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Abstract. We show that for a K3 surface X the finitely generated subring R(X) ⊂ CH∗(X) intro-
duced by Beauville and Voisin is preserved under derived equivalences. This is proved by analyzing
Chern characters of spherical bundles (and complexes). As for a K3 surface X defined over a num-
ber field all spherical bundles on the complex K3 surface XC are defined over Q̄, this is compatible
with the Bloch–Beilinson conjecture. Besides the work of Beauville and Voisin [5], Lazarfeld’s re-
sult on Brill–Noether theory for curves in K3 surfaces [15] and the deformation theory developed
in [12] are central for the discussion.

1. Introduction

The Chow group CHi(X) of a smooth projective variety X is the group of all cycles of
codimension i modulo rational equivalence (see [8]). For surfaces these are CH0(X) =

Z[X], CH1(X) ' Pic(X) (via the first Chern class), and the more mysterious CH2(X).
The latter is roughly the group of 0-cycles Z =

∑
nixi modulo linear equivalence

on curves containing Z. Since Mumford’s article [20] one knows that, unlike CH0(X)

and CH1(X), the group CH2(X) can be big. More precisely, the subgroup A(X) :=
ker(deg : CH2(X) → Z) of all homologically trivial 0-cycles on a complex projec-
tive surface X is infinite-dimensional (and in particular infinitely generated) whenever
pg(X) = h

2(X,OX) > 0, e.g. for K3 surfaces.
For K3 surfaces, Beauville and Voisin have studied more recently the subgroup

R(X) := CH0(X)⊕ CH1(X)⊕ cXZ ⊂ CH2(X),

where cX ∈ CH2(X) is the fundamental class of a closed point x ∈ X that is contained in
a (possibly) singular rational curve in X. As shown in [5], the class cX is independent of
the point x. The main results of [5] can be stated as follows:

Theorem (Beauville–Voisin).

(i) R(X) ⊂ CH∗(X) is a subring.
(ii) 24cX = c2(X).
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The first condition is equivalently expressed by saying that for any line bundleL ∈ Pic(X)
the class c1(L)

2
∈ CH2(X) is a multiple of cX.

Let us rephrase (i) and (ii) in terms of Mukai vectors. For any coherent sheaf (or
complex of coherent sheaves) E on X one defines

vCH(E) := ch(E)
√

td(X) ∈ CH∗(X).

In other words, vCH(X) := (rk(E), c1(E), ch2(E)+ rk(E)cX) ∈ CH0(X)⊕ CH1(X)⊕

CH2(X). Then by applying (i) to powers of L, conditions (i) and (ii) can be reformulated
as:

(iii) For any line bundle L ∈ Pic(X), one has vCH(L) ∈ R(X).

Line bundles on a K3 surface X are the easiest examples of spherical objects on X,
which by definition are bounded complexes of coherent sheaves E ∈ Db(X) with
Ext∗X(E,E) ' H

∗(S2,C). Building upon [5], we shall prove the following generalization
of (iii).

Theorem 1. Let X be a complex projective K3 surface of Picard number ρ(X) ≥ 2 and
let E ∈ Db(X) be a spherical object. Then vCH(E) ∈ R(X).

Spherical objects play a distinguished role in the study of the bounded derived category
Db(X) (and its homological mirror given by a certain Fukaya category). They are essential
for the understanding of the rich structure of the group Aut(Db(X)) of all exact C-linear
autoequivalences and Bridgeland’s space of stability conditions Stab(X) (see [7]).

In this context, Theorem 1 is used to deduce information about the action of derived
equivalences on the level of Chow groups. More precisely, we have

Theorem 2. Let 8E : Db(X)
∼
−→ Db(X′) be an exact C-linear equivalence between

the bounded derived categories of two smooth complex projective K3 surfaces of Picard
number ρ(X) ≥ 2. Then the induced action 8CH

E : CH∗(X)
∼
−→ CH∗(X′) preserves the

Beauville–Voisin ring, i.e.
8CH
E (R(X)) = R(X′).

The key step towards Theorem 1 is the following result which is valid without any as-
sumption on the Picard group of the surface (see Theorem 2.3).

Theorem 3. Let X and X′ be complex projective K3 surfaces and

8E ,8F : Db(X)
∼
−→ Db(X′)

be two Fourier–Mukai equivalences. If their induced actions on cohomology coincide, i.e.
8HE = 8

H
F : H̃ (X,Z) ∼−→ H̃ (X′,Z), then also 8CH

E = 8
CH
F : CH(X)

∼
−→ CH(X′).

In particular, forX = X′ the result shows that8CH
E acts as the identity onA(X)whenever

it acts trivially on cohomology (see Corollary 2.7). As we will explain in Remark 2.9,
this is predicted by a general conjecture of Bloch which asserts that the action of any
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algebraic correspondence on the graded pieces of his conjectural filtration is determined
by its action on cohomology (see [3, 1.8] or [24, Conj. 23.22]).

If instead of projective K3 surfaces over C we consider K3 surfaces X defined over a
number field K , then the situation changes completely. In this case CH2(X) is no longer
expected to be infinitely generated. In fact, the Bloch–Beilinson conjectures predict that
for K3 surfaces over number fields the degree map yields an isomorphism CH2(X) ⊗ Q
' Q (see [4, 21]). This can be rephrased as the following

Conjecture (Bloch–Beilinson for K3 surfaces). For any K3 surface X defined over a
number field K base change yields

CH∗(X)⊗Q ↪→ CH∗(XL)⊗Q ∼
−→ R(XC)⊗Q ' Qρ(XC)+2,

where L/K is a certain finite field extension with a chosen embedding L ⊂ C.

As usual,XL denotesX×Spec(K) Spec(L), and similarly forXC, which is then a complex
projective K3 surface.

It is well known that the base change CH∗(X) → CH∗(XL) for any extension L/K
has torsion kernel. The passage to the finite extension L/K is not essential and only
needed to ensure that all geometric line bundles are defined. Thus, the central point of the
conjecture is that CH2(X)⊗Q ' QcX. For a proof it would clearly suffice to prove that
any rational point x ∈ X(Q̄) satisfies [x] = cX, but there is no obvious geometric reason
for this.

The skyscraper sheaves k(x) of rational points x ∈ X(Q̄) define semi-rigid objects in
Db(XQ̄) (see Section 5 for the definition), for Ext1(k(x), k(x)) is two-dimensional. In this
sense, they are reasonably close to our spherical objectsE ∈ Db(X)which have vanishing
Ext1(E,E). The following is thus in accordance with the Bloch–Beilinson conjecture for
K3 surfaces.

Theorem 3. Let X be a K3 surface over a number field K . Then

• Any spherical object E ∈ Db(XC) is defined over some finite extension L/K .
• Any spherical object F ∈ Db(XQ̄) satisfies vCH(FC) ∈ R(XC) if in addition ρ(XQ̄)
≥ 2.

Together these two assertions show that on any K3 surface X defined over Q̄ with Pi-
card number ρ(X) ≥ 2 there exist a large number of non-trivial classes in CH2(X) for
which the Bloch–Beilinson conjecture can be verified. As with other approaches to the
conjecture, the difficult part, that would show that this suffices to deduce the result for all
classes, remains open.

Despite the algebraic nature of all assertions, non-algebraic K3 surfaces play a crucial
but hidden role in this paper. A technique that has been developed together with Macrì and
Stellari in [12] allows one to deform any derived equivalence that acts as the identity on
cohomology to an essentially trivial derived equivalence on a generic and non-algebraic
deformation ofX. This is explained in Section 2. The results can also be used to show that
the natural representations of Aut(Db(X)) on CH∗(X) and on the Mukai lattice H̃ (X,Z)
encode the same information (see Corollary 2.7).
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In Section 3 we reduce Theorem 1 to the case that E is a spherical vector bundle. This
section also explains how Theorem 2 is deduced from Theorem 1. The case of spherical
vector bundles is dealt with in detail in Section 4. The main ingredient here is Lazarsfeld’s
result that the generic curve in an indecomposable linear system on a K3 surface is Brill–
Noether general [15]. The final Section 5 discusses the relation to the Bloch–Beilinson
conjecture for K3 surfaces over number fields.

We certainly expect all results to hold true without any assumption on the Picard
number of the K3 surface X and, in fact, Theorem 1 can be proved also for ρ(X) = 1
under additional numerical conditions on the spherical object E.

Notation. By Db(X) we denote the bounded derived category of the abelian category
Coh(X) of coherent sheaves on X. It will be considered as a K-linear triangulated cat-
egory, when X is defined over K (which mostly is C, Q̄ or a number field). The Mukai
lattice H̃ (X,Z) of a complex K3 surface is by definition the full singular cohomology
H ∗(X,Z) endowed with its natural weight two Hodge structure and the Mukai pairing
(see e.g. [10]). All intersection products will be taken with respect to the Mukai pairing
which differs from the usual intersection pairing by a sign in degree four. We will asso-
ciate to any E ∈ Db(X) its Mukai vector v(E) := ch(E)

√
td(X) ∈ H̃ (X,Z) and its

natural lift to CH∗(X), which is denoted vCH(E). We do not make this distinction for the
characteristic classes.

2. Fourier–Mukai action on the Chow group

Let us start by briefly recalling the following examples of Fourier–Mukai equivalences
for K3 surfaces.

(i) For a line bundle L ∈ Pic(X), the tensor product L ⊗ ( ) defines a Fourier–Mukai
equivalence

8ι∗L : Db(X)
∼
−→ Db(X),

where ι∗L is the direct image of L under the diagonal embeddingX
∼
−→ 1 ⊂ X×X.

(ii) If X′ is a smooth projective two-dimensional fine moduli space of µ-stable vector
bundles on X, then the universal bundle E on X × X′ induces an equivalence (see
[19, 10])

8E : Db(X)
∼
−→ Db(X′).

Note that any Fourier–Mukai partner of X is isomorphic to such a moduli space,
but of course other Fourier–Mukai equivalences between X and X′ do exist and are
given by kernels more complicated than E.

(iii) If E ∈ Db(X) is a spherical object, i.e. Ext∗X(E,E) ' H
∗(S2,C), then the spherical

twist
TE : Db(X)

∼
−→ Db(X),

studied in detail in [23], is a Fourier–Mukai equivalence with kernelPE := Cone(tr :
E∨ � E → O1) (see also [10, Ch. 8]). Spherical objects, although rigid, exist in
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abundance on any projective K3 surface. E.g. any line bundle, even the trivial one,
gives rise to a non-trivial spherical twist. Moreover, Kuleshov shows in [14] that any
(1, 1)-class v ∈ H̃ (X,Z) of square −2 is the Mukai vector of a spherical object,
which can be chosen to be a vector bundle if the rank of v is positive.

Any Fourier–Mukai equivalence 8E : Db(X)
∼
−→ Db(X′) induces a group isomor-

phism
8CH
E : CH∗(X)

∼
−→ CH∗(X′)

and a Hodge isometry
8HE : H̃ (X,Z) ∼−→ H̃ (X′,Z).

Both are defined as correspondences associated to vCH(E) ∈ CH∗(X × X′)⊗ Q respec-
tively v(E) ∈ H ∗(X ×X′,Q).

Note that in general one would expect 8CH and 8H to be defined only with rational
coefficients, but as Mukai observed the situation is special for K3 surfaces (see the original
argument in [19] or [10, 11]).

Remark 2.1. The action 8CH
E is difficult to grasp for example (ii), but easy to describe

in examples (i) and (iii).
Indeed, in (i) the actions8CH

ι∗L
and8Hι∗L are both given by multiplication with ch(L) =

exp(c1(L)), where the Chern character is viewed in CH∗(X) resp. H ∗(X,Z). Thus The-
orem 2 is a trivial consequence of the results in [5] in this case.

For the spherical twists in (iii), T CH
E and T HE are reflections in vCH(E)⊥ resp. v(E)⊥,

where the orthogonal complement is taken with respect to the Mukai pairing. In particular,
their squares (T 2

E)
CH and (T 2

E)
H act trivially, i.e. as the identity, on both groups CH∗(X)

resp. H̃ (X,Z).

Remark 2.2. Observe that for an arbitrary spherical object the associated spherical twist
TE preserves the Beauville–Voisin subring R(X) if and only if vCH(E) ∈ R(X). In this
case it acts as the identity on the space of cohomologically trivial cycles A(X).

According to Mumford, CH2(X) is big and in fact of infinite dimension for any com-
plex projective surface with pg(X) > 0 and therefore in particular for K3 surfaces. See
[24, Ch. 22] for the notion of dimension of CH2(X).

Thus, a priori for an arbitrary Fourier–Mukai equivalence 8E : Db(X)
∼
−→ Db(X′)

between two K3 surfaces the induced map 8CH
E : CH∗(X)

∼
−→ CH∗(X′) between the in-

finite dimensional Chow groups might capture more information than 8HE : H̃ (X,Z) ∼−→
H̃ (X′,Z). That this is (unfortunately?) not the case is the main result of this section:

Theorem 2.3. Let X and X′ be smooth complex projective K3 surfaces and let

8E ,8F : Db(X)
∼
−→ Db(X′)

be two Fourier–Mukai equivalences with 8HE = 8
H
F . Then also

8CH
E = 8

CH
F : CH∗(X)

∼
−→ CH∗(X′).
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Remark 2.4. In general the direct sum decomposition CH∗(X) = CH0(X)⊕CH1(X)⊕

CH2(X) is not respected by Fourier–Mukai transforms. However, the homologically triv-
ial part is. More precisely, if 8E : Db(X)

∼
−→ Db(X′) is any Fourier–Mukai equiv-

alence, then 8CH
E (A(X)) = A(X′). Moreover, if 8HE respects the cohomological de-

gree, e.g. for cohomologically trivial autoequivalences, then8CH
E (CH0(X)⊕CH2(X)) =

CH0(X′)⊕ CH2(X′).

The essential step in the proof of Theorem 2.3 is the following slightly weaker result.

Proposition 2.5. Let 8E ,8F : Db(X)
∼
−→ Db(X′) be as in Theorem 2.3. Then 8CH

E =

8CH
F on CH0(X)⊕ CH2(X).

Proof. By studying the composition8−1
F ◦8E : Db(X)

∼
−→ Db(X), one easily reduces to

the case of autoequivalences acting as the identity on cohomology. So let8E0 : Db(X)
∼
−→

Db(X) with 8HE0
= id. We claim that then also 8CH

E0
= id on CH0(X) ⊕ CH2(X). In

particular we have to show that 8CH
E0
= id on the space of homologically trivial cycles

A(X).
Clearly, changing 8E0 by even powers T 2k of the shift functor or even powers T 2k

OX
of the spherical twist associated to the trivial line bundle does not affect the assertion (see
Remark 2.2 and use vCH(OX) = (1, 0, cX) ∈ R(X)). So, in the course of the proof we
will freely modify 8E0 by autoequivalences of this type.

In [12] we were mainly interested in the case 8HE0
= (−idH 2) ⊕ idH 0⊕H 4 , but as

mentioned there already the case 8HE0
= id is similar and actually easier. So the results of

[12] show that for any autoequivalence 8E0 with 8HE0
= id one finds:

(i) Two smooth formal deformations X → Spf(R) ← X ′ with R = C[[t]] and X0 =

X = X ′0. Here X is the formal neighbourhood of X inside its twistor space with
respect to a very general Kähler class in Pic(X) ⊗ R. Note that in this way X is
deformed towards a non-projective K3 surface.

(ii) A complex E ∈ Db(X ×R X ′) := Db
coh(OX×RX ′ -Mod) deforming E0, i.e. Lι∗E '

E0, where ι : X ×X ↪→ X ×R X
′ is the obvious closed embedding.

By [12, Prop. 2.18, 2.19] we may assume, after possibly composing with powers of
T 2
O and T 2, that the restriction EK ∈ Db((X ×R X ′)K) of E to the general fibre is a sheaf.

Hence [12, Cor. 4.5] applies and shows that there exists an R-flat sheaf (!) Ẽ on X ×R X ′
with the same restriction to the general fibre as E , i.e. ẼK ' EK in Db((X ×R X ′)K),
where K = C((t)). For the notation we refer to [12]. Using the compatibilities between
8HE0

and the induced action on Hochschild (co)homology, one can in addition assume that
the first order deformations X1 → Spec(C[t]/t2)← X ′1 of X = X0 = X ′0 coincide.

The specialization morphismK(Db((X ×RX ′)K))→ K(Db(X×X)) is well defined
(see [12, Remark 2.7] or the analogous statement for Chow groups in Remark 4.5). Hence
the coherent sheaf (!) Ẽ0 and the original complex E0 have the same Mukai vectors vCH

∈

CH∗(X ×X)⊗Q and therefore 8CH
Ẽ0
= 8CH

E0
and 8HẼ0

= 8HE0
.
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Note that the Fourier–Mukai transform 8G associated to the sheaf G := Ẽ0 is not
necessarily an equivalence, which would simplify the following arguments. But in any
case, there is a dense open subset U ⊂ X over which G is flat (see e.g. [11, Thm. 2.15,
Lemma 2.1.6]). Hence, for any closed point x ∈ U the image 8G(k(x)) is simply the
sheaf G|{x}×X. On the other hand, v(8G(k(x))) = v(8E0(k(x))) = (0, 0, 1) and hence
G|{x}×X must be of the form k(y) for some point y ∈ X. This gives rise to a morphism
U → X, which by interchanging the two factors turns out to define a birational map
X 99K X. As any birational map between K3 surfaces, the latter can then be completed to
an isomorphism f : X

∼
−→ X. Moreover, if Z := Supp(G) ⊂ X×X, then 0f ⊂ Z is one

irreducible component and the other components do not dominate X. The latter implies
that [0f ]∗|H 2,0 = 8HG |H 2,0 = idH 2,0 , i.e. f is a symplectomorphism.

Obviously f∗(cX) = cX and a general conjecture of Bloch (see Remark 2.9) predicts
that for a symplectomorphism the induced automorphism f∗ : CH∗(X) ' CH∗(X) is the
identity on A(X). Since for generic x ∈ X we have 8CH

G ([x]) = [f (x)], this would be
enough to conclude that 8CH

G acts as the identity on CH2(X).
Without using Bloch’s conjecture, the argument is more involved and goes as follows.

Since G is the restriction of a sheaf on X1 ×R1 X1, the structure sheaf of the graph O0f
deforms sideways to first order, i.e. there exists an R1-flat coherent sheaf on X1 ×R1 X ′1
restricting to O0f over the closed point. (Do it first for the graph of f |U and then pass to
the closure.) In other words, the automorphism f deforms sideways to first order (actually
to any order, but we do not need this) in X ×R X ′. But clearly f deforms sideways to
first order if and only if f ∗(w) = w, where w ∈ H 1(X, TX) corresponds to the first order
deformation X1 → Spec(C[t]/t2).

By construction, the class w maps to the chosen Kähler class in H 1,1(X) under the
isomorphism H 1,1(X) ' H 1(X,�X) ' H 1(X, TX) and, since the Kähler class was
chosen generically, this implies f ∗ = id on Pic(X). Since the transcendental lattice T (X)
is an irreducible Hodge structure (of weight two), the assumption f ∗ = id on H 2,0(X)

implies by Schur’s lemma that f ∗ = id on T (X). Together with f ∗ = id on Pic(X) this
proves f ∗ = id on the full cohomology H ∗(X,Z). By the global Torelli theorem, the
latter is equivalent to f = id. Eventually this shows that 8CH

G ([x]) = f∗[x] = [x] for
generic and hence all x ∈ X. Thus 8CH

G = id on CH2(X).
To conclude we observe that 8E0(OX) deforms sideways to a spherical object in

Db(XK), for OX and E0 do. On the other hand, up to shift OX ′K is the only spherical
object in Db(X ′K) (cf. [12, Prop. 2.14]). Hence, up to shift,OX is the only spherical object
on X that deforms sideways in the family X ′ to a spherical object in Db(X ′K). Hence
8E0(OX) ' OX (up to shift), which in particular shows that 8CH

E0
(1, 0, cX) = (1, 0, cX).

Thus we have shown that 8CH
E0

acts as identity on CH0(X) ⊕ CH2(X). Moreover, it

acts as
(

id 0
∗ id

)
on CH1(X)⊕ CH2(X), which will later be shown to be diagonal. ut

The proposition can also be used to derive information about the Mukai vectors in
CH∗(X) of spherical objects having the same Mukai vector in cohomology. This is the
following
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Corollary 2.6. If E,E′ ∈ Db(X) are two spherical objects with v(E) = v(E′) ∈

H̃ (X,Z), then
vCH(E) = vCH(E′) ∈ CH∗(X).

Proof. Write v(E) = (r, `, s) = v(E′). Let us first reduce to the case that r 6= 0. Suppose
r = 0, then ` 6= 0. Then let 8 = TOX ◦ (L⊗ ( )) and use 8 ◦ TE ' T8(E) ◦8 (see e.g.
[10, Lemma 8.21]), which holds for any Fourier–Mukai equivalence 8 and any spherical
objectE. Thus T H8(E) = T

H
8(E′)

and the assertion vCH(E) = vCH(E′) is clearly equivalent
to vCH(8(E)) = vCH(8(E′)). If L is chosen such that (c1(L).`)� 0, then the spherical
object 8(E) has positive rank.

Now apply Proposition 2.5 to the class cX to deduce T CH
E (cX) = T CH

E′
(cX). Both

sides can be explicitly computed, which yields cX − rvCH(E) = cX − rv
CH(E′) and

hence vCH(E) = vCH(E′). ut

Proof of Theorem 2.3. Suppose again that8E is an autoequivalence of Db(X)with8HE =
id. By Proposition 2.5 we know already that 8CH

E is the identity on CH0(X)⊕ CH2(X).
Thus it remains to show that8CH

E (c1(L)) of an arbitrary line bundle L has no component
in A(X). The image L′ := 8E (L) of a line bundle L is a spherical object and since
8HE = id, one has v(L) = v(L′). By Corollary 2.6 this implies vCH(L) = vCH(L′) and
hence 8CH

E (c1(L)) ∈ CH1(X). ut

As done already in the proof above, Theorem 2.3 can be reformulated in terms of auto-
equivalences. Since the kernel of the cohomology representation of Aut(Db(X)) is essen-
tially the only remaining mystery in this context, we state this explicitly as

Corollary 2.7. Let X be a smooth complex projective K3 surface and denote by

ρCH : Aut(Db(X))→ Aut(CH∗(X)) and ρH : Aut(Db(X))→ Aut(H̃ (X,Z))

the natural representation 8 7→ 8CH resp. 8 7→ 8H . Then ker(ρCH) = ker(ρH ).

Proof. The inclusion ker(ρCH) ⊂ ker(ρH ) is obvious and the other one follows from the
proposition. ut

Remark 2.8. In [7] Bridgeland suggests the following explicit description of this kernel.
He conjectures ker(ρH ) = π1(P+0 (X)), for a certain period domain P+0 (X) defined in
terms of the algebraic part of H̃ (X,Z). In particular, the conjecture says that ker(ρH ) is
spanned by the square T 2

= [2] of the shift functor and the squares T 2
E of all spherical

twists TE . (In fact, spherical twists associated to spherical sheaves should suffice.)
As explained above, the conjectural generators T 2 and T 2

E of ker(ρH ) act trivially
on CH∗(X). In this sense, the corollary provides non-trivial evidence for Bridgeland’s
conjecture.

Remark 2.9. The corollary appears interesting also in the light of another open conjec-
ture due to Bloch (see [3]), which for the case of surfaces reads as follows: Consider a
surfaceX and a cycle 0 ∈ CH2(X×X)with its induced natural endomorphisms [0]2,0

∗ of
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H 0(X,�2
X) and [0]∗ of CH2(X). In general the latter does not respect the natural filtra-

tion ker(albX) ⊂ A(X) ⊂ CH2(X), but induces an endomorphism gr[0]∗ of the graded
object ker(albX) ⊕ Alb(X) ⊕ Z. Then Bloch conjectures that [0]2,0

∗ = 0 if and only if
gr[0]∗ is trivial on ker(albX) (see also [24, Ch. 11]). Note that for a K3 surface X the
graded object is just A(X)⊕ Z.

If 8E : Db(X)
∼
−→ Db(X) is a Fourier–Mukai autoequivalence of a K3 surface X

such that 8HE = id, then 0 := vCH(E) − [1] acts trivially on cohomology and, in
particular, on H 0(X,�2

X). Bloch’s conjecture would thus say that gr[0]∗ is trivial on
A(X) = ker(albX). And indeed, by Corollary 2.7 this holds true, as we in fact have
0 = 0.

Note that Bloch’s conjecture would actually say that 8HE = id on H 0(X,�2
X) is suf-

ficient to conclude 8CH
E = id on A(X), but our techniques fail to prove this. In fact, it

seems even unknown whether any symplectomorphism f ∈ Aut(X) induces the iden-
tity on A(X), i.e. whether for a symplectomorphism f any point x ∈ X is rationally
equivalent to its image f (x) (cf. comments in the proof of Proposition 2.5).

3. Mukai vectors of spherical objects

The goal of this section is to prove that for any spherical object E ∈ Db(X) on a
smooth complex projective K3 surfaceX with Picard number ρ(X) ≥ 2 the Mukai vector
vCH(E) ∈ CH∗(X) is contained in the Beauville–Voisin subring R(X) ⊂ CH∗(X). The
main results (Corollaries 3.3 and 3.4) should also hold for K3 surfaces with ρ(X) = 1,
but we can only prove it under additional conditions on the numerical invariants of E.

Remark 3.1. As noted earlier, the original result in [5] can be seen as the special case
that the spherical object E is a line bundle L ∈ Pic(X). Indeed, if

vCH(Lk) = (1, kc1(L), k
2c1(L)

2/2+ c2(X)/24) ∈ R(X),

then necessarily c1(L)
2
∈ R(X) and c2(X) ∈ R(X). However, it should be emphasized

that our methods do not provide an alternative proof of the results in [5].

In this section we shall explain how to reduce the proof of Theorem 1 to a general-
ization of the Beauville–Voisin result from line bundles to higher rank spherical vector
bundles. The proof of the following crucial result is postponed to the next section.

Proposition 3.2. Let X be a smooth complex projective K3 surface and let E be a spher-
ical vector bundle on X. Suppose that one of the following conditions hold:

(i) ρ(X) ≥ 2 or
(ii) Pic(X) = ZH and v(E) = (r, kH, s) with k ≡ ±1 (r).

Then vCH(E) ∈ R(X).
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This proposition is expected to hold without any restriction on X or the spherical vector
bundleE. However, it does not generalize toµ-stable vector bundles, i.e. the Mukai vector
of a general non-rigid µ-stable vector bundle E is certainly not contained in R(X).

The following consequence of Proposition 3.2 proves Theorem 1.

Corollary 3.3. Let E ∈ Db(X) be a spherical object on a smooth projective K3 sur-
face X. Suppose that either

(i) ρ(X) ≥ 2 or
(ii) Pic(X) = ZH with v(E) = (r, kH, s) with k ≡ ±1 (r).

Then vCH(E) ∈ R(X).

Proof. Let E ∈ Db(X) be spherical. Write v(E) = (r, `, s). Clearly, vCH(E) ∈ R(X) is
equivalent to vCH(E[1]) = −vCH(E) ∈ R(X). Hence we may assume r ≥ 0.

If r > 0, then as proved in [14] there exists a spherical locally free sheaf E′ onX with
v(E′) = v(E). (In fact any torsion free spherical sheaf is automatically locally free, as
was already observed by Mukai in [19].) Now apply Proposition 3.2 to E′ which yields
vCH(E′) ∈ R(X). But by Corollary 2.6, we know that vCH(E) = vCH(E′) for any two
numerically equivalent spherical objects E,E′ ∈ Db(X).

The case r = 0 is straightforward. First, by applying TOX we reduce to the case
that also s = 0 and hence v(E) = (0, `, 0) with ` a (−2)-class, which we may assume
to be effective. Thus T HE = s`, the reflection in `⊥. The Weyl group WX generated
by reflections sδ for all effective (−2)-classes δ is known to be generated by reflections
associated to nodal classes, i.e. when δ is represented by a smooth rational curve. Thus s`
can be written as a composition of finitely many reflections s[Ci ], where the curvesCi ⊂ X
are smooth and rational. Then use that vCH(E) ∈ R(X) is equivalent to T CH

E (R(X))

= R(X), because T CH
E is the reflection in the hyperplane vCH(E)⊥, and that T HE = s` =∏

s[Ci ] implies T CH
E =

∏
T CH
OCi (−1) (Theorem 2.3). Clearly, vCH(OCi (−1)) ∈ R(X) and

hence T CH
OCi (−1)(R(X)) = R(X). ut

Let us now show that Theorem 1 implies Theorem 2, which we state again as

Corollary 3.4. Suppose X and X′ are smooth complex projective K3 surfaces with Pi-
card number ρ(X) ≥ 2. If 8E : Db(X)

∼
−→ Db(X′) is a Fourier–Mukai equivalence, then

the induced map 8CH
E : CH∗(X)

∼
−→ CH∗(X′) respects the Beauville–Voisin subring, i.e.

8CH
E (R(X)) = R(X′).

Proof. The Mukai vectors vCH(L) ∈ CH∗(X) of all line bundles L ∈ Pic(X) span R(X).
The images E := 8E (L) ∈ Db(X′) are not necessarily (shifted) line bundle again, but
they are spherical objects in Db(X′). Since ρ(X) ≥ 2 and hence ρ(X′) ≥ 2, Corol-
lary 3.3(i) applies. Thus 8CH

E (vCH(L)) = vCH(E) ∈ R(X′). ut

Remark 3.5. The most interesting special case is the one when X′ is a fine moduli space
of µ-stable vector bundles and E is the universal bundle E. In examples where both the
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moduli spaceX′ and the universal bundle E are constructed explicitly, one can sometimes
prove Corollary 3.4 directly (see e.g. [11] for explicit examples). If there was an argument
proving the result for arbitrary universal bundles without first proving Corollary 3.3, then
the techniques of Section 2 would prove Corollary 3.4 more directly (and also in the case
ρ(X) = 1).

To be more precise, let E be any spherical object with v(E) = (r, `, s) and r > 0.
Then T HE (0, 0, 1) = −(r2, r`, rs − 1). Thus, if TE is composed with 8E[1] where
E ∈ Db(X × X′) is the universal family of stable vector bundles with Mukai vector
(r2, r`, rs − 1), then (8E[1] ◦ TE)

H (0, 0, 1) = (0, 0, 1). By composing with a certain
equivalence 9 that is a combination of spherical twists TOC (with P1

' C ⊂ X) and ten-
sor products with line bundles, the Hodge isometry (9 ◦8E[1] ◦ TE)

H becomes graded.
Moreover, it will respect the Kähler cone up to sign (see e.g. [10, Ch. 9] for details). Then
by the global Torelli theorem (9 ◦8E[1] ◦ TE)

H
= ±f∗ for some isomorphism f . Now

use that f CH
∗ and 9CH preserve the Beauville–Voisin ring. Hence T CH

E (R(X)) = R(X)

if and only if 8CH
E (R(X)) = R(X′), where E is a universal family of stable bundles of

rank r2.

4. Spherical vector bundles: Proof of Proposition 3.2

Let C be a smooth irreducible complex projective curve of genus g. Recall that the Brill–
Noether locus W r0

d (C) ⊂ Picd(C) is the determinantal subvariety of all line bundles A
of degree d with h0(C,A) ≥ r0 + 1. The Brill–Noether number for these numerical
invariants is by definition

ρ(r0, d, g) := g − (r0 + 1)(g − d + r0).

Classically (see [1]) one knows that W r0
d (C) is non-empty whenever ρ(r0, d, g) ≥ 0.

(Due to a result of Fulton and Lazarsfeld, it is also connected when ρ(r0, d, g) > 0,
but this will not be used.) Moreover, for a generic curve C the Brill–Noether number
ρ(r0, d, g) is in fact the dimension of W r0

d (C) when ρ(r0, d, g) ≥ 0 and W r0
d (C) = ∅

otherwise.
Central for our discussion is a result of Lazarsfeld [15] that shows that a generic

smooth curve C in an indecomposable linear system on a K3 surface is Brill–Noether
general, i.e. the W r0

d (C) have the expected dimension. Let us make precise which parts
of [15] are really used.

Suppose A ∈ W r0
d (C) satisfies

h0(C,A) = r0 + 1 and the line bundles A and A∗ ⊗ ωC are globally generated. (4.1)

IfC is embedded into a K3 surfaceX, one associates toA the Lazarsfeld bundle FC,A,
which by definition is the kernel of the evaluation map H 0(C,A)⊗OX → A. Here A is
viewed as a sheaf on X supported on C. Thus, there is a short exact sequence

0→ FC,A→ H 0(C,A)⊗OX → A→ 0
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and it is not difficult to see that FC,A is really locally free. Dualizing yields an exact
sequence

0→ H 0(C,A)∗ ⊗OX → F ∗C,A → A∗ ⊗ ωC → 0. (4.2)

The crucial result for our discussion is the following observation.

Lemma 4.1 ([15, Lemma 1.3]). If |C| is indecomposable, i.e. |C| does not contain any
reducible curves, then the bundle FC,A is simple. ut

Clearly, the assumption on |C| is satisfied if Pic(X) is generated by O(C) and we shall
restrict to this case. So from now on let X be a complex projective K3 surface with
ρ(X) = 1, let H ∈ Pic(X) be the ample generator and write (H.H) = 2g − 2. Then the
generic curve C ∈ |H | is smooth of genus g. (Indeed, by Bertini it suffices to show that
|H | has no base points and according to [22, Cor. 3.2] there are no base points outside the
fixed components which do not exist, because |H | is indecomposable.)

Now choose r0 and d such that

d < g + r0 and ρ(r0, d, g) = 0. (4.3)

We will only need the following immediate consequence of [15]:

Proposition 4.2. For generic C ∈ |H | there exists a line bundle A ∈ W r0
d (C) satisfying

(4.1).

Proof. In fact we will show that for a generic curve C ∈ |H | any A ∈ W r0
d (C) satisfies

(4.1). Since ρ(r0, d, g) = 0 and hence W r0
d (C) 6= ∅ (for any smooth C), this proves the

assertion.
Let C ∈ |H | be generic and letA ∈ W r0

d (C). We first check h0(C,A) = r0+1. If not,
thenW r0+1

d (C) 6= ∅. On the other hand, by our assumption (4.3) we have ρ(r0+1, d, g) =
ρ(r0, d, g)−(g−d+r0+1)−(r0+2) = 0+d−g−2r0−3 < 0 and thusW r0+1

d (C) = ∅,
as the generic smooth curve in |H | is Brill–Noether general according to [15].

Next, for generic C ∈ |H | any A ∈ W r0
d (C) is globally generated. Indeed, other-

wise W r0
d−1(C) 6= ∅. This would again contradict that C is Brill–Noether general, for

ρ(r0, d − 1, g) = ρ(r0, d, g)− (r0 + 1) < 0.
The calculation for A∗ ⊗ ωC is similar. First observe A∗ ⊗ ωC ∈ W

r0−d−1+g
2g−2−d (C)

and h0(C,A∗ ⊗ ωC) = r0 − d + g by Serre duality and Riemann–Roch. Then, using
the assumption d < g + r0 in (4.3) (so far d < g + 2r0 was enough), one checks
ρ(r0 − d − 1 + g, 2g − 2 − d − 1, g) < 0 and hence W r0−d−1+g

2g−2−d−1(C) = ∅. The latter
shows in particular that A∗ ⊗ ωC is globally generated. ut

We continue to assume Pic(X) = ZH . Consider a spherical bundle E on X and let
v(E) = (r, kH, s) with k ≡ ±1 (r). By tensoring with powers ofH and dualizing we can
modify E such that k = 1. As these operations do not affect whether vCH(E) ∈ R(X),
we will assume henceforth that k = 1. Since E is spherical, one has (H.H)− 2rs = −2
or, in other words, rs = g.
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Next we would like to relate E to a particular Lazarsfeld bundle, but a priori it is not
clear that E fits in a short exact sequence of the form 0→ OrX → E→ M → 0 with M
a line bundle on a generic C ∈ |H | (cf. (4.2)). However, we will see that this is possible
for the right choice of r0 and d. To be more precise, let

d := g − 1− s + r and r0 := r − 1.

(If the wished-for exact sequence 0→ OrX → E→ M → 0 is of the form (4.2), then the
Riemann–Roch formula χ(M) = −d + g− 1 together with χ(M) = χ(E)− 2r = s − r
dictates this choice.)

A straightforward computation reveals that with this choice ρ(r0, d, g) = g− rs = 0
and d < g + r0. The latter is equivalent to s > 0, which follows from g = rs and r > 0.
Thus Proposition 4.2 applies and we find for generic C ∈ |H | a line bundle A ∈ W r0

d (C)

satisfying (4.3). This then yields a short exact sequence of the form (4.2). Moreover, F ∗C,A
is simple by Lemma 4.1 and v(F ∗C,A) = (r,H, s) = v(E).

By [19, Prop. 3.14], any spherical bundle on a K3 surface with Picard number one is
µ-stable. Mukai also proves that rigid µ-stable vector bundles with given Mukai vector
are unique (see also [11, Thm. 6.16]). Hence E ' F ∗C,A.

Thus as a consequence of [15] we proved

Corollary 4.3. Let E be a spherical bundle on a K3 surface X with Pic(X) = ZH and
such that v(E) = (r,H, s). Then for any generic smooth curve C ∈ |H | there exists a
line bundle M on C and a short exact sequence

0→ OrX → E→ M → 0. ut

Remark 4.4. Corollary 2.6, which also works for ρ(X) > 1, shows that in any case
vCH(E) = vCH(F ∗C,A). So we do not actually need E ' F ∗C,A, but only that the simple
F ∗C,A exists.

The rough idea of the next step is to let the smooth generic curve C degenerate to a
rational curve C0 ∈ |H |, which always exists due to Mumford (cf. [18] or [2]). At the
same time, M will deform to a sheaf M0 supported on C0. Since the right hand side in
vCH(M) = vCH(E) − vCH(OrX) stays constant in the process, one also has vCH(M0) =

vCH(E) − vCH(OrX). But now M0 is supported on the rational curve C0 ⊂ X and by [5]
this implies vCH(M0) ∈ R(X). Hence vCH(E) ∈ R(X).

This can be made rigorous as follows: Consider Z := Gr(r,H 0(X,E)) and the non-
empty Zariski open subset U ⊂ Z of all subspaces V ⊂ H 0(X,E) such that V ⊗OX →
E is injective with cokernel M being a line bundle on a smooth curve C. Then C ∈ |H |,
for c1(E) = H . By Corollary 4.3 the set U is not empty and in fact the composition

U → Picd(C/|H |)→ |H |

is dominant. Here C → |H | is the linear system together with its universal curve and
Picd(C/|H |) → |H | denotes the compactified relative Jacobian variety (or Simpson’s
moduli space of stable pure sheaves).
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The morphism U → Picd(C/|H |) can be compactified to a morphism ϕ : Z′ →
Picd(C/|H |) where Z′ is some projective variety containing U as a dense open subset.
For the following, we can assume that the universal sheafM on Picd(C/|H |)×X exists,
otherwise pass to some projective variety dominating Picd(C/|H |). Then the pull-back
N := (ϕ × id)∗M on Z′ × X has the property that vCH(Nt ) = vCH(E)− vCH(OrX) for
any closed point t ∈ U . Hence also vCH(Nt0) = vCH(E)−vCH(OrX) for any closed point
t0 ∈ Z

′ in the boundary.

Remark 4.5. This last argument makes use of the specialization map for Chow groups.
Consider first a family X → S over a smooth irreducible curve. Let t ∈ S be a closed
point and η ∈ S be the generic point. Denote by Xt and Xη the corresponding fibres,
which we regard as varieties over k(t) resp. k(η) = K(S). The closure of any cycle
on Xη yields a cycle on X which can then be restricted to the closed fibre Xt . Rational
equivalence is preserved in the process, so that we get the specialization map

CH∗(Xη)→ CH∗(Xt ). (4.4)

See [8, Ch. 20] for details when S is the spectrum of a discrete valuation ring with the
two points t and η. For an arbitrary (smooth and irreducible) base S one constructs by
recurring blow-ups (see e.g. [9, II, Exer. 4.12]) a morphism Spec(R) → S, with R a
discrete valuation ring, mapping the closed (resp. generic) point to t (resp. η). Then pull
back the family X to Spec(R) and apply the construction for discrete valuation rings.
Note that by construction for any cycle α ∈ CH∗(X ) the restriction αt ∈ CH∗(Xt ) equals
the image under the specialization map of the restriction αη (cf. [8, 20.3.1]).

This specialization technique applies to our case, as the short exact sequences associ-
ated to any V ⊂ H 0(X,E) in U glue to a short exact sequence over U and hence over
the generic point η ∈ U ⊂ Z′. Thus one has vCH(Nη) = vCH(Eη) − v

CH(OrXη ), where
Eη is obtained by base change Xη := X ×C η→ X.

Since U → |H | is dominant, there exists a closed point t0 ∈ Z′ which under

Z′→ Picd(C/|H |)→ |H |

maps to a closed point corresponding to an irreducible rational curve C0 ∈ |H |. Thus
Nt0 is supported on an irreducible rational curve. But then vCH(Nt0) ∈ R(X) and hence
vCH(E) ∈ R(X). Thus we have proved

Proposition 4.6. Let X be a K3 surface with Pic(X) = ZH . If E is a spherical bundle
with v(E) = (r, kH, s) and k ≡ ±1 (r), then vCH(E) ∈ R(X). ut

Remark 4.7. Note that the above arguments also work for ρ(X) ≥ 2 wheneverU → |H |
is dominant, but without using Lazarsfeld’s result this seems difficult.

Remark 4.8. There is an alternative argument going back to Mumford that would replace
the degeneration argument. One can show that the set of effective cycles Z ∈ Sn(X)
rationally equivalent to a given one Z0 ∈ Sn(X) forms a countable union of irreducible
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Zariski closed subsets. The countability stems from the fact that the number of irreducible
components of the Hilbert scheme of all subvarieties is countable. See [24, Ch. 22] for an
account.

By taking sections of the line bundlesNt one obtains effective cycles onX, which for
all t in the open subset U are rationally equivalent to each other (and to c2(E)). But then
this holds for any cycle in the closure of the image of U → Sn(X), which necessarily
contains a cycle that is contained in a rational curve.

In order to fully prove Proposition 3.2, it remains to treat the case ρ(X) ≥ 2. There
are essentially two arguments involved:

(i) Show that on a K3 surfaceX with ρ(X) ≥ 2 tensoring with line bundles and dualizing
brings the Mukai vector of any spherical bundle E into the form v(E) = (r,H, s),
where H is a primitive ample line bundle.

(ii) View any polarized K3 surface (X,H) with ρ(X) ≥ 2 as a degeneration of a polar-
ized K3 surface of Picard number one. Then use Proposition 4.6 and a degeneration
argument.

The first question is purely numerical: Suppose E is a spherical vector bundle with
v(E) = (r, c1(L), s). Write c1(L) = k` for some primitive ` ∈ NS(X) and k ∈ Z. As
E is spherical, one has k2(`.`)− 2rs = −2. Thus k and r are coprime, for (`.`) is even.
Assuming ρ(X) ≥ 2, there exists a line bundle M ∈ Pic(X) such that c1(E ⊗ M) =

k` + rc1(M) is primitive and ample. (Indeed, complete e1 := ` to a basis e1, . . . , eρ of
NS(X) and choose M such that c1(M) =

∑
aiei with a2 = ±r

n. Then k + ra1 and
ra2 = ±r

n+1 are coprime and for n � 0 the coefficients a1, a3, . . . , aρ can be chosen
such that ke1 + rc1(M) is contained in the ample cone, which is open.)

Since vCH(E) ∈ R(X) is equivalent to vCH(E ⊗M) ∈ R(X), it suffices to consider
the following situation: (X,H) is a polarized K3 surface with H primitive and E is a
spherical vector bundle on X with det(E) = H .

In step (ii) we choose a smooth projective family of polarized K3 surfaces π : (X ,H)
→ D over a curve D, such that a distinguished fibre, say over the closed point 0 ∈ D, is
(X,H), i.e. X0 ' X and H0 := H|X0 ' H , and such that the general fibre has Picard
number one. More precisely, for all except countably many closed points t ∈ D one has
ρ(Xt ) = ZHt .

The obstructions to deform the spherical bundle E on the central fibre X to a bundle
on the nearby fibres in X → D are contained in Ext2X(E,E) and their traces are the
obstructions to deform det(E) = H sideways. Since H exists, the latter must be trivial.
As E is spherical, the trace free part of Ext2X(E,E) is trivial and hence E deforms to
a vector bundle E on X , possibly after shrinking D. So E0 := E |X0 ' E and, by semi-
continuity (shrinkD again if necessary), the restriction Et to any other fibreXt is spherical
as well. A degeneration argument then yields the following result, which completes the
proof of Proposition 3.2.

Proposition 4.9. SupposeE is a spherical vector bundle on a K3 surface with ρ(X) ≥ 2.
Then vCH(E) ∈ R(X).
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Proof. Again, there are two ways of proving this (cf. Remark 4.5 and the discussion
following it). One can argue as Mumford and say that either vCH(Et ) ∈ R(Xt ) for all
closed points t ∈ D or for only a countable number of them (cf. Remark 4.8 which one
easily adapts to the relative setting). Since over C the number of closed points t ∈ D with
ρ(Xt ) = 1 is uncountable and for them vCH(Et ) ∈ R(Xt ) by Proposition 4.6, we must
have vCH(Et ) ∈ R(Xt ) for all closed points t ∈ D and in particular for t = 0. Hence,
vCH(E) ∈ R(X).

An alternative argument would be the following. Consider the relative Grassmannian
Gr(r, π∗E) with fibres Gr(r,H 0(Xt , Et )) (at least over a non-empty open subset of D to
which we tacitly restrict). Then let U ⊂ Gr(r, π∗E) be the open subset of subspaces V ⊂
H 0(Xt , Et ) inducing short exact sequences of the form 0→ V ⊗OXt → Et → M → 0
with M a line bundle on some smooth curve on Xt in the ample linear system |Ht |. As
explained earlier, if ρ(Xt ) = 1, the natural morphism ϕt : Ut → |Ht | is dominant.
But this is an open condition. Hence ϕt is actually surjective on a Zariski open subset of
closed points t ∈ D and thus over the generic point η ∈ D. Then imitate the degeneration
argument for the linear system on Xη, which shows that vCH(Eη) ∈ R(Xη). Now use the
specialization map CH(Xη)→ CH(X0). ut

5. K3 surfaces over number fields

The situation changes dramatically if instead of K3 surfaces over C one considers smooth
projective K3 surfaces defined over a number field or over Q̄. In fact, a general conjecture
of Beilinson and Bloch (see [4, 21]) applied to this case can be stated as follows:

Conjecture 5.1. IfX is a smooth projective K3 surface over a number fieldK or Q̄, then

deg : CH2(X)⊗Q ∼
−→ Q.

How does this compare to [5] and to the results of the previous sections? Choose an
embedding K ⊂ C and let XC := X ×K C be the induced complex K3 surface. A
folklore argument shows that for arbitrary X the kernel of the natural map

CH∗(X)→ CH∗(XC)

is torsion. Thus, Conjecture 5.1 can be rephrased as

Conjecture 5.2 (Bloch–Beilinson for K3 surfaces). If X is a smooth projective K3 sur-
face over a number field K ⊂ C (or Q̄), then the pull-back yields an injection

CH∗(X)⊗Q ↪→ R(XC)⊗Q ⊂ CH∗(XC)Q.

To prove the conjecture, it suffices to show that any K-rational point x ∈ X(K) satisfies
[x] = cX ∈ CH2(XC). This would follow from the a priori stronger statement that any
K-rational point x ∈ X(K) lies on a rational curve, which is called a ‘logical possibility’
by Bogomolov [6]. Note that there are other classes of points on K3 surfaces which are
known to have fundamental class in R(XC), e.g. in [17] this is shown for points that can
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be written as sums of a torsion point on an elliptic curve and a point in the intersection of
the elliptic curve with a rational curve.

From the derived point of view, any K-rational point x defines a semi-rigid object

k(x) ∈ Db(X),

where Db(X) is viewed as a K-linear triangulated category. By definition, an object E ∈
Db(X) is called semi-rigid if Ext∗X(E,E) ' H

∗(S1
×S1,K). For comparison, recall that

E was called spherical if Ext∗X(E,E) ' H
∗(S2,K).

The techniques of this article do not allow one to treat semi-rigid objects, but they do
show that their simpler spherical cousins behave as expected.

Proposition 5.3. Let E ∈ Db(X) be a spherical object on a smooth projective K3 sur-
face X over a number field K ⊂ C (or Q̄) such that ρ(XC) ≥ 2. Then under CH∗(X)→
CH∗(XC) its Mukai vector vCH(E) ∈ CH∗(X) is mapped to R(XC).

Proof. This is an immediate consequence of Corollary 3.3. Indeed, flat base change turns
E into a spherical object EC ∈ Db(XC) whose Mukai vector is contained in R(XC). ut

By means of the proposition one can now produce non-trivial classes on K3 surfaces
over number fields that are contained in R(XC). In other words, these classes behave
as predicted by Conjecture 5.2, but for a less geometric reason than e.g. rational points
contained in rational curves.

As it turns out, in fact all spherical objects on the complex K3 surface XC, which
although rigid exist in abundance, are defined over Q̄. This is

Proposition 5.4. Let X be a smooth projective K3 surface over a number field K ⊂ C.
Then any spherical object F ∈ Db(XC) is defined over some finite extension L/K , i.e.
there exists a spherical object E ∈ Db(XL) such that EC ' F .

Proof. This uses a standard argument that roughly says that all points of a zero-dimen-
sional moduli space representing a moduli functor defined over an algebraically closed
field are defined over the same field. E.g. any line bundle on XC is defined over Q̄ (and
hence over some finite extension of K), because the Picard variety for XQ̄ lives over Q̄.

In our case we use Inaba’s moduli space of simple complexes (cf. [16] for a more gen-
eral setting). Consider the functor SplcxXQ̄

on the category of locally noetherian schemes

over Q̄, which in particular sends the spectrum of any finitely generated field extension
L/Q̄ to the set of isomorphism classes of all bounded complexes E ∈ Db(XL) with
Ext0XL(E,E) = L and ExtiXL(E,E) = 0 for i < 0. Then it is shown in [13] that the étale
sheafification Splcxet

XQ̄
is represented by an algebraic space over Q̄, which we denote Spl.

Any bounded complex F ∈ Db(XC) is defined over some finitely generated field
extension L/Q̄. Thus, a spherical F ∈ Db(XC) can be seen as an L-rational point of Spl.
The vanishing of Ext1(F, F ) shows that the Zariski tangent space at the corresponding
point in SplL is trivial. In particular, locally around the point corresponding to F the
algebraic space Spl is zero-dimensional and we may therefore assume it is a scheme
over Q̄.
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To conclude, use the following straightforward argument from commutative algebra.
Let A be a finitely generated k-algebra over an algebraically closed field k, let L/k be
any extension, and let B := A ⊗k L. Let n ⊂ B be a maximal ideal and suppose that
m := A ∩ n is maximal in A. If now n/n2

= 0, then k = A. Indeed, Nakayama’s lemma
immediately shows that B must be a field and hence m = A ∩ n = 0, i.e. A is a field.
Since A is a finitely generated algebra over the algebraically closed field k, this yields
A = k. In order to reduce to the case that m is maximal, i.e. that the L-rational point of
Spl is a closed point, take a generic closed point P in the Zariski closure of the image
of Spec(L)→ Spl. By semi-continuity it will correspond to a spherical object on Xk(P ).
Then the above argument applies and shows that P is isolated and therefore equals the
original L-rational point.

This shows that any spherical object F ∈ Db(XC) is defined eventually over Q̄ and
hence over some finite extension of K . ut

The deformation techniques used to prove Proposition 2.5 would allow one to avoid mod-
uli spaces of simple complexes and to work solely with moduli spaces of bundles, but the
above proof seems more conceptual.

Remark 5.5. As the reader will have noticed, the proof also shows that the Fourier–
Mukai kernel F of any autoequivalence 8F : Db(XC)

∼
−→ Db(XC) is defined over Q̄.

In other words, Aut(Db(XQ̄)) ' Aut(Db(XC)). Of course, the same holds for the set of
equivalences between two different K3 surfaces both defined over Q̄.
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