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Abstract. The role of the second critical exponent p = (n + 1)/(n − 3), the Sobolev critical
exponent in one dimension less, is investigated for the classical Lane–Emden–Fowler problem1u+
up = 0, u > 0 under zero Dirichlet boundary conditions, in a domain � in Rn with bounded,
smooth boundary. Given 0, a geodesic of the boundary with negative inner normal curvature we
find that for p = (n+ 1)/(n− 3)− ε, there exists a solution uε such that |∇uε|2 converges weakly
to a Dirac measure on 0 as ε → 0+, provided that 0 is nondegenerate in the sense of second
variations of length and ε remains away from a certain explicit discrete set of values for which a
resonance phenomenon takes place.
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1. Introduction and statement of main results

A basic model of nonlinear elliptic PDE is the classical Lane–Emden–Fowler problem
[20], 1u+ u

p
= 0 in �,

u > 0 in �,
u = 0 on ∂�,

(1.1)

where � is a bounded domain with smooth boundary in Rn and p > 1. Though it
looks simple, the structure of the solution set of this problem is in general very com-
plex and a number of basic questions remain mostly unsolved. Among those, solvability
for powers p above the critical exponent (n + 2)/(n − 2) is especially difficult. When
1 < p < (n + 2)/(n − 2), compactness of Sobolev’s embedding yields a solution as a
minimizer of the variational problem

S(p) = inf
u∈H 1

0 (�)\{0}

∫
�
|∇u|2

(
∫
�
|u|p+1)2/(p+1) . (1.2)

For p ≥ (n+ 2)/(n− 2) this approach fails and essential obstructions to existence arise:
Pokhozhaev [25] found that no solution to (1.1) exists if the domain is star-shaped. In
contrast, Kazdan and Warner [22] observed that if � is a symmetric annulus then com-
pactness holds for any p > 1 within the class of radial functions, and a solution can again
always be found by the above minimizing procedure. Compactness in the minimization is
also restored, without symmetries, by the addition of suitable linear perturbations exactly
at the critical exponent p = (n+ 2)/(n− 2), as established by Brezis and Nirenberg [6].

Topology and geometry of the domain are crucial factors for solvability: when p =
(n+2)/(n−2) it was proven by Bahri and Coron [2] that solutions to (1.1) exist whenever
the topology of� is nontrivial in a suitable sense. For powers larger than critical direct use
of variational arguments seems hopeless, and finding general conditions for solvability is
a notoriously open issue.

A question raised by Rabinowitz, stated by Brezis in [5], is whether the presence of
nontrivial topology in the domain suffices for solvability in the supercritical case p >

(n + 2)/(n − 2). Strikingly enough, the answer was found to be negative in dimension
n ≥ 4: Passaseo [23] discovered that for the domain being a thin tubular neighborhood of
a copy of the sphere Sn−2 embedded in Rn, a Pokhozhaev-type identity implies that no
solution exists if p ≥ (n+ 1)/(n− 3). We call the latter number, which is strictly greater
than (n+ 2)/(n− 2), the second critical exponent.

The purpose of this paper is to construct solutions of (1.1) when p is below but suf-
ficiently close to the (supercritical) second critical exponent. Assuming that ∂� contains
a nondegenerate, closed geodesic 0 with strictly negative curvature, we find a solution
to (1.1) with a concentration behavior as p approaches (n + 1)/(n − 3) in the form of a
bubbling line, eventually collapsing onto 0. One should generically expect that this ge-
ometric condition holds if for instance � has a convex hole or it is a deformation of a
torus-like solid of revolution like Passaseo’s domain.
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We next recall the familiar notion of “point bubbling” in the slightly subcritical case
for problem (1.1), 1u+ u

n+2
n−2−ε = 0 in �,

u > 0 in �,
u = 0 on ∂�,

(1.3)

for small ε > 0. The loss of compactness of Sobolev’s embedding as ε → 0 triggers
the presence of bubbling solutions around special points of the domain, which resemble
a sharp extremal of the best Sobolev constant in Rn,

Sn := inf
u∈D1,2(Rn)\{0}

∫
Rn |∇u|

2

(
∫
Rn |u|

2n/(n−2))(n−2)/n ,

a type of point-concentration behavior extensively considered in the literature. This is
precisely the behavior of a solution uε of (1.3) which minimizes S(p) in (1.2) for

p = pε =
n+ 2
n− 2

− ε

(see [7, 14, 26, 19]). We have S(pε)→ Sn and

uε(x) = µ
−
n−2

2
ε wn(µ

−1
ε (x − xε))+ o(1), µε ∼ ε

1
n−2 ,

as ε→ 0+ , where wn is the standard bubble,

wn(x) =

(
cn

1+ |x|2

) n−2
2
, cn = (n(n− 2))

1
n−2 , (1.4)

a radial solution of
1w + w

n+2
n−2 = 0 in Rn

corresponding to an extremal for Sn [1, 28]. The blow-up point xε approaches (up to a
subsequence) a harmonic center x0 of�, a minimizer for Robin’s function of the domain,
the diagonal of the regular part of Green’s function. The solution concentrates as a Dirac
mass at x0, namely

|∇uε|
2 ⇀ S

n/2
n δx0 as ε→ 0 (1.5)

in the sense of measures. It is found in [26] that actually solutions of (1.3) with this behav-
ior exist, concentrating at any given nondegenerate critical point x0 of Robin’s function.
We refer the reader to the works [3, 10, 21] and to the survey [13] for related results on
construction of point-bubbling solutions for problems near the critical exponent.

Now, we are interested in problem (1.1) for powers slightly below the second critical
exponent, namely 1u+ u

n+1
n−3−ε = 0 in �,

u > 0 in �,
u = 0 on ∂�.

(1.6)
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We want to find a solution uε with a behavior analogous to that just described for (1.3),
now concentrating along a curve, with a sectional profile given by a scaled standard
bubble in one dimension less. This problem is substantially harder than (1.3), in par-
ticular because a global variational characterization of the solution does not seem pos-
sible in view of its supercritical character. In addition, this solution has formally a large
ε-dependent Morse index, and the construction requires us to avoid special values of ε
where a change of topological type occurs.

We shall assume that ∂� contains a closed geodesic 0, nondegenerate, which has
globally negative curvature, and in addition a nonresonance condition of the form

|k2ε2 n−2
n−3 − κ2

| > δε
n−2
n−3 for all k = 1, 2, . . . , (1.7)

where κ > 0 is given explicitly in terms of 0 by formula (8.10).

Theorem 1.1. Let n ≥ 8 and � ⊂ Rn be a domain with smooth, bounded boundary ∂�,
which contains a closed geodesic 0, nondegenerate with negative inner normal curvature.
Then, given δ > 0, for all ε > 0 sufficiently small satisfying condition (1.7), problem (1.6)
has a solution uε that satisfies

|∇uε|
2 ⇀ S

n−1
2

n−1δ0

as ε → 0 in the sense of measures, where δ0 is the Dirac measure supported on the
curve 0. Moreover, uε can be described according to formula (1.9) below.

Much more precise information on the solution can indeed be gathered as we shall explain
later. The condition n ≥ 8 seems essential for the method used, while we believe the
phenomenon described should also be true for lower dimensions.

Theorem 1.1 includes the case of an exterior domain, � \ 3, with 3 bounded. It
is worth mentioning that for this case it was established in [8, 9] that problem (1.1) is
actually always solvable if p > (n + 2)/(n − 2). In fact a continuum of solutions exist
but they are of slow decay (infinite energy). Finding finite-energy (fast decay) solutions
for supercritical powers is a much harder question, which is only answered in [9] for p
very close from above to (n+ 2)/(n− 2). In turns out that a dramatic change of structure
in the set of slow decay solutions takes place precisely when p = (n + 1)/(n − 3), the
second critical exponent.

The line-bubbling phenomenon here discovered is conceptually quite different from
point bubbling. In spite of zero boundary data, concentration eventually collapses on the
boundary. On the other hand, point concentration is determined by global information on
the domain encoded in Green’s function, while only local structure of the domain near the
curve 0 is relevant to the line bubbling. In order to describe the solution more precisely,
we introduce a local system of coordinates near 0.

For notational simplicity we will write N = n − 1 in the remainder of this paper, so
that the problem is embedded in RN+1.

We consider the metric induced by the Euclidean one on ∂� and denote by ∇̄ the
associated connection. We introduce Fermi coordinates in a neighborhood of 0 in ∂�.
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Given q ∈ 0, there is a natural splitting

Tq∂� = Tq0 ⊕Nq0

into the normal and tangent bundle over 0. We assume that 0 is parameterized by arc-
length x0, x0 7→ γ (x0), and denote by E0 a unit tangent vector to 0. In a neighborhood
of a point q of 0, assume we are given an orthonormal basis Ei , i = 1, . . . , N − 1, of
Nq0. We can assume that the Ei are parallel along 0, which means that

∇̄E0Ei = 0

for i = 1, . . . , N − 1. The geodesic condition for 0 translates precisely into

∇̄E0E0 = 0.

To parameterize a neighborhood of a point of 0 in ∂� we define

F(x0, x̄) := Exp∂�γ (x0)
(xiEi), x̄ := (x1, . . . , xN ),

where Exp∂� is the exponential map on ∂� and summation over i = 1, . . . , N − 1
is understood. To parameterize a neighborhood of 0 in �̄, we consider the system of
coordinates (x0, x) ∈ RN+1 given by

G(x0, x) = F(x0, x̄)− xNn(F (x0, x̄)), x = (x̄, xN ) ∈ RN , (1.8)

where x is close to 0 and n designates the outward unit normal.
In terms of n, we assume that 0 has globally negative curvature in the sense that

∂2
x0
γ = h̄00n,

with h̄00 a strictly positive function along 0.
The solution uε predicted by the theorem can be described in these coordinates at

main order as follows:

uε(x0, x) = µ
−
N−2

2
ε wN (µ

−1
ε (x − dε))+ o(1), (1.9)

where
dεj (x0) ∼ εd̃j (x0), j = 1, . . . , N, µε(x0) ∼ ε

N−1
N−2 µ̃(x0),

where d̃j and µ̃ are smooth functions of x0 with d̃N and µ̃ strictly positive, and wN is
given by (1.4).

Finally, let us make explicit the meaning of nondegeneracy of the geodesic 0. Let us
denote by R̄ the Ricci tensor on ∂�. Then nondegeneracy of 0 translates exactly into the
fact that the linear system of equations

−
¨̄dk +

N−1∑
j=1

(R̄(E0, Ej )E0 · Ek)d̄j = 0, x0 ∈ [−`, `], k = 1, . . . , N − 1, (1.10)

has only the trivial 2`-periodic solution d̄ ≡ 0.
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The rest of this paper will be devoted to the proof of Theorem 1.1. We point out
that the resonance phenomenon has already been found to arise in the analysis of higher
dimensional concentration in other elliptic boundary value problems, in particular for a
Neumann singular perturbation problem in [17, 18, 16, 15] and in Schrödinger equations
in the plane in [12]. Theorem 1.1 seems to be the first result on higher dimensional con-
centration phenomena associated to critical exponents. The question of whether one can
find concentration results for larger critical exponents, say k-dimensional concentration
slightly below (n+2−k)/(n−2−k) arises naturally but we will not treat it in this paper.

2. Scheme of the proof of Theorem 1.1

Let us write problem (1.6) as 1u+ u
p−ε
= 0 in �,

u > 0 in �,
u = 0 on ∂�;

(2.1)

here and in what follows we set p = (N + 2)/(N − 2). A key element of the proof of
Theorem 1.1 is the construction of a first approximation of the solution to our problem.
The main part of the construction is performed close to the geodesic. Let us consider the
system of coordinates (x0, x̄, xN ) introduced in (1.8), which straightens the boundary of
� in a neighborhood of the geodesic to the hyperplane xN = 0. In this language the
geodesic is represented by the x0-axis. We recall that x0 designates arclength of the curve
and xN > 0 is the normal coordinate to the boundary. Then for a function u defined on
this neighborhood we write

ũ(x0, x) = u(G(x0, x)). (2.2)

Let 2` represent the total length of the geodesic. Extending ũ in a 2`-periodic manner
with respect to x0, it is convenient to regard it as a function defined on the infinite half
cylinder

D = {(x0, x̄, xN ) : |x̄|2 + |xN |2 < a, xN > 0},

where a > 0 is a fixed small number. Equation (2.1) for u reads in terms of ũ in D as1ũ+ B(ũ)+ ũ
p−ε
= 0, u > 0 in D,

ũ(x0, x̄, 0) = 0 for all (x0, x̄),

ũ(x0 + 2`, x̄, xN ) = ũ(x0, x̄, xN ) for all (x0, x̄, xN ),

(2.3)

where B is a second order linear operator of the form

B = blk(x0, x)∂lk + bl(x0, x)∂l

with smooth coefficients, 2`-periodic in x0, blk(x0, 0) ≡ 0, which we explicitly find in
terms of geometric quantities in §4. If a is sufficiently small, the differential operator
involved in (2.3) can be regarded as a small perturbation of the Laplacian inside D. To
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construct an approximation to a solution of (2.3) with the desired properties, the main
observation we make is that if

ω(x) :=
(

cN

1+ |x|2

)N−2
2
, (2.4)

then for small µ > 0 and d = (d̄, dN ) ∈ RN the function

u0 = µ
−
N−2

2 ω(µ−1(x − d)) =

(
cNµ

µ2 + |x̄ − d̄|2 + |xN − dN |2

)N−2
2

satisfies {
1u+ up = 0, u > 0 in D,
u(x0 + 2`, x̄, xN ) = u(x0, x̄, xN ) for all (x0, x̄, xN ),

(2.5)

and can therefore be considered as an approximation of a solution to (2.3). We as-
sume dN > 0 so that the maximum set of u0 is inside the domain, with value
∼ µ−(N−2)/2. In addition, we want the boundary values to be small compared with this
order, which is achieved if µ � dN . In this case the boundary values are bounded by
∼ µ−(N−2)/2(µ/dN )

(N−2)/2. Unfortunately, to obtain a good approximation it does not
suffice to choose µ and d just to be constants. We assume instead that they define smooth
functions of x0. As we will see later, a sound choice is to take

dε(x0) = εd̃ε(x0), µε(x0) = ρµ̃ε(x0), ρ = ε
N−1
N−2 , (2.6)

where µ̃ε and d̃ε are uniformly bounded 2`-periodic smooth functions so that also µ̃ε an
d̃εN are positive and uniformly bounded below away from zero. In particular, observe that
µε ∼ ε

1/(N−2)dεN , and we set as an approximation to a solution of (2.3),

ũ0(x0, x) = µ
−
N−2

2
ε ω(µ−1

ε (x − dε)).

It is natural to consider the further change of variables

ũ(x0, x) = µ
−
N−2

2
ε v(ρ−1x0, µ

−1
ε (x − dε)), v = v(y0, y), (2.7)

under which ũ0 reads simply ω(y). Equation (2.3) is transformed in terms of v into
S(v) := a0(ρy0)∂00v +1yv + Ã(v)+ µ

−
N−2

2 ε
ε vp−ε = 0 in D,

v

(
y0, ȳ,−

dεN

µε
(ρy0)

)
= 0,

v(y0 + 2`ρ−1, y) = v(y0, y),

(2.8)

where
Ã = aij (y0, y)∂ij + ai(y0, y)∂i + c(y0, y)

is again a small operator and now we reduce the original cylinder to take D as a region of
the form

D =
{
(y0, ȳ, yN ) : −

dεN

µε
(ρy0) < yN <

δ̂

ρ
, |ȳ| <

δ̂

ρ

}
, (2.9)
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where δ̂ > 0 is a small number which will be further reduced if necessary. Here

a0(x0) = ρ
−2µε(x0)

2
= µ̃ε(x0)

2, (2.10)

and Ã is a differential operator with coefficients becoming small with ε, which we will
fully identify later. Noting that µ−(N−2)ε/2

ε → 1 and that the domain D is expanding into
entire RN+1, we see that ω(y) indeed approximates a solution to the equation. We will
actually take an approximation w and differs little from ω which in particular satisfies the
boundary condition.

Now, if we set v = w+ φ with φ small, the equation takes the form

L(φ) := a0∂00φ +1yφ + pω
p−1φ + Ã(φ) = −Sε(w)−N(φ)

where the operator N(φ) is of order smaller than linear in φ. More precisely

N(φ) = µ
−
N−2

2 ε
ε (w+ φ)p−ε − µ

−
N−2

2 ε
ε wp−ε − pωp−1φ.

It is therefore important to understand bounded solvability of a linear equation involving
the operator L. This is a rather subtle issue since the limiting L does have a kernel in the
space of bounded functions in RN+1. Indeed, the equation

∂00φ +1yφ + pω
p−1φ = 0

has the bounded solutionsZi , i=1, . . . , N+1, andZ0(x) cos(
√
λ1x0),Z0(x) sin(

√
λ1x0),

where
Zi = ∂iw, i = 1, . . . , N, ZN+1 = x · ∇w +

N − 2
2

w, (2.11)

and we denote by Z0, λ1 > 0 the first eigenfunction and eigenvalue in L2(RN ) of the
problem

1yφ + pω(y)
p−1φ = λφ in RN . (2.12)

As we shall show these are all the bounded solutions of the equation.
Let us consider a bounded function h(y0, y) 2`-periodic in y0 and the following pro-

jected problem in which we mod out the above functions, and look for bounded functions
ci(y0) and φ such that

L(φ) := a0∂00φ +1yφ + pω
p−1φ + Ã(φ) = h+

N+1∑
i=0

ci(y0)Zi in D,

φ = 0 on ∂D,
φ(y0 + 2`ρ−1, y) = φ(y0, y),∫
Dy0

φ(y0, y)Zi(y) dy = 0 for all y0 ∈ R, i = 0, . . . , N.

(2.13)

As we will see, this problem has a unique solution whenever ε is small enough provided
that certain uniform estimates hold for the parameters involved and their derivatives. In
addition φ satisfies a uniform a priori estimate in L∞-weighted norms. We develop this
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theory in fact in larger generality in §3. Then we consider the projected nonlinear problem

L(φ) = −Sε(w)−N(φ)+
N+1∑
i=0

ci(y0)Zi in D,

φ = 0 on ∂D,
φ(y0 + 2`ρ−1, y) = φ(y0, y),∫
Dy0

φ(y0, y)Zi(y) dy = 0 for all y0 ∈ R, i = 0, . . . , N + 1,

(2.14)

where Dy0 = {y : (y0, y) ∈ D}, to which we can apply the linear solvability theory and
contraction mapping principle to find a unique small solution. Moreover,

ci(y0)

∫
RN
Z2
i ∼

∫
Dy0

Sε(w)Zi dy

and therefore to have a solution of the original problem (with ci ≡ 0) we need a set of
relations that look (approximately!) like∫

Dy0

Sε(w)Zi dy = 0 for all y0, i = 0, . . . , N + 1. (2.15)

At this point we mention that the approximation w carries as an additive term a function
of the form eε(ρy0)Z0(y) where eε is another parameter of the form eε(x0) = εẽε(x0). It
turns out that adjusting conveniently the (N+2) parametersµε, dε, eε we can achieve that
the above N + 2 relations hold as a system of differential equations for these quantities,
which turns out to be solvable because of the nondegeneracy assumptions made. The story
is however more involved since the parameters enter the nonlinear relations at different
orders so that a further improvement of the approximation w of the form W = w + 5 is
needed. This is the main purpose of the work in §5. 5 is built upon solving the linear
problem (2.13) for h = −Sε(w), after identifying the right main order values of the
parameters in the solvability conditions (2.15), which turns out to reduce substantially the
size of the approximation error Sε(W). Another crucial step is a gluing procedure carried
out in §6, where the full problem (2.1), for which a global approximation is built by just
multiplying W by a cut-off function, is reduced to solving an equation similar to (2.14) for
ci ≡ 0, just in a neighborhood of the geodesic, but where the operator N(φ) is replaced
by a similar one which includes nonlocal terms in φ encoding the information on the rest
of the domain. This is what tells us that the influence of geometry of the remaining part of
the domain is basically negligible. The corresponding projected version of the nonlinear
problem is solved in §7 and the final adjustment of the remaining parts of the parameters
is done in §8, thus completing the proof of Theorem 1.1. We devote the rest of this paper
to carrying out the program outlined above.

3. The linear theory

In this section we will develop a linear theory suitable to solve problem (2.13). Our main
result is contained in Proposition 3.2 below, for which we need some preliminaries. Let
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ω(x) be the function defined in (2.4) as

ω(x) :=
(

cN

1+ |x|2

)N−2
2
,

where x ∈ RN and cN = (N(N − 2))1/2, which is, we recall, an entire solution of the
problem

1RNω + ω
p
= 0 in RN , (3.1)

where p = (N + 2)/(N − 2). Let us consider the operator

L0 := 1RN + pω
p−1,

which corresponds to the nonlinear operator in (3.1) linearized at ω.
To analyze the point spectrum of this operator, we use the conformal invariance of

(3.1). Let us consider on RN the metric

gSN :=
(

2
1+ |x|2

)2

dx2,

which is conformal to the euclidean metric dx2 and corresponds to the standard metric
on SN when parameterized by the inverse of the stereographic projection

x ∈ RN 7→
(

2
1+ |x|2

x,
1− |x|2

1+ |x|2

)
∈ SN .

In polar coordinates, we have the expression of the Laplace–Beltrami operator on SN

given by

1SN =

(
2

1+ r2

)−n
r1−n∂r

((
2

1+ r2

)n−2

rn−1∂r

)
+

(
2

1+ r2

)−2

r−21SN−1 ,

where r = |x|. The following identity follows from the conformal invariance of the so
called conformal Laplacian or can be obtained by direct computation:

L =

(
2

1+ |x|2

)N+2
2
(1SN +N)

(
2

1+ |x|2

) 2−N
2
.

We also have ∫
SN
Z(1+N)Z dvolSN =

∫
RN
Z̃LZ̃ dvolRN ,

where Z̃ and Z are related by

Z̃ =

(
2

1+ r2

)N−2
2
Z.
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Now, the operator 1SN +N has an N + 1-dimensional kernel corresponding to the coor-
dinate functions on SN (since N is an eigenvalue of−1SN ). This implies that the L2-null
space of the operator L is N + 1-dimensional and spanned by the functions

Zj := ∂xjω, j = 1, . . . , N, and ZN+1 := x · ∇ω +
N − 2

2
ω

(see (2.11)). The fact that LZj = 0 can also be checked directly or can be proved using
the fact that (3.1) enjoys some translation and dilation invariance in the sense that, for all
λ > 0 and a ∈ RN , the function

x 7→ λ
n−2

2 u(λx + a)

is a solution of (3.1) whenever u is. Differentiation with respect to λ or with respect to a,
at λ = 1 and a = 0, directly shows that Zj is a solution of LZj = 0.

Moreover, the space where the quadratic form

Z̃ 7→ −

∫
SN
Z̃(1+N)Z̃ dvolSN

is negative definite is one-dimensional, and coincides with the space of constant functions,
which implies that the space where

Z 7→ −

∫
RN
ZLZ dvolRN

is negative is also one-dimensional. Hence, the operator L0 has one negative eigenvalue
−λ1 < 0, and we denote by Z0 the corresponding eigenfunction (normalized to have
L2-norm equal to 1). See (2.12). We observe that this eigenfunction decays exponentially
at infinity with exponential order O(e−

√
λ1|x|).

Having understood the point spectrum of the operator L we have

Lemma 3.1. Assume that ξ /∈ {0,±
√
λ1}. Then given h ∈ L∞(RN ), there exists a unique

bounded solution of
(L0 − |ξ |

2)ψ = h

in RN . Moreover
‖ψ‖L∞ ≤ cξ‖h‖L∞

for some constant cξ > 0 only depending on ξ .

Proof. For all r > 0, we denote Br the ball of radius r in RN centered at the origin. We
assume that ξ /∈ {0,±

√
λ1} is fixed. We first prove that there exists rξ > 0 (depending

on ξ ) such that, for all r ≥ rξ , the a priori estimate

‖ψ‖L∞(Br ) ≤ cξ‖(L− |ξ |
2)ψ‖L∞(Br ) (3.2)

holds for any bounded function ψ vanishing on ∂Br .
Assume for the time being that this estimate is already proven. Then, for r ≥ rξ , the

operator L0−|ξ |
2 is injective on the ball of radius r (it being understood that we consider
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the zero Dirichlet boundary conditions). The Fredholm alternative implies that, for all
r ≥ rξ , we can find a unique solution of

(L0 − |ξ |
2)ψr = h

on Br with ψr = 0 on ∂Br . Given a sequence rj tending to ∞, the a priori estimate
(3.2), elliptic estimates and Ascoli–Arzelà’s Theorem allow one to extract from (ψrj )j a
subsequence which converges (uniformly on compact sets) to a function ψ satisfying

(L0 − |ξ |
2)ψ = h

in RN . Moreover, passing to the limit in (3.2), we find that ‖ψ‖L∞ ≤ cξ‖h‖L∞ . This
completes the proof of the existence of ψ . Uniqueness follows at once from the fact that
(3.2) extends to the case where the functions are defined on RN .

It remains to prove (3.2). First observe that, since ξ 6= 0, there exists r̄ξ > 0 such that

pωp−1
− |ξ |2 ≤ − 1

2 |ξ |
2

in RN \ Br̄ξ . Given r > r̄ξ and using the constant function as a barrier, we immediately
find that

‖ψ‖L∞(Br\Br̄ξ )
≤ cξ (‖(L0 − |ξ |

2)ψ‖L∞(Br\Br̄ξ ) + ‖ψ‖L
∞(∂Br̄ξ )

) (3.3)

for any bounded function ψ vanishing on ∂Br .
We now assume that (3.2) does not hold. Then there exists a sequence of radii rj

tending to∞, and functions ψj vanishing on ∂Brj , such that

‖ψ‖L∞(Brj )
= 1 while lim

j→∞
‖(L0 − |ξ |

2)ψj‖L∞(Brj ) = 0.

Observe that, without loss of generality, we can assume that rj ≥ r̄ξ , and (3.3) implies
that ‖ψj‖L∞(Br̄ξ ) remains bounded away from 0 as j tends to∞.

Elliptic estimates and Ascoli–Arzelà’s Theorem allow us to extract from (ψj )j a sub-
sequence which converges (uniformly on compact sets) to a function ψ satisfying

(L0 − |ξ |
2)ψ = 0

in RN . Moreover, ψ is bounded and not identically equal to 0 (since ‖ψj‖L∞(Br̄ξ ) remains

bounded away from 0). But, since ξ /∈ {0,±
√
λ1}, this contradicts the classification of

the point spectrum of L. The proof of the a priori estimate is therefore complete. ut

We shall use the previous result in order to obtain a priori estimates and a solvability
theory for problem (2.13). We consider here a slightly more general problem that involves
the essential features needed. For a positive smooth function R(y0) and a constantM > 0
we consider the domain D defined as

D = {(y0, ȳ, yN ) ∈ RN+1 : −R(y0) < yN < M, |ȳ| < M}
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and for functions φ defined on D, an operator of the form

L(φ) := b(y0)∂00φ +1yφ + pω
p−1φ + bij (y0, y)∂ijφ + bi(y0, y)∂iφ + d(y0, y)φ

where b00 ≡ 0. Then for a given function h we want to solve the following projected
problem: 

L(φ) = h+

N+1∑
i=0

ci(y0)Zi(y) in D,

φ = 0 on ∂D,∫
Dy0

φ(y0, y)Zi(y) dy = 0 for all y0 ∈ R, i = 0, . . . , N,

(3.4)

where
Dy0 = {y ∈ RN : (y0, y) ∈ D}.

We fix a number 2 ≤ ν < N and consider the L∞-weighted norms

‖φ‖∗ = sup
D
(1+ |y|ν−2)|φ(y0, y)| + sup

D
(1+ |x|ν−1)|Dφ(x0, x)|,

‖h‖∗∗ = sup
D
(1+ |y|ν)|h(y0, y)|.

We assume that all functions involved are smooth. We will establish existence and uni-
form a priori estimates for problem (3.4) in the above norms, provided that appropriate
bounds for the coefficients hold.

Proposition 3.2. Assume that N ≥ 7 and N − 2 ≤ ν < N . Assume that for a number
m > 0 we have

m ≤ b(y0) ≤ m
−1 for all y0 ∈ R.

Then there exist positive numbers δ, C such that if, for all i, j ,

‖∂0R‖∞ +M‖∂00R‖∞ +M‖∂0b‖∞ + ‖bij‖∞

+ ‖Dbij‖∞ + ‖(1+ |y|)bi‖∞ + ‖(1+ |y|2)d‖∞ < δ, (3.5)

and
δ−1 < R(y0), M−1R(y0) < δ for all y0 ∈ R, (3.6)

then for any h with ‖h‖∗∗ < +∞ there exists a unique solution φ = T (h) of problem
(3.4) with ‖φ‖∗ < +∞, and we have

‖φ‖∗ ≤ C‖h‖∗∗.

Proof. The proof of this result will be carried out in three steps.
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Step 1. Let us assume that in problem (3.4) the coefficients bi, d, and the functions ci are
identically zero. We will prove that δ, C as in the above statement can then be chosen so
that for any h with ‖h‖∗∗ < +∞ and any solution φ of problem (3.4) with ‖φ‖∗ < +∞
we have

‖φ‖∗ ≤ C‖h‖∗∗.

Arguing towards a contradiction, we assume the existence of bn, φn, hn, bnij , Rn,Mn such
that

m ≤ bn(y0) ≤ m
−1 for all x0 ∈ R,

‖φn‖∗ = 1, ‖hn‖∗∗→ 0,
Mn‖∂0b

n
‖∞+M

−1
n ‖Rn‖∞+‖∂0Rn‖∞+Mn‖∂00Rn‖∞+‖b

n
ij‖∞→ 0, inf

x0
Rn→+∞

and
bn(y0)∂00φn +1yφn + b

n
ij∂ijφn + pw(y)

p−1φn = hn in D, (3.7)

together with the orthogonality and boundary conditions.
To achieve a contradiction we will first show that

‖φn‖∞→ 0. (3.8)

If this is not the case then we may assume that there is a positive number γ for which
‖φn‖∞ > γ . Since we also know that

|φ(y0, y)| ≤ C/(1+ |y|)ν−2,

we conclude that for some A > 0,

‖φn‖L∞(|x|≤A) ≥ γ.

Let us fix a y0n such that

‖φn(y0n, ·)‖L∞(|y|≤A) ≥ γ /2.

By elliptic estimates and compactness of Sobolev embeddings, we see that we may as-
sume that the sequence of functions φ(y0 + y0n, y) converges uniformly over compact
subsets of RN+1 to a nontrivial, bounded solution of

1y φ̃ + a
∞

0 ∂00φ̃ + pω(y)
p−1φ̃ = 0 in RN+1,

where a∞0 is a positive constant, which with no loss of generality, via scaling, we may
assume to be equal to one. By virtue of Lemma 3.1 and the orthogonality conditions
assumed, which pass to the limit thanks to dominated convergence, and the assumptions
N ≥ 7, N − 2 < α, we then find that φ̃ ≡ 0. This is a contradiction that shows (3.8).

Let us now deduce the result of Step 1. Since ‖φn‖∗ = 1, there exists (y0n, yn) with
rn := |yn| → +∞ such that

rν−2
n |φn(y0n, yn)| + r

ν−1
n |Dφn(y0n, yn)| ≥ γ > 0.

Let us now consider the scaled function

φ̃n(z, x) = r
ν−2
n φn(y0n + rnz0, rnz)
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defined on

D̃ = {(z0, z̄, zN ) : −R̃n(z0) < zN < Mnr
−1
n , |z̄| < Mnr

−1
n }

with R̃n(z0) = r
−1
n Rn(y0n + rnz0). Note that Mnr

−1
n ≥ 1/

√
2. Then we have

|φ̃n(z0, z)| + |z| |Dφ̃(z0, z)| ≤ |z|
2−ν in D̃,

and for some zn with |zn| = 1,

|φ̃n(0, zn)| + |Dφ̃(0, zn)| ≥ γ > 0.

The function φ̃n satisfies

ã0n∂00φ̃n +1zφ̃n + o(1)∂ij φ̃n +O(r−2
n )|z|−4φ̃n = h̃n in D̃,

where
h̃n(z0, z) = r

ν
nhn(y0n + rnz0, rnz), b̃n(z0) = b

n(y0n + rnz0).

Let us observe that from the assumptions made we get

‖∂0b̃
n
‖∞ + ‖∂0R̃n‖∞ + ‖∂00R̃n‖∞→ 0.

Then we may assume that
b̃n(z0)→ b∗ > 0,

and that the function φ̃n converges uniformly, in the C1 sense over compact subsets of
D∗ \ {z = 0}, to φ̃ which satisfies

b∗∂00φ̃ +1zφ̃ = 0 in D∗ \ {z = 0},

where either
D∗ = {(z0, z̄, zN ) : 0 < zN < d∗, |z̄| < d∗}

with 1 < d∗ < +∞, or
D∗ = {(z0, z̄, zN ) : a∗ < zN }

with a∗ ≥ 0, or
D∗ = RN+1,

and where φ̃ satisfies

|φ̃(z0, z)| + |z| |φ̃(z0, z)| ≤ |z|
2−ν in RN+1

d∗
\ {z = 0}

with the value φ̃ = 0 assumed continuously on the boundary of ∂D∗ \ {z = 0}. Moreover,
since ∂00R̃n is uniformly bounded, standard elliptic estimates at the boundary yield a
uniform C1,α bound for φ̃n, which thus implies that the limit of the derivative is uniform,
therefore φ̃ 6≡ 0. With no loss of generality we may assume that b∗ = 1. If the singular
line z = 0 lies inside D∗, the fact that ν < N makes it removable. Indeed, the limit φ̃ is
easily seen to be weakly harmonic in D∗. This plus boundedness of the boundary value
zero yields φ̃ ≡ 0 in all cases. If the singularity lies on the boundary, this happens on
the hyperplane zN = 0. In such a case, an odd reflection reduces us to the case of an
interior singularity, so that in any event, φ̃ ≡ 0. We have obtained a contradiction which
concludes Step 1.
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Step 2. We claim that the a priori estimate estimate obtained in Step 1 is in reality valid
for the full problem (3.4), maybe on reducing the value of δ. Let δ be a small number so
that the conclusion of Step 1 holds. Now we additionally assume

‖Dbij‖∞ + ‖(1+ |y|)bi‖∞ + ‖(1+ |y|2)d‖∞ ≤ δ, (3.9)

where δ will be taken smaller if necessary. Then there exist positive numbers δ, C such
that if the conditions of Proposition 3.2 and estimate (3.9) hold for all i, j, then for any h
with ‖h‖∗∗ < +∞ and any solution φ of problem (3.4) with ‖φ‖∗ < +∞ we have, for
all i,

|ci |∞ + ‖φ‖∗ ≤ C‖h‖∗∗.

Moreover
cl(y0)

∫
Dy0

Z2
l = −

∫
Dy0

h(y0, y)Zl(y) dy + o(1)‖h‖∗∗,

where o(1)→ 0 as δ→ 0.
Testing the equation against Zl(y) and integrating only in y we find

cl(y0)

∫
Dy0

Z2
l = b(y0)

∫
Dy0

∂00φZl −

∫
Dy0

hZl +

∫
Dy0

bij∂ijφZl

+

∫
Dy0

(bi∂iφ + dφ)Zl +

∫
RN−1

Zl(ȳ, R(y0))∂yNφ(y0, ȳ, R(y0)) dȳ. (3.10)

Now, we have∣∣∣∣∫RN−1
Z(y′, R(x0))∂yNφ(x0, y

′, R(x0)) dy
′

∣∣∣∣
≤ ‖φ‖∗

∫
RN−1

(|y′| + R(x0))
2−N+1−α dy′ ≤ δσ‖φ‖∗

for some σ > 0 depending on α and N . We immediately find that also∣∣∣∣∫
Dy0

(bi∂iφ + cφ)Zl

∣∣∣∣ ≤ Cδ‖φ‖∗,
while integrating by parts in indices carrying the y′ variables gives∣∣∣∣∫

Dy0

aij∂ijφZl

∣∣∣∣ = ∣∣∣∣∫
Dy0

∂i(aijZl)∂jφ

∣∣∣∣ ≤ Cδ‖φ‖∗
and ∣∣∣∣∫

Dy0

hZl

∣∣∣∣ ≤ C‖h‖∗∗.
Now, we know that ∫

Dy0

φ(y0, y)Zl(y) dy = 0
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and hence, using the boundary value zero,∫
Dy0

∂0φ(y0, y)Zl(y) dy = 0,

or ∫
RN−1

dy′
∫ R(y0)

−∞

∂0φ(y0, ȳ, t)Zl(y
′, t) dt = 0,

so that differentiating once more we find

0 =
∫
Dy0

∂00φZl dx + ∂0R(x0)

∫
RN−1

∂0φ(y0, ȳ, R(y0))Zl(y
′, R(y0)) dy

′,

which implies that ∣∣∣∣∫
Dy0

∂00φZl dy

∣∣∣∣ ≤ Cδσ‖φ‖∗.
Combining the above inequalities into (3.10) we then find the estimate

|cl(y0)| ≤ C(‖h‖∗∗ + δ
σ
‖φ‖∗) . (3.11)

On the other hand, Lemma 3.2 implies that

‖φ‖∗ ≤ C
[
‖h‖∗∗ +

∑
i

‖ciZi‖∗∗

]
≤ C

[
‖h‖∗∗ +

∑
i

‖ci‖∞ + δ‖φ‖∗

]
.

Combining this last inequality and (3.11), and reducing the value of δ if necessary, we
find that the cis are controlled by h,

‖ci‖∞ ≤ C‖h‖∗∗,

and the result of Step 2 readily follows.

Step 3. We shall next discuss the existence for problem (3.4), under the assumptions
such that the result of Step 2 holds true. We consider first the case of the right hand sides
h(y0, y) which are T -periodic in y0, for an arbitrarily large but fixed T , the same property
being valid for the coefficients.

We then look for a weak solution φ to (3.4) in the space HT defined as the subspace
of functions ψ which are inH 1(B) for any bounded subset B ofD, which are T -periodic
in y0, such that in addition ψ = 0 on ∂D in the trace sense, and∫

Dy0

ψ(y0, y)Zj (y) dy = 0 for all y0 ∈ R, j = 0, . . . , N + 1.

LetDT = {y ∈ D : y0 ∈ (−T , T )} and define a bilinear form inHT (after one integration
by parts) by

B(φ,ψ) :=
∫
DT
ψLφ.
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Then problem (3.4) gets weakly formulated as that of finding φ ∈ HT such that

B(φ,ψ) =

∫
DT
hψ for all ψ ∈ HT .

If h is smooth, elliptic regularity implies that a weak solution is a classical one. The weak
formulation can be readily put in the form

φ +K(φ) = ĥ

in HT , where ĥ is a linear operator of h and K is compact. The a priori estimate of
Step 2 shows that for h = 0 there is only the trivial solution. The Fredholm alternative
thus applies, proving that problem (3.4) is solvable in the periodic setting. While this is
enough for our purposes, it is worth observing that approximating a general h by periodic
functions of increasing period, and using the uniform estimate provided by Step 2, we
obtain in the limit a solution to the problem with the desired property. This completes the
proof of the proposition. ut

4. Geometric setting

We consider the metric induced by the Euclidean one on ∂� and denote by ∇̄ the associ-
ated connection. We introduce Fermi coordinates in a neighborhood of 0 in

6 := ∂�.

Given q ∈ 0, there is a natural splitting

Tq6 = Tq0 ⊕Nq0

into the normal and tangent bundle over 0. We assume that 0 is parameterized by arc-
length x0 ∈ (−`, `),

x0 7→ γ (x0),

and denote by E0 a unit tangent vector to 0. In a neighborhood of a point q of 0, assume
that we are given an orthonormal basis Ei , i = 1, . . . , N − 1, of Nq0. We can assume
that the Ei are parallel along 0, which means that

∇̄E0Ei = 0

for i = 1, . . . , N − 1. The geodesic condition for 0 translates precisely into

∇̄E0E0 ≡ 0.

To parameterize a neighborhood of q ∈ 0 in 6 we define

F(x0, x̄) := Exp6γ (x0)

(∑
i

xiEi

)
, x̄ := (x1, . . . , xN−1),
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where Exp6 is the exponential map on 6 and summation over i = 1, . . . , N − 1 is
understood. This parameterization induces coordinate vector fields

Xa := F∗(∂xa ),

for a = 0, . . . , N − 1. By construction Xa = Ea along 0 and

∇̄EaEb = 0. (4.1)

Let ḡ denote the metric on 6 which is induced by the Euclidean metric. The Fermi
coordinates above are defined in such a way that the coefficients of ḡ,

ḡab = Xa ·Xb,

are equal to δab along 0. We now compute higher order terms in the Taylor expansions of
the functions gab. The metric coefficients at q := F(x0, x̄) are given in terms of geometric
data at p := F(x0, 0) and x̄.

Notation. The symbolO(|x̄|r) indicates a smooth function whose Taylor expansion does
not involve any term up to order r in the variables xi , i = 1, . . . , N − 1.

We now give the expansion of the metric coefficients. The expansion of the ḡij , i, j =
1, . . . , N − 1, agrees with the well known expansion for the metric in normal coordinates
but we briefly recall the proof here for completeness. We agree that indices a, b, c, . . .
run from 0 to N − 1 while i, j, k, . . . run from 1 to N − 1.

Proposition 4.1. At the point q = F(x0, x̄), the following expansions hold:

ḡij = δij +
1
3 (R̄(Ei, Ek)Ej · El)xkxl +O(|x̄|

3),

ḡ0i = O(|x̄|2),
ḡ00 = 1+ (R̄(E0, Ek)E0 · El)xkxl +O(|x̄|3).

(4.2)

where i, j, k, l = 1, . . . , N −1 and summation over repeated indices is understood. Here
R̄ denotes the curvature tensor on (6, ḡ).

Proof. We compute
Xi ḡab = ∇̄XiXa ·Xb +Xa · ∇̄XiXb,

Using (4.1) we get Xi ḡab = 0 along 0. This yields the first order Taylor expansion

ḡab = O(|x̄|2).

To compute the second order terms, it is enough to compute XkXk ḡab at a point of 0 and
then to polarize (i.e. replace Xk by Xi +Xj , . . . ). We compute

XkXk ḡab = ∇̄
2
Xk
Xa ·Xb +Xa · ∇̄

2
Xk
Xb + 2∇̄XkXa · ∇̄XkXb. (4.3)

Recall that, since Xa are coordinate vector fields, we have

∇̄
2
Xk
Xa = ∇̄Xk ∇̄XaXk = ∇̄Xa ∇̄XkXk + R̄(Xk, Xa)Xk. (4.4)
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Therefore, we get

XkXk ḡab = 2R̄(Xk, Xa)Xk ·Xb + 2∇̄XkXa · ∇̄XkXb
+ ∇̄Xa ∇̄XkXk ·Xb +Xa · ∇̄Xb ∇̄XkXk. (4.5)

Using this, together with (4.1) we get

EkEk ḡij = 2R̄(Ek, Ei)Ek · Ei + ∇̄Ei ∇̄EkEk · Ej + Ei · ∇̄Ej ∇̄EkEk (4.6)

along 0. To proceed, first observe that

∇̄XX|p = ∇̄
2
XX = 0

along 0, for any X ∈ Np0. Indeed, for all p ∈ 0, X ∈ Np0 is tangent to the geodesic
s 7→ exp6p (sX), and so ∇̄XX = ∇̄2

XX = 0 at p. In particular, taking X = Xk + εXj , we
obtain

0 = ∇̄Ek+εEj ∇̄Ek+εEj (Ek + εEj ).

Equating the coefficient of ε to 0 gives ∇̄Ej ∇̄EkEk = −2∇̄Ek ∇̄EkEj , and hence

3∇̄2
Ek
Ej = R̄(Ek, Ej )Ek.

So finally, using (4.3) together with (4.6), we get

EkEk ḡij =
2
3 R̄(Ek, Ei)Ek · Ej

along 0. The formula for the second order Taylor coefficient for ḡij now follows at once.
Finally, it follows from (4.5) together with (4.1) that

EkEk ḡ00 = 2R̄(Ek, E0)Ek · E0 + 2∇̄E0∇̄EkEk · E0

along 0. Since ∇̄EkEk = 0 along K , we also get ∇̄E0∇̄EkEk = 0 along 0. We conclude
that

EkEk ḡ00 = 2R̄(Ek, E0)Ek · E0

along 0 and this gives the formula for the second order Taylor expansion for ḡ00. 2

Notation. In what follows, we will use the notation

Rij lm = R̄(Ei, Ej )El · Em. (4.7)

To parameterize a neighborhood of a point q ∈ 0 in �̄, we consider the system of
coordinates (x0, x) ∈ RN+1 introduced in (1.8) given by

G(x0, x) = F(x0, x̄)− xNn(F (x0, x̄)), x = (x̄, xN ) ∈ RN ,

where x ∈ RN is close to 0 and n designates the outward unit normal to 6.
In these coordinates, the coefficients of the Euclidean metric read

gNN = 1 and gaN = gNa = 0 (4.8)
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for all a = 0, . . . , N − 1. Finally, for a, b = 0, . . . , N − 1, the coefficients gab can be
expanded in powers of xN as

gab = ḡab + 2h̄abxN + k̄abx2
N +O(x

3
N ),

where ḡ is the metric on 6 whose expansion has been given in the last section,

h̄ab := −Ea · ∇Ebn = −Eb · ∇Ean (4.9)

are the coefficients of the second fundamental form h̄ of 6 and

k̄ab := (h̄⊗ h̄)ab =
∑
c,d

h̄acḡ
cd h̄db (4.10)

are the coefficients of the square of the second fundamental form. An important remark
is that h̄00, computed along 0, is a smooth function of the arclength which represents the
normal curvature along the geodesic in the sense that

∂2
x0
γ = ∇E0E0 = h̄00n (4.11)

along 0.
Building on the expansion of the metric which has been obtained above, we give

the expansion of the Laplace operator in the above defined coordinates. Recall that the
Laplacian is given, in terms of the coefficients of the metric, by

1 =
1
√
|g|
∂xα (

√
|g|gαβ∂xβ ) = g

pq∂xα∂xβ + ∂pg
αβ∂xβ +

1
2 Trg(∂xαg)g

αβ∂xβ ,

where the indices α, β run from 0 to N and where |g| denotes the determinant of the
metric. Since (4.8) holds, the above formula simplifies to

1 = ∂2
xN
+

1
2 Trg(∂xN g)∂xN + g

ab∂xa∂xb + ∂xag
ab∂xb +

1
2 Trg(∂xag)g

ab∂xb ,

where the indices a, b run from 0 to N − 1.
We have the following decomposition (recall that i, j, k, l, m, . . . run from 1 toN−1):

1 = ∂2
x0
+

∑
j

∂2
xj
+ ∂2

xN
+ A00∂2

x0
+

∑
j

A0j∂x0∂xj

+

∑
i,j

(
−

1
3

∑
k,l

(R̄(Ei, Ek)Ej · El)xkxl − 2h̄ijxN + Aij
)
∂xi∂xj

+ B0∂x0 +

∑
j

(∑
k

( 2
3 R̄(Ei, Ej )Ei · Ek + R̄(E0, Ej )E0 · Ek

)
xk + B

j
)
∂xj

+ (Trḡ h̄− Trḡ k̄xN + BN )∂xN , (4.12)
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where the curvature tensor R̄, the metric ḡ and the tensors h̄ and k̄ are computed along 0,
and hence only depend on x0, while the functions Aαβ and Bα do depend on x0, x1, . . . ,

xN and enjoy the following decompositions:

A00
= A00

N xN +
∑
k,l

A00
kl xkxl,

Aij = A
ij
Nx

2
N +

(∑
k

A
ij
Nkxk

)
xN +

∑
k,l,m

A
ij
klxkxlxm,

A0j
= A

0j
N xN +

∑
k,l

A
0j
kl xkxl,

B0
= B0

NxN +
∑
k

B0
kxk,

Bj = B
j
NxN +

∑
k,l

B
j
klxkxl,

BN = BNN x
2
N +

(∑
k

BNk xk

)
xN +

∑
j

BNj xj .

(4.13)

Here A00
N , A

00
kl , A

ij
N , . . . and B0

N , B
0
k , B

j
N , . . . are smooth functions depending on x0, . . . ,

xN , hence they can be further decomposed using Taylor’s expansion. More precise expan-
sions can be given in terms of the geometric data defined above but they will not appear
in the final result so we have chosen to leave the expansion as it is. For example A0j

N can
be further expanded in powers of xN and we have

A
0j
N = −4h̄0jxN + Ã

0j
N x

2
N ,

where Ã0j
N is a smooth function depending on x0, . . . , xN .

5. Construction of a first approximation

This section is devoted to the construction of an approximation for a solution to our
problem

1u+ u
N+2
N−2−ε = 0 in �, u = 0 on ∂�. (5.1)

As explained in Section 2, the idea is to build the approximation using the standard bubble
ω in RN satisfying

1u+ u
N+2
N−2 = 0 in RN ,

centered and translated along a curve which is located inside the domain � and, at the
same time, very close to the geodesic 0 in ∂�. We will thus first introduce a precise
description of the approximation in a region extremely close to the geodesic, without
taking into account the outer region. Since the solution turns out to be very concentrated,
this description is accurate enough and a gluing procedure we perform in Section 6 is
the key instrument to gather together this thin region close to the geodesic with the outer
region.
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Let (x0, x) ∈ RN+1 be the local coordinates along the geodesic introduced in (1.8).
We perform the change of variables introduced in Section 2 (formula (2.7)),

u(G(x0, x)) = µ
−
N−2

2
ε v(ρ−1x0, µ

−1
ε (x − dε)), v = v(y0, y), ρ = ε

N−1
N−2 , (5.2)

where
µε(x0) = ρµ̃ε(x0), dε(x0) = εd̃ε(x0) (5.3)

are functions of the arclength x0 ∈ (−`, `) (see (2.6)). We now need to be more precise
in the description of µε and dε. We assume that

µ̃ε(x0) = µ
0
ε(x0)+ εµ(x0), d̃εN (x0) = dεN (x0)+ εdN (x0), (5.4)

and
d̃εj (x0) = εdj (x0) for all j = 1, . . . , N − 1. (5.5)

In (5.4), µ0
ε and dεN (x0) are explicit smooth functions of x0 of the form

µ0
ε = µ0(x0)+ ε

1
N−2µ1(x0), dεN (x0) = d0N (x0)+ ε

1
N−2 d1N (x0), (5.6)

with

µ0(x0) =
α

h̄00(x0)
, d0N (x0) =

β

h̄00(x0)
, (5.7)

where α and β are positive constants depending only on the dimension N , and h̄00 is
the normal curvature along the geodesic 0, which is assumed to be smooth and strictly
positive (see (4.11)). The functions µ1, d1N in (5.6) are smooth functions of x0, uniformly
bounded in ε together with their derivatives, whose precise definition we give later in
Section 5 (see (5.37)).

Finally in (5.4) and (5.5), we assume that µ, d = (d1, . . . , dN−1, dN ) are parameter
functions defined in (−`, `) to be adjusted only in the final finite-dimensional reduction.
For now, we assume they are smooth functions of x0 and that they have the following
norms bounded:

‖µ‖a = ‖ε
N
N−2 µ̈‖∞ + ‖ε

N
2(N−2) µ̇‖∞ + ‖µ‖∞ (5.8)

and

‖d‖d = ‖dN‖b +

N−1∑
j=1

‖dj‖c, (5.9)

where

‖dN‖b = ‖εd̈N‖∞ + ‖ε
1/2ḋN‖∞ + ‖dN‖∞, (5.10)

‖dj‖c = ‖d̈j‖∞ + ‖ḋj‖∞ + ‖dj‖∞ for j = 1, . . . , N − 1. (5.11)

In the previous expressions and in the rest of the paper, the dot denotes the derivative with
respect to x0.
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The (y0, y) variables belong to the set D defined in (2.9). We recall the definition

D =
{
(y0, ȳ, yN ) : −

dεN

µε
(ρy0) < yN <

δ̂

ρ
, |ȳ| <

δ̂

ρ

}
,

for some fixed positive number δ̂ we will choose later. The domain D expands as ε → 0
to the whole space RN . Observe that, with our choice of µε and dεN in (5.4)–(5.6), we
have

−dεN/µε = −ε
−

1
N−2 [γ + ε

1
N−2O(1)], (5.12)

where γ is a positive constant, depending only on N , and where O(1) denotes a smooth
function of x0, which is uniformly bounded in ε, together with its derivative, for µ and d
with ‖µ‖a + ‖d‖d ≤ c (see (5.8)–(5.9)). In particular, the function R = dεN/µε satisfies
assumption (3.6). Not only this. We have

‖∂0(dεN/µε)‖∞ ≤ cρε
−

1
N−2 (ε‖µ̇‖∞ + ε‖ḋN‖∞) ≤ cε

3/2,

and
ρ−1
‖∂00(dεN/µε)‖∞ ≤ cρε

−
1

N−2 (ε‖µ̈‖∞ + ε‖d̈N‖∞) ≤ cε
3N−8

2(N−2) .

Thus the function dεN/µε satisfies (3.5).
As we rigorously prove in Lemma 5.1 below, the Laplace operator, whose expansion

is described in (4.12), after the change of variable (2.7) gets transformed by the following
relation:

µ
N+2

2
ε 1u = A(v), (5.13)

where, in D, the differential operator A can be written in the compact form

Av = a0∂
2
0v +1yv + Ãv. (5.14)

In (5.14), a0 is given by
a0 = (µ0 + ε

1
N−2µ1 + εµ)

2

(see (2.10)). Observe that

ρ−1
‖∂0a0‖∞ ≤ cε‖µ̇‖∞ ≤ cε

N−4
2(N−2) ,

thus the function a0 satisfies (3.5).
Furthermore, in D the differential operator Ã can be described as follows:

Ãv =
∑
(α,β)

aα,β∂α,βv +
∑
α

bα∂αv + cv, (5.15)

where aα,β , dα and c are functions of the variable (ρy0, y), depending in an algebraic way
on the parameter functions µε and dε. More precisely, given the choice in (5.3)–(5.5), one
has, in the region under consideration,

aα,β = O(ε + ρ
2
|y|2) if α 6= 0, β 6= 0, a0,β = O(ε), and a0,0 = 0,
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while
bα = ρO(ε + ρ|y|) and c = ρ2O(1).

Condition (3.5) is thus satisfied by the differential operatorA. This fact, together with the
estimates on dεN/µε in the definition of D in (2.9), gives that the linear theory developed
in Section 3 for the linear operator A+ pωp−1 in the domain D can be applied.

The next lemma gives the detailed computation of the differential operatorA in terms
of the geometry of the problem.

Lemma 5.1. After the change of variable (2.7), the following holds true:

µ
N+2

2
ε 1u = A(v) := a0∂

2
0v +1yv +

5∑
k=0

Akv + B(v), (5.16)

where a0 is defined in (2.10). In the previous expression Ak denotes the following differ-
ential operators:

A0v = µ̇
2
ε

[
Dyyv[y]2

+ 2(1+ γ )Dyv[y]+ γ (1+ γ )v
]

+ µ̇ε[Dyyv[y]+ γDyv][ḋε]+Dyyv[ḋε]2

− 2µε
[
ε−

N−1
N−2Dy(∂0v)[µ̇εy + ḋε]+ γ µ̇εε−

N−1
N−2 ∂0v

]
− µεDyv[d̈ε]− µεµ̈ε(γ v +Dyv[y]), (5.17)

A1v =
∑
i,j

[
−

1
3Rikj l(µεyk + dεk)(µεyl + dεl)− 2h̄ij (µεyN + dεN )

+

∑
k

a
ij
Nk(µεyk + dεk)(µεyN + dεN )

]
∂ijv, (5.18)

where Rikj l is defined in (4.7), h̄ij is given in (4.9) and the functions aijNk = a
ij
Nk(ε

N−1
N−2 y0)

are given by

A
ij
Nk = a

ij
NkxN +O(x

2
N ),

with AijNk defined in (4.13). Furthermore,

A2v =
∑
j

[
−4h̄0j (µεyN + dεN )

×
(
−Dy(∂jv)[d]+ µεε−

N−1
N−2 ∂0jv − (γ ∂jv +Dy(∂jv)[y])µ̇ε

)]
(5.19)

and

A3v =
(∑
k

b0
k[µεyk + dεk]+ b

0
N (µεyN + dεN )

)
×
{
µε
[
−Dyv[ḋε]+ µεε−

N−1
N−2 ∂0v − µ̇ε(γ v +Dyv[y])

]}
, (5.20)
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where b0
k are smooth functions of ε

N−1
N−2 y0 given by

B0
k = b

0
kxN +O(x

2
N )

(see (4.13) for B0
k ). Finally,

A4v =
∑
j

[∑
k

( 2
3Rij ik + R0j0k)(µεyk + dεk)+ b

j
N (µεyN + dεN )

]
µε∂jv, (5.21)

where bjN are smooth functions of ε
N−1
N−2 y0 given by

B
j
N = b

j
NxN +O(x

2
N )

(see (4.13) for BjN ), and

A5v = (Trḡ h̄− Trḡ k̄(µεyN + dεN ))µε∂Nv, (5.22)

where h̄ is given by (4.9) and k̄ by (4.10). The operator B(v) can be described as follows:

B(v) = O
(
|µεȳ + d̄ε|

2
+ (µεyN + dεN )+ (µεyN + dεN )(µεȳ + d̄ε)

)
A0(v)

+O
(
|µεȳ + d̄ε|

3
+ (µεyN + dεN )|µεȳ + d̄ε|

2
+ (µεyN + dεN )

2)∂ijv
+O

(
|µεȳ + d̄ε|

2
+ (µεyN + dεN )|µεȳ + d̄ε| + (µεyN + dεN )

2)
×
[
µεε
−
N−1
N−2 ∂0jv + µεε

−
N−1
N−2 ∂0v −Dy(∂jv)[dε]

− (γ ∂jv +Dy(∂jv)[y])µ̇ε −Dyvḋε − µ̇ε(γ v +Dyv[y])+ µε∂jv
]

+O
(
(µεȳ + d̄ε)

2
+ (µεȳ + d̄ε)(µεyN + dεN )+ (µεyN + dεN )

2)µε∂Nv.
Proof. We will show first that

µγ+2
ε ∂2

0u(x0, x) = ρ
−2µ2

ε∂
2
0v(y0, y)+A0(v(y0, y)). (5.23)

If v = v(y0, y), we define

ṽ(z0, z, µε) := µ−γε v(z0, µ
−1
ε z).

We have u(x0, x) = ṽ(ρ
−1x0, x − d, µε). Then we compute

∂0u = Dzṽ[−ḋε]+ ρ−1∂0ṽ + µ̇ε∂µε ṽ,

and

∂2
0u = Dzzṽ[ḋε]2

+ ρ−2∂2
0 ṽ + µ̇

2
ε∂

2
µε
ṽ − 2ρ−1Dz(∂0ṽ)[ḋε]

+ 2ρ−1µ̇ε∂0µε ṽ − 2µ̇εDz(∂µε ṽ)[ḋε]−Dzṽ[d̈ε]− µ̈ε∂µε ṽ.

Thus formula (5.23) follows by expressing the previous computations in terms of v. To
get the rest of (5.16), one argues in a similar way. ut
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With respect to the local coordinates along the geodesic 0 previously introduced and after
scaling the variables as in (2.7), the original equation reduces locally close to the geodesic
to

Av + µ−
N−2

2 ε
ε vp−ε = 0, (5.24)

where A is defined in (5.14) and p = (N + 2)/(N − 2). We denote by Sε the operator
given by (5.24),

Sε(v) := Av + µ−
N−2

2 ε
ε vp−ε. (5.25)

In the rest of this section we study equation (5.24) in the set (y0, y) ∈ D and we build
an approximate solution to (5.24) which furthermore satisfies the zero Dirichlet boundary
condition in the region yN = −dεN/µε. Indeed, our approximation close to the geodesic
is

W = w+5. (5.26)

We start with the description of w. The definition of 5 will be given at the end of this
section.

We define w to be
w = ω̃ + eε(ρy0)χε(y)Z0. (5.27)

The first term in (5.27) is ω̃ defined as follows:

ω̃(y) := (1+ αε)(ω(y)− ω̄(y)), (5.28)

with ω given in (2.4), αε := µ(N−2)2ε/8
ε − 1 and

ω̄(y) = ω(ȳ, yN + 2dεN/µε).

Observe that

1((1+ αε)ω)+ µ
−
N−2

2 µε
ε ((1+ αε)ω)p = 0 in RN .

In the second term in (5.27), Z0 denotes the first eigenfunction in L2(RN ) of the
problem

1φ + pw(x)p−1φ = λφ in RN , λ1 > 0

with
∫
Z2

0 = 1 and χε is a cut-off function defined as follows. Let χ = χ(s) for s ∈ R,
with χ(s) = 1 if s < δ̂, χ(s) = 0 if s > 2δ̂, for some fixed δ̂ > 0 chosen in such a way
that χε(ȳ,−dεN/µε) = 0, where χε(y) = χ(ε1/(N−2)

|y|). Observe that the function w
satisfies the Dirichlet boundary condition for yN = −dεN/µε.

Finally, in (5.27) the function eε(ρy0) is defined as follows:

eε = εẽε with ẽε = e
0
ε + εe and e0

ε = e0 + ε
1

N−2 e1, (5.29)

where e1 is an explicit smooth function, uniformly bounded in ε, whose expression we
give in (5.37), and

e0 =
2
∫
RN ∂iiωZ0

λ1
(Trḡ h̄− h̄00)d0N . (5.30)



1580 Manuel del Pino et al.

Finally, in (5.29), the function e is unknown and, for now, it plays the role of a parameter.
It will be chosen later on, together with µ, d1, . . . , dN in (5.4) and (5.5), to be a solution
of a system of N + 2 ordinary differential equations. For the moment, we assume that e
is a smooth function with the norm

‖e‖e = ‖ε
2+ 2

N−2 ë‖∞ + ‖ε
1+ 1

N−2 ė‖∞ + ‖e‖∞ (5.31)

uniformly bounded by a positive constant independent of ε.
The error one commits by considering w a real solution to (5.24) is given by the size

of Sε(w), which is itself a function of the parameter functions µ, d and e. Assume that µ,
d and e, defined respectively in (5.4), (5.5) and (5.29), satisfy the assumption

‖(µ, d, e)‖ := ‖µ‖a + ‖d‖d + ‖e‖e ≤ c (5.32)

for some constant c > 0, independent of ε.
Then for all ε small enough and (y0, y) ∈ D, we have the expansion

Sε(w) = −pω
p−1ω̄ − εωp logω + ε[−2h̄ijd0

εN∂ijω + λ1e
0
εZ0]

+ ε1+ 1
N−2µ0

ε[−2h̄ijyN∂ijω + Trḡ h̄∂Nω]

+ ε2
[
(ρ2a0ë + λ1e)Z0 − 2h̄ijdN∂ijω

+

∑
ij

(ḋi ḋj −
1
3Rijkldkdl + a

ij
Nkdkd

0
εN + 4h̄0jdid

0
εN )∂ijω + ϒε

]
+ ε2+ 1

N−2µ0
ε

[
−

∑
j

∂jω · d̈j +
(
−

∑
ij

1
3Rijklykdl∂ijω + 2aijNkykd

0
εN∂ijω

)
+ ( 2

3Rij ik + R0j0k)dk∂jω + 4h̄0j ḋiyN∂ijω
]

+ ε3+ 1
N−2

[
−µ0

ε∂Nω · d̈N −
1
3µ

0
εRijklykdl∂ijω + µ(

2
3Rij ik + R0j0k)dk∂jω

+ (µ0
εdN + µd

0
εN )(2a

ij
Nkyk∂ijω + b

j
N∂jω − Trḡ h̄∂Nω)

+ (µ0
εe + µe

0
ε)(−2h̄ijyN∂ijZ0 + Trḡ h̄∂NZ0)

]
+ ε3+ 2

N−2
[
−µ̈µZN+1

+ 2µµ0
ε

(
−

1
3Rikj lykyl∂ijω + (

2
3Rij ik + R0j0k)yk∂jω + b

j
NyN∂jω − Trḡ k̄yN∂Nω

)]
+ ε4(log ε)r, (5.33)

where
ϒε = ϒ0 + ε

1
N−2ϒ1

ε (5.34)

with
ϒ0 = −2h̄ijd0Ne0∂ijZ0 + p(p − 1)e2

0ω
p−2Z2

0 + pe0ω
p−1 logωZ0,

and ϒ1
ε a sum of functions of the form

f1(ε
1+ 1

N−2 y0)f2(µ, d, e)f3(y)
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with f1 a smooth explicit function of the variable ε1+ 1
N−2 y0, uniformly bounded in ε, f2

a smooth function of µ, d and e, uniformly bounded in ε for µ, d and e satisfying (5.32),
and f3 a smooth function of the variable y, with sup(1+ |y|N−2)|f3(y)| < +∞.

In the previous expansion, h̄ is the second fundamental form on6 defined in (4.9), k̄ is
the square of the second fundamental form defined in (4.10), andRijkl are the components
of the curvature tensor R̄ on (6, ḡ) as defined in (4.7). Here indices i, j, k, l run from 1
to N − 1 and summation over repeated indices is understood. Finally aijNk is defined as
A
ij
Nk = a

ij
NkxN +O(x

2
N ) (see (4.13)).

Finally the term r in the expansion (5.33) is a sum of functions of the form

h0(ε
1+ 1

N−2 y0)[f1(µ, d, µ̇, ḋ)+ o(1)f2(µ, d, e, µ̇, ḋ, ė, µ̈, d̈, ë)]f3(y)

with h0 a smooth function uniformly bounded in ε, and f1 and f2 smooth functions of
their arguments, uniformly bounded in ε when µ, d and e satisfy (5.32). An important
remark is that the function f2 depends linearly on the argument (µ̈, d̈, ë). Concerning f3,
we have

sup (1+ |y|N−2)|f3(y)| < +∞.

We postpone the proof of the expansion (5.33) to the Appendix, Section 9 and we
continue the description of w in (5.27).

We now use formula (5.33) to compute, for each y0, the L2(Dy0) projection of the
error Sε(w) (see (5.25) and (5.27)) along the functions Zi , i = 0, 1, . . . , N+1 (see (2.11)
and (2.12)). Here Dy0 denotes the y0 section of the domain D, defined in (2.9),

Dy0 = {y : (y0, y) ∈ D}.

Denote
C1 :=

∫
RN
Z2
i , C2 :=

∫
RN
Z2
N+1, C3 :=

∫
RN
Z2

0 .

We start with the projections in the tangential directions Zi , for i = 1, . . . , N − 1.
Assume µ, d and e satisfy (5.32). Then for ε small enough, and any k = 1, . . . , N − 1,∫
Dy0

Sε(w)Zk = ε
2+ 1

N−2C1[µ0(−d̈k + R0j0kdj ) + αk(ρy0)+ εβk(ρy0;µ, d, e)]+ ε3r.

(5.35)

In (5.35),R0j0k are the components as defined in (4.7) of the curvature tensor R̄ on (6, ḡ)
as in Proposition 4.1, and the functions αk are explicit, smooth and uniformly bounded
in ε. The functions βk are smooth functions of their arguments, they are bounded in ε
when µ, d and e satisfy (5.32), and they do not depend on the derivatives of µ, d and e.
Finally the term r denotes a sum of functions of the form

h0(ρy0)[h1(µ, d, e, µ̇, ḋ, ė)+ o(1)h2(µ, d, e, µ̇, ḋ, ė, µ̈, d̈, ë)], (5.36)

where h0 is a smooth function uniformly bounded in ε, h1 and h2 are smooth functions
of their arguments, uniformly bounded in ε when µ, d and e satisfy (5.32), and o(1)→ 0
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as ε→ 0. An important remark is that h2 depends linearly on the argument (µ̈, d̈, ë). We
postpone the proof of (5.35) to the Appendix, Section 9.

Concerning the projection of Sε(w) in the remaining directions ZN+1, ZN and Z0,
they turn out to be much bigger than the projections along Zi , for i = 1, . . . , N − 1.
Indeed, roughly speaking, they are at main order of size ε. To reduce this size, we expand
of µ̃ε, d̃εN and ẽε in terms of the functions µ0, d0N , µ1, d1N in (5.6) and of e0, e1 in
(5.30).

Indeed, if we assume µ, d and e satisfy (5.32), then we can prove that there exist a
constant $ > 0 depending on N and smooth functions

µ0, d0N , e0, µ1, d1N , e1 : (−`, `)→ R, (5.37)

in the definitions (5.6), (5.29), (5.30) such that, as ε → 0, for all y0 ∈ (−ρ
−1`, ρ−1`),

we have∫
Dy0

Sε(w)ZN+1 = ε
2[Ah̄00µ+ Bh̄00dN + αN+1(ρy0)+ εβN+1(ρy0;µ, d, e)]

+ ε3+ 2
N−2 [−C2µ0µ̈]+ ε4r (5.38)

and

$

∫
Dy0

Sε(w)ZN = ε
2+ 1

N−2 [Bh̄00µ+ Ch̄00dN + αN (ρy0)+ εβN (ρy0;µ, d, e)]

+ ε3+ 1
N−2 [−C1µ0d̈N ]+ ε4r. (5.39)

In (5.38) and (5.39), A, B and C are explicit constants which depend only on the dimen-
sion N , with A,C > 0 and AC − B2 > 0. The function h̄00 is the curvature of the
geodesic 0 on the boundary 6 as defined in (4.11). The functions αN+1, αN are explicit,
smooth and uniformly bounded in ε. The functions βN+1, βN are smooth functions of
their arguments, they are bounded in ε when µ, d and e satisfy (5.32), and they do not
depend on the derivatives of µ, d and e.

Finally,∫
Dy0

Sε(w)Z0 = ε
2C3

[
ρ2a0ë + λ1e − 2(Trḡ h̄− h̄00)

(∫
∂iiωZ0

)
dN + α0(ρy0)

+

∑
i

(ḋ2
i −

1
3Rikildkdl + aiiNkdkd0N + 4h̄0jdjd0N )

(∫
∂iiwZ0

)
+ ε2β0(ρy0;µ, d, e)

]
+ ε4r. (5.40)

In (5.40), a0 is the function defined in (2.10) and h̄ is the second fundamental form of
6 as defined in (4.9). Again α0 denotes an explicit smooth function, uniformly bounded
in ε, and β0 is a smooth function of its arguments, which is bounded in ε when µ, d and
e satisfy (5.32), and it does not depend on the derivatives of µ, d and e.
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In (5.38), (5.39) and (5.40), the term r denotes a sum of functions of the form (5.36).
We postpone the proof of (5.38), (5.39) and (5.40) to the Appendix, Section 9.
Thanks to the choice of the parameters performed in (5.37), from the expansion given

in (5.33) we conclude that the error Sε(w), computed in (5.33), reduces to

Sε(w) = εS0 + ε[ρ2a0ë + λ1e]χεZ0 + ε
2S1, (5.41)

where S0 is a smooth function of ρy0, uniformly bounded in ε. Observe that S0 does not
depend on µ, d and e. Furthermore, S0 satisfies, for all i = 0, 1, . . . , N + 1,∫

Dy0

S0Zi dy = 0 for all y0,

and
‖S0‖∗∗ ≤ c

for some positive constant c independent of ε. In (5.41), a0 is the function defined in
(2.10), Z0 is given by (2.12), and e is the parameter function which enters the definition
(5.29) and whose ‖ · ‖e norm is bounded uniformly in ε (see (5.31)). On the other hand,
S1 depends on µ, d and e.

Now we introduce a further correction 5 to w, to get the final approximation W =
w+5 (5.26). The correction5 is chosen to reduce the size of the error (5.41), eliminating
the term εS0, as the unique solution of the following linear problem:

a0∂
2
05+1y5+ Ã5+ pω

p−15 = −εS0 +
∑

ciZi in D, (5.42)∫
Dy0

5(y0, y)Zi dy = 0 ∀y0, ∀i = 0, . . . , N + 1 (5.43)

and
5(y0, ȳ, yN )|∂Dy0

= 0 for all y0. (5.44)

In (5.42), a0 is defined as in (2.10), and Ã in (5.15). Taking into account the description of
the linear operator (5.14) carried out at the beginning of this section, the assumptions of
Proposition 3.2 are satisfied and the linear theory developed in Section 3 can be applied,
given the estimate

‖5‖∗ ≤ cε (5.45)

for some positive constant c. The linear operator in (5.42) depends on µ and d (but not
on e). This implies that 5 itself depends on µ and d . A direct analysis of (5.42), together
with (5.14), shows that

‖5µ1,d1 −5µ2,d2‖∗ ≤ cε
2
‖(µ1 − µ2, d1 − d2)‖. (5.46)

We next compute the size of ci = ci(ρy0). Multiplying equation (5.42) with Zi , and
integrating on the section Dy0 , we obtain, for all y0,

ci

∫
Dy0

Z2
i = a0

∫
Dy0

∂2
05Zi +

∫
Dy0

(1y5+ pω
p−15)Zi +

∫
Dy0

Ã(5)Zi . (5.47)
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Taking into account (5.43) and (5.32), we have∣∣∣∣∫
Dy0

∂05Zi

∣∣∣∣ ≤ o(1)ε3,

∣∣∣∣∫
Dy0

∂2
05Zi

∣∣∣∣ ≤ o(1)ε3,

where o(1) denotes a small function of y0. Furthermore, integrating by parts and using
(5.43), we have ∣∣∣∣∫

Dy0

(1y5+ pω
p−15)Zi

∣∣∣∣ ≤ o(1)ε3.

Finally, from (5.14) we obtain ∣∣∣∣∫
Dy0

Ã(5)Zi
∣∣∣∣ ≤ o(1)ε3.

Thus we conclude that
sup |ci | ≤ o(1)ε3. (5.48)

Directly from (5.47) and (5.46) we see that ci = ci[µ, d] depends smoothly on µ, d and
their derivatives. Indeed, we have

‖ci[µ1, d1]− ci[µ2, d2]‖∞ ≤ cε2
‖(µ1 − µ2, d1 − d2)‖. (5.49)

Let ψ := ∂05. We have

a0∂
2
0ψ +1yψ + Ãψ + pω

p−1ψ + ρȧ0∂0ψ = h+
∑

∂0ciZi in D (5.50)

with

h = −ερ∂0S0 − ∂0Ã(5),∫
Dy0

ψ(y0, y)Zidy = o(1)ε ∀y0, ∀i = 0, . . . , N + 1 (5.51)

and

ψ(y0, ȳ, yN )|∂Dy0
− ∂0(dεN/µε)∂N5(y0, ȳ, yN )|∂Dy0

= 0 for all y0. (5.52)

Direct computations show that
‖h‖∗∗ ≤ Cερ

and condition (5.52) reduces to

ψ(y0, ȳ, yN )|∂Dy0
= O(1)ε3− 1

N−2 ,

where O(1) denotes a smooth function of y0, uniformly bounded in ε, for µ, d and e
satisfying (5.32). We thus conclude that

‖∂05‖∗ ≤ cρε.
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With this choice of 5 we have

Sε(W) = ε
2S1 + ε[ρ2a0ë + λ1e]χεZ0 +N1(5)+

∑
ciZi (5.53)

(see (5.41)), where

N1(5) = µ
−
N−2

2 ε
ε [(w+5)p−ε − wp−ε]− pωp−15. (5.54)

Observe that S1 depends smoothly on the parameters µ, d and e, and

‖S1(µ1, d1, e1)− S1(µ2, d2, e2)‖∗∗ ≤ c‖(µ1 − µ2, d1 − d2, e1 − e2)‖. (5.55)

We next estimate ‖N1(5)‖∗∗. If |y| ≤ δε−1/2, we have

|N1(5)| ≤ c|ω
p−252

|.

Thus in this region, we have

sup
|y|<δε−1/2

|(1+ |y|)N−2N1(5)| ≤ cε
2.

If now |y| > δε−1/2, then |N1(5)| ≤ c|5
p
|, so that

sup
|y|>δε−1/2

|(1+ |y|)N−2N1(5)| ≤ cε
p sup
|y|>δε−1/2

|(1+ |y|)−2+ 8
N−2 | ≤ cε2+ 8

N−2 .

We conclude that
‖N1(5)‖∗∗ ≤ c‖ω

p−252
‖∗∗ ≤ cε

2. (5.56)

This concludes the construction of our approximation W (5.26) and the analysis of the
error Sε(W) (5.53).

6. The gluing procedure

This section is devoted to a gluing procedure that reduces the full problem (2.1). A first
observation is that on replacing u by ρ(N−2)/2u(ρz) the problem becomes equivalent to1u+ ρ

−
N−2

2 εup−ε = 0 in �ε,
u > 0 in �ε,
u = 0 on ∂�ε,

(6.1)

where �ε = ρ−1�.
The function W(y0, y) built in the previous section in (5.26) defines an approximation

W to a solution of (2.1) near the geodesic through the natural change of variables (5.4)–
(5.3). More generally, let us denote by z ∈ RN+1 the original variable in �ε. Then for a
function f (z) defined on a small neighborhood of 0 we use in this section the notation

f (z) = µ̃
N−2

2
ε (ρy0)f̃ (y0, y) for z = ρ−1G(ρy0, ρµ̃ε(ρy0)y + εd̃ε(ρy0))
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or

f̃ (y0, y) = µ̃
N−2

2
ε (ρy0)f (ρ

−1G(ρy0, ρµ̃ε(ρy0)y + εd̃ε(ρy0)))

so that in particular W and W are linked as W = W̃ . In fact we recall that near 0ε, after
setting in this language v := ũ, the equation in (6.1) becomes

Sε(v) := Av + µ−
N−2

2 ε
ε vp−ε = 0, (6.2)

where A is the operator defined in (5.14).
Let δ > 0 be a fixed number with 4δ < δ̂, where δ̂ was chosen in (2.9). We consider

a smooth cut-off function ξδ(s) such that ξδ(s) = 1 if 0 < s < δ, and = 0 if s > 2δ. Let
us consider the cut-off function

ζ εδ (y0, y) = ζδ(|G(ρy0, µ̃ε(ρy0)ρy + εd̃ε(ρy0))|),

and its pull-back to �ε, supported near ρ−10, defined as

ηεδ(z) = ζ
ε
δ (y0, y) for z = ρ−1G(ρy0, µ̃ε(ρy0)ρy + εd̃ε(ρy0)).

We observe that with this definition ηεδ(z) no longer depends on the parameter functions
and it is well defined in the entire�ε, by just extending it by zero outside the range of the
variables (y0, y). We define our global first approximation w(z) to a solution of (2.1) to
be simply

w(z) = ηεδ(z)w̃(z). (6.3)

We look for a solution to problem (6.1) of the form u = w+8, namely{
18+ pwp−18+N(8)+ E = 0 in �ε,
8 = 0 on ∂�ε,

(6.4)

where

N(8) = ρ−
N−2

2 ε(w+8)p−ε − wp−ε − pwp−18, E = 1w+ wp−ε.

According to (6.2), near the geodesic v = ũ+ 8̃ must then satisfy

A8̃+ pw̃p−18̃+ N(8̃)+ Sε(w̃) = 0, (6.5)

where now

N(8̃) = µ̃
−
N−2

2 ε
ε (w̃+ 8̃)p−ε − w̃p−ε − pw̃p−18̃, Sε(w̃) = Aw̃+ w̃p−ε.

We look for a solution 8 of (6.4) in the following form:

8 = η2δφ + ψ,
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where the function φ is such that φ̃ is in principle defined only in D. It is immediate to
check that 8 of this form will satisfy the above problem if the pair (ψ, φ) satisfies the
following nonlinear coupled system:

Aφ̃ + pw̃p−1φ̃ = −N(ζ ε2δφ̃ + ψ̃)− E− pw̃p−1ψ̃ in D, (6.6)

φ̃ = 0 on ∂D. (6.7)

1ψ + (1− ηε2δ)pwp−1ψ = −2∇φ∇ηε2δ − φ1η
ε
2δ

− (1− ηε2δ)N(η
ε
2δφ + ψ) in �ε,

ψ = 0 on ∂�ε. (6.8)

Given φ such that inD, φ̃ has a sufficiently small ‖ ·‖∗-norm, we first solve problem (6.8)
for ψ .

Let us assume first that � is bounded. Since �ε = ρ−1�, the problem

−1ψ = h in �ε, ψ = 0 on ∂�ε, (6.9)

has a unique solution ψ := (−1)−1(h) for each given h ∈ L∞(�ε). Moreover

‖ψ‖∞ ≤ C

(
N − 1
N − 2

)−2

‖h‖∞.

Let us observe that, for instance,

‖1ηε2δφ‖∞ ≤ Cρ
2
‖φ̃‖L∞(|y|>δρ−1) ≤ Cρ

N−2
‖φ̃‖∗.

We obtain similarly
‖∇ηε2δ∇φ‖∞ ≤ Cρ

N−2
‖φ̃‖∗.

Let us now assume ‖ψ‖∞ ≤ RρN−4
‖φ̃‖∗ and consider in this ball the operator

M(ψ) := (1− ηε2δ)N(η
ε
2δφ + ψ) = (1− η

ε
2δ)(η

ε
2δφ + ψ)

p.

We have

‖M(ψ1)−M(ψ2)‖∞ ≤ C(‖φ̃‖L∞(|y|>δρ−1) + Rρ
N−4
‖φ̃‖∗)

p−1
‖ψ1 − ψ2‖∞

≤ C(1+ R)p−1ρ
4(N−4)
N−2 ‖φ‖

p−1
∗ ‖ψ1 − ψ2‖∞.

Observe that also
‖(1− ηε2δ)pwp−1ψ‖∞ ≤ Cρ

4
‖ψ‖∞.

By takingR suitably large but fixed, we see directly from an application of the contraction
mapping principle that the fixed point problem, equivalent to (6.8),

ψ = (−1)−1(M(ψ)+ (1− ηε2δ)pwp−1ψ + 2∇φ∇ηε2δ + φ1η
ε
2δ)
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has a unique solution ψ = ψ(φ) with ‖ψ‖∞ ≤ RρN−4
‖φ̃‖∗, whenever ‖φ̃‖∗ is suf-

ficiently small, independently of ε. Note that ρN−4
= εN−3−2/(N−2). In addition, the

nonlinear operator ψ satisfies a Lipschitz condition of the form

‖ψ(φ1)− ψ(φ2)‖∞ ≤ Cε
N−3− 2

N−2 ‖φ1 − φ2‖∗. (6.10)

Let us now consider the case � = RN \ 3 with 3 bounded. In this case, exactly
the same arguments go through. Indeed, let us pull back the equation for ψ to � in the
following way: for f (z) defined in �ε let us write f̂ (z) := f (z/ε). Equation (6.8) then
becomes

1ψ̂ + ρ−2(1− η̂ε2δ)pŵp−1ψ

= −2ρ−2
∇̂φ∇̂ηε2δ − φ̂ρ

−21̂ηε2δ − ρ
−2(1− η̂ε2δ)(η̂

ε
2δφ̂ + ψ̂)

p in �,

ψ̂ = 0 on ∂�,

or

1ψ̂ +O(ρ2)χψ = −2O(ρN−6)‖φ̃‖∗χ − ρ
−2(O(ρN−4)‖φ̃‖∗χ + ψ̂)

p in �,

where χ is just a function with bounded support. In the case of the exterior domain, after
a Kelvin transform we see that the problem (in RN+1)

−1ψ̂ = h in �, ψ̂ = 0 on ∂�, (6.11)

has a solution ψ̂ := (−1)−1(h) with

‖(1+ |z|N−1)ψ̂(z)‖∞ ≤ C‖(1+ |z|N+3)h(z)‖∞ < +∞.

In this setting we can do a fixed point scheme similar to that before, the reason being that
if

‖(1+ |z|N−1)ψ̂(z)‖∞ ≤ Cρ
N−6
‖φ̃‖∗,

then
|ψ̂(z)|p ≤ ρ−2+(N−6)p

‖φ̃‖
p
∗ (1+ |z|)−p(N−1)

and we also have p(N−1) = (N+2)(N−1)/(N−2) > N−3. Thus (6.8) can be solved
in the same way as before, and the conclusion remains unchanged. It is worth observing
that the energy of ψ in �ε is small with ε indeed small in any case, provided that ‖φ̃‖∗ is
bounded by some small fixed constant.

As a conclusion, substituting ψ̃ = ψ̃(φ̃) in equation (6.6), we have reduced the full
problem (2.1) to solving the following (nonlocal) problem in D:

Aφ̃ + pw̃p−1φ̃ = −N(ζ ε2δφ̃ + ψ̃(φ̃))− Sε(w̃)− pw̃p−1ψ̃(φ) in D, (6.12)

φ̃ = 0 on ∂D.

We will solve a projected version of this problem in the next section, and in Section 8 we
will solve it in full.
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7. The nonlinear projected problem

This section is devoted to solve a projected problem associated to (6.12). We shall relieve
the notation in (6.12) dropping the tildes and write it as

L(φ) = Sε(w)+N(φ) in D, (7.1)
φ(y0 + ρ

−1`, y) = φ(y0, y) for all y0, y, (7.2)
φ = 0 on ∂D, (7.3)

where L(φ) = Aφ+pωp−1φ, withA defined in (5.14) and ω in (2.4), and N(φ) is given
by

N(φ) = p(ωp−1
− wp−1)φ − N(ζ ε2δφ + ψ(φ))+ ζ

ε
2δpwp−1ψ(φ) (7.4)

with
N(φ) = µ̃

−
N−2

2 ε
ε (w+ φ)p−ε − wp−ε − pwp−1φ̃.

Let us observe that Sε(W) can be decomposed in the following way:

Sε(W) = E + {ε[ρ2a0ë(ρy0)+ λ1e(ρy0)]}χεZ0 (7.5)

(see (5.53). The projected version of the problem is as follows: Givenµ, d and e satisfying
(5.32), the projected problem we want to solve is: find functions φ and ci(y0) for i =
0, . . . , N + 1 so that

L(φ) = E +N(φ)+
∑
i

ciZi in D, (7.6)

φ(y0 + ρ
−1`, y) = φ(y0, y) for all y0, y, (7.7)

φ = 0 on ∂D, (7.8)∫
Dy0

φZi = 0 for all i = 0, . . . , N + 1 and all y0. (7.9)

Observe that the last term in (7.5) have been absorbed in c0Z0.
For further reference, it is useful to point out the Lipschitz dependence of the error

term S1 on the parameters µ, d and e for the norms defined in (5.8), (5.9) and (5.31). We
have the estimate

‖E(µ1, d1, e1)− E(µ1, d1, e1)‖∞ ≤ cε
2
‖(µ1 − µ2, d1 − d2, e1 − e2)‖. (7.10)

This is a consequence of (5.53), (5.49), (5.46), (5.55). As already observed, we can ap-
ply the linear theory developed in Section 3. Given Proposition 3.2, solving (7.6)–(7.9)
reduces to solving a fixed point problem, namely

φ = T (E +N(φ)) =: A(φ), (7.11)

where T is the operator defined in Proposition 3.2.
Consider the set

M := {φ : ‖φ‖∗ ≤ cε2
}

for a certain positive constant c.
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We first show that A maps M in itself. Assume ‖φ‖∗ ≤ cε2. Then

‖A(φ)‖∗ ≤ C‖E +N(φ)‖∗∗.

We first estimate ‖E‖∗∗. Given the definition (5.53) for S1, we get

‖χεE‖∗∗ ≤ Cε
2. (7.12)

Next we estimate ‖N(φ)‖∗∗. We have

‖N(φ)‖∗∗ ≤ C[‖(ωp−1
− wp−1)φ‖∗∗ + ‖η

ε
3δN(η

ε
3δφ +ψ(φ))‖∗∗ + ‖η

ε
3δw

p−1ψ(φ)‖∗∗].

We get
‖(ωp−1

− wp−1)φ‖∗∗ ≤ C‖[(ω + εeZ0 +5)
p−1
− ωp−1]φ‖∗∗

≤ C‖ωp−2(εeZ0 +5)φ‖∗∗ ≤ Cε‖φ‖∗;

furthermore

‖ζ ε3δN(ζ
ε
3δφ + ψ(φ))‖∗∗ ≤ C sup

|y|≤cε−1/2
|(1+ |y|)N−2ωp−2(φ + ψ)2|

+ sup
|y|≥cε−1/2

(1+ |y|)N−2(|φ|p + |ψ |p)

≤ Cε4

and

‖ζ ε3δw
p−1ψ(φ)‖∗∗ ≤ Cε

N−3− 2
N−2 sup
|y|≤cε−(N−1)/(N−2)

(1+ |y|)N−6
‖φ‖∗ ≤ Cε

2+ 2
N−2 ‖φ‖∗.

Thus we get
‖N(φ)‖∗∗ ≤ Cε

3

for all ‖φ‖∗ ≤ cε2. Given (7.12), we conclude that A(φ) ∈M for any φ ∈M, provided
c in the definition of M is chosen large enough.

We next prove that A is a contraction mapping, so that the fixed point problem (7.11)
can be uniquely solved inM. This fact is a direct consequence of (6.10). Indeed, arguing
as in the estimates above we obtain

‖A(φ1)− A(φ2)‖∗ ≤ C‖N(φ1)−N(φ2)‖∗∗ ≤ Cε‖φ1 − φ2‖∗.

Emphasizing the dependence on µ, d, e, what we find for the linear operator T is the
Lipschitz dependence

‖Tµ1,d1,e1 − Tµ2,d2,e2‖ ≤ Cε‖(µ1 − µ2, d1 − d2, e1 − e2)‖.

We recall that we have the Lipschitz dependence (7.10). Moreover, the operator N also
has Lipschitz dependence on (µ, d, e). It is easily checked that for ‖φ‖∗ ≤ Cε2 we have,
with the obvious notation,

‖N(µ1,d1,e1)(φ)−N(µ2,d2,e2)(φ)‖∗∗ ≤ Cε
3
‖(µ1 − µ2, d1 − d2, e1 − e2)‖.
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Hence from the fixed point characterization we see that

‖φ(µ1,d1,e1) − φ(µ2,d2,e2)‖∗ ≤ Cε
4
‖(µ1 − µ2, d1 − d2, e1 − e2)‖. (7.13)

We have thus proved the following

Proposition 7.1. There is a number c > 0 such that for all sufficiently small ε and all
µ, d, e satisfying (5.32), problem (7.6)–(7.9) has a unique solution φ = φ(µ, d, e) and
ci = ci(µ, d, e) which satisfies

‖φ‖∗ ≤ cε
2. (7.14)

Moreover φ depends Lipschitz-continuously on µ, d and e in the sense of estimate (7.13).

8. The final adjustment of parameters: conclusion of the proof

In this section we will find equations relating µ, d and e to get all the coefficients ci
in (7.6) identically equal to zero. To do this, we multiply equation (7.6) by Zi , for all
i = 0, . . . , N + 1 (see (2.11) and (2.12)), and we integrate in y. Thus, the system

ci(ρy0) = 0 for all i = 0, . . . , N + 1

is equivalent to∫
Dy0

Sε(W)Zi dy +

∫
Dy0

(N(φ)−Aφ − ωp−1φ)Zi = 0 for all i and y0,

where Sε(W) is defined in (5.53), N(φ) in (7.4), A in (5.14), and ω in (2.4).
Taking into account Section 7 and Proposition 7.1, we get∫

Dy0

(N(φ)−Aφ − ωp−1φ)Zi = ε
3r,

where r is a sum of functions of the form

h0(ρy0)[h1(µ, d, e, µ̇, ḋ, ė)+ o(1)h2(µ, d, e, µ̇, ḋ, ė, µ̈, d̈, ë)],

where h0 is a smooth function uniformly bounded in ε, h1 depends smoothly on µ, d, e
and their first derivatives, it is bounded in the sense that

‖h1‖∞ ≤ c‖(µ, d, e)‖,

and it is compact, as a direct application of the Ascoli–Arzelà Theorem shows. The func-
tion h2 depends on (µ, d, e), together with their first and second derivatives. An important
remark is that h2 depends linearly on µ̈, d̈ and ë. Furthermore it is Lipschitz, with

‖h2(µ1, d1, e1)− h2(µ2, d2, e2)‖∞ ≤ o(1)‖(µ1 − µ2, d1 − d2, e1 − e2)‖.



1592 Manuel del Pino et al.

We next study
∫
Sε(W)Zidy, with Sε(W) given by (5.53). First we have∫
Dy0

[
N1(5)+

∑
ciZi

]
Zj = ε

2h0(ρy0)+ o(1)ε3r,

where h0(ρy0) is a smooth function of ρy0, which does not depend on µ, d , e, and r is as
before.

Taking into account the previous computation and the results of Section 5, (5.35),
(5.38), (5.39), (5.40), we conclude that the equations

ci = 0

are equivalent to the following limit system ofN+2 nonlinear ordinary differential equa-
tions in the unknowns µ, d1, . . . , dN , e:

LN+1(µ) := −C2ε
1+ 2

N−2µ0µ̈+ Aµ+ BdN = αN+1 + εMN+1,

LN (dN ) := −C1$εµ0d̈N + Bµ+ CdN = αN + εMN ,

Lk(dk) := −d̈k +
∑N−1
j=1 R0j0kdj = αk + εMk, k = 1, . . . , N − 1,

L0(e) := ρ2a0ë(ρy0)+ λ1e(ρy0)+ γ0dN = α0 + εQ0 + ε
2M0,

(8.1)

where µ, d1, . . . , dN and e satisfy periodic boundary conditions in [−`, `]. In (8.1),
we have A > 0, C > 0 and AC − B2 > 0. The functions αi are explicit func-
tions of x0, smooth and uniformly bounded in ε. The function γ0 is given by γ0 =

2(Trḡ h̄ − h̄00)(
∫
∂iiωZ0). The operators Mi = Mi(µ, d, e) can be decomposed in the

following form:
Mi(f, e) = Ai(µ, d, e)+Ki(µ, d, e),

where Ki is uniformly bounded in L∞(−`, `) for (µ, d, e) satisfying (5.32) and is also
compact. The operator Ai depends on (µ, d, e) and their first and second derivatives and
it is Lipschitz in this region, namely

‖Ai(µ1, d1, e1)− Ai(µ2, d2, e2)‖∞ ≤ Co(1)‖(µ1 − µ2, d1 − d2, e1 − e2)‖.

We remark that the dependence on µ̈, d̈ and ë is linear. Finally, the operator Q0 is
quadratic in d and it is uniformly bounded in L∞(−`, `) for (µ, d, e) satisfying (5.32).

Our goal is now to solve (8.1) in µ, d and e. To do so, we first analyze the invertibility
of the linear operators Li .

We start with a linear theory, in L∞ setting, for the problem of finding 2`-periodic
solutions of the problem

LN+1(µ) = h1, LN (d) = h2, (8.2)

with h1 and h2 bounded. This is the content of the next lemma.

Lemma 8.1. Assume that A > 0, C > 0 and AC − B2 > 0 and that ‖h1‖∞ + ‖h2‖∞
is bounded. Then there exist a 2`-periodic solution (µ, d) to the above system and a
constant c such that

‖µ‖∞ + ‖d‖∞ + ε
1
2+

1
N−2 ‖µ̇‖∞ + ε

1
2 ‖ḋ‖∞ ≤ c[‖h1‖∞ + ‖h2‖∞] .
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Proof. System (8.2) has a variational structure. The associated energy functional on the
class of 2`-periodic functions is positive, bounded from below away from zero and con-
vex. Existence of solution thus follows.

In order to get the a priori estimate, we assume towards a contradiction that there
exists a sequence (h1n, h2n) with

‖h1n‖∞ + ‖h2n‖∞→ 0

and a sequence of solutions (µn, dn) with

‖µn‖∞ + ‖dn‖∞ + ε
1
2+

1
N−2 ‖µ̇n‖∞ + ε

1
2 ‖ḋn‖∞ = 1.

Since A > 0 and C > 0, applying the maximum principle to each equation in the system,
we see that ‖µn‖∞ ≤ c‖dn‖∞ and ‖dn‖∞ ≤ c‖µn‖∞. Hence we can assume dn(mn) =
‖dn‖∞ > δ and mn → m. Scaling the system with y = (x −m)/ε, we find that the
scaled functions, which we denote by µ̂n and d̂n, solve

−ε
1

N−2C2µ̂ ¨̂µn + Aµ̂n = −Bd̂n + o(1),

−C1
A2

A1
µ̂
¨̂
dn + Cd̂n = −Bµ̂n + o(1).

(8.3)

From the second equation we deduce that ‖d̂n‖∞ + ‖
˙̂
dn‖∞ ≤ c and a direct application

of the Ascoli–Arzelà Theorem implies that d̂n→ d̂ uniformly on compact sets.
We state that

Aµ̂n→−Bd̂. (8.4)

Assume that this is not true. There exists a compact interval I and a sequence of points
xn ∈ I such that

|Aµ̂n(xn)+ Bd̂(xn)| > a (8.5)

for a certain fixed positive constant a. Up to a subsequence, which we still denote xn, we
have xn → x0. We now scale with z = (y − x0)/ε

1/(N−2), so that the scaled functions
µ̄n and d̄n satisfy

−C2µ̂ ¨̄µn + Aµ̄n = −Bd̄n + o(1).

In this scale, we get ‖ ˙̄dn‖∞ ≤ cε1/2(N−2)
→ 0. This implies that d̄n converges uniformly

over compact sets to a constant and this constant has to be d̂(x0). Hence Aµ̄n + Bd̄n
converges to 0 locally over compact sets. This is in contradiction with (8.5), and proves
(8.4).

We now go back to (8.3), which reduces to saying that d̂ solves

−C1µ̂
¨̂
d + (C − B2/A)d̂ = 0.

Since C − B2/A > 0, we conclude that d̂ = 0, a contradiction. ut

Concerning the invertibility of the operator L0, we have the validity of the following
lemma.
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Lemma 8.2. Assume that condition (1.7) holds. If f ∈ C(−`, `)∩L∞(−`, `) then there
is a unique solution e of L0(e) = f which is 2`-periodic and satisfies

ρ2
‖ë‖∞ + ρ‖ė‖∞ + ‖e‖∞ ≤ Cρ

−1
‖f ‖∞.

Moreover, if f is in C2(−`, `), then

ρ2
‖ë‖∞ + ρ‖ė‖∞ + ‖e‖∞ ≤ C[‖f̈ ‖∞ + ‖ḟ ‖∞ + ‖f ‖∞].

Proof. Consider the following transformation:

l =

∫ `

−`

1
√
a0(s)

ds, t =

∫ s
−`
(
√
a0(θ))

−1dθ

l
, λ̃1 =

l2

π2 λ1

and
y(t) = ẽ(s).

Then the problem

L0(ẽ) = f, ẽ(−`) = ẽ(`), ˙̃e(−`) = ˙̃e(`)

reduces to
ρ2ÿ + λ̃1ÿ = f̃ , y(0) = y(π), ẏ(0) = ẏ(π). (8.6)

Thus (8.6) is solvable if and only if ρ2λ̃1 6= λk for all k ≥ 0, where λk is an infinite
sequence of eigenvalues for (8.6), with f̃ = 0, where yk(t) is an orthonormal basis of
L2(0, π) formed by the eigenfunctions of

ÿk + 4k2ÿ = 0, yk(0) = yk(π), ẏk(0) = ẏk(π).

Furthermore, √
λk = 2k +O(1/k3). (8.7)

When (8.6) is solvable, its solution is given by

y(t) =

∞∑
k=0

f̃k

λ̃1 − 4k2ρ2
yk(t), (8.8)

and ‖f̃ ‖L2 = (
∫ π

0 f̃ 2
k )

1/2. Choose

|ρ24k2
− λ̃1| ≥ cρ (8.9)

for all k, where c is small. This corresponds precisely to the condition (1.7) in the state-
ment of the theorem with

κ =
π

2

√
λ1

∫ `

−`

1
√
a0(s)

ds. (8.10)
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From (8.9) we then find that |λ̃1−λkρ
2
| ≥ (c/2)ρ if ρ is also sufficiently small. It follows

directly from expression (8.8) that ‖y‖L∞(0,π) ≤ Cρ−1
‖f̃ ‖L∞(0,π). Observe also that

‖y′‖2L∞(0,π) ≤

∞∑
k=0

|f̃k|
2 1+ |λk|2

(λ̃1 − λkρ2)2
≤ C

∞∑
k=0

(1+ k4)|f̃k|
2.

Hence
ρ‖y′‖L∞(0,π) + ‖y‖L∞(0,π) ≤ Cρ

−1
‖f̃ ‖L∞(0,π).

Moreover, if f̃ is in C2(0, π) with f (0) = f (π), f ′(0) = f ′(π), then the sum
∑
k k

4f̃ 2
k

is finite and bounded by the C2-norm of f̃ . This automatically implies

ρ2
‖y′′‖L∞(0,π) + ‖y

′
‖L∞(0,π) + ‖y‖L∞(0,π) ≤ C‖f̃ ‖C2(0,π),

and the proof is complete. ut

We now conclude with

Proof of Theorem 1.1. Since the geodesic 0 is nondegenerate, the linear operator Lk
is invertible in the set of 2`-periodic functions. More precisely, there is a positive con-
stant C such that for any f ∈ L∞(−`, `), there exists a 2`-periodic function dk such that
Lk(dk) = f and

‖d̈k‖∞ + ‖ḋk‖∞ + ‖dk‖∞ ≤ C‖f ‖∞.

Define µ̃0, d̃0N , d̃0k to be a solution of

LN+1(µ̃0) = αN+1, LN (d̃0N ) = αN ,

Lk(d̃0k) = αk for all k = 1, . . . , N − 1.

Thus we have

ε‖
¨̃
d0N‖∞ + ε

1/2
‖
˙̃
d0N‖∞ + ‖d̃0N‖∞ ≤ c, ‖

¨̃
d0k‖∞ + ‖

˙̃
d0k‖∞ + ‖d̃0k‖∞ ≤ c

and
ε1+ 1

N−2 ‖ ¨̃µ0‖∞ + ε
1
2+

1
N−2 ‖ ˙̃µ0‖∞ + ‖µ̃0‖∞ ≤ c.

We now solve L0(Ẽ0) = − 2(Trḡ h̄− h̄00)(
∫
∂iiωZ0)d̃0N + α0 + εQ0(d̃0), where d̃0 =

(d̃01, . . . , d̃0N ). Since the right hand side is regular, by Lemma 8.2 we have

ε2+ 2
N−2 ‖ë0‖∞ + ‖E0‖∞ ≤ c.

We have
‖(µ̃0, d̃0, Ẽ0)‖ ≤ c.

Define
µ = µ̃0 + µ̃1, d = d̃0 + d̃1, e = Ẽ0 + ẽ1.
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The system (8.1) reduces to
LN+1(µ̃1) = εMN+1, LN (d̃1N ) = εMN ,

Lk(d̃1k) = εMk, k = 1, . . . , N − 1,

L0(ẽ1) = −2(Trḡ h̄− h̄00)

(∫
∂iiωZ0

)
d̃1N + ε

2M0.

(8.11)

Let us observe now that the linear operator

L(µ1, d1, e1) =
(
LN+1(µ1), LN (d1N ), LN−1(d1(N−1)), . . . , L1(d11), L0(e1)

)
is invertible with bounds for L(µ1, d1, e1) = (f, g, h) given by

‖(µ1, d1, e1)‖ ≤ C[‖f ‖∞ + ‖g‖∞ + ε−
N−1
N−2 ‖h‖∞].

It then follows from the contraction mapping principle that, given σ > 0, the problem

[L+ (εMN+1, εMN , εMN−1, . . . , εM1, ε
2M0)](µ1, d1, e1) = (f, g, h)

is uniquely solvable for ‖(µ1, d1, e1)‖ ≤ cε
σ if ‖f ‖∞ < εσ+ρ , ‖g‖∞ < εσ+ρ , ‖h‖2 <

εσ+ρ−(N−1)/(N−2), for some ρ > 0. The desired result for the full problem (8.11) then
follows directly from Schauder’s fixed point theorem. In fact we get ‖(µ̃1, d̃1, ẽ1)‖ =

O(ε(N−3)/(N−2)) for the solution. ut

9. Appendix

Proof of (5.33)

We write

Sε(w) = Sε(ω̃)+ {ρ
2a0ëε(ρy0)+ λ1eε(ρy0)}χεZ0 + Ã(eεχεZ0)

+ 2eε∇χε∇Z0 +N0(eεχεZ0), (9.1)

where

N0(eεχεZ0) = µ
−
N−2

2 ε
ε [(ω̃ + eεχεZ0)

p−ε
− ω̃p−ε]− peεωp−1χεZ0. (9.2)

We start by analyzing Sε(ω̃). Expanding Sε(ω̃) in ε and taking into account that

1[(1+ αε)ω]+ µ
−
N−2

2 ε
ε [(1+ αε)ω]p = 0 in RN , (9.3)

we have

Sε(ω̃) =

5∑
k=0

Akω − pωp−1ω̄ − εωp logω

+ B(ω)−A(ω̄)+ αεA(ω − ω̄)+ a0∂
2
0 [αε(ω − ω̄)]

+ b(ρy0, y;µ, d)ε
2ωp, (9.4)

where the operators Ak and A are defined in Lemmas 5.1 and 5.14, the operator B is
given by (5.16) and b is a sum of functions of the form

b0(ρy0)b1(µ, d)
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with b0 a smooth function of ρy0, uniformly bounded in ε together with its derivatives,
and b1 a smooth function of its arguments, uniformly bounded in ε. Note that b1 does not
depend on the derivatives of its arguments.

The main part in (9.4) is

e0 :=
5∑
k=0

Akω − pωp−1ω̄ − εωp logω. (9.5)

Indeed, B(ω) is of lower order with respect to
∑5
k=0Akω as shown by Lemma 5.1, and

so is the term given byA(ω̄) since ω̄ = O(ε)ω and also the term αεA(ω− ω̄) since αε =
O(ε|log ε|) as ε → 0. Observe furthermore that ∂2

0αε = ρ
2O(αε), so a0∂

2
0 [αε(ω − ω̄)]

= o(1)ρ2ω. Summarizing, we can write

Sε(ω̃) = e0 + ε
2b(ρy0;µ, d)ω

p
+ ε3r, (9.6)

where r is a sum of functions of the form

h0(ρy0)f1(µ, d, µ̇, ḋ)f2(y)

with h0 a smooth function uniformly bounded in ε, f1 a smooth function of its arguments,
homogeneous of degree 3, uniformly bounded in ε and

sup (1+ |y|N−2)|f2(y)| < +∞.

By means of Lemma 5.1 and taking into account notation (5.3), we can expand the first
term in (9.5) in powers of ε:

5∑
k=0

Ak(ω) = ε[−2h̄ij d̃N∂ijω]+ ε1+ 1
N−2 µ̃[−2h̄ijyN∂ijω + Trḡ h̄∂Nω]

+ ε2
[∑
ij

(
˙̃
di
˙̃
dj −

1
3Rijkl d̃k d̃l + a

ij
Nk d̃k d̃N + 4h̄0j d̃i d̃N )∂ijω

]
+ ε2+ 1

N−2
[
−µ̃Dyω ·

¨̃
d − 1

3 µ̃Rijklyk d̃l∂ijω + 2µ̃aijNkyk d̃N∂ijω

+ µ̃( 2
3Rij ik + R0j0k)d̃k∂jω + 4h̄0j

(
µ̃yNDy(∂jω)δ̇ + ˙̃µd̃N (γ ∂jω +Dy(∂jω)y)

)
+ b

j
N µ̃d̃N∂jω − Trḡ k̄µ̃d̃N∂Nω − 2 ˙̃µDyZN+1 ·

˙̃
d
]

+ ε2+ 2
N−2

[
− ¨̃µµ̃ZN+1

+ µ̃2(
−

1
3Rikj lykyl∂ijω + (

2
3Rij ik + R0j0k)yk∂jω + b

j
NyN∂jω − Trḡ k̄yN∂Nω

)
+ 4h̄0j ˜̃µ ˙̃µyN (γ ∂jω +Dy(∂jω) · y)

+ ( ˙̃µ)2
(
Dyyω[y]2

+ 2(1+ γ )Dyω · y + γ (1+ γ )ω
)]

+ ε3r, (9.7)
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where r denotes a sum of functions of the form

h0(ρy0)[f1(ν, d, µ̇, ḋ)+ o(1)f2(µ, d, µ̇, ḋ, µ̈, d̈)]f3(y)

with h0 a smooth function of ρy0 uniformly bounded in ε, f1, f2 smooth functions of
their arguments, f1 homogeneous of degree 3, f2 linear in the variables (µ̈, d̈), and

sup (1+ |y|N−2)|f3(y)| < +∞.

The previous expansion, together with (9.5), (9.6) and the notation (5.3), gives a precise
description of the first term Sε(ω̃) in (9.1). Let us now consider the term A(eεχεZ0).
Arguing as before, we have

A(eεχεZ0) =

5∑
k=0

Ak(eεZ0)+ ε
3r,

where r is a sum of functions of the form

h0(ρy0)[f1(ν, d, e, µ̇, ḋ, ė)+ o(1)f2(µ, d, e, µ̇, ḋ, ė, µ̈, d̈, ë)]f3(y)

with h0 a smooth function of ρy0 uniformly bounded in ε, f1, f2 smooth functions of
their arguments, f1 homogeneous of degree 3, f2 linear in the variables (µ̈, d̈, ë), and

sup (1+ |y|N−2)|f3(y)| < +∞.

Let us then consider the term
∑5
k=0Ak(eεZ0). Directly from Lemma 5.1 and taking into

account (5.30), we obtain

5∑
k=0

Ak(eεZ0) = εẽA+ ε
2+ 1

N−2 ˙̃eB,

where

A = ε[−2h̄ij d̃N∂ijZ0]+ ε1+ 1
N−2 µ̃[−2h̄ijyN∂ijZ0 + Trḡ h̄∂NZ0]

+ ε2
[∑
ij

(
˙̃
di
˙̃
dj −

1
3Rijkl d̃k d̃l + a

ij
Nk d̃k d̃N + 4h̄0j d̃i d̃N )∂ijZ0

]
+ ε2+ 1

N−2
[
−µ̃DyZ0 ·

¨̃
d − 1

3 µ̃Rijklyk d̃l∂ijZ0 + 2µ̃aijNkyk d̃N∂ijZ0

+ µ̃( 2
3Rij ik + R0j0k)d̃k∂jZ0

+ 4h̄0j
(
µ̃yNDy(∂jZ0)δ̇ + ˙̃µd̃N (γ ∂jZ0 +Dy(∂jZ0)y)

)
+ b

j
N µ̃d̃N∂jZ0 − Trḡ k̄µ̃d̃N∂NZ0 − 2 ˙̃µ(γDyZ0 +DyyZ0[y]) · ˙̃d

]
+ ε2+ 2

N−2
[
− ¨̃µµ̃ZN+1

+ µ̃2(
−

1
3Rikj lykyl∂ijZ0 + (

2
3Rij ik + R0j0k)yk∂jZ0 + b

j
NyN∂jZ0 − Trḡ k̄yN∂NZ0

)
+ h̄0j µ̃ ˙̃µyN (γ ∂jZ0 +Dy(∂jZ0) · y)

+ ( ˙̃µ)2
(
DyyZ0[y]2

+ 2(1+ γ )DyZ0 · y + γ (1+ γ )Z0
)]

+ ε3r
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and r is as before. On the other hand,

B = ε[−2µ̃DyZ0 · δ̇ − 4h̄0j µ̃d̃N∂jZ0]

+ ε1+ 1
N−2 [−2µ̃ ˙̃µDyZ0 · y − 2γ µ̃ ˙̃µZ0 − 4(µ̃)2h̄0jyN∂jZ0]+ ε2r,

with r as before.
Expanding in ε the term N0(eεχεZ0) defined in (9.2), we get

N0(eεχεZ0) = ε
2[p(p − 1)E2

0ω
p−2Z2

0 + pE0ω
p−1 logωZ0]+ ε3

|log ε|r, (9.8)

where r is a sum of functions of the form

h0(ρy0)h1(µ, d, e)h2(y)

with h0 a smooth function, uniformly bounded in ε, h1 a smooth function of its arguments
and sup (1+ |y|)N+2

|h2|(y) ≤ C. Summing up all the computation, we obtain the proof
of (5.33). ut

Proof of (5.35), (5.38), (5.39), (5.40)

The proof consists of two steps. In the first step we compute the expansion in ε of the
projections assuming that

µε = ε
N−1
N−2 µ̃, dεN = εd̃N , dεj = εdj , eε = εẽ.

In the second part, we will choose µ1, dN1 and e1 to get the above expansion when µ, d
and e are defined as in (5.4), (5.3), (5.6), (5.29) and (5.30).

Step 1. We start with the projection of the nonlinear part

h = −pωp−1ω̄ − εωp logω.

We have the following facts: as ε→ 0,∫
Dy0

hZN+1 dy = ε

[
A2

(
µ̃

d̃N

)N−2

− A3 + ε
1

N−2

(
µ̃

d̃N

)N−1

gN+1

(
µ̃

d̃N

)]
, (9.9)

∫
Dy0

hZN dy = ε
1+ 1

N−2

[
−A1

(
µ̃

d̃N

)N−1

+ ε
1

N−2

(
µ̃

d̃N

)N
gN

(
µ̃

d̃N

)]
, (9.10)∫

Dy0

hZk dy = ε
2+ 3

N−2 gk

(
µ̃

d̃N

)
for k = 1, . . . , N − 1, (9.11)

∫
Dy0

hZ0 dy = ε

[
−A4

(
µ̃

d̃N

)N−2

− A5 + ε
1

N−2

(
µ̃

d̃N

)N−1

g0

(
µ̃

d̃N

)]
. (9.12)

In these formulas, the functions gi are smooth functions with gi(0) 6= 0 and Ai are
positive constants.
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We first prove (9.10). By Taylor expansion we have

− p

∫
Dy0

ω̄ωp−1ZN

= pc
N+2

2
N

∫
Dy0

N − 2

(1+ |ȳ|2 + |yN + 2ε−1/(N−2)d̃N/µ̃|2)
N−2

2

yN

(1+ |y|2)
N+4

2
dy

= ε1+ 1
N−2

[
−A1

(
µ̃

d̃N

)N−1

+ ε
1

N−2

(
µ̃

d̃N

)N
gN

(
µ̃

d̃N

)]
.

The constant A1 which appears in (9.9) is precisely given by

A1 =
pc

N+2
2

N (N − 2)2

2N−1

∫
y2
N

(1+ |y|2)
N+4

2
.

Furthermore, we have

−ε

∫
Dy0

ωp logωZN = ε2+ 2
N−2O

((
µ̃

d̃N

)N)
.

This proves (9.10). Concerning the projection along ZN+1, arguing as before we get

−p

∫
Dy0

ω̄ωp−1ZN+1 = ε

[
A2

(
µ̃

d̃N

)N−2

+ ε
1

N−2

(
µ̃

d̃N

)N−1

gN

(
µ̃

d̃N

)]
for a positive constant A2 which can be computed explicitly.

Finally, we get

−ε

∫
Dy0

ωp logωZN+1 = −εA3 + ε
2+ 2

N−2O

((
µ̃

d̃N

)N)
where A3 is the positive constant given by

A3 =

∫
ωp logωZN+1 =

N − 2
2

∫
ωp+1 logω +

∫
logω∇

(
ωp+1

p + 1

)
· y

= −
1

p + 1

∫
ωp∇ω · y =

N

(p + 1)2

∫
ωp+1.

This proves (9.9). Estimate (9.12) follows in a similar way. Finally, (9.11) which follows
from the observation that

p

∫
ωp−1ω̄ Zk =

∫
ωp logωZk = 0 for all k = 1, . . . , N − 1,

due to symmetry.
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We continue with the projections of S := Sε(w)− h. We have

ZN+1 = ε
2
[∫

ϒεZN+1(1+ o(ε))
]

+ ε2+ 2
N−2

[
−C2µ̃ ¨̃µ+ ( ˙̃µ)

2
∫

[Dyyωy2
+ 2(1+ γ )Dyωy + γ (1+ γ )ω]ZN+1

− (µ̃)2
[

Trḡ k̄
∫
yN∂NωZN+1 +

1
3Rikj l

∫
ykyl∂ijωZN+1

]]
+ ε3r (9.13)

where r is a sum of functions of the form (5.36).
Concerning the projection along ZN , we get at main order∫
Dy0

SZN = ε
1+ 1

N−2 µ̃

[
−2h̄ii

∫
yN∂Nω∂iiω + Trḡ h̄

∫
(∂Nω)

2
]

+ ε2+ 1
N−2

[
−C1µ̃

¨̃
dN − 2 ˙̃µ

∫
DyZN+1[ ˙̃d]ZN

+ 4h̄0j

(
µ̃dj

∫
yN∂jjωZN + ˙̃µdN

∫
∂N∂jωyN∂Nω

)
− C1µ̃dN Trḡ k̄

− Ã1

(
µ̃

d̃N

)N−1

ẽ − 2h̄00ẽd̃N

∫
yNω

p−1Z0ZN

]
+ ε3+ 2

N−2 r

= ε1+ 1
N−2C1µ̃h̄00 + ε

2+ 1
N−2C1

[
−µ̃
¨̃
dN − Trḡ k̄µ̃d̃N + 2h̄0j µ̃dj

− A1

(
µ̃

d̃N

)N−1

ẽ − 2h̄00ẽd̃N

∫
yNω

p−1Z0ZN

]
+ ε3+ 2

N−2 r, (9.14)

where we use ∫
yN∂jjω∂Nω =

1
2
C1,

∫
∂jZN+1∂N = 0, for all j.

We now handle the projection along Zk for k = 1, . . . , N − 1. First we write∫
Dy0

SZk = ε
2+ 1

N−2 µ̃

[
−C1d̈k +

(
−

2
3Riljm

∫
ym∂ijωZk + C1(

2
3Rij il + R0j0l)

)
dl

]
+ d̃N

(
2aijNl

∫
yl∂ijωZk + b

j
NC1

)
+
˙̃
dN

(
4h̄0k

∫
yN∂NkωZk

)]
+ ε3+ 2

N−2 r

= ε2+ 1
N−2 µ̃C1[−d̈k + R0j0ldl + γ0k d̃N + γ1k

˙̃
dN ]+ ε3+ 2

N−2 r (9.15)

since
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−
2
3Riljmdl

∫
DN

ym∂ijωZk = −
2
3

[
Rilik

∫
DN

yk∂iiωZk + Rilki

∫
DN

yi∂ikωZk

+ Rkljj

∫
DN

yj∂kjωZk

]
dl

= −
1
3C1[Rilik − Rilki]dl = − 2

3C1Rilikdl .

In (9.15), γ0k and γ1k denote smooth explicit functions of ρy0.
Finally, using the orthogonality in L2 of Z0 with respect to Zi , for i = 1, . . . , N + 1,

direct computations show∫
Dy0

SZ0 = εC3[−2(Trḡ h̄− h̄00)d̃N ]

+ ε2C3

[
ρ2a0 ¨̃e + λ1ẽ + ḋ

2
i −

1
3Rikildkdl + a

ii
Nkdk d̃N + 4h̄0jdj d̃N +

∫
ϒεZ0

]
+ ε2+ 2

N−2 [( ˙̃µ)2 + f1(ρy0)µ̃
2
+ f2(ρy0)µ̃ ˙̃µ]+ ε3r, (9.16)

where fi are explicit smooth functions, uniformly bounded in ε, and r is as before.
Summing up the previous calculations, we conclude that at main order∫

Dy0

Sε(w)ZN+1 dy = ε

[
A2

(
µ̃

d̃N

)N−2

−A3+ε
1

N−2

(
µ̃

d̃N

)N−1

gN+1

(
µ̃

d̃N

)]
(1+o(1)),

$

∫
Dy0

Sε(w)ZN dy

= ε1+ 1
N−2

[
C1
A2

A1
h̄00µ̃− A1

(
µ̃

d̃N

)N−1

+ ε
1

N−2

(
µ̃

d̃N

)N
g̃N

(
µ̃

d̃N

)]
(1+ o(1)),∫

Dy0

Sε(w)Z0 dy = ε

[
λ1ẽ − 2(Trḡ h̄− h̄00)

(∫
∂iiωZ0

)
d̃N − A4

(
µ̃

d̃N

)N−2

− A5

+ ε
1

N−2

(
µ̃

d̃N

)N−1

g̃0

(
µ̃

d̃N

)]
(1+ o(1)).

Step 2. Let now (µ0
ε, d

0
εN , e

0
ε) ∈ (0,∞) × (0,∞) × R be the solution to the following

system of nonlinear equations:

A2

(
µ

dN

)N−2

− A3 + ε
1

N−2

(
µ

dN

)N−1

g̃N+1

(
µ

dN

)
= 0,

C1
A2

A1
h̄00µ− A2

(
µ

dN

)N−1

+ ε
1

N−2

(
µ

dN

)N
g̃N

(
µ

dN

)
= 0,

λ1e − 2(Trḡ h̄− h̄00)

(∫
∂iiωZ0

)
dN − A4

(
µ

dN

)N−2

− A5

+ ε
1

N−2

(
µ

dN

)N−1

g̃0

(
µ

dN

)
= 0.

(9.17)
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It is easy to show that the solution (µ0
ε, d

0
εN , e

0
ε) has the form

µ̂ = µ0 + ε
1

N−2µ1, d̂N = d0 + ε
1

N−2 d1N , ê = e0 + ε
1

N−2 e1,

where µ0, d0, E0 is the solution to

F(µ, dN , e) :=

 A2(µ/dN )
N−2
− A3

C1
A2
A1
h̄00µ− A2(µ/dN )

N−1

λ1e − 2(Trḡ h̄− h̄00)(
∫
∂iiωZ0)dN − A4(µ/dN )

N−2
− A5

 = 0.

Observe that µ0 > 0 and d0 > 0. Direct computations show that

F0 := ∇µ,dN ,eF(µ0, d0, E0)

=

 (N − 2)A2µ
N−3
0 /dN−2

0 −(N − 2)A2µ
N−2
0 /dN−1

0 0

−(N − 2)A2µ
N−2
0 /dN−1

0 (N − 1)A2µ
N−1
0 /dN0 0

0 −2(Trḡ h̄− h̄00)
∫
∂iiωZ0 λ1

 .
Since

det(∇µ,dN ,eF(µ0, d0, E0)) = (N − 2)A2C1λ1
µN−2

0

dN−1
0

h̄00 > 0,

system (9.17) is equivalent to a fixed point problem, which is uniquely solvable in the set

{(µ1, d1N , e1) : ‖µ1‖∞ ≤ δ, ‖d1N‖∞ ≤ δ, ‖e1‖∞ ≤ δ}

for some proper small δ > 0.
We deduce the expansions (5.38), (5.39) and (5.40), with

A = (N − 2)A2
µN−3

0

dN−2
0

> 0, B = −(N − 2)A2
µN−2

0

dN−1
0

, C = N − 1)A2
µN−1

0

dN0
> 0.

An easy computation shows that AC − B2 > 0. This concludes the proof. ut
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