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Abstract. The role of the second critical exponent p = (n + 1)/(n — 3), the Sobolev critical
exponent in one dimension less, is investigated for the classical Lane-Emden—Fowler problem Au+
uP? = 0, u > 0 under zero Dirichlet boundary conditions, in a domain € in R” with bounded,
smooth boundary. Given I', a geodesic of the boundary with negative inner normal curvature we
find that for p = (n 4+ 1) /(n — 3) — &, there exists a solution u¢ such that |[Vu, |2 converges weakly
to a Dirac measure on I as ¢ — 07T, provided that T is nondegenerate in the sense of second
variations of length and & remains away from a certain explicit discrete set of values for which a
resonance phenomenon takes place.
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1. Introduction and statement of main results

A basic model of nonlinear elliptic PDE is the classical Lane—Emden—Fowler problem
1201,
Au—+u? =0 inQ,
u=>0 in 2, (1.1)
u=2~0 on 092,

where €2 is a bounded domain with smooth boundary in R” and p > 1. Though it
looks simple, the structure of the solution set of this problem is in general very com-
plex and a number of basic questions remain mostly unsolved. Among those, solvability
for powers p above the critical exponent (n + 2)/(n — 2) is especially difficult. When
1 < p < (n+2)/(n—2), compactness of Sobolev’s embedding yields a solution as a
minimizer of the variational problem

S(p)= inf Jo V1P (12)

P ueH @\10) (fq lu|P+H2/ (D" '
For p > (n + 2)/(n — 2) this approach fails and essential obstructions to existence arise:
Pokhozhaev [25] found that no solution to @ exists if the domain is star-shaped. In
contrast, Kazdan and Warner [22] observed that if 2 is a symmetric annulus then com-
pactness holds for any p > 1 within the class of radial functions, and a solution can again
always be found by the above minimizing procedure. Compactness in the minimization is
also restored, without symmetries, by the addition of suitable linear perturbations exactly
at the critical exponent p = (n + 2)/(n — 2), as established by Brezis and Nirenberg [6].

Topology and geometry of the domain are crucial factors for solvability: when p =
(n+2)/(n—2) it was proven by Bahri and Coron [2] that solutions to (I.T) exist whenever
the topology of €2 is nontrivial in a suitable sense. For powers larger than critical direct use
of variational arguments seems hopeless, and finding general conditions for solvability is
a notoriously open issue.

A question raised by Rabinowitz, stated by Brezis in [5], is whether the presence of
nontrivial topology in the domain suffices for solvability in the supercritical case p >
(n + 2)/(n — 2). Strikingly enough, the answer was found to be negative in dimension
n > 4: Passaseo [23]] discovered that for the domain being a thin tubular neighborhood of
a copy of the sphere S”~2 embedded in R”, a Pokhozhaev-type identity implies that no
solution exists if p > (n + 1)/(n — 3). We call the latter number, which is strictly greater
than (n 4+ 2)/(n — 2), the second critical exponent.

The purpose of this paper is to construct solutions of when p is below but suf-
ficiently close to the (supercritical) second critical exponent. Assuming that 9€2 contains
a nondegenerate, closed geodesic I" with strictly negative curvature, we find a solution
to with a concentration behavior as p approaches (n + 1)/(n — 3) in the form of a
bubbling line, eventually collapsing onto I'. One should generically expect that this ge-
ometric condition holds if for instance €2 has a convex hole or it is a deformation of a
torus-like solid of revolution like Passaseo’s domain.
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We next recall the familiar notion of “point bubbling” in the slightly subcritical case

for problem (1)),
Au+uii= =0 inQ,
u>0 inQ, (1.3)
u=20 on 082,

for small ¢ > 0. The loss of compactness of Sobolev’s embedding as ¢ — 0 triggers
the presence of bubbling solutions around special points of the domain, which resemble
a sharp extremal of the best Sobolev constant in R",

Jro [Vul?

S,i= inf ,
T ueD A ®N\o) (fpo [P/ 72 =D

a type of point-concentration behavior extensively considered in the literature. This is
precisely the behavior of a solution u, of (I.3) which minimizes S(p) in (I.2) for

n+?2
= —¢
n—2

(see [7, 114} 126, [19]]). We have S(p.) — S, and

P = Pe

ug(x) = U

n=2 _ 1
T wa (g (= x) F o), pe ~ e,
as ¢ — 01, where w, is the standard bubble,
n—2
2

w}’l(x)z (1:}/[)('2) ’ cﬂ:(n(n_z))nlfz’ (14’)

a radial solution of "
Aw+wr—2 =0 inR"

corresponding to an extremal for S, [1, [28]]. The blow-up point x, approaches (up to a
subsequence) a harmonic center xg of €2, a minimizer for Robin’s function of the domain,
the diagonal of the regular part of Green’s function. The solution concentrates as a Dirac
mass at xqo, namely

\Vug|? — Sp/%5,, ase — 0 (1.5)

in the sense of measures. It is found in [26] that actually solutions of (I.3) with this behav-
ior exist, concentrating at any given nondegenerate critical point xog of Robin’s function.
We refer the reader to the works [3} 10, 21] and to the survey [13] for related results on
construction of point-bubbling solutions for problems near the critical exponent.

Now, we are interested in problem for powers slightly below the second critical
exponent, namely

n+1
Au+urm3"°=0 inQ,
u=>0 in , (1.6)
u=~0 on 9%2.
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We want to find a solution u, with a behavior analogous to that just described for (I.3),
now concentrating along a curve, with a sectional profile given by a scaled standard
bubble in one dimension less. This problem is substantially harder than (I.3)), in par-
ticular because a global variational characterization of the solution does not seem pos-
sible in view of its supercritical character. In addition, this solution has formally a large
e-dependent Morse index, and the construction requires us to avoid special values of &
where a change of topological type occurs.

We shall assume that d€2 contains a closed geodesic I', nondegenerate, which has
globally negative curvature, and in addition a nonresonance condition of the form

K262 — k2| > sen= forallk=1,2,..., (1.7)
where k > 0 is given explicitly in terms of I' by formula (8.10)).

Theorem 1.1. Letn > 8 and Q C R”" be a domain with smooth, bounded boundary 02,
which contains a closed geodesic I', nondegenerate with negative inner normal curvature.
Then, given § > 0, for all ¢ > O sufficiently small satisfying condition (1.7)), problem
has a solution u, that satisfies

—1
2 n—1
|Vue|” — 8,2, 6r

as ¢ — 0 in the sense of measures, where Sr is the Dirac measure supported on the
curve I'. Moreover, ug can be described according to formula (1.9) below.

Much more precise information on the solution can indeed be gathered as we shall explain
later. The condition n > 8 seems essential for the method used, while we believe the
phenomenon described should also be true for lower dimensions.

Theorem includes the case of an exterior domain, Q \ A, with A bounded. It
is worth mentioning that for this case it was established in [8, [9]] that problem is
actually always solvable if p > (n 4+ 2)/(n — 2). In fact a continuum of solutions exist
but they are of slow decay (infinite energy). Finding finite-energy (fast decay) solutions
for supercritical powers is a much harder question, which is only answered in [9] for p
very close from above to (n 4 2)/(n — 2). In turns out that a dramatic change of structure
in the set of slow decay solutions takes place precisely when p = (n + 1)/(n — 3), the
second critical exponent.

The line-bubbling phenomenon here discovered is conceptually quite different from
point bubbling. In spite of zero boundary data, concentration eventually collapses on the
boundary. On the other hand, point concentration is determined by global information on
the domain encoded in Green’s function, while only local structure of the domain near the
curve I' is relevant to the line bubbling. In order to describe the solution more precisely,
we introduce a local system of coordinates near I'.

For notational simplicity we will write N = n — 1 in the remainder of this paper, so
that the problem is embedded in RN+

We consider the metric induced by the Euclidean one on 92 and denote by V the
associated connection. We introduce Fermi coordinates in a neighborhood of I" in 9€2.
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Given g € T, there is a natural splitting
7,02 =T, ® N,T

into the normal and tangent bundle over I'. We assume that I" is parameterized by arc-
length xg, xo — ¥ (x0), and denote by E( a unit tangent vector to I'. In a neighborhood
of a point g of I', assume we are given an orthonormal basis E;, i = 1,..., N — 1, of
N, I'. We can assume that the E; are parallel along I', which means that

Ve, Ei =0
fori =1,..., N — 1. The geodesic condition for I translates precisely into
@EO Ey=0.

To parameterize a neighborhood of a point of I' in 92 we define

F(xo, %) :=Exp)% (G E), X :=(x1,...,xN),
where Exp?® is the exponential map on 92 and summation over i = 1,..., N — 1

is understood. To parameterize a neighborhood of I" in 2, we consider the system of
coordinates (xg, x) € RV*! given by

G(xg,x) = F(xg,x) — xyn(F(xg,x)), x=1(x,xpy)€ ]RN, (1.8)

where x is close to 0 and n designates the outward unit normal.
In terms of n, we assume that I" has globally negative curvature in the sense that
5 _
%Y = hoonm,
with A a strictly positive function along I".
The solution u, predicted by the theorem can be described in these coordinates at
main order as follows:

N2

e (x0, %) = e > wy(py ' (x —de)) +o(1), (1.9)

where N

~ l ~
dej(x0) ~ edj(x0), j=1,....,N, pug(x0) ~ e¥N=2[i(xo),

where c?j and 1 are smooth functions of xy with c?N and fi strictly positive, and wy is
given by (T.4).

Finally, let us make explicit the meaning of nondegeneracy of the geodesic I'. Let us
denote by R the Ricci tensor on 3€2. Then nondegeneracy of I' translates exactly into the
fact that the linear system of equations

o ~
—di + Y (R(Eo. E))Eo- Ed; =0, xo€[—L.0l k=1,....N—1  (L10)
j=t

has only the trivial 2¢-periodic solution d = 0.
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The rest of this paper will be devoted to the proof of Theorem We point out
that the resonance phenomenon has already been found to arise in the analysis of higher
dimensional concentration in other elliptic boundary value problems, in particular for a
Neumann singular perturbation problem in [[17, 18,16} [15] and in Schrodinger equations
in the plane in [12]. Theorem [I.1] seems to be the first result on higher dimensional con-
centration phenomena associated to critical exponents. The question of whether one can
find concentration results for larger critical exponents, say k-dimensional concentration
slightly below (n+2 —k)/(n —2 — k) arises naturally but we will not treat it in this paper.

2. Scheme of the proof of Theorem|[1.1]

Let us write problem as

Au+uP~% =0 inQ,
u=>0 in €, 2.1
u=~0 on 9€2;

here and in what follows we set p = (N + 2)/(N — 2). A key element of the proof of
Theorem is the construction of a first approximation of the solution to our problem.
The main part of the construction is performed close to the geodesic. Let us consider the
system of coordinates (xo, X, xx) introduced in (I.8), which straightens the boundary of
2 in a neighborhood of the geodesic to the hyperplane xy = 0. In this language the
geodesic is represented by the xg-axis. We recall that xo designates arclength of the curve
and xy > 0 is the normal coordinate to the boundary. Then for a function u defined on
this neighborhood we write

u(xg, x) = u(G(xgp, x)). 2.2)

Let 2¢ represent the total length of the geodesic. Extending & in a 2¢-periodic manner
with respect to xo, it is convenient to regard it as a function defined on the infinite half
cylinder

D = {(xo, &.xn) |5 + by [? < a, ay > O},

where a > 0 is a fixed small number. Equation (2.1)) for u reads in terms of i in D as

Au+Bw)+u’¥ =0, u>0 inD,
ii(x0, %,0) =0 forall (xo, X), (2.3)
u(xo + 24, %, xny) = i(xo, X, xy) forall (xo, X, xy),

where B is a second order linear operator of the form
B = by (xo0, X)0k + bi(x0, x)9;

with smooth coefficients, 2¢-periodic in xg, bjx(xg, 0) = 0, which we explicitly find in
terms of geometric quantities in If a is sufficiently small, the differential operator
involved in (2.3) can be regarded as a small perturbation of the Laplacian inside D. To
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construct an approximation to a solution of (2.3) with the desired properties, the main
observation we make is that if

N2
w(x) = (1 -ﬁ]ﬂz) , (2.4)
then for small u > 0 and d = (d, dy) € R" the function
R N i e
oS e <u2 15— dl2+ b —dN|2)

satisfies

P — i
{Au+u 0, u>0 inD, 2.5)

u(xo +2¢,x,xy) = u(xp, x, xy) forall (xo, X, xn),

and can therefore be considered as an approximation of a solution to (2.3). We as-
sume dy > 0 so that the maximum set of ug is inside the domain, with value
~ n~N=2/2 1n addition, we want the boundary values to be small compared with this
order, which is achieved if 4 <« dy. In this case the boundary values are bounded by
~ N =272(1/d )N =272 Unfortunately, to obtain a good approximation it does not
suffice to choose 1 and d just to be constants. We assume instead that they define smooth
functions of xo. As we will see later, a sound choice is to take

de(x0) = eds(x0),  pe(x0) = plie(xo)s  p = N2, 2.6)

where 1. and &5 are uniformly bounded 2¢-periodic smooth functions so that also i, an
dgn are positive and uniformly bounded below away from zero. In particular, observe that
e ~ g/WN=2Dq v, and we set as an approximation to a solution of 1|

N-2

fio(x0, %) = pe > o(uy ' (x —d)).

It is natural to consider the further change of variables

N2

2 1

i(x0, x) = pe > v(p 'xo, u; (x —de)),  v=1v(0,), Q2.7)

under which &g reads simply w(y). Equation (2.3) is transformed in terms of v into

N-2

S(v) := ap(0y0)doov + Ayv + A@) + e F oP=¢ =0 inD,
_d
v(yo, 5, - ;N (Pyo)) =0, (2.8)

&

v(yo +2¢p7 L, y) = v(yo. ),

where ~
A =a;j(yo, ¥)9;j + ai(yo, ¥)3; +c(y0, y)

is again a small operator and now we reduce the original cylinder to take D as a region of
the form

den 5 5
“=(pyo) < yN < —, 3] < —}, (2.9)
I o p

&

D= {(yo,)_hwv):—
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where § > 0 is a small number which will be further reduced if necessary. Here
ao(x0) = p~ e (x0)* = [ (x0)°, (2.10)

and A is a differential operator with coefficients becoming small with ¢, which we will
fully identify later. Noting that MS_(N_Z) €/2 _, 1 and that the domain D is expanding into
entire RV !, we see that w(y) indeed approximates a solution to the equation. We will
actually take an approximation w and differs little from w which in particular satisfies the
boundary condition.

Now, if we set v = w + ¢ with ¢ small, the equation takes the form

L($) := aodood + Ay + po’ ™' ¢ + A($) = —S:(w) — N ()

where the operator N (¢) is of order smaller than linear in ¢. More precisely

N2 N2

N@ =pe * wrd) ™ —pe 7wl = pol g,

It is therefore important to understand bounded solvability of a linear equation involving
the operator L. This is a rather subtle issue since the limiting L does have a kernel in the
space of bounded functions in RV*!. Indeed, the equation

do0p + Ayp + pPlp =0

has the bounded solutions Z;,i =1, ..., N+1,and Zy(x) cos(+/A1x0), Zo(x) sin(+/A1x09),
where

Z; = 0w, i=1,...,N, ZN+1 =x-Vw+

w, @2.11)

and we denote by Zg, A; > 0 the first eigenfunction and eigenvalue in L>(RV) of the
problem
Ayp + po()P ' =1p inRV. (2.12)

As we shall show these are all the bounded solutions of the equation.

Let us consider a bounded function % (yg, y) 2¢-periodic in yy and the following pro-
Jected problem in which we mod out the above functions, and look for bounded functions
¢i (yp) and ¢ such that

N+1

L(@) == aodood + Ayd + po? ¢+ A@) =h+ Y ciG0)Zi inD,
i=0

¢ =0 onadD,

P00 +2607", y) = ¢ (o, ).
/ &0, ¥)Zi(y)dy =0 forallypeR,i=0,...,N.
Dy,

(2.13)

As we will see, this problem has a unique solution whenever ¢ is small enough provided
that certain uniform estimates hold for the parameters involved and their derivatives. In
addition ¢ satisfies a uniform a priori estimate in L°°-weighted norms. We develop this
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theory in fact in larger generality in §3. Then we consider the projected nonlinear problem
N+1

L(§) = —=S:(w) = N(@) + ) _ ci(y0)Z inD,
i=0
¢ =0 onaD,

oo +26p7", ) = ¢ (vo, v,
f (0, V)Zi(y)dy =0 forallygeR,i=0,...,N+1,
Dy,

(2.14)

where Dy, = {y : (yo, y) € D}, to which we can apply the linear solvability theory and
contraction mapping principle to find a unique small solution. Moreover,

mm/ ﬁ~f Se(w)Z; dy
R¥ Dy,

and therefore to have a solution of the original problem (with ¢; = 0) we need a set of
relations that look (approximately!) like

/ Se(w)Z;dy =0 forall yp, i =0,...,N+1. (2.15)
Dy,
At this point we mention that the approximation w carries as an additive term a function
of the form e, (pyp) Zo(y) where e, is another parameter of the form e, (xg) = e, (xp). It
turns out that adjusting conveniently the (N +2) parameters j., d., e, we can achieve that
the above N + 2 relations hold as a system of differential equations for these quantities,
which turns out to be solvable because of the nondegeneracy assumptions made. The story
is however more involved since the parameters enter the nonlinear relations at different
orders so that a further improvement of the approximation w of the form W = w + IT is
needed. This is the main purpose of the work in §5. IT is built upon solving the linear
problem for h = —Sg(w), after identifying the right main order values of the
parameters in the solvability conditions (2.13)), which turns out to reduce substantially the
size of the approximation error S, (W). Another crucial step is a gluing procedure carried
out in §6, where the full problem (2.1), for which a global approximation is built by just
multiplying W by a cut-off function, is reduced to solving an equation similar to for
¢i = 0, just in a neighborhood of the geodesic, but where the operator N (¢) is replaced
by a similar one which includes nonlocal terms in ¢ encoding the information on the rest
of the domain. This is what tells us that the influence of geometry of the remaining part of
the domain is basically negligible. The corresponding projected version of the nonlinear
problem is solved in §7 and the final adjustment of the remaining parts of the parameters
is done in §8, thus completing the proof of Theorem[I.T} We devote the rest of this paper
to carrying out the program outlined above.

3. The linear theory

In this section we will develop a linear theory suitable to solve problem (2.13)). Our main
result is contained in Proposition [3.2] below, for which we need some preliminaries. Let
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w(x) be the function defined in (2.4) as

#
Ly— CN
0= (1+|x|2> ’

where x € RN and cy = (N(N — 2))!/2, which is, we recall, an entire solution of the
problem

Agvo +oP =0 inRY, (3.1
where p = (N + 2)/(N — 2). Let us consider the operator
Lo := Apv + pa)/’_l,

which corresponds to the nonlinear operator in (3.1) linearized at w.
To analyze the point spectrum of this operator, we use the conformal invariance of
(3.1). Let us consider on RY the metric

2 2
= ——— ) dx?,
fsv <1+|x|2> *

which is conformal to the euclidean metric dx? and corresponds to the standard metric
on SV when parameterized by the inverse of the stereographic projection

2 1 —|x)?
XGRNI—)( X, |x|>eSN.
T4 x277 14 |x)?

In polar coordinates, we have the expression of the Laplace—Beltrami operator on SV
given by

2 —-n B 2 n—2 . o) -2 _2
ASN:(l_,r_rz) rl n3r<<l+r2> r 8r>+(1+r2) r Astl,

where r = |x|. The following identity follows from the conformal invariance of the so
called conformal Laplacian or can be obtained by direct computation:

N+2

2 2 2 Z_TN
L= A N)| —— .
<1+|x|2) (Bsv + )<1+|x|2)

/ Z(A 4 N)Z dvolgn =/ ZLZ dvolg,
SN RN

We also have

where Z and Z are related by

N=-2

~ 2 2
Z=|— Z
<1+r2>
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Now, the operator A gy + N has an N + 1-dimensional kernel corresponding to the coor-
dinate functions on S% (since N is an eigenvalue of —A s~ ). This implies that the L?-null
space of the operator L is N 4 1-dimensional and spanned by the functions

N -2
Zj::E)xjw, j=1,...,N, and ZN_H::x-Va)—i—Tw

(see (2.11)). The fact that LZ; = 0 can also be checked directly or can be proved using
the fact that (3.1)) enjoys some translation and dilation invariance in the sense that, for all
A > 0anda € RV, the function

X A%u()»x +a)

is a solution of (3.1)) whenever u is. Differentiation with respect to A or with respect to a,
at A = 1 and a = 0, directly shows that Z; is a solution of LZ; = 0.
Moreover, the space where the quadratic form

Z — | Z(A+ N)Zdvolgw
SN
is negative definite is one-dimensional, and coincides with the space of constant functions,
which implies that the space where

Z— — ZLZ dvolgn
RN
is negative is also one-dimensional. Hence, the operator Ly has one negative eigenvalue
—A1 < 0, and we denote by Z, the corresponding eigenfunction (normalized to have
L2-norm equal to 1). See . We observe that this eigenfunction decays exponentially
at infinity with exponential order O (e_‘/}Tl ey,
Having understood the point spectrum of the operator L we have

Lemma 3.1. Assume that& ¢ {0, £+/A1}). Then given h € L (RN), there exists a unique
bounded solution of
(Lo— 5Py =h
in RN. Moreover
I¥lize < cellhllzee
for some constant cg > 0 only depending on §.

Proof. For all r > 0, we denote B, the ball of radius r in RY centered at the origin. We
assume that & ¢ {0, £4/A1} is fixed. We first prove that there exists r¢ > 0 (depending
on &) such that, for all » > r¢, the a priori estimate

¥ llzs,) < cgl(L = EP Y], (3.2

holds for any bounded function ¥ vanishing on 0 B,.
Assume for the time being that this estimate is already proven. Then, for r > r¢, the
operator Lo — || is injective on the ball of radius r (it being understood that we consider
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the zero Dirichlet boundary conditions). The Fredholm alternative implies that, for all
r > rg, we can find a unique solution of

(Lo — 1Y, = h

on B, with ¢, = 0 on 0B,. Given a sequence r; tending to oo, the a priori estimate
(3.2), elliptic estimates and Ascoli-Arzela’s Theorem allow one to extract from (¥, ); a
subsequence which converges (uniformly on compact sets) to a function v satisfying

(Lo — )Y =h

in RY. Moreover, passing to the limit in li we find that |[{ g < cgllh||Le. This
completes the proof of the existence of {. Uniqueness follows at once from the fact that
extends to the case where the functions are defined on RY.

It remains to prove @I) First observe that, since § # 0, there exists 7z > 0 such that

poPt —g]* < —Ljg)?

in RV \ By, . Given r > ¢ and using the constant function as a barrier, we immediately
find that

Il zoo B\ Br,) < c&(ll(Lo — |E|2)¢||L°°(B,\B;E) + ¥ liLe@B:,)) (3.3)

for any bounded function v vanishing on 9 B,.
We now assume that (3.2) does not hold. Then there exists a sequence of radii r;
tending to oo, and functions v; vanishing on BBr,. , such that

Il =1 while lim [[(Lo — [E*)¥;llLx,) =0.
J j—o00 J

Observe that, without loss of generality, we can assume that rj > rg, and @I) implies
that [|y; || L>(By,) remains bounded away from 0 as j tends to co.

Elliptic estimates and Ascoli-Arzela’s Theorem allow us to extract from (1/;); a sub-
sequence which converges (uniformly on compact sets) to a function ¥ satisfying

(Lo— 1Y =0

in RY. Moreover, ¥ is bounded and not identically equal to O (since ||/ i |l Loo(B;, ) remains

)
3
bounded away from 0). But, since & ¢ {0, £4/A1}, this contradicts the classification of

the point spectrum of L. The proof of the a priori estimate is therefore complete. O

We shall use the previous result in order to obtain a priori estimates and a solvability
theory for problem (2.13)). We consider here a slightly more general problem that involves
the essential features needed. For a positive smooth function R(yg) and a constant M > 0
we consider the domain D defined as

D ={(y0, 7, yv) € RV —R(yp) < yv < M, |5| < M}
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and for functions ¢ defined on D, an operator of the form

L(9) := b(0)do0p + Ay + po’ ¢ + bij (yo, ¥)3ijb + bi (yo, )i + d(yo, V)b

where bgg = 0. Then for a given function # we want to solve the following projected
problem:

N+1
L@)=h+ Y ci(y)Z(y) inD,
i=0
¢ =0 ondD, (3.4)

/ ¢ (o, y)Zi(y)dy =0 forallypeR,i=0,...,N,
Dy()

where
Dy, = {y € RY : (3o, y) € D).

We fix a number 2 < v < N and consider the L°°-weighted norms

Iplls = s%pa + vV Do (vo, VI + s%p(l + 1x1""H D¢ (x0, 1)1,

[l = sup (1 + [y (yo, ¥)I-
D

‘We assume that all functions involved are smooth. We will establish existence and uni-
form a priori estimates for problem (3.4)) in the above norms, provided that appropriate
bounds for the coefficients hold.

Proposition 3.2. Assume that N > 7 and N —2 < v < N. Assume that for a number
m > 0 we have

m < b(yg) < m! forall yy € R.
Then there exist positive numbers 8, C such that if, for all i, j,

190 R lloc + M|800R 0o + M1[0bllcc + lIbijll oo
+ 1 Dbijlloc + 11 + [yDbillo + 11 + [y)dlloo <8, (3.5)

and
8 < R(yo), M7 'R(y) <8 forallyye€R, (3.6)

then for any h with ||h||« < 400 there exists a unique solution ¢ = T (h) of problem
B4 with || @« < +oo, and we have

Proof. The proof of this result will be carried out in three steps.
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Step 1. Let us assume that in problem (3.4) the coefficients b;, d, and the functions c; are
identically zero. We will prove that §, C as in the above statement can then be chosen so
that for any A with ||2]|.« < 400 and any solution ¢ of problem (3.4) with ||¢]l« < 400
we have

Arguing towards a contradiction, we assume the existence of b", ¢y, hy,, b;?j, R,, M,, such
that

m<b'(yo) <m~' forallxy € R,
lpnllx =1, 1Ay |lss — O,

My 806" lloo-+ M | Rulloo-+1180 R lloo+ M 300 Rulloo +116j oo — 0, inf Ry — +00
and
b" (50)do0Bn + Aydu + b}0ijn + pw()P ™ ¢y = hy  in D, 3.7)

together with the orthogonality and boundary conditions.
To achieve a contradiction we will first show that

lnlloc — O. 3.8)

If this is not the case then we may assume that there is a positive number y for which
|dnlloo > ¥. Since we also know that

¢ (yo, )| < C/(1+ yD"~2,

we conclude that for some A > 0,

lpnllLooqx)<a) = V-

Let us fix a yg, such that

lén Yons IlLeeqyi<a)y = /2.

By elliptic estimates and compactness of Sobolev embeddings, we see that we may as-
sume that the sequence of functions ¢ (yo + yon, ¥) converges uniformly over compact
subsets of RV *! to a nontrivial, bounded solution of

Ayd +aSdood + po(»)P'p=0 in RN

where a;° is a positive constant, which with no loss of generality, via scaling, we may
assume to be equal to one. By virtue of Lemma [3.1] and the orthogonality conditions
assumed, which pass to the limit thanks to dominated convergence, and the assumptions
N >7, N —2 < «a, we then find that ¢~> = 0. This is a contradiction that shows

Let us now deduce the result of Step 1. Since ||¢, ||« = 1, there exists (yo,, y») With
7y = |yn| = +oo such that

7210 Yon, y)| + 72" D (Yons yu)l = y > 0.

Let us now consider the scaled function

(Z;n(za x) = r;_2¢n(y0n + 7220, Tn2)
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defined on
D = {(z0. 2. 2N) : —Rn(z0) < znv < Mur; b, |2] < Myr7 1)
with R, (z0) = rn_an (Yon + rnz0)- Note that M,,rn_l > 1/«/5. Then we have
|#n(z0. )| + 12| ID(z0, 2)| < [P inD
and for some z,, with |z,| = 1,
|61 (0. z)| + D0, z)| = y > 0.

The function ¢, satisfies

0n000Bn + Dobn + 013G + O, )zl * @y =hy  in D,
where 5 B
hn (20, 2) = 1y hn(Yon + rnz0, 1n2), 6" (20) = b" (yon + raz0)-
Let us observe that from the assumptions made we get

1806 [lo + 130 Rnllo + 1800 R lloc —> O.

Then we may assume that ~
b"(z0) — by > 0,

and that the function ¢, converges uniformly, in the C' sense over compact subsets of
Dy \ {z = 0}, to ¢ which satisfies

bydood + A;¢ =0 inD,\ {z =0},

where either
D, =1{(z0,Z,2n) : 0 < zy < ds, 12| < dy}
with 1 < d, < 400, or
Dy = {(z0, 2, zN) @ ax < ZN}

with a, > 0, or
D, = RN—H

and where ¢ satisfies

16(z0. DI + |z [f(z0. 2| < [21*7"  InRYF'\ {z =0)

with the value ¢ = 0 assumed continuously on the boundary of aD, \ {z = 0}. Moreover,
since doo R, is uniformly bounded, standard elliptic estimates at the boundary yield a
uniform C bound for ¢3n, which thus implies that the limit of the derivative is uniform,
therefore ¢ % 0. With no loss of generality we may assume that b, = 1. If the singular
line z = 0 lies inside Dy, the fact that v < N makes it removable. Indeed, the limit q} is
easily seen to be weakly harmonic in D,. This plus boundedness of the boundary value
zero yields ¢ = 0 in all cases. If the singularity lies on the boundary, this happens on
the hyperplane zy = 0. In such a case, an odd reflection reduces us to the case of an
interior singularity, so that in any event, ¢ = 0. We have obtained a contradiction which
concludes Step 1.
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Step 2. We claim that the a priori estimate estimate obtained in Step 1 is in reality valid
for the full problem (3.4), maybe on reducing the value of §. Let § be a small number so
that the conclusion of Step 1 holds. Now we additionally assume

1Dbijlloo + (1 + [¥Dbilloo + 11+ [yP)dlloo <6, (3.9

where 6 will be taken smaller if necessary. Then there exist positive numbers §, C such
that if the conditions of Proposition[3.2]and estimate (3.9) hold for all i, j, then for any &
with |2+« < 400 and any solution ¢ of problem (3.4) with ||¢||« < 400 we have, for
all i,

Iciloo + @1l < CliAll.

Moreover
cz(yo)/ Z7 = —/ h(yo, ) Zi(y)dy + o(1)||h]lxx,
Dy, D,

0
where 0(1) - 0as § — 0.
Testing the equation against Z;(y) and integrating only in y we find

c1(y0) / Z? = b(yo) f doopZ1 — f hZ; + f bijdi;$Zi
Dy, Dy, Dy Dy,

Y0 Y0
+/ (biai¢+d¢>>zz+/

Z1(y, R(y0))dyy ¢ (yo, ¥, R(yo)) dy.  (3.10)
Dy, U

Now, we have

VRN_] Z(y', R(x0))dyy ¢ (x0, ¥, R(x0)) dy’

<l /R T RPN ay < 079

for some o > 0 depending on « and N. We immediately find that also

= Collollx

‘ / it + ) Z)
Dy()

while integrating by parts in indices carrying the y’ variables gives

‘/ a;ij0ijdZ
Dy,

L,
Dy,

/ ¢ (3o, V) Zi(y)dy =0
D)‘o

= Colp |l

_ ‘/ 0:(ai; 20
D)’O

and
=< Cllh] s

Now, we know that
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and hence, using the boundary value zero,

/ B0 (0. 1) Zi(y) dy = O,

Y0

or
, R(y0) _ ,
/ dy/ a9 (yo, ¥, Z;(y', 1) dt =0,
RN-1 —00

so that differentiating once more we find

0=/
D,

Yo

dooP Z; dx + 9o R (xp) /RN_I 309 (0. ¥, R(o) Zi1(y', R(yo)) dy’,

which implies that
< C8% gl

‘ / doopZi dy
Dy,

Combining the above inequalities into (3.10) we then find the estimate

let(yo)| = CllRllo + 87 l1P 1) - (3.11)

On the other hand, Lemma [3.2]implies that
161 = CLIllos + D i Zilas | < C[Illux + D llcilloo + 101 ]
i i

Combining this last inequality and (3.T1), and reducing the value of § if necessary, we
find that the c;s are controlled by #,
lcilloe < Clihllx,

and the result of Step 2 readily follows.

Step 3. We shall next discuss the existence for problem (3.4), under the assumptions
such that the result of Step 2 holds true. We consider first the case of the right hand sides
h(yo, y) which are T -periodic in yy, for an arbitrarily large but fixed 7', the same property
being valid for the coefficients.

We then look for a weak solution ¢ to (3.4) in the space Hr defined as the subspace
of functions v which are in H L(B) for any bounded subset B of D, which are T -periodic
in yp, such that in addition ¥ = 0 on 9D in the trace sense, and

/ Y (o, y)Zj(y)dy =0 forallypeR, j=0,...,N+1.
Dy,

LetDr ={y € D: yp € (—T, T)} and define a bilinear form in Hr (after one integration
by parts) by

B(¢, ¥) 1=/ YL,
Dr
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Then problem (3.4) gets weakly formulated as that of finding ¢ € Hr such that
B(o, V) =/ hy  forall y € Hr.
Dr

If 4 is smooth, elliptic regularity implies that a weak solution is a classical one. The weak
formulation can be readily put in the form

¢+ K(¢)=h

in Hy, where / is a linear operator of & and K is compact. The a priori estimate of
Step 2 shows that for 2 = 0 there is only the trivial solution. The Fredholm alternative
thus applies, proving that problem is solvable in the periodic setting. While this is
enough for our purposes, it is worth observing that approximating a general / by periodic
functions of increasing period, and using the uniform estimate provided by Step 2, we
obtain in the limit a solution to the problem with the desired property. This completes the
proof of the proposition. O

4. Geometric setting

We consider the metric induced by the Euclidean one on 32 and denote by V the associ-
ated connection. We introduce Fermi coordinates in a neighborhood of I" in

Y :=0Q.
Given g € T, there is a natural splitting
I,2 =T, & N,

into the normal and tangent bundle over I'. We assume that I" is parameterized by arc-
length xo € (—¢, £),

xo =y (x0),
and denote by Ey a unit tangent vector to I'. In a neighborhood of a point g of I", assume

that we are given an orthonormal basis E;,i = 1,..., N — 1, of N,I". We can assume
that the E; are parallel along I', which means that

Ve Ei =0
fori = 1,..., N — 1. The geodesic condition for I translates precisely into
ﬁEo Ey=0.

To parameterize a neighborhood of ¢ € I in ¥ we define

F(x0, %) := Exp)(,) (inEi), X = (X1, ..., XN-1),
i
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where Exp” is the exponential map on ¥ and summation over i = 1,..., N — 1 is
understood. This parameterization induces coordinate vector fields

X, = F*(axu)s

fora =0,..., N — 1. By construction X, = E, along I" and

Vi, Ep = 0. @.1)

Let g denote the metric on ¥ which is induced by the Euclidean metric. The Fermi
coordinates above are defined in such a way that the coefficients of g,

8ab = Xa - Xp,

are equal to 8, along I'. We now compute higher order terms in the Taylor expansions of
the functions g,5. The metric coefficients at g := F (xo, X) are given in terms of geometric
data at p := F(xg, 0) and x.

Notation. The symbol O(|x|") indicates a smooth function whose Taylor expansion does
not involve any term up to order r in the variables x;,i =1,..., N — 1.

We now give the expansion of the metric coefficients. The expansion of the g;;, i, j =
1,..., N —1, agrees with the well known expansion for the metric in normal coordinates
but we briefly recall the proof here for completeness. We agree that indices a, b, c, . ..
run from 0 to N — 1 while 7, j, k,...runfrom 1 to N — 1.

Proposition 4.1. At the point g = F (xq, X), the following expansions hold:
2ij = 8ij + 3(R(Ei, EQE; - Enxixy + O(E),
goi = O(Ix ), 4.2)
goo = 1 + (R(Eo, EQ)Eo - Epxgxt + O(I5P).

wherei, j, k,l =1,..., N —1 and summation over repeated indices is understood. Here
R denotes the curvature tensor on (X, g).

Proof. We compute B )
Xi8ab = Vx; Xa - Xp + Xa - Vx, Xp,

Using (@.1) we get X;gq» = 0 along I'. This yields the first order Taylor expansion
Zab = O(EP).

To compute the second order terms, it is enough to compute Xy Xy gqp at a point of I' and
then to polarize (i.e. replace X; by X; + X;, ...). We compute

XiXegab = Vi, Xa Xo+ Xa - V3, Xo +2Vx, Xa - Vx, Xp. (4.3)
Recall that, since X, are coordinate vector fields, we have

Vi Xa = Vi, Vx, Xi = Vx, Vx, X + R(Xt, Xa) X (4.4)
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Therefore, we get

X Xkgab = 2R(Xi, Xa) X - Xp +2Vx, Xo - Vx, X
+6Xa§Xka - Xp+ X, 'ﬁXbﬁXka- 4.5)

Using this, together with {@.1) we get
ExExgij = 2R(E, EDEy - E; + Vg Vg Er - E; + E; - Ve Vi Ek (4.6)
along I'. To proceed, first observe that
VxX|, =V3X =0

along I', for any X € N,I'. Indeed, forall p € I', X € N,I is tangent to the geodesic
s = expf(sX), and so Vy X = @%X = 0 at p. In particular, taking X = X; + £X;, we
obtain B B

0 = VE,+¢E; VE +eE; (Ek + €Ej).

Equating the coefficient of & to 0 gives @Ej Vi Ex = —2Vg, Vg, E;, and hence
3Vi Ej = R(Ek. Ej)Ex.
So finally, using (#.3)) together with (4.6), we get
ExExgij = 3R(Ey, E)Ey - E;

along I'. The formula for the second order Taylor coefficient for g;; now follows at once.
Finally, it follows from (.5) together with (#.1)) that

ErExgoo = 2R(Ex, E0)Ex - Eo + 2V, Vi, Ex - Eg

along I'. Since @Ek Ey = 0 along K, we also get ﬁEo @Ek Ex = 0 along I'. We conclude
that B
ErErgoo = 2R(Ex, Eo)Ef - Eo

along I" and this gives the formula for the second order Taylor expansion for gog. O

Notation. In what follows, we will use the notation
Rijim = R(Ei, Ej)E; - Ep,. 4.7)

To parameterize a neighborhood of a point ¢ € T in Q, we consider the system of
coordinates (xg, x) € RV*! introduced in |b given by

G(x0, x) = F(x0, ¥) — xyn(F (x, ¥)), x = (¥,xy) € R,

where x € RV is close to 0 and n designates the outward unit normal to X.
In these coordinates, the coefficients of the Euclidean metric read

gy =1 and gun =gna =0 (4.8)
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foralla = 0,..., N — 1. Finally, fora,b = 0, ..., N — 1, the coefficients g, can be
expanded in powers of xy as

8ab = 8ab + Zﬁabe + Igabszv + O(X?V),

where g is the metric on ¥ whose expansion has been given in the last section,

hap = —E4-Vgn=—E,-Vg.n “4.9)
are the coefficients of the second fundamental form 4 of ¥ and

kab = (R @ h)ap = Y hacghap (4.10)
c,d

are the coefficients of the square of the second fundamental form. An important remark
is that hgp, computed along I, is a smooth function of the arclength which represents the
normal curvature along the geodesic in the sense that

35y = Vi Eo = hoon (4.11)

along I'.

Building on the expansion of the metric which has been obtained above, we give
the expansion of the Laplace operator in the above defined coordinates. Recall that the
Laplacian is given, in terms of the coefficients of the metric, by

1
A = i |g18%9) = 87705, 0xy + 0pg*P sy + 3 Trg 3y, 8)8%P 0.

where the indices «, 8 run from 0 to N and where |g| denotes the determinant of the
metric. Since (#.8) holds, the above formula simplifies to

A= 83N + %Trg(axNg)axN + gabaxa Oy, + 3xagab8Xb + %Trg(axag)gabaxb,

where the indices a, b run from O to N — 1.
‘We have the following decomposition (recall that i, j, k, I, m, ... runfrom 1 to N —1):

A=+ 0 + 07 +A%% + > A%a, 0,
i J
+ Z(—% S (R(E:, EDE; - Enxixt — 2hijxy + Aif')ax,. .,
] ]
+ B%,, + Z(Z(%R(E,-, Ej)E; - Ex + R(Eo. Ej)Eo - Ex)x; + B/)axj
j k

+ (Trg h — Trg kxy + BY)dy,, (4.12)
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where the curvature tensor R, the metric g and the tensors 4 and k are computed along T",
and hence only depend on x(, while the functions A% and B* do depend on xog, x1, ...,
xy and enjoy the following decompositions:

A% — AooxN + Z Ag?xkxl,

Al — ’X,x[z\, (Z Akak>xN + Z Azjlxkxlxm,
k,l,m
i 0j
AY = AijN + ZAkl]xkxl’
k.l

(4.13)
B® = BYxy + Y Bix.
k

B/ =B ij—i-ZB]{lxkxl,
BN = NxN (ZBk xk)xN—}—ZB Xj.

Here A00 A,(()? A” ...and BR,, B,?, B]/V, ... are smooth functions depending on x, .. .,
XN, hence they can be further decomposed using Taylor’s expansion. More precise expan-

sions can be given in terms of the geometric data defined above but they will not appear

in the final result so we have chosen to leave the expansion as it is. For example A% N can
be further expanded in powers of x and we have

0j - 70/ .2
ANJ = —4h0ij + ANJ)CN,
where A(z)vj is a smooth function depending on xg, ..., xy.

5. Construction of a first approximation

This section is devoted to the construction of an approximation for a solution to our
problem

N+2 .
Au+ud—2"%=0 inQ, u=0 ondQ. (5.1)

As explained in Section 2] the idea is to build the approximation using the standard bubble
o in RV satisfying
N+2 . N

Au+unv-2 =0 inR",
centered and translated along a curve which is located inside the domain €2 and, at the
same time, very close to the geodesic I" in d€2. We will thus first introduce a precise
description of the approximation in a region extremely close to the geodesic, without
taking into account the outer region. Since the solution turns out to be very concentrated,
this description is accurate enough and a gluing procedure we perform in Section [6] is
the key instrument to gather together this thin region close to the geodesic with the outer
region.
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Let (xo, x) € R¥*! be the local coordinates along the geodesic introduced in (1.8).
We perform the change of variables introduced in Section 2] (formula (2.7)),

_N=2 N—1
w(G(xp, X)) = pe 2 v(p 'xo, ;' (x —de)), v=v(0,y), p=ev2, (52

where 3
e (x0) = pite(x0), de(x0) = edg(x0) (5-3)

are functions of the arclength xo € (—¢, £) (see @). We now need to be more precise
in the description of w, and d;. We assume that

fie(x0) = 12(x0) + ep(x0),  den(x0) = den(x0) + edn (x0), (5.4)

and
dgj(xp) = edj(xp) forallj=1,...,N—1. (5.5)

In li /Lg and d,y (xo) are explicit smooth functions of xg of the form

1 1
1 = po(x0) + e¥2 1 (x0),  den(x0) = don (x0) + e¥2din(x0),  (5.6)

with
o

hoo(x0)’ hoo(x0)’

where o and g are positive constants depending only on the dimension N, and /gy is
the normal curvature along the geodesic I', which is assumed to be smooth and strictly
positive (see (@.11))). The functions i1, dy in (5.6) are smooth functions of xq, uniformly
bounded in ¢ together with their derivatives, whose precise definition we give later in
Section 3] (see (3.37)).

Finally in (5.4) and (5.3)), we assume that 4, d = (di, ..., dn—1, dy) are parameter
functions defined in (—¢, £) to be adjusted only in the final finite-dimensional reduction.
For now, we assume they are smooth functions of x¢ and that they have the following
norms bounded:

mo(xg) = don (x0) = (5.7)

Ille = 1le™=2 filloo + 1€ felloo + lltlloo (5.8)
and
N—1
ldlla = lldnllo + > lidj e, (5.9)
j=1
where
ldnlls = llednllos + lle'2dn oo + lldn lloos (5.10)
Idjlle = Ildilloe + ldjlloe + ldjlloe forj=1,...,N —1. (5.11)

In the previous expressions and in the rest of the paper, the dot denotes the derivative with
respect to xo.
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The (yo, y) variables belong to the set D defined in (2.9). We recall the definition

~ ~

deN I k)
(pyo) <yn < —, Iyl < —1,
P P

D= {(YO,)_’,YN)Z—
"

&

for some fixed positive number § we will choose later. The domain D expands as ¢ — 0
to the whole space RY. Observe that, with our choice of 1, and dey in —, we
have 1 |

—den /e = —& N2 [y +eV2O(1)], (5.12)

where y is a positive constant, depending only on N, and where O (1) denotes a smooth
function of xg, which is uniformly bounded in ¢, together with its derivative, for u and d
with [[lle + ldlla < ¢ (see (5.8)—(5.9)). In particular, the function R = d,y /. satisfies
assumption (3.6). Not only this. We have

_ 1 . .
180(den /ie) lloo < cpe™ T2 (el ftlloo + lldn o) < c&/2,

and
3N-8

_ S U . - SN=8
P~ 1900(den /1e) oo < cpe™ V2 (elljilloo + elldnlloo) < ceZV=D.

Thus the function den /e satisfies (3.3).
As we rigorously prove in Lemma [5.1| below, the Laplace operator, whose expansion
is described in @#.12), after the change of variable (2.7) gets transformed by the following

relation:
N+2

wer Au= A@), (5.13)
where, in D, the differential operator .4 can be written in the compact form
Av = apdgv + Ayv + Av. (5.14)
In (5.14), ao is given by
1
ag = (o + e V2 g + ep)?
(see (2:10)). Observe that
1 . N4
P~ ldoaolleo = cellptlloo < ce W=D,

thus the function ay satisfies (3.3). 5
Furthermore, in D the differential operator .A can be described as follows:

Av= )" aypdapv+ Y badav + cv, (5.15)
(@) @

where ay g, dy and c are functions of the variable (pyo, ¥), depending in an algebraic way
on the parameter functions x, and d,. More precisely, given the choice in (5.3)—(5.3)), one
has, in the region under consideration,

aop =0+ p*ly") ifa#0, B#0, app=0(), and ago=0,
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while
by = pO(e +ply]) and ¢ = p*O(1).

Condition (3.5) is thus satisfied by the differential operator A. This fact, together with the
estimates on d,n /4, in the definition of D in (2.9), gives that the linear theory developed
in Section |3 for the linear operator A + pw”~! in the domain D can be applied.

The next lemma gives the detailed computation of the differential operator A in terms
of the geometry of the problem.

Lemma 5.1. After the change of variable (2.']), the following holds true:

Nt2 5 5
pe? Au= A®) = a030v+Ayv+ZAkv+B(v), (5.16)
k=0

where ay is defined in (2.10). In the previous expression Ay denotes the following differ-
ential operators:

Aov = 2 Dy vyl +2(1 + y) Dyolyl + y (1 + y)v]
+ fe[Dyyvly] + ¥ Dyvlide] + Dyyvlde
— 2ue[e” ¥ Dy (@00 faey + de] + yfeee™ 72 300)]
— e Dyvlde] — pefie(yv + Dyvlyl), (5.17)

Ay = Z[—%Rikﬂ(ua)’k + dei) (e yi + der) — 2hij (e yn + den)
i,j

D2 ey + des) ey + de) [0, (5.18)
k

_ y N
where Ry is defined in |D hij is given in ll and the functions a;\],k = a;\],k (e¥=2yp)
are given by

y y )
Ay = gy + 0(x),

with A%k defined in li Furthermore,

Arv = Z[—MOJ’(M&)’N +deN)
J _
x (=Dy@v)d] + pee™ V28050 — (v8jv + Dy@ )y Dite)]  (5.19)

and

Azv = (Z b]?[ﬂgyk +dei] + b?\/(l’«&)’N + deN))
k

x {pte [~ Dyvlde] + pee™ V200w — j1e(yv + DylyD]}.  (5.20)



1578 Manuel del Pino et al.

where b,,(() are smooth functions of 8% Yo given by
B = bjxy + 0(x7)
(see ll for B,?). Finally,

Agv = Z[Z(%Riﬁk + Rojor) (e yi + deg) + bf;/(ueyzv + daN)]Msaij (5.21)
Tk

; N=1
where b{v are smooth functions of e N=2yq given by
B}, = bixn + O(x%)

(see ll for Blj\‘,), and
Asv = (Trgh — Trg k(1eyn + den)) e OV, (5.22)
where h is given by (4.9) and k by (4.10). The operator B(v) can be described as follows:
B(v) = 0(|M8)_’ + d_8|2 + (UeyN +den) + (HeYN + den)(Ley + Js))AO(U)
+ O(Iped + del® + (eyn + dep)ey + del” + (eyn + dey)?)dijv
+ O(Iey + del* + (meyn + den) tted + del + (teyn + den)?)
N-—1 N-—1
X [y,gs_m dojv + pee” V2099v — Dy (9jv)[de]
— (y3jv + Dy(@j)[yDite — Dyvde — f1e(yv + Dyvly]) + ped;v]
+ O((wey +de)* + (eF + de) (eyn + dey) + (eyn + den)®) iednv.
Proof. We will show first that
ul P2agu(xo, x) = p2uzdgv(yo. ) + Ao((y0. ). (5.23)
If v = v(yp, y), we define

(20, 2, te) = 1z 7 v(20, 1y '2).

We have u(xg, x) = 9(p~!

X0, X —d, wg). Then we compute
dou = D d[—de] + p~ 1000 + 10y, 7,
and
du = D 0[de)* + p 72957 + (1205, 5 — 2p~ ' D (307)de]
+ 207 f1edop, B — 2fte D2 (3, 9)[de] — D:Dlde] — jiedy, D.

Thus formula (5.23) follows by expressing the previous computations in terms of v. To
get the rest of (5.16)), one argues in a similar way. O
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With respect to the local coordinates along the geodesic I' previously introduced and after
scaling the variables as in (2.7), the original equation reduces locally close to the geodesic

to
N=2

Av+pu, 2 ‘ol =0, (5.24)
where A is defined in (5.14) and p = (N +2)/(N — 2). We denote by S, the operator

given by (5.24),

_N22,

Se(v) i=Av+pu, 2 wP7E (5.25)
In the rest of this section we study equation (5.24) in the set (yo, y) € D and we build
an approximate solution to (3.24) which furthermore satisfies the zero Dirichlet boundary
condition in the region yy = —d;n /1. Indeed, our approximation close to the geodesic

is
W=w+II. (5.26)

We start with the description of w. The definition of IT will be given at the end of this
section.

We define w to be
W = + €:(0y0) Xe (¥) Zo. (5.27)
The first term in (5.27) is @ defined as follows:
o(y) == (I + ag)(w(y) — o)), (5.28)
2
with w given in (2.4), o, 1= MéN‘Z) /8 _ 1 and

@(y) = w(y, yn + 2den/ he).

Observe that

_N=2
A+ a)w) +pe 2 (A +a)w)? =0 inRV,

In the second term in lb Z denotes the first eigenfunction in LZ(RN ) of the
problem
Ap+ pw(x)P'p=x1p WmRY, A1 >0

with f Zé = 1 and Y, is a cut-off function defined as follows. Let x = x(s) for s € R,
with x(s) = 1 if s < S, x(s) =0ifs > 23, for some fixed § > 0 chosen in such a way
that x, (7, —den/1te) = 0, where xz(y) = x(¢/@¥=2|y|). Observe that the function w
satisfies the Dirichlet boundary condition for yy = —dgn /e

Finally, in the function e, (pyy) is defined as follows:

~ . ~ 1
e, =¢ce, with e, = eg + ee and eg =ey9+eN-2eq, (5.29)

where e is an explicit smooth function, uniformly bounded in &, whose expression we
give in (5.37)), and
2 Jry diiwZo

)\1 (Trg, ljl - /Tloo)d()/\/. (5.30)

€0
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Finally, in (53.29), the function e is unknown and, for now, it plays the role of a parameter.
It will be chosen later on, together with i, di, ..., dy in (5.4) and (5.3)), to be a solution
of a system of N + 2 ordinary differential equations. For the moment, we assume that e
is a smooth function with the norm

llelle = 16*T7 28|00 + lle"™72é]l00 + llelloo (5.31)

uniformly bounded by a positive constant independent of ¢.

The error one commits by considering w a real solution to (3.24) is given by the size
of Sg (w), which is itself a function of the parameter functions u, d and e. Assume that p,
d and e, defined respectively in (5.4), (5.5) and (5.29), satisfy the assumption

(. d, e)ll == lmlla + lidlla + llelle < ¢ (5.32)

for some constant ¢ > 0, independent of ¢.
Then for all ¢ small enough and (yg, y) € D, we have the expansion

Se(w) = —pwP & — ew’ logw + e[—2h;;d 0y d;j@ + A1€d Zo]
1 - -
+ & V2 uQ[—2hij yn dijo + Trg hiy o]
82[(,0200'6: + Ae)Zy — 2Eidea,-jw
+ Z(d dj = § Rijuadicdy + affydidly + 4hojdid0y)d0 + |
2+N 2/L [ Za w - d + (— Z %Rijklykdlaija) + Za;\j,'kykdgNaijaO
ij
+ (3Rijik + Rojok)dk0j + 4h0jdin8ijw]
1 -
+et v [—ployew - dy — SudR ijkl)’kdlaija) + wGGRijik + Rojor)didj
+ (pL dy + nd N)(ZaNkykal]a) + b djw — Trg hoyw)
+ (/,Lge + /Les)(—Zh,'ija,'jZ() + Trg haNZ())]
Mt
+&N 2[_,U«MZN+1
+ 2““5( le]l))kylatja) + ( lelk + RO]Ok)yka o+ b]\/.YN8 w — Trg kYNan)]
+ e*(loge)r, (5.33)

where 1
Y. ="Yo+ev2T), (5.34)
with
— b . 2 p—272 p—1
Yo = —2h;jdoneodij Zo + p(p — Deqgw’™ " Zy + pepw logw Zy,

and Y, a sum of functions of the form

AETT230) A, d, e) f(y)
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with f1 a smooth explicit function of the variable e”ﬁ y0, uniformly bounded in ¢, f>
a smooth function of u, d and e, uniformly bounded in ¢ for u, d and e satisfying ,
and f3 a smooth function of the variable y, with sup(1 + |y|VY=2)| f3(y)| < +o00.

In the previous expansion, 7 is the second fundamental form on ¥ defined in (4.9)), k is
the square of the second fundamental form defined in (4.10), and R; j;; are the components
of the curvature tensor R on (X, g) as defined in re indices i, j, k, [ run from 1
to N — 1 and summation over repeated indices is understood. Finally aﬁ{,k is defined as
Al = allxn + 0(2) (see (@.13)).

Finally the term r in the expansion (5.33)) is a sum of functions of the form

ho(e N2y i (1. d. . d) + o(1) fo(i. d. e 1. d. &, jir d. &)1 f3(y)

with ko a smooth function uniformly bounded in ¢, and f; and f, smooth functions of
their arguments, uniformly bounded in ¢ when u, d and e satisfy . An important
remark is that the function f> depends linearly on the argument (ji, d, €). Concerning f3,
we have

sup (1 + [yIN D ()] < +00.

We postpone the proof of the expansion (5.33) to the Appendix, Section [9 and we
continue the description of w in (5.27).
We now use formula li to compute, for each yp, the Lz(DyO) projection of the

error Sg(w) (see (5.25) and (5.27)) along the functions Z;,i =0, 1,..., N+1 (see (2.11)
and (2.12)). Here D), denotes the yq section of the domain D, defined in (2.9),

Dy, = {y : (vo.y) € D}.

Ci:= Z-2, Cy:= 72 , C3:= Z2.
1 /RN i 2 /RN N+1 3 /RN 0

We start with the projections in the tangential directions Z;, fori = 1,..., N — 1.
Assume p, d and e satisfy (5.32). Then for ¢ small enough, and any k = 1,..., N — 1,

Denote

1 -
/ Se(w)Z = e 72 C [ o (—dy + Rojokd;j) + ax(pyo) + eBr(pyo; i, d, e)] + &r.
Y0

(5.35)

In (5.35), Rojox are the components as defined in of the curvature tensor R on (T, 2)
as in Proposition 1] and the functions o are explicit, smooth and uniformly bounded
in €. The functions f; are smooth functions of their arguments, they are bounded in ¢
when 1, d and e satisfy (5.32)), and they do not depend on the derivatives of u, d and e.
Finally the term r denotes a sum of functions of the form

ho(pyo)lhi(u, d, e, i, d, &) + o(Dha(, d e, i, d, é, ji, d, &)], (5.36)

where /g is a smooth function uniformly bounded in ¢, k1 and A, are smooth functions
of their arguments, uniformly bounded in &€ when u, d and e satisfy (5.32)), and o(1) — 0
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as ¢ — 0. An important remark is that s, depends linearly on the argument (ji, d, ¢). We
postpone the proof of (3.33)) to the Appendix, Section[9]

Concerning the projection of S;(w) in the remaining directions Zy1, Zy and Zy,
they turn out to be much bigger than the projections along Z;, fori = 1,..., N — 1.
Indeed, roughly speaking, they are at main order of size €. To reduce this size, we expand
of [ig, d:n and . in terms of the functions o, don, i1, diy in (5.6) and of eg, e in
(.30).

Indeed, if we assume w, d and e satisfy @) then we can prove that there exist a
constant @ > 0 depending on N and smooth functions

Hno, dONae()v //lelea ep: (_evg) - R’ (537)
in the definitions (5.6), (5.29), (5.30)) such that, as ¢ — 0, for all yg € (—p~'¢, p~10),

we have

/ Se(w)Zn+1 = e2[Ahoop + Bhoody + an+1(py0) + eBn+1(0yo; i, d, €)]

D~'0
+ N2 [~ Capgji] + £ (5.38)

and

1 - -
@ /D Se(w)Zy = e*TN2[Bhoop 4+ Choodn + an (pyo) + €8x (pyo; 14, d, )]
Yo

+ 3TV [—Cpodin] + £ (5.39)

In (5:38) and (5.39), A, B and C are explicit constants which depend only on the dimen-
sion N, with A,C > 0 and AC — B® > 0. The function hoo is the curvature of the
geodesic I on the boundary ¥ as defined in (#.IT). The functions ay41, ay are explicit,
smooth and uniformly bounded in ¢. The functions By+1, Sy are smooth functions of
their arguments, they are bounded in & when p, d and e satisfy (5.32), and they do not
depend on the derivatives of 4, d and e.

Finally,

/ Se(w)Zy = 82C3 |:p2aoé + Are — 2(Tr; h— f_l()()) (/ Biin())dN + ap(pyo)

Y0

+ Z(diz - %Rikildkdz + ali, dydoy +4I’_l0jdjd0N)</ 3iinO>
i

+ &%Bo(oyo; 14, d, e)}
+ &4 (5.40)

In (5.40), ag is the function defined in and £ is the second fundamental form of
¥ as defined in {@.9). Again oy denotes an explicit smooth function, uniformly bounded
in g, and By is a smooth function of its arguments, which is bounded in € when u, d and
e satisfy (5.32), and it does not depend on the derivatives of , d and e.
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In (3:38), (5.39) and (5.40), the term r denotes a sum of functions of the form (3.36).

We postpone the proof of (5.38), (5.39) and (5.40) to the Appendix, Section[9}
Thanks to the choice of the parameters performed in (5.37), from the expansion given

in (5.33) we conclude that the error S, (w), computed in (5.33)), reduces to

Se(w) = S + e[p?aoé + rielxeZo + €251, (5.41)

where Sp is a smooth function of pyg, uniformly bounded in ¢. Observe that Sy does not
depend on i, d and e. Furthermore, Sy satisfies, foralli =0,1,..., N + 1,

/ SoZidy =0 forall yy,
D}'O
and

1Sollss < c

for some positive constant ¢ independent of ¢. In (5.41)), ao is the function defined in
(210), Zy is given by (2.12), and e is the parameter function which enters the definition
(5.29) and whose || - || norm is bounded uniformly in & (see (5.31))). On the other hand,
S1 depends on u, d and e.

Now we introduce a further correction IT to w, to get the final approximation W =
w-+TIT (5.26). The correction IT is chosen to reduce the size of the error (5.41)), eliminating
the term &Sy, as the unique solution of the following linear problem:

aodg T + AT+ Al + po? ' Tl = —eSo+ Y c;Z; inD, (5.42)
/ I(yo,y)Zidy =0 Vyy, Vi=0,...,N+1 (5.43)
Yo
and
IT(yo, y, yN)|aD)-0 =0 forall yg. (5.44)

In (5.42), ag is defined as in || and A in || Taking into account the description of

the linear operator (3.14) carried out at the beginning of this section, the assumptions of
Proposition [3.2] are satisfied and the linear theory developed in Section [3|can be applied,
given the estimate

[ITT]}s < ce (5.45)

for some positive constant c. The linear operator in (5.42) depends on w and d (but not
on ¢). This implies that IT itself depends on 1 and d. A direct analysis of (5.42), together
with (3.14), shows that

1Ty — My lls < c€2ll (1 — pa.dy — ). (5.46)

We next compute the size of ¢; = c;(pyp). Multiplying equation (5.42) with Z;, and

integrating on the section Dy,,, we obtain, for all yo,

ci/ Zizza()/ 331_[2,'-}-/
D D D

Y0 Y0 Y0

(AT + poP~ D) Z; +/ Az, (547
Dy,
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Taking into account (5.43) and (5.32)), we have

‘ / 0oI1Z;
D-"O

where o(1) denotes a small function of yg. Furthermore, integrating by parts and using

< o(1)e,

<o()e’, ’/ RTLZ;
pY

Dy,

(5.43), we have
‘/ (AT + poP~ ' Z;| < o(1)e.

Dy,

Finally, from (5.14) we obtain
V A Z;| < o(1)e3.
Dy,
Thus we conclude that
sup |ci| < o(1)e. (5.48)

Directly from (5.47) and (5.46) we see that c; = c;[u, d] depends smoothly on y, d and
their derivatives. Indeed, we have

leilpmt, dil — cilpa, dalllso < ce?ll(u1 — p2. dy — do). (5.49)
Let ¢ := 9pI1. We have
aoddy + Ay + AV + poP T\ + pagdow = h+ Y d0ciZi inD  (5.50)
with
h = —epdpSo — o A(IT),

/ Y (yo, y)Zidy = o(l)e  Vyo, Vi=0,...,N+1 (5.51)

Y0

and
(o, ¥, YN)lyp,, = 00(den/1e)INTI(VO, ¥, YN)|yp,, =0 forall yo. (5.52)

Direct computations show that
Al < Cep

and condition (3.52)) reduces to

- 1
W(}’O, Yy, YN)|3D),O = 0(1)83 N—Z,

where O(1) denotes a smooth function of yp, uniformly bounded in ¢, for u, d and e
satisfying (5.32). We thus conclude that

19011l < cpe.
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With this choice of IT we have

S (W) = 281 + e[p%aoé + Arelxe Zo + N (I + Y ciZ; (5.53)
(see (5.41)), where
_N=2
NI = e 2 [+ TP —w! ™) = po? L. (5.54)

Observe that S| depends smoothly on the parameters u, d and e, and
[1S1(e1, di, e1) — S1(ua, da, e2)llx < cll(1 — p2, di — da, e1 — e2)|. (5.55)
We next estimate || N1 (IT)|| . If |y| < 8¢~ 1/2, we have
INI(ID)] < cloP 2117,
Thus in this region, we have

sup (14 [yDVTENI(ID)] < ce?.
lyl<de—1/2

If now |y| > 8¢~ 1/2, then |N; (IT)| < ¢|IT17|, so that

8 8
sup (14 YDV 2N < ce?  sup (1 + |y)) 2T o2 < ce® T2,
ly|>8e=1/2 ly|>8e=1/2

‘We conclude that
N1 (TD) [l < €ll? 2T | < ce?. (5.56)

This concludes the construction of our approximation W (5.26) and the analysis of the

error S, (W) (5.53).

6. The gluing procedure

This section is devoted to a gluing procedure that reduces the full problem (2.1). A first
observation is that on replacing u by p¥ =2/24(pz) the problem becomes equivalent to

Au + p‘¥gup_8 =0 in&,,
u>0 in Q, (6.1
u=0 on 082,

where 2, = p_lQ.

The function W(yg, y) built in the previous section in defines an approximation
W to a solution of near the geodesic through the natural change of variables (5.4)—
. More generally, let us denote by z € RV*! the original variable in ;. Then for a
function f(z) defined on a small neighborhood of I we use in this section the notation

N=-2

F@ =i (pyo) f(yo,y) forz=p ' G(pyo, pite(py0)y + eds (py0))
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or
- N=2 -
Fo,y) = fie > (0y0) (0~ G(pyo, piie(00)y + eds(0Y0)))

so that in particular W and W are linked as W = W. In fact we recall that near I',, after
setting in this language v := u, the equation in (6.1)) becomes
N-2

S.(v) i= Av+ pe 2 wPTE =0, 6.2)

where A is the operator defined in (5.14).

Let § > 0 be a fixed number with 48 < §, where § was chosen in . We consider
a smooth cut-off function &5(s) such that £5(s) = 1if0 < s < §,and = 0if s > 26. Let
us consider the cut-off function

£ (yo, ¥) = &G (Yo, fie (pY0) oy + eds (pY0)))),

and its pull-back to 2, supported near p~!T", defined as

n5(2) = (o, y)  forz = p~'G(pyo, fie(py0)py + eds(p0)).

We observe that with this definition 75 (z) no longer depends on the parameter functions
and it is well defined in the entire €2, by just extending it by zero outside the range of the
variables (yg, y). We define our global first approximation w(z) to a solution of (2.1)) to
be simply

w(z) = n5(2)W(2). (6.3)

We look for a solution to problem of the form u = w + &, namely

{A<D+pwp—1q>+N(<1>)+E=o in Q, 6.4)
=0 on €2,
where
N@) = p T8 (w+ )P~ —wP™ — pwP~ld, E = Aw+wl¢.
According to , near the geodesic v = i + ® must then satisfy
AD + pwP~ 1D + N(D) + S (W) =0, (6.5)

where now
. _N2g s 5 o
N(@®)=[te > (WH+P)P -G —pwP'®, S, (W) =AW+ W’ 7°.
We look for a solution @ of (6.4) in the following form:

D =msd + v,



Bubbling along geodesics 1587

where the function ¢ is such that ¢ is in principle defined only in D. It is immediate to
check that ® of this form will satisfy the above problem if the pair (¥, ¢) satisfies the
following nonlinear coupled system:

Ap 4 pwP~lgp = N+ ¥) —E— pW Y inD, (6.6)

#=0 ondD. (6.7)

AY + (1 — n5) pwP ™y = 2V Vnss — dAnss
—(1- UEB)N(nE(;(b + )  in Qg
Y =0 ondQ,. (6.8)

Given ¢ such that in D, ¢ has a sufficiently small || - || ,-norm, we first solve problem
for .
Let us assume first that 2 is bounded. Since 2, = p~'Q, the problem

—~AYy=h inQ, Y =0 ond<, (6.9)

has a unique solution ¢ := (—A)~1(h) for each given h € L°°(L2,). Moreover

N—1\"2
<cl—— |l oo-
IV lloo < (N—z) 171 0o

Let us observe that, for instance,
IAnSsBllco < CO* 1Bl Lo (y=5p-1) < CON 2]l

We obtain similarly
IV Volloo < CoN 2Bl

Let us now assume ||/ [loo < Rp™~* @l and consider in this ball the operator

M) == (1 = n3) N9 + ¥) = (1 — n35) (359 + )P

‘We have

IM@W1) = M)l < CUBN e (jyi=5o-1) + ROV HIG1P Y1 — P2lloo
4(N—4)

<CU+R" o2 16127 v — ¥allco-

Observe that also
(1 =15 pwP ™ Y lloe < Co* 1Y lloo-

By taking R suitably large but fixed, we see directly from an application of the contraction
mapping principle that the fixed point problem, equivalent to (6.8)),

¥ = (=D (M) + (1 —ns) pw? ¥ + 2V Vn3; + ¢ Ans;)
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has a unique solution ¥ = ¥ (¢) with |[¥] < RpN=%||$1+, whenever |||, is suf-
ficiently small, independently of ¢. Note that p¥—* = ¢VN—=3-2/(N=2) In addition, the
nonlinear operator v satisfies a Lipschitz condition of the form

1 @1) — v (@D)lloo < CeV 32y — s (6.10)

Let us now consider the case & = RY \ A with A bounded. In this case, exactly
the same arguments go through. Indeed, let us pull back the equation for ¥ to €2 in the
following way: for f(z) defined in €2, let us write f(z) := f(z/¢). Equation then
becomes

AV + p 72 (1 — 755 pWP 1y
= —2p 2V — dp 2 Anss — p (1 — i55) (R5sd + V)P in L,

~

Y =0 onoQ,
or

A+ 0 xy = =200 dlx — p 20" HIllex + )P in L,

where x is just a function with bounded support. In the case of the exterior domain, after
a Kelvin transform we see that the problem (in RV *1)

A~

—AY=h inQ, ¢¥=0 ondx, 6.11)
has a solution 1} = (=A)~L(h) with
1A+ 12V "D @) oo < CIIA 4 121V )R oo < +o0.

In this setting we can do a fixed point scheme similar to that before, the reason being that
if
I+ 12 Dd @ e < CoV NI
then
@17 < p~ 2 VOPGEA + |2 PN

and we also have p(N —1) = (N+2)(N —1)/(N —2) > N —3. Thus (6.8) can be solved
in the same way as before, and the conclusion remains unchanged. It is worth observing
that the energy of v in €2, is small with & indeed small in any case, provided that || ||, is
bounded by some small fixed constant.

As a conclusion, substituting U = ¥(¢) in equation , we have reduced the full
problem (2.1)) to solving the following (nonlocal) problem in D:

A + pwP=1g = —N(LEsh + ¥ (D)) — Se(W) — pW’ () inD, (6.12)

¢ =0 ondD.

We will solve a projected version of this problem in the next section, and in Section 8 we
will solve it in full.
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7. The nonlinear projected problem

This section is devoted to solve a projected problem associated to (6.12). We shall relieve
the notation in dropping the tildes and write it as

L(¢p) = Se(w)+ N(¢p) inD, (7.1)
d(o+p 71, y) = (o, y) forall yp, y, (7.2)
¢=0 onadD, (7.3)

where L(¢) = A + pwP~'¢, with A defined in and  in , and N(¢) is given
by

N(¢) = p(@P™" —wP ™" — N(&550 + ¥ (9) + L5 WPy (d) (7.4)
with Vo

N@) =fie T (WP —wl = pw g,
Let us observe that S, (W) can be decomposed in the following way:

Se(W) = E + {e[p*aoé(pyo) + re(0yo) 1} xe Zo (7.5)

(see (5.53). The projected version of the problem is as follows: Given 1, d and e satisfying
(5.32), the projected problem we want to solve is: find functions ¢ and ¢;(yo) for i =
0,..., N+ 1sothat

L) =E+N(@)+» ¢z inD, (7.6)
i
dOo+p 0 y) = ¢, y) forall yg,y, (1.7)
¢=0 onadD, (7.8)
/ ¢Z; =0 foralli =0,..., N+ 1andall yp. (7.9)
Dy,

Observe that the last term in have been absorbed in ¢y Zo.

For further reference, it is useful to point out the Lipschitz dependence of the error
term S on the parameters 4, d and e for the norms defined in (3.8), (5.9) and (5.31). We
have the estimate

IE(1,d1, e1) — E(ui, di, e1)lloo < ¢8| (i1 — pa, di — da, e1 — e2)|. (7.10)

This is a consequence of (3.53)), (5.49), (5.46), (3.53). As already observed, we can ap-

ply the linear theory developed in Section [3] Given Proposition 3.2} solving (7.6)-(7.9)
reduces to solving a fixed point problem, namely

¢ =T(E+ N(9) = A4), (7.11)

where T is the operator defined in Proposition 3.2}
Consider the set

M= (¢ |¢lls < ce?)

for a certain positive constant c.
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We first show that A maps M in itself. Assume ||¢|| < ce2. Then
A« < CIE + N(P) -
We first estimate || E ||... Given the definition (5.53) for S, we get
I e Ell s < Ce?. (7.12)
Next we estimate || N (¢) ] ««. We have
IN@) s < CUI@P ™" = wP ™l + 1055N(1550 + ¥ @) s + 155w~ 9 () ]

We get
[(@P™" =P Dpllsw < Clll(@ + geZo + TP~ — 0P |1

< Cllo”*(¢eZo + M)glsx < Cellp]ls;

furthermore
IEENEED + ¥ @)lex <€ sup [+ YDV 0P 2(p + ¥)?)
lyl<ce=1/2
+osup (L IYDY ) + 1)
[yl=ce=1/2
<cet
and
Bl - 2
1555w Y @lhe < CVT2 sup (DY NG < TG
ly|<ce=(N=D/(N=2)
Thus we get

IN (@)l < Ce>

for all |||« < ce2. Given , we conclude that A(¢) € M for any ¢ € M, provided
¢ in the definition of M is chosen large enough.

We next prove that A is a contraction mapping, so that the fixed point problem (7.11))
can be uniquely solved in M. This fact is a direct consequence of (6.10). Indeed, arguing
as in the estimates above we obtain

[A(@1) — A(@2)lx = ClIN(P1) — N(P2)[lsx < Celldp1 — P2l

Emphasizing the dependence on u, d, e, what we find for the linear operator 7 is the
Lipschitz dependence

Ty dier — Tusd,enll < Cell(y — p2, dy — da, e1 — e2)]|.

We recall that we have the Lipschitz dependence (7.10). Moreover, the operator N also
has Lipschitz dependence on (i, d, e). It is easily checked that for ||¢l, < Ce? we have,
with the obvious notation,

INGeydren) @) = Nuydyoer) @) s < C&3 (101 — p2, di — da, e — e2)|.
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Hence from the fixed point characterization we see that

IPur.drer) — Puzdren s < Ce* (1 — pa, dy — da, e1 — e2). (7.13)
We have thus proved the following

Proposition 7.1. There is a number ¢ > 0 such that for all sufficiently small ¢ and all

w., d, e satisfying (5.32), problem (1.6)-(1.9) has a unique solution ¢ = ¢(u,d, e) and
¢i = ci(u, d, e) which satisfies

g1l < ce?. (7.14)
Moreover ¢ depends Lipschitz-continuously on j, d and e in the sense of estimate (7.13)).

8. The final adjustment of parameters: conclusion of the proof

In this section we will find equations relating u, d and e to get all the coefficients c;
in identically equal to zero. To do this, we multiply equation (7.6) by Z;, for all
i=0,...,N+1(see (2.11) and (2.12)), and we integrate in y. Thus, the system

ci(pyo) =0 foralli =0,...,N +1
is equivalent to

/ SS(W)Z,-dy—i—/ (N(@) — Ap — 0P~ 1¢)Z; =0 foralli and yy,

Dy, Dy,
where S, (W) is defined in (5.53), N(¢) in (7.4), A in (5.14), and @ in 2.4).
Taking into account Section [7]and Proposition we get

/ (N(@) — Ad — 0?7 $)Z; = &7r,

Y0

where r is a sum of functions of the form

ho(pyo)lhi(w, d, e, (1, d, é) + o(Dha(u, d, e, i, d, é, ji, d, é)],

where A is a smooth function uniformly bounded in ¢, 1 depends smoothly on u, d, e
and their first derivatives, it is bounded in the sense that

Ih1lloo < cll(ie, d, e},

and it is compact, as a direct application of the Ascoli—Arzela Theorem shows. The func-
tion h7 depends on (i, d, e), together with their first and second derivatives. An important
remark is that s, depends linearly on ji, d and ¢. Furthermore it is Lipschitz, with

lh2(per, di, er) — ha(uz, d2, e2)llo < o(D)|I(t1 — 2, dy — da, €1 — e2)]l.
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We next study [ S, (W)Z;dy, with Se (W) given by (5.53). First we have

[ [ma+ 3 cizi)z; = oo +ote
DV()
where ho(pyp) is a smooth function of pyg, which does not depend on u, d, e, and r is as
before.
Taking into account the previous computation and the results of Section [5] (5.33),

(5.38), (5.39)), (5.40), we conclude that the equations
C; = 0

are equivalent to the following limit system of N + 2 nonlinear ordinary differential equa-
tions in the unknowns w, di, ..., dy, e:

2 .

Lys1() i= —Cae" 82 pugji + A + Bdy = an41 + eMy1,

Ly(dy) = —ClwauoéZN + Bu+Cdy =ay +eMy,

Li(dy) = —d + Y1 Rojoedy = e + €My, k=1,....N -1,

Lo(e) := p*aoé(pyo) + r1e(pyo) + yodn = g + £ Qo + £* Mo,
where w, di, ..., dy and e satisfy periodic boundary conditions in [—¢, £]. In (8.,
we have A > 0, C > 0 and AC — B? > 0. The functions «; are explicit func-
tions of xo, smooth and uniformly bounded in &. The function yy is given by yp =
2(Trg h — hoo)(f diiwZo). The operators M; = M; (i, d, e) can be decomposed in the
following form:

8.1

M;(f,e) =A;(u,d,e) + Ki(u,d,e),

where K; is uniformly bounded in L*°(—¢, £) for (u, d, e) satisfying (5.32) and is also
compact. The operator A; depends on (i, d, e) and their first and second derivatives and
it is Lipschitz in this region, namely

lA; (1, di, er) — Ai (2, da, e2)loo < Co(D) (1 — w2, dy — da, e1 — ed)|l.

We remark that the dependence on ji, d and & is linear. Finally, the operator Qg is
quadratic in d and it is uniformly bounded in L>°(—¢, £) for (i, d, e) satisfying (5.32).
Our goal is now to solve (8.1)) in i, d and e. To do so, we first analyze the invertibility
of the linear operators L;.
We start with a linear theory, in L setting, for the problem of finding 2¢-periodic
solutions of the problem

Lyy1(n) =hy,  Ly(d) = ho, (3.2)
with 21 and s, bounded. This is the content of the next lemma.

Lemma 8.1. Assume that A > 0, C > 0 and AC — B> > 0 and that ||h1]lco + |72l
is bounded. Then there exist a 2L-periodic solution (i, d) to the above system and a
constant ¢ such that

Tt 1o
Itlloo + lldllo + €2 72 lftlloo + €2 [l dlloo < clllrtlloo + h2lloo0] -
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Proof. System has a variational structure. The associated energy functional on the
class of 2¢-periodic functions is positive, bounded from below away from zero and con-
vex. Existence of solution thus follows.

In order to get the a priori estimate, we assume towards a contradiction that there
exists a sequence (h1,, hy,) with

7 1nlloo + 122 llcc — O

and a sequence of solutions (i, d,,) with

1y 1o, 1.
I tnlloo + lldnlloo + €27 72 |t oo + €2 lldnlloc = 1.

Since A > 0 and C > 0, applying the maximum principle to each equation in the system,
we see that ||, ]lco < ¢lldnlloo and ||dyllco < ¢llttn|lco- Hence we can assume d,, (m,,) =
ldnlloc > & and m, — m. Scaling the system with y = (x —m)/e, we find that the
scaled functions, which we denote by f1,, and 3,,, solve

i e . A
—eN2Cofifiy + Aty = —Bdy + o(1),
A2 R N ~ R (8.3)
—C1A—udn + Cd, = —Bi, + o(1).
1

From the second equation we deduce that ||c;'n oo + ||c§n lo < c and a direct application
of the Ascoli—Arzela Theorem implies that d, — d uniformly on compact sets.
We state that
Afi, —> —Bd. (8.4)

Assume that this is not true. There exists a compact interval / and a sequence of points
X, € I such that
|Aftn (xn) + Bd (xp)| > a (8.5)

for a certain fixed positive constant a. Up to a subsequence, which we still denote x,,, we
have x, — xo. We now scale with z = (y — xg)/e!/N=2) so that the scaled functions
L, and d, satisfy

_CZﬁﬁn + App = —Bdy, + 0(1).

In this scale, we get ||d, [|loo < ce!/?W =2 — 0. This implies that d,, converges uniformly
over compact sets to a constant and this constant has to be d(xg). Hence A, + Bd,
converges to 0 locally over compact sets. This is in contradiction with (8.3)), and proves

We now go back to li which reduces to saying that d solves
_Cipd + (C = BY/A)d =0.

Since C — B2 /A > 0, we conclude that d= 0, a contradiction. O

Concerning the invertibility of the operator Ly, we have the validity of the following
lemma.



1594 Manuel del Pino et al.

Lemma 8.2. Assume that condition (1.7) holds. If f € C(—£, ) N L*°(—£, £) then there
is a unique solution e of Lo(e) = f which is 2{-periodic and satisfies

P2 1lloe + pllélloo + llelloo < Co™ I f lloo-
Moreover; if f is in C*(—£, £), then

P*Elloo + plélloo + llelloo < CLI flloo + 1 Flloo + 11 flloo]-

Proof. Consider the following transformation:

¢ ' (Wag@)~las . 2
l=/ 1 s, t=f_@( ao(0)) ’ A1=l—/\1

—¢ v/ao(s) l 2

and
y(t) = é(s).
Then the problem
Lo@) = f. &0 =20, &-0=2é®

reduces to

PP ¥+Mi=F yO) =y, 30 =7y). (8.6)

Thus is solvable if and only if ,02)11 # A for all k > 0, where Ay is an infinite
sequence of eigenvalues for lMi with f = 0, where y;(¢) is an orthonormal basis of
L%(0, ) formed by the eigenfunctions of

Fe + 425 =0, y(0) = (), Ik (0) = Y ().

Furthermore,
Vi =2k + 0(1/k%). (8.7)
When (8:6) is solvable, its solution is given by
S
() = ]; T aaa (8.8)

and || £l 2 = (fy f2)/?. Choose
|p*4k% — %] = co (8.9)

for all k, where ¢ is small. This corresponds precisely to the condition (I.7) in the state-
ment of the theorem with

T ¢ 1
K= 5\/)»1/ ——ds. (8.10)
—¢

ap(s)
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From we then find that [A; — g p2| > (c/2)p if p is also sufficiently small. It follows
directly from expression 1| that ||yllLo,7) < Cp~! Il f1lLo(0,7)- Observe also that

113 <fj|f|2 L e <c§j<1+k“)|f|2
L>(0, = kl == = k|l -
©m k=0 (A — )\kpz)z k=0
Hence
Pl Lo, + 1YL 0.7) < Co~ N FllLoo,7)-
Moreover, if f isin C2(0, 7) with £(0) = f(x), f/(0) = f'(7), then the sum 3", k* /2
is finite and bounded by the C2-norm of f. This automatically implies

P21y Iz, + 1Y L7 + IVl 0.0 < Clfllc2 0.
and the proof is complete. O
We now conclude with

Proof of Theorem [I.1] Since the geodesic I' is nondegenerate, the linear operator Ly
is invertible in the set of 2¢-periodic functions. More precisely, there is a positive con-
stant C such that for any f € L°°(—¢, £), there exists a 2¢-periodic function dj such that
Li(dy) = f and

Idilloo + Il oo + lldklloo < CII f lloo-

Define [ig, don» dox to be a solution of

Lyt1(io) = an+1,  Ly(don) = an,
Li(dor) = ox forallk=1,...,N—1.

Thus we have

1/2

elldonlloo + &' 2lldonlloo + lldonlloo < €, lldoklloo + lldoklloo + lldok oo < €

and
]+L p l+# & ~
& N2 fiolloo + €27 N2 || holloo + | 0lleo < c.
We now solve LO(EO) = — 2(Trg h— l_zoo) (f Biino)d~0N +ap + sQo(c?o), where d~o =
(&01, e, &ON). Since the right hand side is regular, by Lemma we have

242 ..
e 72|80l oo + | Eolloo < c

We have
I(fio. do. Eo)ll < c.
Define
w=po+pi, d=dy+d, e=Ey+é.
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The system (8.1) reduces to

Lyt1(fi1) = eMy 1, Ly(diy) = eMy,
Liy(diy) =eMy, k=1,...,N—1,

8.11)
Lo(&1) = —2(Trg hh — hoo) (f Biia)Zo)c?lN + 2 M.

Let us observe now that the linear operator
L(p1,di,e1) = (Lys1(n1), Ly(din), Ln—1(di(v—1)). - - ., L1(d11), Lo(er))
is invertible with bounds for L(u1, d1, e1) = (f, g, h) given by

_N-1
(i, di, eDll = Clll flloo + l1glloo + & V2 I loc]-
It then follows from the contraction mapping principle that, given o > 0, the problem
[£+ (M1, eMy, eMy—1. ... eM1, e Mo)l(u1, di, e1) = (f, 8, h)

is uniquely solvable for ||(t1, d1, e1)|| < ce% if || flloo < €777, llglloo < €777, |hll2 <
o TP—(N=D/(N=2) for some p > 0. The desired result for the full problem then
follows directly from Schauder’s fixed point theorem. In fact we get ||(it1, di,e))| =
0 (¢ N =3/(N=2)y for the solution. ]

9. Appendix
Proof of

We write
Se(w) = Se (@) + {p%aoée (pyo) + Aies(py0)}xe Zo + Ales xe Zo)
+2e.Vx:VZy+ No(egs x: Zo), .1

where
N2

No(eexeZo) = e ° 1@+ eexe Zo)? ™ — &P ] — pecw’ ™' x: Zo. 9.2)

We start by analyzing S, (®). Expanding S, (®) in ¢ and taking into account that
N2

AL+ ap)ol + e * (1 +a)ol” =0 inRY, 9.3)
we have
5
Se (@) = ZAka) — poP & — ew logw
k=0
+ B(0) — A®) + ae A(w — &) + apdi[aes (@ — @)]
+ b(pyo, y; p, d)e*?, 9.4)

where the operators Ay and A are defined in Lemmas [5.1] and the operator B is
given by and b is a sum of functions of the form

bo(pyo)b1 (1, d)
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with by a smooth function of pyg, uniformly bounded in ¢ together with its derivatives,
and by a smooth function of its arguments, uniformly bounded in ¢. Note that »; does not
depend on the derivatives of its arguments.

The main part in is

5
ep = ZAka) — poP & — P logw. 9.5)
k=0

Indeed, B(w) is of lower order with respect to Zi:o Ao as shown by Lemma , and
so is the term given by A(®) since @ = O(g)w and also the term «; A(w — @) since o, =
O(¢|loge]) as ¢ — 0. Observe furthermore that 830(5 = p20(a,), sO aoag[ae (w — )]
=o(l) ,020). Summarizing, we can write

Se(@) = eo + £2b(pyo; u, )’ + &r, (9.6)
where r is a sum of functions of the form

ho(pyo) f1(1e, d, i, d) f>()

with A a smooth function uniformly bounded in &, f1 a smooth function of its arguments,
homogeneous of degree 3, uniformly bounded in & and

sup (14 [yIN ") ()] < +oo.

By means of Lemma [5.1] and taking into account notation (5.3), we can expand the first
term in (9.3)) in powers of ¢:

25: Ac(@) = el~2hijdy dijw] + TV i~ 20 vy ;0 + Trg hiy ]
k=0
+ &2 Y did; — {Rijuadid, + aydidy + 4ho;d )0
ij
+ 2w [-aDyw - d— %ﬂRijk[)’kdlaij(U + 2ﬁa%kYkC?Naijw
+ A3 Rijik + Rojor)drdje + 4ho; (fiyn Dy ()8 + jidy (v i + Dy(3;)y))
+ b, fidy dj — Trg kjidn dyw — 2(iDyZ 41 - d]
+ eV [~ Zy 4
+ 2 (=3 Rijiyeidijo + G Rijik + Rojor) yidjo + by yndjw — Trg kyndy )
+4hoj ity (v dj@ + Dy (3j) - y)
+ (W} (Dyyolyl + 20+ y)Dyw - y + y (1 + y)o)]
+ 83“ 9.7
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where r denotes a sum of functions of the form

ho(pyo) L f1(v, d, [, d) + o(1) fo (i, d, 1, d, ji, d)] f3(y)

with kg a smooth function of pyo uniformly bounded in &, fi, f> smooth functions of
their arguments, f; homogeneous of degree 3, f> linear in the variables (ii, d), and

sup (1 + [y[N )| ()] < +o0.

The previous expansion, together with (9.5), and the notation (5.3)), gives a precise
description of the first term S (®) in (9.1). Let us now consider the term A(e; xc Zo).
Arguing as before, we have

5
AlesxeZo) = Y AxleeZo) + &7,
k=0

where r is a sum of functions of the form
ho(pyo) L fi(v, d, e, (1, d,é) +o(1) fo(a, d, e, [, d, é, i, d, &)]f3(y)

with hg a smooth function of pyy uniformly bounded in €, fi, f> smooth functions of
their arguments, f1 homogeneous of degree 3, f; linear in the variables (i, d, ¢), and

sup (1 + [y|V72)| f3(»)] < +oo.

Let us then consider the term ZZ:O Ay (ecZp). Directly from Lemma and taking into
account (5.30), we obtain

> ~ 2+L ~
ZAk(eSZO) =geA + " N2¢B,
k=0
where
- ~ 1 - -
A= 8[—2h,'jd1vaij Zol + 81+m/1[—2hiij3,'jZo + Trz hoy Zo]
+¢? [Z(lfﬁj — 3 Rijudid; + afdidy + 4ho;d;dn)di; Zo]
ij

+ 2w [-iaDyZ - d— %ﬁRijklkailaijZO + ZﬁaZkYngaijZO

+ LG Rijik + Rojor)drd; Zo

+ 4hoj (fiyn Dy(3; Z0)8 + fidy (v 8; Zo + Dy (8; Zo)y))

+ by i d; Zo — Trg kjidn dn Zo — 2fi(y Dy Zo + Dyy Zoly)) - d]

+ 2T [—iAiZn

+ 22 (= 3 Rikjiyinidij Zo + G Rijix + Rojou) yed; Zo + by ynd; Zo — Trg kyn dn Zo)
+ hojuityw (79 Zo + Dy(@; Zo) - y)

+ ()7 (Dyy Zoly* +2(1 + ¥)Dy Zo - y + v (1 + ¥) Zo) |

+ 83r
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and r is as before. On the other hand,
B = e[—2iDyZ - § — 4h; idnd; Zo]
1 ~ 2 ~ 2 ~\27
+ e N2 20Dy Zo - y — 2y irZo — 4 hojyn 9 Zo) + €7,

with r as before.
Expanding in ¢ the term No (e, xz Zo) defined in (9.2)), we get

No(esx:Z0) = €*[p(p — DE30"™2Z2 + pEow’ 'logwZol + &3|logelr,  (9.8)
where r is a sum of functions of the form

ho(pyo)h1(i, d, e)ha(y)

with A a smooth function, uniformly bounded in ¢, 41 a smooth function of its arguments
and sup (1 + |y)N*2|h2|(y) < C. Summing up all the computation, we obtain the proof

of (3:33). o
Proof of 5.33), (5-38), (-39, G40

The proof consists of two steps. In the first step we compute the expansion in ¢ of the
projections assuming that

N-L | ~ -
Me =&eN2[i, dey =edy, dgj =edj, e, =cee.

In the second part, we will choose 111, dy1 and e; to get the above expansion when u, d
and e are defined as in (3.4), (3.3), (5.6), (5:29) and (5.30).

Step 1. We start with the projection of the nonlinear part
h=—po’ ' — cw’ logw.
We have the following facts: as ¢ — O,

i\ WAL i
/ hZyy1dy = 8[A2<~—> — A3+ V2 <~—> gN+1 <~—)} 9.9
D dy N N

Y0

L\ N-1 - N -
/ hZNdy=81+1\’]2[—A1<~i) +elz<~i> gN<~i)], (9.10)
D dn dn N

Y0

f hzkdyze”N}zgk(i) fork=1,...,N -1, 9.11)
Dy, dn

~ N-=-2 ~ N N=1 ~
/ hZody = 8[—A4(~i> — As 472 (i) g()(l)] 9.12)
D)’o dN dN dN

In these formulas, the functions g; are smooth functions with g;(0) # 0 and A; are
positive constants.
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We first prove (9.10). By Taylor expansion we have

—p/ P ' Zy
Dy,
N2 N -2 YN d
) C1N=2) T /712y X2 2y
Dy, (L+[y>+ lyny + 27V dy/pls) 2 (I+[y|5)2

:pCN
~ N—1 ~ N ~
ot oa(f) e () ()]
dy dy dy

The constant A which appears in @) is precisely given by

N

+2 2 2

_ PCN2 (N —=2) / YN

- N—1 N+4 °
2 L+ yH 2

Ay

Furthermore, we have
- \N
—8/ wPlogw Zy = 82+N220<<~i) )
Dy, dn

This proves (9.10). Concerning the projection along Zy, arguing as before we get

~ \N-2 ~ \N—-1 ~
_p[ (Z)wP—IZN+1 :8|:A2<~i> +81\/12<~i> gN("ﬂ)i|
D)‘o dN dN dN

for a positive constant A, which can be computed explicitly.
Finally, we get

= \N
2
_8/ wPlogw Zyy) = —eAs + T2 0((&) )
Dy, dy

where A3z is the positive constant given by

N -2 P
A3=/wploga)ZN+1 = T/wp“ loga)—i—/long(a) )-y

p+1

1 N

=51 eV = i [
p p

This proves (9.9). Estimate (9.12)) follows in a similar way. Finally, (9.11)) which follows
from the observation that

p/wp_lé)ZkZ/wp]ngZk:O fora]1k=1,...,N—1,

due to symmetry.
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We continue with the projections of S := S, (w) — 4. We have
Zys =¢ [ / YeZy (1 +o(e))}
_2_ . 2
+ 2w [—Czuu + (0)? f [Dyywy® +2(1 + y)Dywy + y (1 + )0l Zy 11

- (ﬁ)z[Trgl;nyanzN-i-l +%Rikj1/yky13iijN+1H
+ &% 9.13)

where r is a sum of functions of the form (5.36).
Concerning the projection along Zy, we get at main order

/‘D SZy = 81+N12ﬁ|:_2}_1ii / YN OINWOji W +Trg/’_l/(an)2:|
Yo

1 = 3 3
+ 2t [—ClﬁdN - 2;1/ DyZy11ld]Zy

+4E()j </1dj/yN8jja)ZN —l—ﬁdN/BNaja)yNaNa)) — Crady Trz k

-\ N—1

— A] <Ji> e — 2[1()()5&/\/ / yNa)p_IZ()ZNi|
N

4+ 3ty

1 - 1 < — ~ —
= et 20y jihgo + 2172 C [—ﬁdzv — Trg kjidy + 2ho; fid;

-\ N-1
— Ay <C§i> & — 2hgoédy / yNU)plZOZN:| + ¥Ry, 9.14)
N

where we use
1
/yNa,'ja)BNa) = §C1, /BjZN_HaN =0, forallj.

We now handle the projection along Z; fork =1, ..., N — 1. First we write
1 -
f SZy = 52+N_2M[—Cldk + (‘%Riljm / YmOijwZi + C1(3Rijir + ROjOl))dl]
D

Y0
+ d~N <20Z1 / Yi0ijwZy + b{;/C1> + d~1v (4}_10k / yNaNka)Zk)i|
1wy
— 2w i _ 7 i 3w
=& V2 aC[—dk + Rojord; + yokdn + yikdn] + &7 N=2r (9.15)

since
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2
—%Riljmdl/ YmOijwZy = — —|:Rilik/ YkOiiwZg +Rilkif YiOikw Z
Dy 3 Dy Dy

+Rkljj/ )’jakjwzk]dl
Dy

= — 1C1[Ruik — Riuxild; = —3C1 Rijixd).

In (0.15), yor and y1x denote smooth explicit functions of pyy.
Finally, using the orthogonality in L? of Zo with respectto Z;, fori =1,..., N + 1,
direct computations show

/ SZo = eC3[—2(Trz h — hoo)dn]

Yo

+ £2C3 |:,02610§ +ré4d? - %Rikizdkdl + al ddy + 4hojdidy + / Tezo:|

+ e TG+ iy + L(oy0iiit] + £, ©.16)

where f; are explicit smooth functions, uniformly bounded in ¢, and r is as before.
Summing up the previous calculations, we conclude that at main order

- W N-2 | ~ o N-—1 -
/ Se(w)Zy 1 dy = a[fb(i) —A3+eN—2(~i> gNH(i)}(Ho(l)),
D. dy dn dy

Y0
w/ Se(w)Zy dy
Dy,
)}(1 +o(1)),
N-2
)

~ N—1 ~ N
14+ Ay - 1% [ Ry Gy 0% ~
=g 'N-2 Cl_hOOH«_Al(T) +£N—2<~—) N(

|: Al dy dn ¢

f Se(W)Zody = 8|:)»15 — 2(Trg h— f_l()o) (/ 8ii0)ZO)d~N — A4(

L aNYT L (i
N2 | — g0l =— 1 1)).
e 2<dN> go(dN)]( o)

Step 2. Let now (ug, dgN, eg) € (0, 00) x (0, 00) x R be the solution to the following

system of nonlinear equations:

N-2 N-1
0 1w N I
A iy = s H-o,
2(a’/v> yre dN) gN+l<dN>
a2 A E N_1+ () e () = o
— — R eN- P R =0,
11, oo = Ao o o) oy

N-2
Are — 2(Trg h— /;()0) (/ 3,’,’0)20)611\/ — A4<i> — As

o\ "
(L) (L) =o.
e (dN> g0<d1v>

==

==

9.17)
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It is easy to show that the solution (,ug, dgN, eg) has the form

. e 5 e . e
fo=po+eN2puy, dyv=do+eN2diy, e=e)+eN ey,

where g, do, Eo is the solution to
Ax(/dn)N T2 — A3
F(u,dy.e) = Crigthoon = Ag(u/dy)N~! =0.
he —2(Trg h — hoo) ([ diiwZo)dy — Aa(u/dy)N =2 — As
Observe that pp > 0 and dp > 0. Direct computations show that
Fo := "V ay.eF (1o, do, Ep)
(N =2 Aspug /) =(N =)Ao 2/d) =" 0
= | WV =2Ay /g™t (N = DAy "y 0

0 —2(Trg h — hoo) [ diwZo M
Since Voo
Ky -
det(Vy,ay,e F (o, do, Eo)) = (N —2)A2C1A Whoo >0,
0

system (9.17)) is equivalent to a fixed point problem, which is uniquely solvable in the set

{1, din, e1) : l1lloo <8, ldinlloo <8, lletlloc < 8}

for some proper small § > 0.

We deduce the expansions (5.38), (5.39) and (5.40), with

N3 N2 ulN-!
A=(N-294%— >0, B=—-(N-29A——. C=N-DA~——>0.
dy ~ dy'~ dy
0 0 0
An easy computation shows that AC — B? > 0. This concludes the proof. O

Acknowledgments. This work has been supported by Chilean grants Fondecyt 1070389, 1050311,
Fondap, and an Ecos-Conicyt contract.

References

[1] Aubin, T.: Problemes isopérimétriques et espaces de Sobolev. J. Differential Geom. 11, 573—
598 (1976) Zbl 0371.46011| MR 0448404

[2] Bahri, A., Coron, J. M.: On a nonlinear elliptic equation involving the critical Sobolev expo-
nent: the effect of the topology of the domain. Comm. Pure Appl. Math. 41, 255-294 (1988)
Zb1 0649.35033 MR 0929280

[3] Bahri, A., Li, Y.-Y., Rey, O.: On a variational problem with lack of compactness: the topolog-
ical effect of the critical points at infinity. Calc. Var. Partial Differential Equations 3, 67-93
(1995) Zbl 0814.35032 MR 1384837


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0371.46011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0448404
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0649.35033&format=complete
http://www.ams.org/mathscinet-getitem?mr=0929280
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0814.35032&format=complete
http://www.ams.org/mathscinet-getitem?mr=1384837

1604

Manuel del Pino et al.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]
(19]
[20]

[21]

Ben Ayed, M., El Mehdi, K., Grossi, M., Rey, O.: A nonexistence result of single peaked
solutions to a supercritical nonlinear problem. Comm. Contemp. Math. 5, 179-195 (2003)
Zbl 1066.35035/ MR 1966257

Brezis, H.: Elliptic equations with limiting Sobolev exponent—the impact of topology. In:
Frontiers of the Mathematical Sciences: 1985 (New York, 1985), Comm. Pure Appl. Math.
39, suppl., S17-S39 (1986) Zbl 0601.35043 MR 0861481

Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving crit-
ical Sobolev exponents. Comm. Pure Appl. Math. 36, 437-47 (1983) [Zbl 0541.35029
MR 0709644

Brezis, H., Peletier, L. A.: Asymptotics for elliptic equations involving critical growth In: Par-
tial Differential Equations and the Calculus of Variations, Vol. I, Progr. Nonlinear Differential
Equations Appl. 1, Birkhéuser, 149-192 (1989). Zbl 0685.35013] MR 1034005

Davila, J., del Pino, M., Musso, M.: The supercritical Lane-Emden—Fowler equation in exte-
rior domains. Comm. Partial Differential Equations 32, 1225-1243 (2007) Zbl 1137.35023
MR 2354492

Davila, J., del Pino, M., Musso, M., Wei, J.: Fast and slow decay solutions for supercritical
elliptic problems in exterior domains. Calc. Var. Partial Differential Equationes 32, 453-480
(2008) Zbl 1147.35030 MR 2402919

del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri—-Coron’s
problem. Calc. Var. Partial Differential Equations 16, 113-145 (2003) Zbl 1142.35421
MR 1956850

del Pino, M., Felmer, P., Musso, M.: Multi-peak solutions for super-critical elliptic problems
in domains with small holes. J. Differential Equations 182, 511-540 (2002) |Zbl 1014.35028
MR 1900333

del Pino, M., Kowalczyk, M., Wei, J.: Concentration on curves for nonlinear Schrodinger
equations. Comm. Pure Appl. Math. 60, 113-146 (2007) Zbl 1123.35003| MR 2270164

del Pino, M., Musso, M.: Bubbling and criticality in two and higher dimensions. In: Re-
cent Advances in Elliptic and Parabolic Problems, World Sci., Hackensack, NJ, 41-59 (2005)
Zbl 1154.35053 MR 2172565

Han, Z.-C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involv-
ing critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 159-174 (1991)
Zb1 0729.35014] MR 1096602

Mahmoudi, F., Malchiodi, A.: Concentration on minimal submanifolds for a singularly per-
turbed Neumann problem. Adv. Math. 209, 460-525 (2007) |Zbl 1160.35011) MR 2296306

Malchiodi, A.: Concentration at curves for a singularly perturbed Neumann problem in
three-dimensional domains. Geom. Funct. Anal. 15, 1162-1222 (2005) |Zbl 1087.35010
MR 2221246
Malchiodi, A., Montenegro, M.: Boundary concentration phenomena for a singularly per-
turbed elliptic problem. Comm. Pure Appl. Math. 15, 1507-1568 (2002) Zbl 1124.35305
MR 1923818

Malchiodi, A., Montenegro, M.: Multidimensional boundary-layers for a singularly perturbed
Neumann problem. Duke Math. J. 124, 105-143 (2004) Zbl 1065.35037, MR 2072213

Flucher, M., Wei, J.: Semilinear Dirichlet problem with nearly critical exponent, asymptotic
location of hot spots. Manuscripta Math. 94, 337-346 (1997) Zbl 0892.35061 MR 1485441

Fowler, R. H.: Further studies on Emden’s and similar differential equations. Quart. J. Math.
2,259-288 (1931) Zbl 0003.23502

Ge, Y., Jing, R., Pacard, F.: Bubble towers for supercritical semilinear elliptic equations.
J. Funct. Anal. 221, 251-302 (2005) [Zbl 1129.35379 MR 2124865


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1066.35035&format=complete
http://www.ams.org/mathscinet-getitem?mr=1966257
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0601.35043&format=complete
http://www.ams.org/mathscinet-getitem?mr=0861481
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0541.35029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0709644
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0685.35013&format=complete
http://www.ams.org/mathscinet-getitem?mr=1034005
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1137.35023&format=complete
http://www.ams.org/mathscinet-getitem?mr=2354492
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1147.35030&format=complete
http://www.ams.org/mathscinet-getitem?mr=2402919
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1142.35421&format=complete
http://www.ams.org/mathscinet-getitem?mr=1956850
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1014.35028&format=complete
http://www.ams.org/mathscinet-getitem?mr=1900333
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1123.35003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2270164
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1154.35053&format=complete
http://www.ams.org/mathscinet-getitem?mr=2172565
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0729.35014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1096602
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.35011&format=complete
http://www.ams.org/mathscinet-getitem?mr=2296306
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1087.35010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2221246
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1124.35305&format=complete
http://www.ams.org/mathscinet-getitem?mr=1923818
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1065.35037&format=complete
http://www.ams.org/mathscinet-getitem?mr=2072213
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0892.35061&format=complete
http://www.ams.org/mathscinet-getitem?mr=1485441
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0003.23502&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1129.35379&format=complete
http://www.ams.org/mathscinet-getitem?mr=2124865

Bubbling along geodesics 1605

[22]
[23]
[24]
[25]
[26]
[27]

(28]

Kazdan, J., Warner, F.: Remarks on some quasilinear elliptic equations. Comm. Pure Appl.
Math. 28, 567-597 (1975) [Zbl 0325.35038| MR 0477445

Passaseo, D.: Nonexistence results for elliptic problems with supercritical nonlinearity in non-
trivial domains. J. Funct. Anal. 114, 97-105 (1993) Zbl 0793.35039| MR 1220984
Passaseo, D.: Nontrivial solutions of elliptic equations with supercritical exponent in con-
tractible domains. Duke Math. J. 92, 429-457 (1998) Zbl 0943.35034/ MR 1612734
Pokhozhaev, S.: Eigenfunctions of the equation Au + Af(u) = 0, Soviet Math. Dokl. 6,
1408-1411 (1965) [Zbl 0141.30202 MR 0192184

Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical
Sobolev exponent. J. Funct. Anal. 89, 1-52 (1990) Zbl 0786.35059 MR 1040954

Struwe, M.: Variational Methods—Applications to Nonlinear Partial Differential Equations
and Hamiltonian Systems. Springer, Berlin (1990) Zbl 0746.49010 MR 1078018

Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353-372
(1976) Zbl 0353.46018| MR 0463908


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0325.35038&format=complete
http://www.ams.org/mathscinet-getitem?mr=0477445
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0793.35039&format=complete
http://www.ams.org/mathscinet-getitem?mr=1220984
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0943.35034&format=complete
http://www.ams.org/mathscinet-getitem?mr=1612734
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0141.30202&format=complete
http://www.ams.org/mathscinet-getitem?mr=0192184
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0786.35059&format=complete
http://www.ams.org/mathscinet-getitem?mr=1040954
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0746.49010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1078018
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0353.46018&format=complete
http://www.ams.org/mathscinet-getitem?mr=0463908

	Introduction and statement of main results
	Scheme of the proof of Theorem 1.1
	The linear theory
	Geometric setting
	Construction of a first approximation
	The gluing procedure
	The nonlinear projected problem
	The final adjustment of parameters: conclusion of the proof
	Appendix

