked floor diagram of a tropical curve.

Since the vertex set of D̃ and the configuration P are linearly ordered sets of the same
cardinality, there is a canonical order-preserving bijection v 7→ p(v) between them. It
will be convenient to distinguish between “white” and “black” points p(v) ∈ P , depend-
ing on whether v comes from D or not. Each white vertex lies on the respective floor, and
each black vertex lies on the corresponding elevator.

As we scan a floor Fv passing through a white vertex p(v) from its right end all the
way to the left, the slope of the floor changes each time it meets an elevator. Specifically,
the process unfolds as follows. The initial slope at the right end is 1. An elevator eu
arriving from above (respectively, from below) and passing through a black vertex p(u)
increases (respectively, decreases) the slope by w(eu). Due to the way the points in P are
placed, the order in which those elevators hit the floor Fv as we scan it right to left is
precisely the (top-down) order in which the corresponding vertices u (that is, all the black
vertices connected to v) appear in D̃. Consequently, the slope of a segment Su of Fv that is
bounded on the right by an elevator eu is uniquely determined by the combinatorics of D̃:
it is equal to 1 plus a signed sum of weights of all edges in D̃ connecting v to vertices
≤ u; the edges arriving at v contribute with a positive sign while the edges leaving v,
with a negative one. Furthermore, the right endpoint of Su lies on the vertical line passing
through p(u) while the left endpoint lies on the vertical line passing through p(u′), where
u′ is the vertex in D̃ immediately following u in the ordered list of vertices connected to v.
To summarize, the combinatorics of D̃ determines the slopes of the segments making up
the floor Fv , while the vertical lines passing through the points p(u), for all u connected
to v, determine the x-coordinates of the breakpoints on Fv . This defines Fv up to a vertical
shift; the latter is determined by the condition that p(v) ∈ Fv .

The recipe for constructing a (necessarily unique) tropical curve h with the desired
properties is now clear: each floor Fv is described by the above rule, and the vertical
elevators are then drawn through the black points, bounded by the appropriate floors (or
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going all the way down in case of unbounded elevators). Since the slopes of floor segments
cannot exceed d, condition (3.1) guarantees that each floor Fv constructed in this way will
fit below (respectively above) all black vertices p(u) for u ≤ v (resp., v ≤ u), ensuring
that the recipe works. It is also clear that the curve h constructed in this way will be
irreducible, and will have the required genus and degree (for the latter, cf. Remark 2.7).

ut

Theorem 3.7 is illustrated in Appendix B, which shows the nine tropical rational cubics
passing through a vertically stretched (3, 0)-configuration of eight points, alongside their
respective marked floor diagrams.

Theorem 3.8 below is a special case of the (geometric) “correspondence theorem”
[27, Theorem 1].

For a positive real number t , let Logt : (C×)2 → R2 denote the map defined by

Logt (z, w) = (logt |z|, logt |w|). (3.2)

Theorem 3.8. Let P be a vertically stretched (d, g)-configuration. Let t be a sufficiently
large positive number. Then for any configuration PC

⊂ (C×)2 of 3g−1+d points such
that Logt (PC) = P , there is a canonical surjective “tropicalization” map

γ 7→ TropPC,t (γ )

from the set of irreducible complex algebraic curves γ of degree d and genus g passing
through PC to the set of irreducible plane tropical curves h of degree d and genus g
passing through P . Under this map, the preimage Trop−1

PC,t
(h) of each such curve h

consists of µ(D(h)) distinct complex curves.

Proof. To adapt the correspondence theorem to our current setup, fix the Newton polygon
of the curves under consideration to be the set

1d = {(i, j) : i ≥ 0, j ≥ 0, i + j ≤ d},

and observe that for a plane tropical curve h passing through P , the complex multiplicity
µC(h) (as defined in [27]) is equal to the multiplicity of the labeled floor diagram D(h)
as defined in (1.2). ut

Combining Theorems 3.7 and 3.8, we obtain the following enhancement of Theorem 1.6.

Theorem 3.9 (Combinatorial correspondence theorem for plane curves). Let P ⊂ R2

be a vertically stretched (d, g)-configuration. Let t be sufficiently large. Let PC
⊂ (C×)2

be a configuration of 3g − 1+ d points such that Logt (PC) = P . Then the composition

γ 7→ D̃(TropPC,t (γ ),P)

is a surjection from the set of irreducible complex algebraic curves γ of degree d and
genus g passing through PC to the set of marked floor diagrams D̃ of degree d and
genus g. Under this map, the preimage of a marking D̃ of a labeled floor diagram D
consists of µ(D) distinct complex curves. Consequently, (1.5) holds.
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3.2. Combinatorial rule for the relative Gromov–Witten invariants

In this section, we give a generalization of the combinatorial correspondence theorem
(Theorem 3.9) to the problem of counting complex curves of given degree and genus
which, in addition to passing through a given point configuration, satisfy some prescribed
tangency conditions. This will require a suitable generalization of the notion of a marking
of a labeled floor diagram.

The tangency conditions we will be working with are described by integer partitions.
In dealing with the latter, we will use the standard notational conventions of the combi-
natorial theory of partitions (see, e.g., [37, Section 1.3] or [38, Section 7.2]) rather than
those used by Caporaso and Harris [10] in their classical treatment of the subject. Recall
that a partition λ= (λ1, λ2, . . . ) of an integer n ≥ 0 is a weakly decreasing sequence of
nonnegative integers λi whose sum is equal to n:

|λ| = λ1 + λ2 + · · · = n.

The nonzero λi’s are called the parts of λ. The number of parts is the length of λ, de-
noted `(λ). We write

λ = 〈1α1 2α2 · · · 〉 (3.3)

to express the fact that λ has αi parts equal to i, for each i. Thus `(λ) = α1 + α2 + · · · .
Our first goal is to extend Theorem 3.8 to a more general setting. This will require

some terminological preparation.

Definition 3.10 (Tangency conditions described by pairs of partitions). Let λ and ρ be
two integer partitions. Let

Pλ = (p1 > · · · > p`(λ)) (3.4)

be a configuration of `(λ) points in R, and let

PC
λ = {(x1, 0), . . . , (x`(λ), 0)} ⊂ C× × C

be a configuration of points on the x-axis C××{0} ⊂ C××C such that logt |xi | = pi for
every i. We say that a complex curve γ has (λ,PC

λ , ρ)-tangency to the x-axis if γ meets
the latter at `(λ)+ `(ρ) points, as follows:

• γ passes through PC
λ , with tangency to the x-axis of degree λi at each point (xi, 0);

• γ passes through some other `(ρ) points on the x-axis, with the degrees of tangency to
the x-axis at those points forming the partition ρ.

Definition 3.11 (Grounding conditions for plane tropical curves). Let h : C → R2 be
a plane tropical curve of degree d and genus g. A ground elevator of h is an unbounded
elevator e (see Definition 3.1) for which the vector 1(e) (see Definition 2.4) is a positive
multiple of (0,−1).

We say that a tropical curve h : C → R2 is (λ,Pλ, ρ)-grounded (cf. (3.4)) if

• each point (pi, 0) ∈ Pλ × {0} is contained in a ground elevator of weight λi ;
• the weights of the remaining ground elevators form the partition ρ.

See Figure 6 for an example.
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Fig. 6. Two tropical cubics passing through six vertically stretched points and (λ,Pλ, ρ)-grounded
with λ = ∅, P = ∅, and ρ = (2, 1). The multiplicity of each tropical cubic is 2; thus
N3,1(∅, (2, 1)) = 4.

We define the (complex) multiplicity of such a tropical curve as the number

µρ(h) =
∏
e

w2(e)

`(ρ)∏
i=1

ρi, (3.5)

where e runs over all bounded elevators.

Theorem 3.12 below is a slight generalization of Theorem 3.8 (which is a special case
of the correspondence theorem [27, Theorem 1]), and can be proved in a similar way. The
proof will appear in [29].

Theorem 3.12. Let P be a generic configuration of 2d − 1 + g + `(ρ) points in R2

satisfying the condition (3.1). Let PC
⊂ (C×)2 be a configuration of points such that

Logt (PC) = P . Let configurations Pλ and PC
λ be as in Definition 3.10. Let t ∈ R>0 be

sufficiently large.
Then there is a canonical surjection from the set of irreducible complex algebraic

curves of degree d and genus g passing through PC and having (λ,PC
λ , ρ)-tangency to

the x-axis to the set of irreducible (λ,Pλ, ρ)-grounded plane tropical curves of degree d
and genus g passing through P . Under this surjection, the preimage of each such tropical
curve h consists of µρ(h) distinct complex curves.
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We generalize Definition 1.4, as follows. (A similar definition, with g = 0, appeared in
[2, Definition 4.2].)

Definition 3.13 (Floor diagrams marked by pairs of partitions). LetD be a labeled floor
diagram of degree d and genus g. Let λ and ρ be two partitions with |λ| + |ρ| = d.
A (λ, ρ)-marking of D is a combinatorial decoration of D obtained by the following
modification of the procedure used in Definition 1.4. We will illustrate the steps of this
procedure using a running example, in which d = 4, g = 1, λ = (2), ρ = (1, 1), and D
is the labeled floor diagram from Example 1.3:

f f f f2- j

*
-

Step 0. Introduce `(λ) new vertices denoted v1, . . . , v`(λ):

f f f f2- j

*
- fsv1

Step 1. For each original vertex v in D, introduce some number of additional new
vertices (possibly none), and connect v to each of them by a single edge directed away
from v. In addition, introduce some edges (possibly none) directed from v to v1, . . . , v`(λ).
Assign positive integer weights to all these new edges so that

• for each original vertex v in D, the total weight of all new edges (of both kinds) origi-
nating at v is equal to 1− div(v);
• the weights of all edges arriving at v1, . . . , v`(λ) form the partition λ;
• the weights of all other new edges form the partition ρ.

Thus, the total weight of all new edges is equal to
∑
v(1− div(v)) = d = |λ| + |ρ|.f f f f2 2- j

*
- -

@@@@R v @@
R v fsv1

Step 2. Split each original edge e of D in two, by inserting an extra vertex in the
middle of e; the resulting two edges inherit e’s orientation and weight.

f f f f2 2 2-- - j

*
*
j

- -v vv v
@@@@R v @@

R v fsv1

Let G̃ = (Ṽ , Ẽ) denote the acyclic directed graph obtained after Steps 1–2.
Step 3. Extend the linear ordering on the vertices of D to the set Ṽ so that, as before,

each edge in Ẽ is directed from a smaller to a larger vertex. We also require v1 to be the
maximal element under the linear ordering, v2 the second largest, etc.:

2 2
2f f fv v v v vv f fs- - - j

* *
- - -j j
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The resulting object D̃ is called a (λ, ρ)-marked floor diagram (of degree d and genus g),
or a (λ, ρ)-marking of the original labeled floor diagram D. It is easy to see that D̃ has
2d + g − 1+ `(λ)+ `(ρ) vertices and 2d + 2g − 2+ `(λ)+ `(ρ) edges.

The number of distinct (λ, ρ)-markings of D is denoted by νλ,ρ(D). We also denote
(cf. (3.5))

µρ(D̃) = µρ(D) = µ(D)
`(ρ)∏
i=1

ρi . (3.6)

Remark 3.14. Let λ = ∅ and ρ = 〈1d〉. In this special case, we recover the ordi-
nary notion of a marked floor diagram introduced in Definition 1.4. We also recover
ν∅,〈1d 〉(D) = ν(D) and µ∅,〈1d 〉(D) = µ(D).

More generally, let λ = 〈1k〉 and ρ = 〈1d−k〉. Then a (λ, ρ)-marked floor diagram is
nothing but an ordinary marked floor diagram whose last k vertices are sinks.

Definition 3.15 (Relative Gromov–Witten invariants). Let Nd,g(λ, ρ) denote the num-
ber of irreducible complex algebraic curves of degree d and genus g passing through a
generic configuration of 2d − 1+ g+ `(ρ) points in C2 and having (λ,PC

λ , ρ)-tangency
to the x-axis (see Definition 3.10), for a given generic collection PC

λ of `(λ) points on
C× {0}.

Thus Nd,g(λ, ρ) counts irreducible plane curves γ of given degree and genus inter-
secting a given line L (say the x-axis) with multiplicities described by λ at a given col-
lection of points on L, and with multiplicities described by ρ at some other unspecified
points on L; in addition, γ must pass through a generic configuration of (appropriately
many) points on the plane.

We note that the numbers Nd,g(λ, ρ) are different from the numbers Nd,δ(α, β) stud-
ied by Caporaso and Harris [10] since Nd,g(λ, ρ) only counts irreducible curves. The
Caporaso–Harris numbers are the generalizations of the Severi degrees discussed in Sec-
tion 1.2, and can be similarly expressed as sums of the numbers Nd,g(λ, ρ) (with positive
integer coefficients) by considering possible partitions of a given configuration into sub-
configurations lying on the irreducible components of a curve. Conversely, the numbers
Nd,g(λ, ρ) can be computed from the Caporaso–Harris numbers (also known as general-
ized Severi degrees) by an appropriate inclusion-exclusion procedure.

Remark 3.16. Let λ be a partition with |λ| ≤ d , and let ρ = 〈1d−|λ|〉. Then the tan-
gency conditions associated with ρ become vacuous. Consequently, the relative Gromov-
Witten invariantNd,g(λ, 〈1d−|λ|〉) counts irreducible plane curves of degree d and genus g
passing through a generic configuration of `(λ) points on a given line with tangencies to
the line described by the partition λ, and also passing through a generic configuration of
3d − 1+ g − |λ| points on the plane.

In particular, the numberNd,g(〈1k〉, 〈1d−k〉) counts irreducible curves of degree d and
genus g passing through a configuration of 3d − 1+ g points on the plane that contains k
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collinear points and is otherwise generic. For k ≤ 2, we obviously get

Nd,g(∅, 〈1d〉) = Nd,g((1), 〈1d−1
〉) = Nd,g((1, 1), 〈1d−2

〉) = Nd,g. (3.7)

At this point, the following analogue of Theorem 3.7 should come as no surprise.
(A proof can be given along similar lines.)

Theorem 3.17. Under the assumptions of Theorem 3.12, there is a multiplicity-preserv-
ing bijection h 7→ D̃ (that is, µρ(h) = µρ(D̃)) between the plane tropical curves h
described in that theorem and the (λ, ρ)-marked floor diagrams of degree d and genus g.

Theorems 3.12 and 3.17 imply the following generalization of Theorem 1.6. (The case
g = 0 has been stated in [2, Theorem 4.4].)

Theorem 3.18. The relative Gromov–Witten invariant Nd,g(λ, ρ) is given by

Nd,g(λ, ρ) =
∑
D
µρ(D)νλ,ρ(D), (3.8)

the sum over all labeled floor diagrams D of degree d and genus g.

In other words, the number Nd,g(λ, ρ) can be computed by counting (λ, ρ)-marked (la-
beled) floor diagrams D̃, each taken with multiplicity µρ(D̃).

4. Computing relative Gromov–Witten invariants

This section is devoted to applications of the combinatorial rule of Theorem 3.18.

4.1. Conics and cubics

As a warm-up, let us look at the cases d = 2 and d = 3. (All of these enumerative
invariants have been known since the 19th century.)

Example 4.1 (Plane conics). For d = 2 and g = 0, there are very few possibilities.
By (3.7), we have

N2,0(∅, (1, 1)) = N2,0((1), (1)) = N2,0((1, 1),∅) = N2,0 = 1,

the unique plane conic through five generic points. This corresponds to the unique (λ, ρ)-
marked floor diagram of multiplicity 1. In the cases (λ, ρ) = ((2),∅) and (λ, ρ) =
(∅, (2)), the diagram is unique as well; the multiplicities are 1 and 2, respectively, so
N2,0((2),∅) = 1 and N2,0(∅, (2)) = 2. This accounts for:

• the unique plane conic passing through three generic points and tangent to a given line
at a given point;
• two plane conics passing through four given points and tangent to a given line.
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Example 4.2 (Elliptic plane cubics). For d = 3 and g = 1, there is only one labeled
floor diagram, so combinatorial calculations are very simple. Applying Theorem 3.18,
we see that all relative Gromov–Witten invariants N3,1(λ, ρ) are equal to 1, except for:

• N3,1((1), (2)) = 2 (plane cubics passing through seven generic points and having two
distinct common points with a given line, namely a given intersection point and an
unspecified point of tangency);
• N3,1(∅, (2, 1)) = 4 (plane cubics passing through eight generic points and tangent to a

given line; cf. Figure 6);
• N3,1(∅, (3)) = 3 (plane cubics passing through seven generic points and having an

unspecified point of order-3 tangency to a given line).

Example 4.3 (Rational plane cubics). There are three labeled floor diagrams D of de-
gree d = 3 and genus g = 0. By (3.7), we have

N3,0(∅, (1, 1, 1)) = N3,0((1), (1, 1)) = N3,0((1, 1), (1)) = N3,0 = 12

(12 rational plane cubics through eight generic points); the combinatorial calculation is
the same as in Example 1.7. The remaining cases are presented in Figure 7. For each la-
beled floor diagram D and each pair of partitions (λ, ρ), the table shows the correspond-
ing contribution µρ(D) · νλ,ρ(D) to the right-hand side of (3.8). These contributions are
then added together to get Nλ,ρ . For example, there are N3,0(∅, (3)) = 21 rational cubics
passing through six generic points and having tangency of order 3 to a given line (at an
unspecified point of inflection).

λ=∅
ρ=(2, 1)

λ=∅
ρ=(3)

λ=(1)
ρ=(2)

λ=(2)
ρ=(1)

λ=〈13
〉

ρ=∅

λ=(2, 1)
ρ=∅

λ=(3)
ρ=∅d d d 2 · 4 3 · 0 2 · 1 1 · 3 1 · 3 1 · 1 1 · 0

d d d2 8 · 2 12 · 1 8 · 1 4 · 1 4 · 1 4 · 1 4 · 1

d d d 2 · 6 3 · 3 2 · 3 1 · 3 1 · 3 1 · 3 1 · 3

N3,0(λ, ρ) 36 21 16 10 10 8 7

Fig. 7. Combinatorial computation of the numbers N3,0(λ, ρ).

4.2. Nonsingular and uninodal curves

Nonsingular (or generic) plane algebraic curves have the maximal possible genus among
all curves of degree d, namely

gmax = gmax(d) = (d − 1)(d − 2)/2.

There is only one labeled floor diagram D of degree d and genus gmax, namely one that
looks like this (shown for d = 6 and gmax = 10):e e e e e e

(4.1)
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For this floor diagram, we have µ(D) = ν(D) = 1, implying Nd,gmax = 1 (cf. (5.1)). For
a pair of partitions λ and ρ with |λ| + |ρ| = d, the number of markings νλ,ρ(D) is equal
to the number o(ρ) of distinct permutations of the parts of ρ. That is, if

ρ = 〈1β1 2β2 · · · 〉 (4.2)

(cf. (3.3)), then

νλ,ρ(D) = o(ρ) =
(`(ρ))!
β1!β2! · · ·

. (4.3)

Combining (4.3) with (3.6) and (3.8), we obtain the following formula.

Corollary 4.4. Let λ and ρ be partitions such that |λ| + |ρ| = d. Then the number
of irreducible plane complex algebraic curves of degree d passing through a generic
configuration of d(d + 1)/2+`(ρ) points and having tangencies to a given line described
by λ and ρ (that is, λ describes tangencies at given points whereas ρ describes tangencies
at unspecified points) is equal to

Nd,gmax(λ, ρ) = ρ1ρ2 · · ·
(`(ρ))!
β1!β2! · · ·

. (4.4)

Note that this number does not depend on λ.
Let us now turn to counting uninodal curves, i.e., those of genus

g = gmax − 1 = d(d − 3)/2 (d ≥ 3).

It is easy to see that there are 2d−3 labeled floor diagrams of degree d and genus gmax−1
(cf. [9, Proposition 6.1]); the five diagrams for d = 4 and g = 2 are shown in the second
table of Appendix A. More specifically, there are d − 1 diagrams D1, . . . ,Dd−1 with
µ(Di) = 1 and ν(Di) = 2i + 1; and d − 2 additional diagrams D′1, . . . ,D

′

d−2 with
µ(D′i) = 4 and ν(D′i) = i. This gives

Nd,gmax−1 = (3+ 5+ · · · + (2d − 1))+ 4(1+ 2+ · · · + (d − 2)) = 3(d − 1)2; (4.5)

cf. (5.2).
We next generalize the formula (4.5) to the setting involving tangency conditions.

Corollary 4.5. Let λ = 〈1α1 2α2 · · · 〉 and ρ = 〈1β1 2β2 · · · 〉 be partitions such that |λ| +
|ρ| = d . Then the number of uninodal irreducible plane complex algebraic curves of
degree d passing through a generic configuration of (d − 1)(d + 2)/2+ `(ρ) points and
having tangencies to a given line described by λ and ρ is given by the formula

Nd,gmax−1(λ, ρ)

=


(
(d − 2)(3d − 2)+ α1 + β1 + (d − 1)

β1

`(ρ)

)
Nd,gmax(λ, ρ) if ρ 6= ∅;

(d − 2)(3d − 2)+ α1 if ρ = ∅.

(Recall that Nd,gmax(λ, ρ) is given by (4.4).)
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Proof. We need to compute the quantities µρ and νλ,ρ for each of the diagrams Di
and D′i , then use (3.8). First, a little preparation. If β1 ≥ 1, then denote

ρ̄ = 〈1β1−1 2β2 3β3 · · · 〉,

so that (cf. (4.3))

o(ρ̄) =
(`(ρ)− 1)!

(β1 − 1)!β2! · · ·
=

β1

`(ρ)
o(ρ).

Now, calculations give (cf. (4.3)):

µρ(Di) = ρ1ρ2 · · · ,

µρ(D′i) = 4ρ1ρ2 · · · ,

νλ,ρ(Di) = (2i + 1)o(ρ) (i ≤ d − 2),

νλ,ρ(Dd−1) = (d − 1)
β1

`(ρ)
o(ρ)+ (α1 + β1)o(ρ),

νλ,ρ(D′i) = io(ρ) (i ≤ d − 2).

Collecting everything, we get

Nd,gmax−1(λ, ρ) = ρ1ρ2 · · · o(ρ)

(d−2∑
i=1

(6i + 1)+ (d − 1)
β1

`(ρ)
+ α1 + β1

)
= Nd,gmax(λ, ρ)(3d

2
− 8d + 4+ (d − 1)

β1

`(ρ)
+ α1 + β1). ut

4.3. Curves passing through collinear points

Let us next consider the cases (λ, ρ) = (〈1k〉, 〈1d−k〉) discussed in Remarks 3.14 and
3.16. Combining the latter with Theorem 3.18, we obtain the following corollary.

Corollary 4.6. The number Nd,g(〈1k〉, 〈1d−k〉) of irreducible plane complex algebraic
curves of degree d and genus g passing through a generic configuration of 3d+g−k−1
points and a generic configuration of k collinear points is equal to

∑
D̃ µ(D̃), the sum

over marked floor diagrams D̃ of degree d and genus g whose last k vertices are sinks.

The special cases k = 0, 1, 2 of Corollary 4.6 yield the ordinary Gromov–Witten numbers
(cf. (3.7)). Let us examine the case k = 3.

Corollary 4.7. The number of irreducible plane complex algebraic curves of degree d
and genus g passing through a generic configuration of 3d + g − 4 points and through a
generic triple of collinear points is given by the formula

Nd,g(〈13
〉, 〈1d−3

〉) = Nd,g − (d − 1)Nd−1,g.
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For example, there are N3,0(〈13
〉,∅) = N3,0 − 2N2,0 = 10 irreducible plane rational

cubics passing through five generic points and three generic collinear points—matching
the value in Figure 7.

Proof of Corollary 4.7. Apply Corollary 4.6 with k = 3. Note that in every (ordinary)
marked floor diagram, the last two vertices are sinks. Hence Nd,g(〈13

〉, 〈1d−3
〉) is equal

toNd,g minus
∑
D̃ µ(D̃), the sum over marked floor diagrams D̃ of degree d and genus g

in which the 3rd largest vertex v is not a sink. Such a diagram D̃ looks like this (we only
draw the edges of interest to us):

f f fv v v v vv f v-j j j

vu

(Since there are two edges pointing away from v, there must be a unique edge u → v

arriving at v, by the divergence condition.) Removing the three edges incident to v creates
a marked floor diagram D̃′ of degree d − 1 and genus g, with a distinguished sink u.
Conversely, given such a marked diagram D̃′ with a sink u in it, D̃ is uniquely recovered.
Note that each D̃′ has d − 1 sinks. Furthermore, µ(D̃′) = µ(D), and the claim follows.

ut

4.4. Curves with maximal tangency to a given line

Let us now look at the problem of counting irreducible plane curves of degree d and
genus g passing through appropriately many points and having maximal tangency (of
order d) to a given line. The corresponding relative Gromov–Witten invariants come in
two flavors, depending on whether the point of tangency is prescribed or not:

• Nd,g((d),∅) is the number of irreducible plane curves of degree d and genus g which
pass through a generic configuration of 2d+g−1 points and have tangency of order d
to a given line L at a given point x ∈ L;
• Nd,g(∅, (d)) is the number of irreducible plane curves of degree d and genus g which

pass through a generic configuration of 2d + g points and have tangency of order d to
a given line L at some point x ∈ L.

One surprising corollary of Theorem 3.18 is that these two numbers are related to each
other in a very simple way.

Corollary 4.8. We have Nd,g(∅, (d)) = d ·Nd,g((d),∅).

Proof. It is easy to see that the corresponding two sets of (λ, ρ)-marked floor diagrams
are the same whereas their multiplicities µρ differ by a factor of d. ut

As we learned from R. Vakil, Corollary 4.8 can be seen to be a particular case of the
Caporaso–Harris formula.

In the special case g = 0 (counting irreducible plane rational curves maximally tan-
gent to a given line), the relevant problem of combinatorial enumeration can be solved
completely. As a result, we obtain a recurrence (see Theorem 4.9 below) that can be used
to calculate as many numbersNd,0((d),∅) andNd,0(∅, (d)) as one’s computing resources
allow. See Figure 8.
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d Nd,0((d),∅) Nd,0(∅, (d))

1 1 1
2 1 2
3 7 21
4 138 552
5 5477 27385
6 367640 2205840
7 37541883 262793181
8 5432772352 43462178816
9 1059075055273 9531675497457

10 267757626501504 2677576265015040
11 85244466165571535 937689127821286885
12 33379687015338236672 400556244184058840064
13 15770655073870516443597 205018515960316713766761
14 8847780392111931116474368 123868925489567035630641152
15 5815426547948880787678282627 87231398219233211815174239405
16 4426738320076692932937846865920 70827813121227086927005549854720

Fig. 8. Number of irreducible rational curves maximally tangent to a line.

Theorem 4.9. The numbers z(d) = Nd,0((d),∅) satisfy the recurrence relation

z(d + 1) =
d∑
k=1

(2d)!
k!

∑
a1+···+ak=d
a1,...,ak>0

k∏
i=1

a2
i z(ai)

(2ai)!
. (4.6)

Proof. In order for a labeled floor diagram D to allow for a marking containing an edge
of weight d (necessarily pointing from the last vertex vlast to the unique sink v1), two
conditions must be satisfied at each vertex v in D:

• there is exactly one outgoing edge emanating from v;
• the inequality (1.1) holds with an equality sign.

These conditions mean that the labeled floor diagramsD under consideration can be iden-
tified with increasing rooted trees on the vertex set {1, . . . , d}, i.e., with the labeled trees
on d vertices in which the labels increase along each simple path ending at the root
vertex d = vlast. (To be literally precise, such trees are decreasing in the terminology
of [37, 38], but this term would be misleading since we orient the edges towards the root
rather than away from it.) It is immediate from the definitions that µ∅(D) = µ(D) and
ν(d),∅(D) = ν(D), so we have z(d) = Nd,0((d),∅) =

∑
D µ(D) ν(D), the sum over all

increasing trees D on d vertices. For example, referring to the first table in Appendix A,
z(3) = 4 · 1+ 1 · 3 = 7 and z(4) = 36 · 1+ 9 · 3+ 4 · 3+ 4 · 7+ 4 · 5+ 1 · 15 = 138.

The hooklength h(v) of a vertex v inD (cf. [34, 3.12.18]) is, by definition, the number
of vertices uwhich precede v inD (including u = v). It is easy to see from the divergence
condition that the hooklengths of the non-root vertices are precisely the edge weights
of D. Thus µ(D) =

∏
v 6=vlast

(h(v))2.
Consistent with the above, let a marked increasing tree on 2d vertices be an increasing

(rooted) tree D̃ obtained from an increasing tree D on d vertices by appending an extra
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root vertex beyond the old one, introducing an extra vertex at the middle of each edge
of D, and extending the linear ordering to the resulting tree. We then have

z(d) =
∑
D̃

∏
v 6=vlast

(h(v))2,

where the sum is over all marked increasing trees D̃ on 2d vertices, and the product is
over all non-root vertices of the corresponding tree D.

The recurrence (4.6) can now be obtained using standard techniques of combinatorial
enumeration (cf., e.g., [38, Chapter 5] or [5, Section 5.2]). A marked increasing tree D̃
on 2(d + 1) vertices is uniquely decomposed, by cutting off the last two vertices (the
old root and the new one) together with the edges incident to them, into a shuffle of
some number k of marked rooted trees D̃1, . . . , D̃k on 2a1, . . . , 2ak vertices, respectively,
where

∑
i ai = d , and we numbered the subtrees arbitrarily by the integers 1, . . . , k.

(To compensate for this additional choice, we will need to divide by k! at the end.) The
multiset of non-root hooklengths of D̃ is the disjoint union of the multisets of hooklengths
of D̃1, . . . , D̃k (including the root hooklengths a1, . . . , ak). Hence µ(D̃) =

∏
i µ(D̃i)a2

i .
Finally, for a given ordered k-tuple of marked trees D̃1, . . . , D̃k , the number of possible
shuffles is the multinomial coefficient(

2d
2a1, . . . , 2ak

)
=

(2d)!
(2a1)! · · · (2ak)!

.

Putting everything together, we obtain (4.6). ut

Theorem 4.10. The generating function

y(x) =

∞∑
d=1

d2Nd,0((d),∅)

(2d)!
xd =

1
2
x +

1
6
x2
+

7
80
x3
+

23
420

x4
+ · · · (4.7)

is the unique solution of the initial value problem

x(4y′ − ey − xeyy′) = 2y, y(0) = 0. (4.8)

Proof. Let us define z̃(d) = d2 z(d)/(2d)! and z̃(0) = 0, so that we have y(x) =∑
∞

d=0 z̃(d)x
d . The recurrence (4.6) can be rewritten as

2(2d + 1)
d + 1

z̃(d + 1) =
∞∑
k=0

1
k!

∑
a1+···+ak=d
a1,...,ak≥0

k∏
i=1

z̃(ai),

which implies
∞∑
d=0

(
4−

2
d + 1

)
z̃(d + 1)xd+1

= x

∞∑
k=0

1
k!
(y(x))k = xey .

Differentiating, we get

4y′ − 2
∞∑
d=0

z̃(d + 1)xd = 4y′ − 2
y

x
= ey + xeyy′,

and (4.8) follows. ut
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4.5. Curves with prescribed tangency at a given point

Corollary 4.11. The number Nd,g((k), 〈1d−k〉) of irreducible plane complex algebraic
curves of degree d and genus g passing through a generic configuration of 3d + g −
k − 1 points and having tangency of order k to a given line at a given point is equal to∑
D̃ µ(D̃), the sum over marked floor diagrams D̃ of degree d and genus g in which the

last k vertices are sinks connected to the same vertex.

Proof. Indeed, the (ordinary) marked floor diagrams of this kind are in multiplicity-
preserving bijection with the ((k), 〈1d−k〉)-marked floor diagrams: simply glue the edges
pointing to the last k sinks into a single edge of weight k. ut

Example 4.12. Let us compute (once again) the number N3,0((2), (1)). Among the (or-
dinary) marked floor diagrams of degree d = 3 and genus g = 0, there are exactly two in
which the last two sinks are not connected to the same vertex; they are shown in Figure 9.
Each of the two has multiplicity 1, and we conclude that N3,0((2), (1)) = N3,0 − 2 =
12− 2 = 10, in agreement with Figure 7.

f f fv v v vv f f fv v v vv
Fig. 9. Marked floor diagrams not contributing to N3,0((2), (1)).

5. Node polynomials

This section is devoted to the classical problem of determining the Severi degrees Nd,δ

(see Section 1.2) when the cogenus δ is fixed. In other words, how does the number Nd,δ

of δ-nodal (possibly reducible) plane curves depend on the degree d? As already noted
in (1.6), if d is large enough (specifically d ≥ δ + 2), then all curves counted by Nd,δ

are irreducible, and the Severi degree coincides with the corresponding Gromov–Witten
invariant: Nd,δ

= Nd,(d−1)(d−2)/2−δ .
Substantial efforts have been expended by various researchers to determine Nd,δ , as

a function of d , for specific small values of δ; see [22, Remark 3.7] for a thorough histor-
ical review. For δ ≤ 3, the formulas go back to the 19th century (J. Steiner, A. Cayley,
G. Salmon, and S. Roberts; see the references in [22]). In particular:

Nd,0
= 1, (5.1)

Nd,1
= 3(d − 1)2, (5.2)

Nd,2
=

3
2
(d − 1)(d − 2)(3d2

− 3d − 11). (5.3)

For δ ≤ 6, the problem has been solved by I. Vainsencher [41]; see [14, Proposition 2]
for explicit formulas. This has been extended to δ ≤ 8 by S. Kleiman and R. Piene [22]
by further refining Vainsencher’s method; see Remark 5.4 below. Other approaches to
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computing Nd,δ when δ is small were developed by J. Harris and R. Pandharipande [20],
L. Göttsche [19], and Y. Choi [12, 13] (based on the work of Z. Ran [32, 33]).

The following polynomiality property has been first suggested by P. Di Francesco and
C. Itzykson [14, Remark (b) after Proposition 2], and then stated as a special case of a
more general conjecture by L. Göttsche [19, Conjecture 4.1 and Remark 4.2(2)].

Theorem 5.1. For any fixed δ, there exist a polynomial Nδ(d) ∈ Q[d] of degree 2δ and
a threshold value d0(δ) such that for d ≥ d0(δ), we have Nd,δ

= Nδ(d).

Besides establishing polynomiality, our proof provides a method (admittedly tortuous)
for computing the polynomials Nδ(d). Cf. Remark 5.5.

Remark 5.2. We prove Theorem 5.1 with d0(δ) = 2δ. By further refining the argument,
F. Block [6] has recently improved this to d0(δ) = δ.

L. Göttsche formulated his conjecture with d0(δ) = dδ/2e + 1. This was verified
by Block for all δ ≤ 13 (cf. Remark 5.5). P. Di Francesco and C. Itzykson seem to
suggest the threshold value d0(δ) = 3/2 +

√
2δ + 1/4 (so that d ≥ d0(δ) is equivalent

to δ ≤ (d − 1)(d − 2)/2). Block’s computations show this fails, for the first time, for
δ = 13.

Remark 5.3. According to Y. Choi ([13, Section 3], unpublished; see citations in [22,
Remark 3.7] and [19, Remark 4.2(2)]), Theorem 5.1, with d0(δ) = δ, can be deduced
from [32, Theorem 5].

In an unpublished preprint [26] (cf. also [25]), A.-K. Liu put forward a proof of poly-
nomiality of Severi degrees, in a more general setting of counting curves on an arbitrary
surface.

Another proof of this result has been recently announced by Y.-J. Tzeng [40].

Remark 5.4. In the terminology of S. Kleiman and R. Piene [22], Nδ(d) is called a node
polynomial. The node polynomials N0(d), N1(d), and N2(d) are given by (5.1), (5.2),
and (5.3), respectively. The corresponding minimal threshold values d0(δ) are all equal
to 1.

Kleiman and Piene [22, Section 3] computed the node polynomials Nδ(d) for δ ≤ 8,
thereby establishing the corresponding instances of Göttsche’s conjecture (Theorem 5.1).
Their computations can be summarized as follows:

The generating function for the node polynomials Nδ(d) is given by∑
δ≥0

Nδ(d)t
δ
= exp

(∑
j≥1

Aj (d)

j
tj
)
, (5.4)

where

A1(d) = 3(d − 1)2,
A2(d) = −3(d − 1)(14d − 25),

A3(d) = 3(230d2
− 788d + 633),

A4(d) = 9(−1340d2
+ 5315d − 5023),

A5(d) = 9(24192d2
− 107294d + 114647),
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A6(d) = 9(−445592d2
+ 2161292d − 2545325),

A7(d) = 54(1386758d2
− 7245004d + 9242081),

A8(d) = 9(−156931220d2
+ 873420627d − 1191950551).

For δ ≤ 8, the polynomials Nδ(d) computed via (5.4) yield correct values of all nonvan-
ishing Severi degrees Nd,δ , and even some zero values, namely N1,1

= N1,2
= N2,2

=

N3,4
= 0.

Remark 5.5. Our method for computing the node polynomials was implemented, with
substantial algorithmic improvements, by F. Block [6], and used to compute Nδ(d) for
all δ ≤ 13. Block’s calculations confirmed that the polynomials Aj (d) defined by (5.4)
are indeed quadratic in d (for δ ≤ 13), in agreement with the strong form of Göttsche’s
conjecture.
Proof of Theorem 5.1. Our proof is purely combinatorial, and directly based on Theo-
rem 1.6.

Let us call an edge e in a labeled floor diagramD short if e has weight 1, and connects
consecutive vertices. If D has small cogenus δ, then “almost all” edges in D are short.
Removing those edges and considering the “components” of what remains, we arrive at
the following notion, which will play a key role in the proof.

Definition 5.6 (Templates). A template 0 is a finite nonempty collection of weighted
edges on a finite linearly ordered vertex set {v0 < v1 < · · · < v`} such that

• for each edge vi
e
−→ vj in 0, we have i < j ;

• the weight w(e) of every edge e in 0 is a positive integer;
• the weight of an edge of the form vi → vi+1 must be ≥ 2 (“no short edges”);
• multiple edges are allowed, but loops are not;
• for every j ∈ {1, . . . , `− 1}, there is at least one edge vi

e
−→ vk with i < j < k.

With a template 0, we associate several quantities. The number ` = `(0) is called the
length of 0. The product of squares of edge weights is the multiplicity of 0, denoted
by µ(0); cf. (1.2). The number

δ(0) =
∑

vi
e
−→ vj

((j − i) w(e)− 1) (5.5)

is the cogenus of 0. (The terminology will be justified by Lemma 5.7.) We set

ε(0) =

{
1 if all edges arriving at v` have weight 1;
0 otherwise.

For j ∈ {1, . . . , `}, let κj = κj (0) denote the total weight of all edges vi
e
−→ vk with

i < j ≤ k. By definition of a template, we have κj > 0. Let κ(0) = (κ1, . . . ,κ`). Set

kmin(0) = max
1≤j≤`

(κj − j + 1). (5.6)

Figure 10 shows all templates 0 with δ(0) = 1 or δ(0) = 2, and the respective values of
δ(0), `(0), µ(0), ε(0), κ(0), and kmin(0).
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0 δ(0) `(0) µ(0) ε(0) κ(0) kmin(0) P (0, k)d d2
1 1 4 0 (2) 2 k − 1d d d 1 2 1 1 (1, 1) 1 2k + 1d d3
2 1 9 0 (3) 3 k − 2d d2

2
2 1 16 0 (4) 4

(k−2
2
)

d d d 2 2 1 1 (2, 2) 2
(2k

2
)

d d d
2 2 2 4 1 (3, 1) 3 2k(k − 2)d d d

2 2 2 4 0 (1, 3) 2 2k(k − 1)d d d d 2 3 1 1 (1, 1, 1) 1 3(k + 1)d d d d 2 3 1 1 (1, 2, 1) 1 k(4k + 5)

Fig. 10. Templates with δ(0) ≤ 2.

For the remainder of this proof, we allow disconnected labeled floor diagrams D. The
degree d and cogenus δ of such a diagram are determined from the degrees dj and cogen-
era δj of its connected components by the formulas (1.7)–(1.8). As we noted earlier (see
the comment following Corollary 1.9), the Severi degree Nd,δ is obtained by counting
the markings of all such diagrams (with the given d and δ) with the usual multiplici-
ties µ(D).

Let D be a (possibly disconnected) labeled floor diagram of degree d and cogenus δ.
It will be convenient to add an extra vertex d+1 to the vertices 1, . . . , d ofD, and connect
each vertex v in D to this new vertex by 1− div(v) new edges of weight 1. Let D′ denote
the resulting diagram. To illustrate, applying this procedure to the labeled floor diagramD
shown in (1.3) results in the diagram D′ drawn below:

e e e e e2
(5.7)

Upon removal of all short edges from D′, one obtains a (uniquely defined) collection
of nonoverlapping templates. To be pedantic, let 01, . . . , 0m be these templates, listed
left to right. Denoting the leftmost vertex of 0i by ki (we call ki the offset of 0i), we then
have

ki + `(0i) ≤ ki+1 for 1 ≤ i ≤ m− 1 (5.8)
(so that the 0i do not overlap), and also

km + `(0m) ≤ d + ε(0m) (5.9)

(so that 0m properly fits at the right end).
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For q ≤ d + 1, let aq denote the number of short edges connecting q − 1 to q in D′.
The divergence condition implies that in D′, the total weight of the edges p

e
−→ r with

p < q ≤ r is precisely q−1. Then q−1−aq is the total weight of such edges contained in
(one of) the templates 01, . . . , 0m. If say q = ki+j is located in 0i (so that q corresponds
to vj in the notation of Definition 5.6), then we have κj = q−1−aq = ki+j−1−aq ≤
ki + j − 1, implying (cf. (5.6)) that

ki ≥ kmin(0i) for 1 ≤ i ≤ m. (5.10)

Conversely, given a sequence of isomorphism types of templates 01, . . . , 0m and an
increasing sequence of positive integers k1 < · · · < km satisfying the inequalities (5.8)–
(5.10), there is a unique (possibly disconnected) labeled floor diagram D whose modi-
fication D′ is obtained by placing each 0i with an offset ki , and adding short edges as
needed. Specifically, we add aq edges between q − 1 and q, with aq given by

aq =

{
q − 1− κj if q = ki + j for 1 ≤ i ≤ m and 1 ≤ j ≤ `(0i);
q − 1 otherwise.

(5.11)

Lemma 5.7. The cogenus δ = δ(D) (as defined by (1.8)) is equal to

δ =

m∑
i=1

δ(0i), (5.12)

where the numbers δ(0i) are defined by (5.5).

Proof. Note that removing a template 0k from the list would result in replacing each of
its edges vi

e
−→ vj of weight w(e) by the appropriate collection of short edgese e e e e

vi vj

in which each pair of consecutive vertices is connected byw(e) edges. Such a replacement
increases the total number of edges by (j − i)w(e) − 1, thus decreasing the cogenus by
the same amount. Since removing all templates would yield a diagram of cogenus 0, the
claim follows. ut

In order to write down the formula for Nd,δ , we will need to keep track of the markings
of D (or of D′); these break down into markings of individual templates and associated
short edges. For a template 0 and an offset value k ∈ Z>0, let 0(k) denote the poset
obtained from 0 by first adding k + j − 1 − κj short edges connecting j − 1 to j (for
1 ≤ j ≤ `(0); cf. (5.11)), then inserting an extra vertex in the middle of each edge of the
resulting graph. Let P(0, k) denote the number of linear extensions of 0(k), considered
modulo automorphisms of 0(k) which fix 0 (as in Definition 1.4). With this definition, the
number ν(D) of markings of a labeled floor diagram D is given by

m∏
i=1

P(0i, ki),

where the templates 0i and their respective offsets ki are the same as before.
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Lemma 5.8. For a fixed template 0, the values P(0, k), for k ≥ kmin(0), are given by a
polynomial in k whose degree is equal to the number of edges in 0.

Proof. First linearly order the vertices of 0 together with the midpoints of its edges. For
each of these (finitely many) choices, we need to count the number of ways of completing
it to a linear extension of 0(k) (here everything is done modulo the appropriate automor-
phism group). Such a completion amounts to choosing, for each j ≤ `(0), a particular
shuffle of the k + j − 1−κj (unordered) midpoints of short edges connecting j − 1 to j
with a fixed (i.e., independent of k) number bj of midpoints of edges of 0. Hence the
answer is ∏

j

(
k + j − 1− κj + bj

bj

)
,

and the claim follows. ut

Figure 10 shows the polynomials P(0, k) for the templates 0 with δ(0) ≤ 2.
Putting all the ingredients together, we see that the Severi degree Nd,δ is given by

Nd,δ
=

δ∑
m=1

∑
01,...,0m

( m∏
i=1

µ(0i)
) ∑
k1,...,km

m∏
i=1

P(0i, ki), (5.13)

where the second sum is over all m-tuples of templates (01, . . . , 0m) satisfying (5.12),
and the third sum is over m-tuples of integer offsets (k1, . . . , km) satisfying (5.8)–(5.10).
(This calculation is illustrated for δ = 2 in Example 5.9 below.) Now let us write the
aforementioned third sum as∑

km≥kmin(0m)
km≤d−`(0m)+ε(0m)

P(0m, km) · · ·
∑

k2≥kmin(02)
k2≤k3−`(02)

P(02, k2)
∑

k1≥kmin(01)
k1≤k2−`(01)

P(01, k1).

If P(k) is given by a polynomial in k for k ≥ c, and a and b are positive integer constants,
then

∑
k≥a, k≤n−b P(k) is given by a polynomial in n (of one degree higher) for n ≥

max(a + b, c). Iterating this argument, we conclude that Nd,δ is given by a polynomial
in d if

d ≥ kmin(01)+ `(01)+ · · · + `(0m)− ε(0m) (5.14)

for any allowable choice of 01, . . . , 0m. It is not hard to see that the degree of the resulting
polynomial is 2δ; indeed, the maximal value of m is δ, and the maximal total number of
edges in the templates involved is δ as well. Also, the right-hand side of (5.14) can be
seen to be at most 2δ, providing a threshold value. ut

Example 5.9. For δ = 2, substituting the data from Figure 10 into formula (5.13), we
obtain

Nd,2
=

d−1∑
k=2

(
9(k − 2)+ 16

(
k − 2

2

)
+

(
2k
2

)
+ 8k(k − 2)

)

+

d−2∑
k=1

(
8k(k − 1)+ 3(k + 1)+ k(4k + 5)

)
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+

∑
k2≤d−1

∑
k1≤k2−1

(
16(k1 − 1)(k2 − 1)+ 4(k1 − 1)(2k2 + 1)

)
+

∑
k2≤d−1

∑
k1≤k2−2

(
(2k1 + 1) · 4(k2 − 1)+ (2k1 + 1)(2k2 + 1)

)
,

which after tedious calculations (or with the help of your favourite software) yields (5.3).

6. Enumeration of labeled floor diagrams of genus 0

Theorem 6.1. The number of labeled floor diagrams of degree d and genus 0 is dd−2.

Recall that dd−2 is also the number of labeled trees on d vertices, or equivalently the
number of trees on the vertex set {1, . . . , d}. This classical result is commonly known as
Cayley’s formula (see for example [24, Theorem 2.1] and [38, pages 25 and 66]).

Proof of Theorem 6.1. Let `(d) denote the number of labeled floor diagrams of degree d
and genus 0. Let t (d) = dd−2 denote the number of labeled trees on d vertices. Our goal
is to show that `(d) = t (d).

It is well known, and easy to deduce, that

t (d) =
∑
k

∑
S1∪···∪Sk={1,...,d−1}

k∏
i=1

t (|Si |)|Si |, (6.1)

where the second sum is over all unordered set partitions of the set {1, . . . , d − 1} into k
nonempty blocks S1, . . . , Sk . (Thus the number of summands is S(d − 1, k), the Stirling
number of the second kind [37, Section 1.4].) Formula (6.1) is an enumerative encoding
of the decomposition of a labeled tree into a root vertex d and a collection of disjoint
subtrees attached to d, whose vertex sets form a set partition of {1, . . . , d − 1}.

Together with the initial condition t (1) = 1, the recurrence (6.1) uniquely determines
the sequence t (d). Hence the theorem will follow if we show that the numbers `(d) satisfy
the same recurrence. This can be established in the manner analogous to the proof of (6.1)
given above. Every labeled floor diagram D of genus 0 and degree d is a particular kind
of a weighted labeled tree on the vertex set {1, . . . , d}. As such, it can be disassembled
into the root vertex d and an unordered collection of genus-0 floor diagrams D1, . . . ,Dk
supported on disjoint nonempty vertex sets S1, . . . , Sk and joined to d by weighted edges.
There is exactly one such weighted edge connecting d to each set Si . It remains to check
that for a given labeled floor diagram Di on a vertex set Si ⊂ {1, . . . , d − 1}, there
are exactly |Si | ways to connect a vertex v ∈ Si to d by a weighted edge v

e
−→ d so

that the resulting weighted tree on |Si | + 1 vertices is a labeled floor diagram. (Gluing
those diagrams together will produce a labeled floor diagram on {1, . . . , d}.) To prove
this, note that for a fixed v, the only restriction on the weight w(e) comes from the di-
vergence condition (1.1). The latter implies that w(e) can be chosen to be any positive
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integer not exceeding 1 − divi(v), where divi(v) denotes the divergence at v within the
subdiagram Di . It follows that the number of choices in question is∑

v∈Si

(1− divi(v)) = |Si |, (6.2)

as desired. ut

The proof of Theorem 6.1 given above can be used to construct explicit bijections between
labeled floor diagrams of genus 0 and degree d, on one hand, and labeled trees on d
vertices, on the other. One family of bijections of this kind, illustrated in Appendix A, is
built recursively as follows.

Definition 6.2 (A bijection between labeled floor diagrams and labeled trees). Suppose
we have already defined such bijections for labeled floor diagrams of genus 0 and any
degree < d . Now, for a diagram D of degree d, do the following. Decompose D into the
root vertex d and subdiagrams D1, . . . ,Dk on vertex sets S1, . . . , Sk , as described in the
proof of Theorem 6.1 above. Let T1, . . . , Tk denote the trees on vertex sets S1, . . . , Sk
that correspond to D1, . . . ,Dk , respectively, under the appropriate bijections. The tree T
associated toD under the bijection in question is constructed by connecting each tree Ti to
the root vertex d by a single edge e′ that is going to be determined by the unique weighted
edge v

e
−→ d connecting Di to d in D. It remains to describe the rule that determines e′

from e. We have already checked (see (6.2)) that the total number of choices for e is
equal to |Si |. Let us record those choices in an ordered list as the vertex v moves left to
right within Di ; for a given v, we record the choices starting with the largest possible
weight value w(e) = 1 − divi(v) and decreasing it until we reach the smallest possible

weight value w(e) = 1. We similarly list the |Si | choices available for the edge v′
e′

−→ d

connecting Si to d; the ordering is determined by the (left-to-right) ordering of the vertices
v′ ∈ Si . We finally match the choices on both lists in the order they are listed.

Example 6.3. To illustrate, consider the labeled floor diagramDi shown below alongside
with the tree Ti associated to it:

d d d d2

Di

d d d d
Ti

There are four ways to augment Di by a single weighted edge v
e
−→ d (here d is a vertex

located to the right of Di) so that the resulting tree on five vertices is a valid labeled floor
diagram. These four possibilities are shown in the first column of Figure 11. Similarly,
there are four possibilities, shown in the second column, to connect Ti to such a vertex d
by a single edge. The bijection matches each labeled floor diagram to the labeled tree
shown in the same row of the table.

Lemma 6.4. Let D be a labeled floor diagram of genus 0 and degree d , and let T be
the tree on the vertex set {1, . . . , d} associated to it by the bijection described in Defini-
tion 6.2. Then, for any i ∈ {1, . . . , d − 1}, the following are equivalent:
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d d d d dp2 d d d d dp
d d d d dp2 3 d d d d dp
d d d d dp2 2 d d d d dp
d d d d dp2 d d d d dp

Fig. 11. Building a bijection between labeled floor diagrams and trees.

• D contains an edge i → i + 1, and this edge has weight 1;
• T contains the edge (i, i + 1).

Proof. This lemma is a consequence of the following observation: in the ordered lists of
choices involved in a recursive step of the bijection described in Definition 6.2, the last
elements are:

• the edge of weight 1 connecting the rightmost vertex in Di to d;
• the edge connecting the rightmost vertex in Ti to d.

Cf. for example the last row in Figure 11. ut

Lemma 6.4 directly implies the following enumerative corollary.

Corollary 6.5. For any subset A ⊂ {1, . . . , d − 1}, the following are equal:

• the number of labeled floor diagrams of genus 0 and degree d in which all the edges of
the form a→ a + 1 for a ∈ A are present, each with weight 1;
• the number of trees on the vertex set {1, . . . , d} containing all the edges of the form
(a, a + 1) for a ∈ A.

As an application of Corollary 6.5, we obtain:

Corollary 6.6. For a given a ∈ {1, . . . , d − 1}, the number of labeled floor diagrams of
genus 0 and degree d containing an edge a→ a+ 1, with weight 1, is equal to 2dd−3. In
particular, this number does not depend on a.

More generally, for 1 ≤ a < a + b ≤ d, the number of labeled floor diagrams of
genus 0 and degree d which contain the edges a → a + 1 → · · · → a + b, all with
weight 1, is equal to (b + 1)dd−b−2.

Proof. By Corollary 6.5, the quantity in question is equal to the number of trees on the
vertex set {1, . . . , d} containing all the edges (a, a+1), (a+1, a+2), . . . , (a+b−1, a+b).
Equivalently, this is the number of spanning trees in the graph obtained from the d-vertex
complete graphKd by contracting all edges connecting some b+1 vertices to each other.
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Computing the number of such spanning trees is a straightforward application of the
Matrix-Tree Theorem (see, e.g., [24, Theorem 36.1] or [38, Theorem 5.6.8]), which is
left to the reader. ut

Another curious enumerative result concerning labeled floor diagrams is the following
byproduct of our proof of Theorem 4.9.

Proposition 6.7. The number of labeled floor diagrams of genus 0 and degree d contain-
ing an edge e of weight w(e) = d − 1 is equal to (d − 2)!.

Proof. These labeled floor diagrams are in bijection with increasing rooted trees on d−1
vertices (see the proof of Theorem 4.9). The number of such trees is well known to be
equal to (d − 2)!; see, e.g., [37, Proposition 1.3.16]. ut

It is easy to see from Definition 1.1 that d−1 is the largest possible edge weight in a floor
diagram of degree d.

7. Conjectures and open problems

7.1. Higher genera

One would obviously like to extend Theorem 6.1 beyond the case g = 0.

Problem 7.1. Enumerate labeled floor diagrams of degree d and genus g > 0.

At this moment, we do not have a conjectural formula for the number ld,g of such
diagrams. Using the data in Appendix A, one concludes that

l3,1 = 1, l4,1 = 13, l4,2 = 5, l4,3 = 1.

The rest of this section is devoted exclusively to the case g = 0.

7.2. Tree statistics

Let ϕd be a bijection that maps a labeled tree T on d vertices to a labeled floor diagram
D = ϕd(T ) of genus 0 and degree d; an example of such a bijection was given in Defini-
tion 6.2. We can then lift the functions D 7→ µ(D) and D 7→ ν(D) to the corresponding
tree statistics

T 7→ µ̂(T ) = µ(ϕd(T )), T 7→ ν̂(T ) = ν(ϕd(T ))

which are obviously equidistributed with (µ, ν). Then Theorem 1.6 yields a formula for
the Gromov–Witten numbers Nd,0 in terms of µ̂ and ν̂:

Nd,0 =
∑
T

µ̂(T )ν̂(T ), (7.1)

the sum over all labeled trees T on d vertices.
The tree statistics µ̂ and ν̂ derived from the bijection of Definition 6.2 turn out to be

quite complicated, so the resulting formula (7.1) is not as elegant as one might desire.
This naturally leads to the following problem.



Labeled floor diagrams for plane curves 1489

Problem 7.2. Find tree statistics µ̂ and ν̂, as conceptually simple as possible, whose joint
distribution on the set of labeled trees on d vertices coincides with the joint distribution
of µ and ν on the set of labeled floor diagrams of degree d and genus 0.

7.3. Recurrences of Kontsevich and Caporaso–Harris

As mentioned in [7, Exercice 6.2] (cf. also [2]), it is possible to use Theorem 3.18 to
provide a combinatorial derivation of the Caporaso–Harris recurrence, somewhat similar
in spirit to the proof given by A. Gathmann and H. Markwig [16].

The celebrated formula of Kontsevich [23, (5.17)] determines the genus-0 Gromov–
Witten invariants Nd,0 by means of the recursive relation

Nd,0 =
∑
k+l=d

Nk,0Nl,0k
2 l

(
l

(
3d − 4
3k − 2

)
− k

(
3d − 4
3k − 1

))
, (7.2)

for d ≥ 2. Even though this recurrence looks much simpler than Caporaso–Harris’s,
deriving it directly from Theorem 1.6 requires nontrivial effort. The blueprint for such a
derivation is provided by Kontsevich’s original proof; in order to translate this proof into a
combinatorial language, one likely needs to extend the notion of a (labeled) floor diagram
to allow for a real parameter, corresponding to the tropical cross-ratio of the appropriate
point configuration. While we foresee no insurmountable obstacles to implementing this
plan, the technical difficulties involved are substantial enough to require a separate paper.

Problem 7.3. Give a direct proof of Kontsevich’s recursion (7.2) based on the combina-
torial definition of the numbers Nd,0 given by formula (1.6), with g = 0.

This problem was also posed independently in [7, Exercice 7.2].

7.4. Alternating trees

This class of labeled trees was introduced by A. Postnikov et al. [17, 30]; see [39, Sec-
tion 4] for a survey of related topics. An alternating tree T is a tree on the vertex set
{1, . . . , d} such that the vertices adjacent to any given vertex v either all have smaller
labels than v, or all have larger labels. That is, T must not contain a 3-vertex subtree
a−−b−−c with a < b < c.

Let ad denote the number of alternating trees on d vertices. For example, direct in-
spection of the first table in Appendix A shows that a1 = a2 = 1, a3 = 2, a4 = 7.
Postnikov has shown [30, Theorem 1], [38, Exercise 5.41(b)] that

ad =
1

d · 2d−1

d∑
k=1

(
d

k

)
kd−1.

Problem 7.4. Prove or disprove: The number of trees T on the vertex set {1, . . . , d} for
which there is a labeled floor diagram whose underlying tree is T is equal to ad .
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In other words, if we ignore edge weights, then the trees obtained from labeled floor
diagrams of genus 0 are conjecturally equinumerous to the alternating trees.

A related (but different) enumerative problem is the following.

Problem 7.5. Enumerate multiplicity-free labeled floor diagrams of degree d and
genus 0, i.e., those diagrams in which w(e) = 1 for every edge e.

Our calculations show that for d = 1, 2, 3, 4, 5, 6 the number of such diagrams is
1, 1, 2, 7, 36, 245, respectively. These values match the first terms of the sequence [36,
A029768] (see also [5, Exercise 5.2.20]) that enumerates increasing rooted trees with
cyclically ordered branches.

7.5. Generalizations to other Lie types

Problem 7.6. Assume that g = 0. Is there a natural generalization of Theorem 1.6 (in-
cluding the numbers Nd,0 and the notion of a labeled floor diagram) associated with an
arbitrary finite indecomposable crystallographic root system 8?

The possibility of such a generalization is prompted by existing interpretations of la-
beled trees on d vertices (hence, by extension, labeled floor diagrams of genus 0 and
degree d) as “type A objects”, i.e., combinatorial gadgets associated with a root system
of type A. Such an association can actually be made in at least two substantially differ-
ent ways, involving root systems of types Ad−2 and Ad−1, respectively. Both construc-
tions are fairly well known, so we present them cursorily, referring the reader to relevant
sources for further details.

Let 8>0 denote the set of positive roots in the root system 8. The first construction
is based on the notion of the Shi arrangement, the arrangement of hyperplanes in the
(co-)root space of 8 defined by the equations

〈x, α〉 ∈ {0, 1}, α ∈ 8>0.

It was conjectured by R. W. Carter and proved by J.-Y. Shi [35, Theorem 8.1] that the
number of regions of this arrangement (i.e., the number of connected components in the
complement to the union of these hyperplanes) is equal to (h + 1)n, where n is the rank
of 8 and h is the Coxeter number. If 8 is of type Ad−2, then n = d − 2 and h = d − 1,
so (h + 1)n = dd−2, the number of labeled trees on d vertices. Explicit bijections are
known (see [39, Section 5] and [4]) that identify such trees, and therefore labeled floor
diagrams of genus 0 and degree d , with the regions of the Shi arrangement of type Ad−2.
It is not unreasonable to anticipate a generalization of this correspondence to suitably
defined labeled floor diagrams of other types.

It is worth mentioning that the alternating trees discussed earlier in this section have
a natural analogue for any root system 8, since they are equinumerous to (and can be
identified with) the regions of the Linial arrangement

〈x, α〉 = 1, α ∈ 8>0.
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(This was conjectured by R. Stanley and proved by A. Postnikov [30, Section 4.2], [31,
Theorem 8.2], [38, Exercise 5.41(h)] and later by C. Athanasiadis [3, Theorem 4.1].)

The second construction involves the noncrossing partition lattice NC(8) associated
with the root system 8. By a theorem of F. Chapoton [11, Proposition 9], the number of
maximal chains in NC(8) is equal to hnn!/|W |, where W denotes the associated Weyl
group. For 8 of type Ad−1, one recovers Cayley’s formula.

8. Welschinger invariants and odd floor diagrams

The Gromov–Witten numberNd,0 has a “real” counterpart, the Welschinger invariant Wd

[43, 44] that counts real rational curves of degree d through generic 3d − 1 points on
the real projective plane, each with a certain sign. To be specific, to a nodal algebraic
curve in RP2, let us associate a sign that equals (−1) to the power of the number of its
solitary nodes (i.e., points locally given by x2

+ y2
= 0). These signs were introduced by

Welschinger [44] who proved that the signed count Wd does not depend on the choice of
a configuration.

The following result is a restatement of (a part of) [8, Theorem 2].

Theorem 8.1. The Welschinger invariant Wd is equal to

Wd =

∑
µ(D)≡1 mod 2

ν(D), (8.1)

the sum over all labeled floor diagrams D of degree d and genus 0 whose edge weights
are all odd.

Example 8.2. For d = 3 and d = 4 (cf. Appendix A), formula (8.1) gives

W3 = 5+ 3 = 8,
W4 = 40+ 35+ 45+ 3+ 24+ 46+ 32+ 15 = 240.

A labeled floor diagram D is called odd if the weight w(e) of every edge e in D is
an odd number. Thus, the summation in (8.1) is over all odd labeled floor diagrams D of
degree d and genus 0.

Problem 8.3. Enumerate the odd labeled floor diagrams of degree d and genus 0.

Let bd denote the number of such diagrams. Our calculations show that

b1 = 1, b2 = 1, b3 = 2, b4 = 8, b5 = 46, b6 = 352.

Curiously, these numbers match the first terms of the sequence [36, A099765] given by

bd =
1
d

bd/2c∑
k=0

(−1)k
(
d

k

)
(d − 2k)d−1.

Theorem 8.1 was recently used in [2] to obtain a Caporaso–Harris-type recurrence for
Welschinger invariants.
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Appendix A: Labeled floor diagrams with d ≤ 4

D Labeled tree µ(D) ν(D)

d = 1 g = 0 d d 1 1

d = 2 g = 0 d d d d 1 1d d d d d d 1 5

d = 3 g = 0 d d d2 d d d 4 1d d d d d d 1 3d d d d d d d d 1 40

d d d d2 d d d d 4 8

d d d d d d d d 1 35

d d d d2 d d d d 4 15

d d d d2 2 d d d d 16 6

d d d d2 3 d d d d 36 1

d d d d d d d d 1 45

d d d d2 d d d d 4 18

d = 4 g = 0 d d d d3 d d d d 9 3

d d d d d d d d 1 24

d d d d2 d d d d 4 3

d d d d d d d d 1 46

d d d d2 d d d d 4 7

d d d d d d d d 1 32

d d d d2 d d d d 4 5

d d d d d d d d 1 15
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D µ(D) ν(D)

d = 3 g = 1 d d d 1 1

d d d d 1 26

d d d d2 4 4

d d d d 1 15

d d d d2 4 6

d d d d3 9 1

d d d d 1 6

d = 4 g = 1 d d d d 1 9

d d d d2 4 7

d d d d2
2

16 2

d d d d 1 21

d d d d2
4 6

d d d d 1 9

d d d d 1 6

d d d d 1 3

d d d d 1 5

d = 4 g = 2 d d d d 1 7

d d d d2 4 1

d d d d2
4 2

d = 4 g = 3 d d d d 1 1



1494 Sergey Fomin, Grigory Mikhalkin

Appendix B: Tropical rational cubics and their marked floor diagrams
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