
DOI 10.4171/JEMS/242

J. Eur. Math. Soc. 13, 1–26 c© European Mathematical Society 2011

Guy Barles · Emmanuel Chasseigne · Cyril Imbert
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Abstract. This paper is concerned with Hölder regularity of viscosity solutions of second-order,
fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first
we assume that, at each point of the domain, either the equation is strictly elliptic in the classical
fully non-linear sense, or (and this is the most original part of our work) the equation is strictly el-
liptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth
conditions on the equation. These results concern a large class of integro-differential operators
whose singular measures depend on x and also a large class of equations, including Bellman–Isaacs
equations.

Keywords. Hölder regularity, integro-differential equations, Lévy operators, general non-local op-
erators, viscosity solutions

1. Introduction

The aim of this paper is to show that viscosity solutions of fully non-linear elliptic integro-
differential equations are Hölder continuous under general suitable strict ellipticity and
regularity/growth conditions on the equations. We also obtain explicit C0,α estimates in
terms of the space dimension, the non-linearity, the singular measure and the (local) L∞-
bound of the solution.

To be more specific, we describe the general framework we consider. We are interested
in equations of the type

F(x, u,Du,D2u, I[x, u]) = 0 in � (1.1)

where � is a domain in RN (not necessarily bounded) and I[x, u] is an integro-dif-
ferential operator. The function u is real-valued and Du,D2u stand respectively for its
gradient and Hessian matrix. The non-linearity F is a (continuous) function which is
degenerate elliptic: in this context, this means that F is non-increasing with respect to
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its last two variables (see below for a precise statement and [4] for further details). The
integro-differential operators we will consider in the present paper are defined as follows:

I[x, u] =
∫

RN
(u(x + z)− u(x)−Du(x) · z1B(z)) µx(dz) (1.2)

where 1B denotes the indicator function of the unit ball B and {µx}x∈RN is a family of
Lévy measures, i.e. non-negative, possibly singular, Borel measures on RN such that∫

RN
min(|z|2, 1) µx(dz) < +∞. (1.3)

We point out that the solution u has to be given in the whole space RN even if (1.1) is
satisfied on a domain �; see Section 2 for further details.

Important “special cases” of operators of the form (1.2) are Lévy–Itô operators, namely

ILI [x, u] =
∫

RN
(u(x + j (x, z))− u(x)−Du(x) · j (x, z)1B(z)) µ(dz) (1.4)

where µ is a Lévy measure and j (x, z) is the size of the jumps at x. For the operator to
be well-defined, one usually assumes

|j (x, z)| ≤ C0|z| for some constant C0 and for any x ∈ �, z ∈ RN .

Model examples for a Lévy measure µ and jump function j are the ones associated with
the fractional Laplacian: µ(dz) = dz/|z|N+α (with 0 < α < 2) and j (x, z) = z. This
class of operators appears in the context of stochastic control of jump processes and it is
also worth pointing out that, at least to the best of our knowledge, general comparison
results (for viscosity solutions) are only available for operators in the form (1.4).

Many papers deal with Hölder estimates for fully non-linear elliptic equations. There
are two kinds of approaches: for uniformly elliptic equations, one can use the powerful
approach by Harnack inequalities which leads also to further regularity results; we re-
fer the reader to Cabré and Caffarelli [7] or Trudinger [16, 17] and references therein
for results in this direction. A simpler method, more closely related to classical viscos-
ity solutions theory, was introduced by Ishii and Lions in [13]. Besides its simplicity, it
has the further advantage of providing results under weaker ellipticity assumptions and
even for some degenerate equations; it was used in [1], [10] where further regularity re-
sults are also proved and later in [5, 3]. As far as integro-differential elliptic equations are
concerned, many papers were published in potential theory, with equations being linear in
most of those papers; moreover they rely on probabilistic techniques. See for instance [6].
One of the first papers about Hölder estimates for integro-differential equations with PDE
techniques is probably [15]. It mainly deals with linear equations where singular mea-
sures µx have a very general x-dependence, improving on the previous literature; it also
deals with quite particular non-linear equations, more precisely, F(I[x, u],J [x, u]) = 0
where I and J are two different non-local terms, and for “strictly elliptic” functions F
(in a suitable sense).

In the present paper, we deal with fully non-linear elliptic equations and we obtain lo-
cal C0,α regularity and estimates for a quite general class of integro-differential operators
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of the form (1.2) satisfying proper assumptions (see (3.2)–(3.4)). Even if important op-
erators (1.4) can be seen as special cases of the general one, we will give specific results
with specific assumptions. In other words, our second main theorem is not a corollary of
the first one.

Let us mention that, on the one hand, we do not cover all the examples given in [15]
(in particular those in Section 3.4 of [15]), but on the other hand, we can treat examples
outside the scope of [15]; indeed, we only assume that the measure µx is bounded at
infinity (uniformly with respect to x), while condition (2.2) of [15] requires a (small)
power of |z| to be integrable at infinity. Moreover, we can handle much more general
non-linear equations, including the important Bellman–Isaacs equations, and we can also
identify the critical Hölder exponent α of the solution. To be more precise, we are able
to prove that the solution is α-Hölder continuous for any α < β (and even α = β under
stronger assumptions in the case β < 1) where β characterizes the singularity of the
measure associated with the integral operator.

In order to treat a large class of non-linear elliptic equations, we decided to present
the main results by assuming that the non-linearity F in (1.1) satisfies a proper ellipticity-
growth condition (see (H) in Section 3). Loosely speaking, this structure condition ensures
that either the equation is strictly elliptic in the classical fully non-linear sense or it is
strictly elliptic in a non-linear and non-local sense. Since this condition is rather technical,
a whole section is devoted to comments and examples (see Section 4).

The techniques we use in the present paper do not seem to yield Lipschitz regularity
when β ≥ 1 and we intend to investigate this question in a future work. Let us mention
that we proved [2] in quite a general framework that there exists a viscosity solution of
the Dirichlet problem without loss of the boundary condition. The local Hölder estimate
we obtain in the present paper applies to the Dirichlet problem too and we will address
naturally in a future work the question of boundary estimates. We also point out that
the techniques we develop here can be readily applied to parabolic integro-differential
equations. Finally, another possible interesting application of these results is the study of
the ergodicity of non-local equations.

We conclude this introduction by mentioning that after this work was completed, we
found out that Caffarelli and Silvestre [8] obtained regularity results for a large class of
non-linear integro-differential equations that are invariant under x-translations and uni-
formly elliptic in a non-local way. In particular, they are able to get C1,α regularity of
solutions.

The paper is organized as follows. In Section 2, we recall the definition of a viscos-
ity solution of (1.1). In Section 3, we state two main results: the first one deals with a
general x-dependent Lévy measure and the second with integro-differential operators in
the Lévy–Itô form. In Section 4, we comment on the main structure assumption on the
non-linearity F and we give examples of direct applications of our results. Section 5 is
devoted to the proofs of the main results.

Notation. The scalar product in RN is denoted by x · y. A ball centered at x of radius
r is denoted by B(x, r). If x = 0, we simply write Br , and if r = 1, we even write B.
Moreover, SN−1 denotes the unit sphere of RN .
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The transpose of a matrix A is denoted A∗ and ‖A‖ stands for the usual norm of A,
namely ‖A‖ := max|z|=1 |Az|. SN is the space of N × N real symmetric matrices. We
recall that X ≥ Y if all the eigenvalues of X − Y are non-negative. If X ∈ SN and
ε ∈ (0, 1) is such that all the eigenvalues of X are strictly less than 1 (resp. strictly
greater than −1), we set Xε = (I − εX)−1X (resp. Xε = (I + εX)−1X). These matrices
are obtained from X by applying a sup-convolution procedure (resp. an inf-convolution
procedure), namely, for any ξ ∈ RN ,

Xεξ · ξ = sup
ζ∈RN

{
Xζ · ζ −

|ξ − ζ |2

ε

}
, Xεξ · ξ = inf

ζ∈RN

{
Xζ · ζ +

|ξ − ζ |2

ε

}
.

2. Viscosity solutions for PIDE

In this section, we recall the notion of degenerate ellipticity for non-linear non-local equa-
tions and the definition of viscosity solutions for such equations.

2.1. Degenerate ellipticity

Throughout the paper, the domain � is an open subset of RN and the non-linearity F is a
continuous function. We also assume that (1.1) is degenerate elliptic. In this framework,
this means that we make the following

Assumption (E). For any x ∈ RN , u ∈ R, p ∈ RN , X, Y ∈ SN , l1, l2 ∈ R,

F(x, u, p,X, l1) ≤ F(x, u, p, Y, l2) if X ≥ Y, l1 ≥ l2.

2.2. Non-local operators

In order to define viscosity solutions for (1.1), we introduce two associated operators I1,δ

and I2,δ by

I1,δ[x, p, u] =
∫
|z|<δ

[u(x + z)− u(x)− p · z1B(z)]µx(dz),

I2,δ[x, p, u] =
∫
|z|≥δ

[u(x + z)− u(x)− p · z1B(z)]µx(dz).

In the case of Lévy–Itô operators (1.4), I1,δ and I2,δ are defined as follows:

I1,δ[x, p, u] =
∫
|z|<δ

[u(x + j (x, z))− u(x)− p · j (x, z)1B(z)]µ(dz),

I2,δ[x, p, u] =
∫
|z|≥δ

[u(x + j (x, z))− u(x)− p · j (x, z)1B(z)]µ(dz).
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2.3. Definition

We now recall the definition of a viscosity solution for (1.1). We assume that we are given
a function u defined on the whole space RN .

Definition 2.1 (Viscosity solutions). An upper semi-continuous (usc for short) function
u : RN → R is a subsolution of (1.1) if for any test function φ ∈ C2(B(x, δ)) such that
u− φ attains a maximum on B(x, δ) at x ∈ �,

F(x, u(x),Dφ(x),D2φ(x), I1,δ[x, p, φ]+ I2,δ[x, p, u]) ≥ 0

where p = Dφ(x).
A lower semi-continuous (lsc for short) function u : RN → R is a supersolution of

(1.1) if for any test function φ ∈ C2(RN ) such that u− φ attains a maximum on B(x, r)
at x ∈ � for some r > 0,

F(x, u(x),Dφ(x),D2φ(x), I1,r [x, p, φ]+ I2,r [x, u]) ≤ 0,

where p = Dφ(x).
A continuous function u : RN → R is a solution of (1.1) if it is both a subsolution

and a supersolution.

Remark 2.2. It is possible to construct solutions of (1.1) in the case where � = RN .
If � 6= RN , boundary conditions must be imposed. For instance, as far as the Dirichlet
problem is concerned, the function u can be prescribed outside of �. See [2] for further
details.

Remark 2.3. As remarked in [4], one can choose r = 0 in the previous definition, at
least in the case of Lévy–Itô operators. See [4] for further details.

3. Main results

In this section, we state the two main results of this paper: the first one is concerned with
non-local operators of the form (1.2) (Theorem 3.1) and the second one provides other
results for Lévy–Itô operators (1.4) (Theorem 3.2).

The two results rely on a structure condition imposed on the non-linearity F . In order
to formulate it, we consider two functions 31,32 : � → [0,+∞) such that 31(x) +

32(x) ≥ 30 > 0 on �.

(H) (Ellipticity-growth condition) For any R > 0, there exist constants k ≥ 0, τ, θ ∈
(0, 1], a locally bounded function χ : R+ × R+ → R+, a modulus of continuity
ωF : (0,+∞)→ (0,+∞) with ωF (0+) = 0 and two constants η, ε̄0 > 0 such that
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for any x, y ∈ � with |x − y| ≤ η, u, v ∈ R with |u|, |v| ≤ R, p, q ∈ RN , |q| ≤ R,
l1, l2 ∈ R with l1 ≤ l2, $ ∈ (0, 1/3), L > 0, ε̄ ∈ (0, ε̄0) and â ∈ SN−1, we have

F(y, u, p, Y, l2)− F(x, v, p + q,X, l1)

≤ 31(x)

(
Tr(X − Y )+

ωF (|x − y|)

ε̄
+ |x − y|τ |p|2+τ + |p|2 + χ(L, η)

)
+32(x)

(
(l1 − l2)+

|x − y|2θ

ε̄
+ |x − y|τ |p|k+τ + CF |p|

k
+ χ(L, η)

)
if the matrices X, Y satisfy

−
4
ε̄
I ≤

[
X 0
0 −Y

]
≤

2
ε̄

[
Z −Z

−Z Z

]
+ L

[
I 0
0 0

]
, (3.1)

where I denotes the identity matrix and Z = I − (1+$)â ⊗ â.

In the next subsection, we comment on this structure condition and give several examples.
The general results are the following.

Theorem 3.1 (Hölder continuity for general non-local operators). Assume that the
measures µx satisfy the following: there exist β ∈ (0, 2), a constant C̃µ > 0, a mod-
ulus of continuity ωµ : (0,+∞) → (0,+∞) with ωµ(0+) = 0 and, for η ∈ (0, 1),
a constant Cµ(η) > 0 such that for any x, y ∈ �, d ∈ SN−1 and η, δ ∈ (0, 1),∫

B

|z|2 µx(dz)+

∫
RN\B

µx(dz) ≤ C̃µ,∫
{z : |z|≤δ, |d·z|≥(1−η)|z|}

|z|2 µx(dz) ≥ Cµ(η)δ
2−β ,

(3.2)

∫
Bδ

|z|2 |µx − µy |(dz) ≤ ωµ(|x − y|)δ
2−β , (3.3)∫

B\Bδ

|z| |µx − µy |(dz) ≤

{
ωµ(|x − y|)δ

1−β if β 6= 1,
ωµ(|x − y|)|ln δ| if β = 1,

(3.4)

with, if β = 1, ωµ(·) such that ωµ(r)|ln r| → 0 as r → 0. Suppose also that the non-
linearity F satisfies (H) for some parameters k, τ, θ .

(i) If

θ >
1
2
(2− β) and

{
k = β if β > 1,
k < β if β ≤ 1,

then any bounded continuous viscosity solution u of (1.1) is locally α-Hölder con-
tinuous for α small enough. More precisely, α must satisfy: α < 1 if β ≥ 1 and
α < (β − k)/(1− k) if β < 1.

(ii) If β < 1 and if we assume moreover that CF = 0 in (H) and τ > k(β−1
− 1), then u

is β-Hölder continuous.
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Moreover, in both cases (i) and (ii), the C0,α and C0,β estimates depend on ‖u‖∞, N
(dimension), the constants C̃µ, Cµ(η) and the function ωµ appearing in (3.2)–(3.4), and
on the constants and functions appearing in (H).

We now turn to Lévy–Itô operators.

Theorem 3.2 (Hölder continuity for Lévy–Itô operators). Assume that the function j
appearing in the definition of ILI satisfies: there exist c0, C0 > such that, for any x ∈ �
and z ∈ RN ,

c0|z| ≤ |j (x, z)| ≤ C0|z|, |j (x, z)− j (y, z)| ≤ C0|z| |x − y|
θ̃ (3.5)

with some θ̃ ∈ (0, 1). Assume, in addition, that the measure µ satisfies: there exist β ∈
(0, 2), a constant C̃µ > 0 and, for any η ∈ (0, 1), a constant Cµ(η) > 0 such that for any
x ∈ �, d ∈ SN−1, and η, δ ∈ (0, 1),∫

B

|j (x, z)|2 µ(dz)+

∫
RN\B

µ(dz) ≤ C̃µ,

∫
Cδ,η(x)

|j (x, z)|2 µ(dz) ≥ Cµ(η)δ
2−β

(3.6)
where Cδ,η(x) := {z : |j (x, z)| ≤ δ, |d · j (x, z)| ≥ (1− η)|j (x, z)|}, and that, moreover,
for δ small enough, ∫

B\Bδ

|z|µ(dz) ≤

{
C̃µδ

1−β if β 6= 1,
C̃µ|ln δ| if β = 1.

(3.7)

Assume, finally, that the non-linearity F satisfies (H) with parameters k, τ, θ . If

θ, θ̃ >
1
2
(2− β) and

{
k = β if β > 1,
k < β if β ≤ 1,

then any bounded continuous viscosity solution u of (1.1) with I[x, u] replaced with (1.4)
is locally α-Hölder continuous for any α < min(1, β).

If, in addition, CF = 0 in (H) and τ > k(1 − β)β−1, then u is β-Hölder continuous
when β < 1.

Moreover, the C0,α estimate depends on ‖u‖∞, N and the constants and functions
appearing in (H) and (3.5)–(3.7).

Remark 3.3. It is worth pointing out that (3.5)–(3.7) are analogues of (3.2)–(3.4) but
they do not imply them. It is easy to see that the first condition of (3.5) together with
(3.6) implies (3.2) but (3.3) and (3.4) do not derive from the second condition of (3.5)
and (3.7).

Typically we have in mind the measures µ which satisfy, for some C±µ > 0 and
β ∈ (0, 2),

C−µ

|z|N+β
dz ≤ µ(dz) ≤

C+µ

|z|N+β
dz. (3.8)
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and functions j (x, z) such that z 7→ j (x, z) has an inverse function J (x, Z) and there
exist c0, C0 > 0 such that

∀(x, z) ∈ Br(x0, 0), c0|z| ≤ |j (x, z)| ≤ C0|z|,

∀(x, Z) ∈ BR(x0, 0), c0|Z| ≤ |j (x, Z)| ≤ C0|Z|,

∀Z ∈ RN , c0 ≤ |detDzJ (x0, Z)|,

∀z ∈ RN , |j (x, z)− j (y, z)| ≤ C0|z| |x − y|
θ̃ ,

(3.9)

and these are the properties we will use. We are in such a case if, for instance, for any x,
Dzj (x, z) exists for |z| small enough, is continuous in (x, z) and non-singular for z = 0.
Such a condition appears in [6].

4. Comments and examples

In this section, we comment on the assumptions of the main theorems and give examples
of applications. More precisely, we illustrate the different terms appearing in the structure
condition (H); we give examples of non-local operators of type (1.2) and (1.4); eventually,
we give a regularity result that applies to the Bellman–Isaacs equation.

4.1. Non-linearities

In this subsection, we illustrate the structure condition (H) we used in Theorems 3.1 and
3.2 and, to do so, we consider the model equation

−Tr(A(x)D2u)− c(x)I[x, u]+H(x, u,Du) = 0 in �, (4.1)

where A : � → SN , c : � → R and H : � × R × RN → R are continuous functions
and I[x, u] is a non-local term of type (1.2) or (1.4).

First, the equation (4.1) has to be degenerate elliptic and therefore we assume that for
all x ∈ �, A(x) ≥ 0 and c(x) ≥ 0. For A, we are even going to use the more restrictive
assumption (but natural in the probabilistic framework)

for all x ∈ �, A(x) = σ(x)σ ∗(x),

where σ is a continuous function which maps � into the space of N × p matrices for
some p ≤ N .

We go back to the structure condition (H). It combines two different terms. The first
one permits handling equations that are strictly elliptic in the usual sense. The second
permits one to handle non-local equations that are strictly elliptic in a generalized (non-
local) sense. Notice that imposing 31(x) + 32(x) ≥ 30 > 0 means that, at each point
x ∈ �, the non-linearity is either strictly elliptic in the classical (non-linear) sense or
strictly elliptic in the generalized (non-local) sense.

A typical situation is the following: we are given two open subsets O1,O2 of � such
that O1 ∪ O2 = � and the closure of (O1)

c is included in O2; moreover we know that
F satisfies (H) in O1 with 31(x) ≡ 1,32(x) ≡ 0, while F satisfies (H) in O2 with
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31(x) ≡ 0,32(x) ≡ 1. Then, if 3 is a continuous function in � which equals 1 on
the closure of (O1)

c and has support in O2, it is easy to check that F satisfies (H) with
31(x) ≡ 1−3(x),32(x) ≡ 3(x).

For equation (4.1), the structure condition (H) means that we assume

A(x) ≥ 31(x)I and c(x) ≥ 32(x) in �.

Typically this means that the second-order operator −Tr(A(x)D2u) is uniformly elliptic
in O1, while there is no degeneracy in the non-local variable l in O2. Of course, in the
conditions “31(x) ≡ 1 in O1” or “32(x) ≡ 1 in O2”, the “≡ 1” may be replaced by
“≡ 3” with 3 > 0.

Besides this ellipticity assumption, we have to assume that A (or more precisely σ )
satisfies suitable continuity assumptions in O1 and O2: this appears in (H) in the second
subterms of the 31, 32-terms. To describe these assumptions, we recall a standard com-
putation which appeared for the first time in Ishii [12]: we assume that σ is bounded and
uniformly continuous in� and we denote by ωσ its modulus of continuity. We apply (3.1)
to the vector z = (z1, z2) with z1 = σ(x̄)e, z2 = σ(ȳ)e and an arbitrary e ∈ SN−1, and
get

σ T (x̄)Xσ(x̄)e · e − σ T (ȳ)Yσ (ȳ)e · e ≤
1
ε̄
ω2
σ (|x̄ − ȳ|)+ L‖σ‖

2
∞

(we used that Z ≤ I ). Therefore

Tr(A(x̄)X)− Tr(A(ȳ)Y ) ≤
1
ε̄
dω2

σ (|x̄ − ȳ|)+ Ld‖σ‖
2
∞.

Hence, choose ωF (r) = dω2
σ (r) and χ(L, η) = Ld‖σ‖2∞. It is worth pointing out that, in

the uniformly elliptic case (i.e. in O1), A or σ is only required to be continuous while, in
O2, σ has to be Hölder continuous (the same computations as above provide the |x−y|2θ -
term if ωσ (r) = Crθ ) in order to take advantage of the ellipticity of the non-local term.

We now turn to the non-local term. Our main remark is the following: in our formula-
tion, the non-local term l is in fact c(x)I[x, u] and not only I[x, u]. In that way, assump-
tion (H) is obviously satisfied by (4.1). On the other hand, in order to verify the assump-
tions of Theorem 3.1, one has to replace the measure µx(dz) with µ̃x(dz) := c(x)µx(dz)
and check if the conditions are satisfied by this new measure. In other words, in the case
of (1.2), we rewrite c(x)I[x, u] as∫

RN
(u(x + z)− u(x)−Du(x) · z1B(z)) µ̃x(dz).

Therefore, the continuity assumptions on µx in Theorem 3.1 are indeed continuity as-
sumptions on µ̃x and, for this reason, they contain continuity assumptions on both µx
and c.

A priori a similar approach could be used for (1.4) but this really means that we use
Theorem 3.1 instead of Theorem 3.2 in this case.

It remains to consider the first order term H(x, u,Du) in (4.1): this appears in (H) in
the third, fourth and (part of the) fifth subterms of31,32-terms. As is classical for (local)
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equations, we have to require growth conditions with respect to Du: quadratic growth
(|p|2) when the equation is uniformly elliptic, and a |p|k growth with k depending on the
measure when the strong ellipticity comes from the non-local term.

For example, in the case of the fractional Laplacian (−1)β/2, the natural growth turns
out to be k = β, even if Theorem 3.1 shows that the case β ≤ 1 is a little more particu-
lar. We refer the reader to Subsection 4.3 where an example of the equation involving a
fractional Laplacian is treated in detail.

These growth conditions on the gradient have to be combined with the regularity of
coefficients: we are able to treat gradient terms of the form c(x)|Du(x)|m with m = 2 if
c is merely bounded, and m = 2+ τ if c is locally τ -Hölder continuous. We leave details
to the reader.

We say more about these assumptions in the next subsections. In particular, we treat
equations that are not exactly of the form (1.1) but can be handled with the same tech-
niques (see Subsection 4.4).

4.2. Singular measures

The model singular measure is the Lévy measure associated with the fractional Laplacian
(−1)β/2. In this case, dµx(z) = dµ(z) = dz/|z|N+β with 0 < β < 2.

A second simple example of a measure µx is c(x, z)µ(dz) with a Lévy measure µ
satisfying (3.6)–(3.7) with j (x, z) = z and c(x, z) satisfying, for any x, y ∈ � and z ∈ B,

|c(x, z)− c(y, z)| ≤ ω(|x − y|) where ω(t)→ 0 when t ↓ 0,

and, for any x ∈ �, z ∈ RN , 0 < c ≤ c(x, z) ≤ c for some constants c, c. One can thus
easily check (3.2)–(3.4) and Theorem 3.1 applies for suitable non-linearities F . Lévy
measures associated with tempered stable Lévy processes satisfy (3.6)–(3.7). Indeed, in
this case

µ(dz) = 1(0,+∞)(z)
(
G+e−λ

+
|z| dz

|z|N+α

)
+ 1(−∞,0)(z)

(
G−e−λ

−
|z| dz

|z|N+α

)
.

These measures appear in financial modeling (see for instance [9]).

4.3. A non-local equation involving the fractional Laplacian

In order to further illustrate our results, we next consider the model equation

(−1)β/2u+ b(x)|Du|k+τ + |Du|r = 0

where b ∈ C0,τ , 0 < τ < 1, 0 < k, r < 2. In this case, condition (H) is satisfied with
31 = 0, 32(x) = 1 > 0, θ > 0 arbitrary and τ, k, r as in the equation. It is easy to
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check that (3.2) is satisfied with exponent β: first, it is a Lévy measure and if Cδ,η denotes
{|z| < |δ|, d · z ≥ (1− η)|z|}, then by homogeneity and symmetry of µ,∫

Cδ,η
|z|2 µ(dz) =

|Cδ,η|
|Bδ|

∫
Bδ

|z|2 µ(dz) =
|C1,η|

|B1|

∫
Bδ

|z|2 µ(dz)

=
|C1,η|

|B1|

∫
Bδ

|z|2−β−N dz = Cµ(η)δ
2−β .

Moreover, the other hypotheses we make on µ (namely (3.3) and (3.4)) are automatically
satisfied since µ is independent of x (in other words, one can choose ωµ = 0). Since
β < 2, we cannot allow here a quadratic growth for the gradient term; indeed, Theorems
3.1 and 3.2 work only for k, r ≤ β in the absence of local ellipticity. It is also worth
pointing out that, if r ≤ 1, we have |p|r − |p + q|r ≤ |q|r ≤ Rr and therefore, even if
β < 1, any such r works since the Rr can be absorbed in the χ(L, η)-term.

4.4. The Bellman–Isaacs equation

Let us illustrate Theorem 3.2 by considering an important second-order non-linear ellip-
tic integro-differential equations appearing in the study of stochastic control of processes
with jumps, namely the Bellman–Isaacs equation. Let us mention the work of Jakobsen
and Karlsen [14] in the evolution case where the authors use completely different tech-
niques.

Corollary 4.1. Consider the following Bellman–Isaacs equation in RN :

cu+ sup
λ∈3

inf
γ∈0

{
−

1
2

Tr(σλ,γ (x)σ ∗λ,γ (x)D
2u)− bλ,γ (x) ·Du− Iλ,γLI [x, u]− fλ,γ (x)

}
= 0

(4.2)
with c ≥ 0 and where Iλ,γLI [x, u] is a family of Lévy–Itô operators associated with a
common Lévy measure µ and a family of functions jλ,γ (x, z). Assume that

1. µ satisfies (3.6)–(3.7) with constants independent of λ,µ,
2. there exist c0, C0 > 0 and θ̃ ∈ (0, 1) such that for any (λ, γ ) ∈ 3 × 0, jλ,γ satisfies

(3.5),
3. σλ,γ , bλ,γ and fλ,γ satisfy, for some θ ∈ (0, 1) (and some constant CF > 0),

∀α, β, ‖σλ,γ ‖0,θ + ‖bλ,γ ‖0,θ + ‖fλ,γ ‖0,θ ≤ CF .

If θ, θ̃ > 1
2 (2−β), then any bounded viscosity solution u of (4.2) is α-Hölder continuous

for any α < 1 if β ≥ 1, and for α < (β − k)/(1− k) if β < 1.

Proof. Note that (4.2) is not exactly of the form (1.1). Nevertheless, the proof of Theo-
rem 3.2 we present below can be adapted to this framework. It is enough to check that the
structure condition (H) is satisfied by the linear equations

Fλ,γ (x, u, p,A, l) = cu−
1
2

Tr(σλ,γ (x)σ ∗λ,γ (x)A)− bλ,γ (x) · p − lλ,γ − fλ,γ (x),

with constants and functions appearing in (H) independent of λ, γ .
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Indeed, if this is the case, then we just have to use the standard inequality

sup
λ

inf
γ
(· · · )− sup

λ

inf
γ
(· · · ) ≤ sup

λ,γ

(· · · − · · · ),

and we can conclude in this more general case too. ut

5. Proofs of Theorems 3.1 and 3.2

We prove successively Theorems 3.1 and 3.2. On one hand, the proofs are very similar
and we will skip details in the proof of the second theorem when adapting arguments
used in the proof of the first one. On the other hand, we need to use every parameter very
precisely. This is the reason why constants are computed from line to line and explicit
formulae are given for each of them in order to use them later.

5.1. Proof of Theorem 3.1

We first prove (i). Without loss of generality, we assume that CF = 1 in the ellipticity-
growth condition (H). In order to prove the local Hölder continuity of u, we are going
to show that, for any x0 ∈ �, there exists L2 = L2(x0) such that, for some well chosen
α ∈ (0, 1) and for L1 = L1(x0) > 0 large enough, we have

M = sup
x,y∈RN

{u(x)− u(y)− φ(x − y)− 0(x)} ≤ 0

where φ(z) = L1|z|
α and 0(x) = L2|x − x0|

2. We point out that the role of the term
0(x) is to localize around x0, while the term φ(x − y) is concerned with the Hölder
continuity. Proving such a result with a suitable control on α,L1, L2 clearly implies the
desired property.

If � 6= RN , we first choose L2 so that u(x)− u(y)− φ(x − y)−0(x) ≤ 0 if x /∈ �:
to do so, we first choose

L2 ≥
8‖u‖∞

[d(x0, ∂�)]2 .

If � = RN , L2 is arbitrary. Then we argue by contradiction: we assume that M > 0 and
we are going to get a contradiction for L1 large enough and for a suitable choice of α.

If the supremum defining M is attained at (x̄, ȳ), we deduce from M > 0 that x̄ 6= ȳ
and

|x̄ − ȳ| ≤ (2‖u‖∞/L1)
1/α
=: A,

|x̄ − x0| <
√

2‖u‖∞/L2 =: R2 ≤ d(x0, ∂�)/2,
u(x̄) > u(ȳ).

(5.1)

If L1 is so large that A < d(x0, ∂�)/2, then we have x̄, ȳ ∈ �.
Next, we pick some ν0 ∈ (0, 1) and we define

a = x̄ − ȳ, ε = |a|, â = a/|a|, δ = ν0ε < ε.

First, ν0 will be chosen small enough but fixed (independent of L1 and ε).
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From the study of the maximum point property for (x̄, ȳ), we also get

L1ε
α
≤ u(x̄)− u(ȳ) ≤ ωu(ε) (5.2)

where ωu denotes the modulus of continuity of u on B(x0, d(x0, ∂�)/2). We will use this
piece of information below (see Step 4). Notice also that if χ(x, y) denotes φ(x − y) +
0(x), then x 7→ u(x) − χ(x, ȳ) (resp. y 7→ u(y) + χ(x̄, y)) attains a global maximum
(resp. minimum) at x̄ (resp. ȳ) with χ(·, ȳ) (resp. −χ(x̄, y)) of class C2 on B(x̄, δ). In
particular, we can use χ(x̄, ·) and −χ(·, ȳ) as test functions in Definition 2.1 with any
δ′ < δ.

The remainder of the proof is divided into four steps. We write down the viscosity
inequalities and combine them (Step 1), we get suitable matrix inequalities from non-
local Jensen–Ishii’s lemma (Step 2), we estimate from above the difference of the non-
local terms (Step 3) and we conclude (Step 4).

Step 1: Writing down viscosity inequalities. Let p denote Dφ(a) and q denote D0(x̄).
We use Corollary 1 of [4] which, for ι > 0 small enough, provides us with two matrices
Xι, Yι ∈ SN such that, for any δ′ � 1,

F(x̄, u(x̄), p + q,Xι, I1,δ′ [x̄, p + q, χι(·, ȳ)]+ I2,δ′ [x̄, p + q, u]+ oι(1)) ≤ 0,

F (ȳ, u(ȳ), p, Yι, I1,δ′ [ȳ, p,−χι(x̄, ·)]+ I2,δ′ [ȳ, p, u]+ oι(1)) ≥ 0

(where χι is an approximation of χ by a localized inf-convolution, see [4]), together with
the following matrix inequality:

−
1
ι
I ≤

[
Xι 0

0 −Yι

]
≤

[
Z −Z

−Z Z

]
+ 2L2

[
I 0
0 0

]
+ oι(1), (5.3)

where Z = D2φ(a).
Our aim is to first let ι tend to 0 in order to get rid of all the artificial ι dependences in

these inequalities; in order to do so, but also in order to apply (H) which requires a two-
side bound on the matrices, we are first going to build matrices X, Y such that the above
viscosity inequalities still hold if we replace Xι, Yι by X, Y and such that the matrices
X, Y satisfy the required inequality in (H).

Then, if we set

l1 := I1,δ′ [x̄, p + q, χι(·, ȳ)]+ I2,δ′ [x̄, p + q, u],

l2 := I1,δ′ [ȳ, p,−χι(x̄, ·)]+ I2,δ′ [ȳ, p, u],

and if we subtract the viscosity inequalities, dropping all the ι dependences, we will have

0 ≤ F(ȳ, u(ȳ), p, Y, l2)− F(x̄, u(x̄), p + q,X, l1). (5.4)

In order to get the desired contradiction, in the rest of the proof we obtain various esti-
mates, in particular on the differences X − Y and I2,δ′ [x̄, p + q, u] − I2,δ′ [ȳ, p, u], in
order to apply the ellipticity-growth condition (H) to show that the right-hand side of this
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inequality is strictly negative. We point out that, since we are going to let first δ′ tend to 0,
the terms I1,δ′ [x̄, p + q, χι(·, ȳ)], I1,δ′ [ȳ, p,−χι(x̄, ·)] create no difficulty because they
tend to 0 with δ′.

Step 2: Building and estimating the matrices X, Y . We follow here ideas introduced by
Crandall and Ishii [11] to obtain these matrices, by using only the upper bounds onXι, Yι.
We rewrite (5.3) as: for any z1, z2 ∈ RN ,

Xιz1 · z1 − Yιz2 · z2 ≤ Z(z1 − z2) · (z1 − z2)+ 2L2|z1|
2.

We have dropped the oι(1)-term on the right-hand side for the sake of simplicity since it
plays no role. In fact, we use the previous matrix inequality in the form

(Xι − 2L2I )z1 · z1 − Yιz2 · z2 ≤ Z(z1 − z2) · (z1 − z2).

Next we have to compute Z, as well as, for the rest of the proof, the derivatives of φ.
It will be convenient to do the proof for φ(x) = ϕ(|x|) for a general smooth function
ϕ : R+→ R. We thus get, for any b ∈ RN ,

Dφ(b) = ϕ′(|b|)b̂, D2φ(b) =
ϕ′(|b|)

|b|
Pb⊥ + ϕ

′′(|b|)b̂ ⊗ b̂ (5.5)

where b̂ = b/|b| and Pb⊥ = I − b̂ ⊗ b̂ is the projection on the orthogonal complement
of b. Hence, if ϕ(r) = L1r

α , we get

Dφ(b) = L1α|b|
α−2b,

D2φ(b) = L1(α|b|
α−2I + α(α − 2)|b|α−4b ⊗ b)

= L1α|b|
α−4(|b|2I − (2− α)b ⊗ b), (5.6)

D2φ(b) ≤ L1α|b|
α−2I. (5.7)

We have

Z =
1
ε̄
(I − (2− α)â ⊗ â) with ε̄ = (L1αε

α−2)−1.

Now we go back to theXι, Yι inequality; we apply to it a sup-convolution in both vari-
ables z1 and z2 with parameter 1

4 ε̄. Noticing that this corresponds to an inf-convolution
on the (Yιz2 · z2)-term, we easily get, with the notation introduced at the end of the Intro-
duction,

(Xι − 2L2I )
ε̄/4z1 · z1 − (Yι)ε̄/4z2 · z2 ≤ Z

ε̄/2(z1 − z2) · (z1 − z2).

On the other hand, tedious but easy, explicit computations (which are provided in the
Appendix) yield

Zε̄/2 = 2ε̄−1(I − (1+$)â ⊗ â) with $ :=
1− α
3− α

> 0.

Notice that 0 < $ < 1/3.
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If we set X = (Xι − 2L2I )
ε̄/4
+ 2L2I , Y = (Yι)ε̄/4, then X, Y satisfy (3.1) with

L = 2L2, and since Xι ≤ X and Y ≤ Yι, the viscosity inequalities still hold for X and Y
because F is degenerate elliptic.

From this new form of inequality (5.3), we can obtain several types of estimates on X
and Y . First, choosing z2 = −z1 = â, we get

Xâ · â − Y â · â ≤ −8$/ε̄ +O(L2) = −8L1α$ε
α−2
+O(L2).

Next choosing z2 = z1 = z with z being orthogonal to â, we have

Xz · z− Yz · z ≤ O(L2).

In particular, this yields

Tr(X − Y ) ≤ −8L1α$ε
α−2
+O(L2). (5.8)

Step 3: Estimates of the non-local terms. The difference of the non-local terms, denoted
by Tnl , can be rewritten as follows (we recall that B = B(0, 1)):

Tnl =

∫
|z|≥δ′

[u(x̄ + z)− u(x̄)− (p + q) · z1B(z)]µx̄(dz)

−

∫
|z|≥δ′

[u(ȳ + z)− u(ȳ)− p · z1B(z)]µȳ(dz).

In order to estimate it, we split the domain of integration {|z| ≥ δ′} into three pieces:
RN \B which leads to the T1 term below; C = {z ∈ Bδ : |z · â| ≥ (1− η)|z|} ⊂ B which
leads to the T2 term below; and B \ C which leads to the T3 term below.

In order not to add further technicalities, we assume from now on that δ′ = 0; the
reader can check that if δ′ > 0, the estimates we present below remain valid up to oδ′(1).

Therefore we have to estimate from above Tnl = T1 + T2 + T3 + oδ′(1) with

T1 =

∫
|z|≥1

[u(x̄ + z)− u(x̄)]µx̄(dz)−
∫
|z|≥1

[u(ȳ + z)− u(ȳ)]µȳ(dz)

T2 =

∫
C

[u(x̄ + z)− u(x̄)− (p + q) · z]µx̄(dz)−
∫
C

[u(ȳ + z)− u(ȳ)− p · z]µȳ(dz)

T3 =

∫
B\C

[u(x̄ + z)− u(x̄)− (p + q) · z]µx̄(dz)

−

∫
B\C

[u(ȳ + z)− u(ȳ)− p · z]µȳ(dz).

For the reader’s convenience, we recall that p = Dφ(a) and q = D0(x̄).

Estimate of T1. Since u is bounded and so are the measures µx away from the origin, we
conclude that T1 is bounded, uniformly with respect to all the parameters we introduced.
More precisely,

T1 ≤ C1 (5.9)
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where
C1 = 4‖u‖∞ sup

x∈B(x0,d(x0,∂�)/2)
µx(RN \ B). (5.10)

Estimate of T2. We estimate T2 from above by using the definition of M . Indeed, its
definition provides the following key inequality:

u(x̄ + d)− u(x̄)− (p + q) · d ≤ u(ȳ + d ′)− u(ȳ)− p · d ′

+ {φ(a + d − d ′)− φ(a)−Dφ(a) · (d − d ′)}

+ {0(x̄ + d)− 0(x̄)−D0(x̄) · d}. (5.11)

We then use (5.11) with d = z and d ′ = 0 (resp. with d = 0 and d ′ = z). We obtain

T2 ≤

∫
C

[φ(a + z)− φ(a)−Dφ(a) · z]µx̄(dz)

+

∫
C

[φ(a − z)− φ(a)+Dφ(a) · z]µȳ(dz)

+

∫
C

[0(x̄ + z)− 0(x̄)−D0(x̄) · z]µx̄(dz)

We now use a second-order Taylor expansion in each integral. First, according to the form
of 0, we have∫

C
[0(x̄ + z)− 0(x̄)−D0(x̄) · z]µx̄(dz) = L2

∫
C
|z|2 µx̄(dz) = O(L2).

Next, for the other two terms and for a general φ(x) = ϕ(|x|), we recall (5.5) and we
finally get

T2 ≤
1
2

∫
C

sup
t∈(−1,1)

(
ϕ′(|a + tz|)

|a+tz|
P(a+tz)⊥z · z+ϕ

′′(|a+tz|)(â + tz · z)2
)
(µx̄+µȳ)(dz)

+O(L2).

and using next the equality ϕ(r) = L1r
α , we obtain

T2 ≤
L1α

2

∫
C

sup
t∈(−1,1)

|a + tz|α−4(
|a + tz|2|z|2 − (2− α)((a + tz) · z)2

)
(µx̄ + µȳ)(dz)

+O(L2).

We use the notation b for a + tz and we estimate |b| and b · z for z ∈ C as follows:

|b| ≤ ε + t |z| ≤ ε + δ ≤ (1+ ν0)ε,

|b · z| = |a · z+ t |z|2| ≥ (1− η)ε|z| − δ|z| ≥ (1− η − ν0)ε|z|,

|b|2|z|2 − (2− α)(b · z)2 ≤ (1+ ν0)
2ε2
|z|2 − (2− α)(1− η − ν0)

2ε2
|z|2

≤ ((1+ ν0)
2
− (2− α)(1− η − ν0)

2)ε2
|z|2,
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where we choose η, ν0 small enough so that 1− η − ν0 > 0 and

(2− α)(1− η − ν0)
2
− (1+ ν0)

2 > 0. (5.12)

Hence

T2 ≤ −L1C4ε
α−2

∫
C
|z|2 (µx̄ + µȳ)(dz)+O(L2)

with

C4 =
α

2
((2− α)(1− η − ν0)

2
− (1+ ν0)

2)(1+ ν0)
α−4. (5.13)

Using (3.2), we thus obtain

T2 ≤ −L1C4Cµ(η)ε
α−2δ2−β

+O(L2), (5.14)

and finally,

T2 ≤ −L1C5ε
α−β
+O(L2) (5.15)

with

C5 = C4Cµ(η)ν
2−β
0 . (5.16)

Estimate of T3. In order to estimate T3 from above, it is convenient to introduce

U1(z) = u(x̄ + z)− u(x̄)− (p + q) · z, U2(z) = u(ȳ + z)− u(ȳ)− p · z,

and write

T3 =

∫
B\C

U1(z) µx̄(dz)−

∫
B\C

U2(z) µȳ(dz).

We first remark that (5.11) with, successively, (d, d ′) = (z, z), (d, d ′) = (z, 0) and
(d, d ′) = (0, z) = 0 yieldsU1(z)− U2(z) ≤ 0(x̄ + z)− 0(x̄)−D0(x̄) · z,

U1(z) ≤ (φ(a + z)− φ(a)−Dφ(a) · z)+ (0(x̄ + z)− 0(x̄)−D0(x̄) · z),

U2(z) ≥ −(φ(a − z)− φ(a)+Dφ(a) · z).

(5.17)

We next consider the signed measure µ(dz) = µx̄(dz) − µȳ(dz). It can be represented
by two non-negative measures µ± using the Hahn–Jordan decomposition: we write µ =
µ+ − µ− where µ+, µ− are respectively the positive and negative parts of µ. We would
like next to introduce a measure min(µx̄, µȳ). To make it precise, we use the Hahn
decomposition of RN with respect to µ: if K denotes the support of µ+, we define
µ = 1Kµȳ + (1− 1K)µx̄ . We now rewrite T3 with these measures. We use

µx̄ = µ
+
+ µ̄ and µȳ = µ

−
+ µ̄
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together with (5.17) to get

T3 =

∫
B\C

(U1(z)− U2(z)) µ(dz)+

∫
B\C

U1(z) µ
+(dz)−

∫
B\C

U2(z) µ
−(dz)

≤

∫
B\C

[0(x̄ + z)− 0(x̄)−D0(x̄) · z]µ(dz)

+

∫
B\C

[φ(a + z)− φ(a)−Dφ(a) · z]µ+(dz)

+

∫
B\C

[0(x̄ + z)− 0(x̄)−D0(x̄) · z]µ+(dz)

+

∫
B\C

[φ(a − z)− φ(a)+Dφ(a) · z]µ−(dz).

In order to estimate the right hand side, we first remark that∫
B\C

[0(x̄ + z)− 0(x̄)−D0(x̄) · z] (µ+ µ+)(dz) ≤ L2

∫
B

|z|2 µx̄(dz) ≤ C̃µL2.

Next, for the other two terms, we split the integration domain into B \Bδ and Bδ \ C. On
Bδ \ C, we use once again a second-order Taylor expansion for φ while, on B \ Bδ , we
use the concavity of the function t 7→ L1t

α on (0,+∞) to obtain

φ(a + z′)− φ(a)−Dφ(a) · z′ ≤ L1(|a| + |z
′
|)α − L1|a|

α
−Dφ(a) · z′

≤ αL1|a|
α−1
|z′| + |Dφ(a) · z′| ≤ 2αL1|a|

α−1
|z′|. (5.18)

Using (5.18) for z′ = z and −z and (3.2), we are led to

T3 ≤ C̃µL2 + L1

∫
Bδ\C

(ε − δ)α−2
|z|2 |µ|(dz)+ 2αL1ε

α−1
∫
B\Bδ

|z| |µ|(dz)

≤ C̃µL2 + (1− ν0)
α−2L1ε

α−2
∫
Bδ\C
|z|2 |µx̄ − µȳ |(dz)

+ 2αL1ε
α−1

∫
B\Bδ

|z| |µx̄ − µȳ |(dz),

where |µ| = µ+ + µ− = |µx̄ − µȳ |.
We now use (3.3) and (3.4). It is convenient to introduce

ψβ(r) =

{
r1−β if β 6= 1,
|ln r| if β = 1.

We finally get

T3 ≤ C̃µL2 + ν
α−β

0 L1ωµ(ε)ε
α−β
+ 2αL1ωµ(ε)ε

α−1ψβ(ν0ε) (5.19)

for ν0 small enough. We use here the fact that να−β0 controls (1−ν0)
α−2ν

2−β
0 from above.



Hölder continuity and non-linear elliptic non-local equations 19

Final estimate for Tnl . Combining (5.9), (5.15), (5.19), the final estimates are: for β 6= 1,

Tnl ≤ −L1C5ε
α−β
+ o(εα−β)+O(L2), (5.20)

and for β = 1,

Tnl ≤ −L1C5ε
α−1
+ να−1

0 L1ωµ(ε)ε
α−1
+ 2αL1ωµ(ε)ε

α−1
|ln(ν0ε)| +O(L2).

We see that if ωµ(r) satisfies ωµ(r)|ln r| → 0 as r → 0 (which is the case when β = 1),
(5.20) still holds true in this case.

Step 4: Conclusion. For all α < 1, we deduce from (5.20) that Tnl ≤ 0 if L1 is large
enough. Using inequality (5.4) together with (H) with L = R = O(L2) and esti-
mates (5.8) & (5.20), and recalling that ε̄ := (L1αε

α−2)−1, we are thus led to

0 ≤ 31(x̄)A1 +32(x̄)A2 (5.21)

with

A1 = L1αε
α−2[−8$ + ωF (ε)]+ ετ (αL1ε

α−1)2+τ + (αL1ε
α−1)2 + χ̃(L2),

A2 = [−L1C5ε
α−β
+ o(εα−β)]+

ε2θ

ε̄
+ ετ (αL1ε

α−1)k+τ + (αL1ε
α−1)k + χ̃(L2),

where we have gathered in χ̃(L2) the terms that either depend on L2 or are bounded. We
use the assumption 31 +32 ≥ 30 > 0 by rewriting (5.21) as follows:

0 ≤ 30 max(A1, A2).

To get the desired contradiction and to obtain the C0,α-estimate, it is enough to prove that
Ai < 0 for i = 1, 2 and L1 large enough, and to control the size of such L1.

As far as A1 is concerned and as soon as α < 1, we can ensure that −8$ + ωF (ε) ≤
−4$ if L1 is large enough; using (5.1), it is clear that, in order to do it, the size of L1
depends only on ‖u‖∞, α and d(x0, ∂�). This yields an estimate of the type

A1 ≤ L1ε
α−2[−4$α + α2+τ (L1ε

α)1+τ + α2L1ε
α]+ χ̃(L2).

Now there are two ways to estimate L1ε
α: either to use the first part of inequality (5.2)

which yields the estimate L1ε
α
≤ 2‖u‖∞, or to use the second part and the estimate

of L1ε
α through the modulus of continuity of u. The strategy of the proof consists in

proving the result for α small enough by using the first estimate of L1ε
α and then to use

this first step (which provides a modulus of continuity of u) to prove it for all α by using
the second estimate of L1ε

α .
Using L1ε

α
≤ 2‖u‖∞ in the above inequality yields

A1 ≤ L1ε
α−2[−4$α + α2+τ (2‖u‖∞)1+τ + 2α2

‖u‖∞]+ χ̃(L2).

For α small enough (depending only on ‖u‖∞ and τ ), the bracket is less than−2$α < 0
and, recalling (5.1), it is clear that the right-hand side is (strictly) negative if L1 is large
enough (depending on α, $ , χ̃(L2)). Hence, we get the desired inequality: A1 < 0.
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For the A2-term, we first write

A2 =− L1C5ε
α−β
+ o(εα−β)+ ε2θL1ε

α−2
+ ετ (αL1ε

α−1)k+τ + (L1αε
α−1)k

+ χ̃(L2)

= L1ε
α−β [−C5 + oε(1)+ ε2θ−2+β

+ αk+τ εβ−k(L1ε
α)k+τ−1

+ αkεβ−k(L1ε
α)k−1]+ χ̃(L2)

= L1ε
α−β [−C5 + oε(1)+ αk+τ εβ−k(L1ε

α)k+τ−1
+ αkεβ−k(L1ε

α)k−1]+ χ̃(L2)

where C5 is given by (5.16); we also used 2θ + β − 2 > 0.
The key difference from A1 is the fact that the exponents of the term L1ε

α can be
non-positive and we have to argue differently if it is indeed the case.

We have the following cases.

• If β > 1, sinceC5 ≥ αC
′

5 for some constantC′5 independent of α (at least for α ≤ 1/2),
then one can argue as for A1 with k = β since k + τ > 1 and k = β > 1 and obtain
the C0,α regularity and estimates for α small enough.
• If β ≤ 1, then we cannot use this argument anymore since k must satisfy (at least)
k ≤ 1. In order to conclude, it is enough to ensure

εβ−k(L1ε
α)k+τ−1

= oε(1) and εβ−k(L1ε
α)k−1

= oε(1). (5.22)

Writing εβ−k(L1ε
α)k−1

= Lk−1
1 εβ−k+α(k−1), we see that this term is oε(1) if k < 1 and

β − k + α(k − 1) ≥ 0; notice that we do not know how to compare, in full generality,
L1-terms and ε-terms. The second condition implies that k < β. In the same way, for the
other term, either k + τ − 1 ≥ 0 and the condition β > k is sufficient, or k + τ − 1 < 0
and we are led to α ≤ (β − k)/(1 − k − τ). Gathering all this information yields the
conditions

1 ≥ β > k and α ≤
β − k

1− k
.

At this point, putting together the information on A1 and A2, we have shown that u is
locally in C0,ᾱ for ᾱ small enough (depending only on the data and the L∞-norm of u)
and we have an estimate of the local C0,ᾱ-norm of u. In order to conclude the proof, we
need to go back to the estimate on A1 and A2 (in the case when β > 1) and to estimate
the terms L1ε

α using (5.2) and the local C0,ᾱ-modulus of continuity. This easily yields
the full result and the proof of (i) is complete.

In order to prove the second part of the theorem, we now choose α = β and we only
need to adapt the final step (Step 4) in the previous proof. We proceed as before by writing
(5.21) with A1 unchanged and, since CF = 0, with A2 given by

A2 = L1[−C5 + o(1)]+ L1ε
β−2+2θ

+ ετ (βL1ε
β−1)k+τ + χ̃(L2),

which we can rewrite as

A2 = L1[−C5 + o(1)]+ L1ε
β−2+2θ

+ βL1ε
τ+(β−1)(k+τ)

+ χ̃(L2).
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At this stage of the proof, L2 is fixed and L1 can be chosen large enough in order to
control the term χ̃(L2). Next we notice that β − 2 + 2θ > 0. In order to conclude, it is
enough to have τ + (β − 1)(k + τ) > 0, i.e. τ > k(β−1

− 1).
The proof of Theorem 3.1 is now complete. ut

5.2. Proof of Theorem 3.2

This proof follows the lines of the previous one, the only difference is the way of getting
estimate (5.20) for the non-local term in the new framework and under the new assump-
tions. Let us explain this point.

In order to shed light on the fact that j has to be Hölder continuous with respect to x,
we let ω(r) denote C0r

θ̃ and we will see at the end of the present proof that ω has to be
chosen as a power law. More precisely, in this case,

Tnl =

∫
|z|≥δ′

[u(x̄ + j (x̄, z))− u(x̄)− (p + q) · j (x̄, z)1B(z)]µ(dz)

−

∫
|z|≥δ′

[u(ȳ + j (ȳ, z))− u(ȳ)− p · j (ȳ, z)1B(z)]µ(dz).

We then write Tnl = T1 + T2 + T3 with

T1 =

∫
|z|≥1

[u(x̄ + j (x̄, z))− u(x̄)]µ(dz)−
∫
|z|≥1

[u(ȳ + j (ȳ, z))− u(ȳ)]µ(dz),

T2 =

∫
z∈C

[u(x̄ + j (x̄, z))− u(x̄)− (p + q) · j (x̄, z)]µ(dz)

−

∫
z∈C

[u(ȳ + j (ȳ, z))− u(ȳ)− p · j (ȳ, z)]µ(dz),

T3 =

∫
z∈B, z/∈C

[. . . ]µx̄(dz)−
∫
z∈B, z/∈C

[. . . ]µȳ(dz),

where C is defined in the following way:

C :=
{
z :
∣∣∣∣j( x̄ + ȳ2

, z

)∣∣∣∣ ≤ δ

2
and

∣∣∣∣j( x̄ + ȳ2
, z

)
· â

∣∣∣∣ ≥ (1−
η

2

)∣∣∣∣j( x̄ + ȳ2
, z

)∣∣∣∣}
= Cδ/2,η/2

(
x̄ + ȳ

2

)
,

where the notation Cδ,η(x) is defined in the statement of Theorem 3.2. Roughly speaking,
C is the analogue of the cone used in the proof of Theorem 3.1 where we have replaced z
by j ((x̄ + ȳ)/2, z). Notice that, because of (3.5), C ⊂ B if δ is small enough.

We have chosen such a set C for the following reason: if L1 is large enough (or equiv-
alently ε or δ is small enough), then

C ⊂ Cδ,η(x̄) ∩ Cδ,η(ȳ), (5.23)

which means that both j (x̄, z) and j (ȳ, z) are in the “good” cones.



22 Guy Barles et al.

To check these properties, we write

|j (x̄, z) · â| ≥

∣∣∣∣j( x̄ + ȳ2
, z

)
· â

∣∣∣∣− ∣∣∣∣j (x̄, z)− j( x̄ + ȳ2
, z

)∣∣∣∣
≥ (1− η/2)

∣∣∣∣j( x̄ + ȳ2
, z

)∣∣∣∣− |z|ω(∣∣∣∣x̄ − x̄ + ȳ2

∣∣∣∣)
≥ (1− η/2)|j (x̄, z)| − (2− η/2)|z|ω(ε/2)
≥ (1− η/2− (2− η)C−1

0 ω(ε/2))|j (x̄, z)| ≥ (1− η)|j (x̄, z)|

and

|j (x̄, z)| ≤

∣∣∣∣j( x̄ + ȳ2
, z

)∣∣∣∣+ ω(ε/2)|z| ≤ δ

2
+

δ

2c0
ω(ε/2) ≤ δ

for L1 such that

ω(ε/2) ≤ min
(
ηc0

4− η
, c0

)
= min(C0, c0) = c0

for η < 1.

Estimate of T1. We remark that, thanks to the properties of j and µ, (5.9) still holds true.

Estimate of T2. One can check that (5.14) and (5.15) still hold true. Indeed, we use (3.6)–
(3.7) in order to get (3.2). More precisely, using (3.6)–(3.7) and recalling the computation
we made in Subsection 4.3, we obtain

∀â,

∫
C
|z|2 µ(dz) ≥ Cµδ

2−β

where Cµ = C(c0, C0, C
−
µ , η, d, β). Notice that (5.12) is slightly modified and so is C4

(and consequently C5).

Estimate of T3. In the case of Lévy–Itô operators, we estimate T3 as follows. By using
(5.11) with d = j (x̄, z) and d ′ = j (ȳ, z), we get

T3 =

∫
z∈B, z/∈C

[u(x̄ + j (x̄, z))− u(x̄)− (p + q) · j (x̄, z)

− u(ȳ + j (ȳ, z))+ u(ȳ)+ p · j (ȳ, z)]µ(dz) ≤ T 1
3 + T

2
3

with

T 1
3 =

∫
z∈B, z/∈C

[0(x̄ + j (x̄, z))− 0(x̄)− q · j (x̄, z)]µ(dz),

T 2
3 =

∫
z∈B, z/∈C

[φ(a +1(z))− φ(a)− p ·1(z)]µ(dz),

where 1(z) = j (x̄, z)− j (ȳ, z). Let us first estimate T 1
3 as follows:

T 1
3 ≤

1
2

∫
B

sup
t∈(0,1)

[D20(x̄ + tj (x̄, z))j (x̄, z) · j (x̄, z)]µ(dz)
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and we deduce that
T 1

3 ≤ C2L2 (5.24)

where

C2 = C
2
0

∫
|z|≤1
|z|2 µ(dz). (5.25)

We now turn to T 2
3 and we write T 2

3 = T
2,1

3 + T
2,2

3 with

T
2,1

3 =

∫
z∈B, z/∈C, |1(z)|≥δ

[φ(a +1(z))− φ(a)−Dφ(a) ·1(z)]µ(dz),

T
2,2

3 =

∫
z∈B, z/∈C, |1(z)|≤δ

[φ(a +1(z))− φ(a)−Dφ(a) ·1(z)]µ(dz).

We can now estimate T 2,1
3 . In order to clarify computations, we write ω for ω(ε) in the

following.
We use (5.18); remarking that δ ≤ |1(z)| ≤ ω|z|, we deduce

T
2,1

3 ≤

∫
δω−1≤|z|≤1

2αL1ε
α−1
|1(z)|µ(dz) ≤

∫
δω−1≤|z|≤1

2αL1ε
α−1ω|z|µ(dz)

≤ 2αL1ε
α−1ωψβ(δω

−1)

where, by (3.7),

ψβ(r) =

∫
r≤|z|≤1

|z|µ(dz) ≤

{
C̃µr

1−β if β 6= 1,
C̃µ|ln r| if β = 1.

(5.26)

In order to estimate T 2,2
3 , we use a Taylor expansion together with (5.7) and the fact that

|a + t1(z)| ≥ ε − δ > 0. It follows that

T
2,2

3 ≤
L1α

2

∫
|z|≤1

sup
t∈(0,1)

|a + t1(z)|α−2
|1(z)|2 µ(dz) ≤

L1

2

∫
B

|z|2µ(dz) (ε − δ)α−2ω2

≤
L1

2
ω2εα−2(1− ν0)

α−2
∫
B

|z|2 µ(dz).

Gathering the estimates on T 2,1
3 and T 2,2

3 , we obtain

T 2
3 ≤ 2αL1ε

α−1ωψβ(δω
−1)+ L1C3ω

2εα−2 (5.27)

with

C3 =
1
2

∫
B

|z|2 µ(dz) (1− ν0)
α−2 (5.28)

Final estimate of Tnl . Gathering (5.9), (5.15), (5.24) and (5.27), we finally obtain

Tnl ≤ 2αL1ωψβ(ν0ω
−1ε)εα−1

+ L1C3ω
2εα−2

− L1C5ε
α−β
+O(L2). (5.29)
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Looking at the ω2εα−2-term, we see that we need to assume that j is Hölder continuous
with respect to x and we thus replace ω(ε) with Cεθ̃ . Denoting C′3 = CC3, we get

Tnl ≤ 2αL1ε
α+θ̃−1ψβ(ν0ε

1−θ̃ )+ L1C
′

3ε
α−2+2θ̃

− L1C5ε
α−β
+O(L2).

We claim that as in the case of Theorem 3.1, (5.20) holds true under the assumptions of
Theorem 3.2. To see this, we write

2αL1ε
α+θ̃−1ψβ(ν0ε

1−θ̃ )+ L1ε
α−2+2θ̃

= L1ε
α−β [εβ+θ̃−1ψβ(ν0ε

1−θ̃ )+ C′3ε
β−2+2θ̃ ]

= L1ε
α−β [εβ+θ̃−1ψβ(ν0ε

1−θ̃ )+ oε(1)]

since θ̃ > 1
2 (2− β) and α < β. We next distinguish two cases.

• If β 6= 1, then by (5.26), we get

εβ+θ̃−1ψ1(ν0ε
1−θ̃ ) = O(εθ̃β)

and we conclude in this case.
• If β = 1,

εβ+θ̃−1ψ1(ν0ε
1−θ̃ ) = O(εθ̃ |ln(ε1−θ̃ )|) = oε(1)

and we can conclude in this case too.

The proof of Theorem 3.2 is now complete. ut

Appendix

In this Appendix we provide the explicit computation of Zε̄/2 used in the proof of Theo-
rem 3.1.

We have Z = (1/ε̄)(I − (2− α)â ⊗ â) and

Zε̄/2q · q = sup
p∈RN

{
Zp · p −

2
ε̄
|p − q|2

}
=

2
ε̄

sup
p∈RN

{
ε̄

2
Zp · p − |p − q|2

}
.

One checks easily that the (last) sup is achieved at a point p such that ε̄Zp = 2(p − q),
i.e.

p − (2− α)(â · p)â = 2(p − q). (5.30)

Taking a scalar product with â, we deduce

â · p =
2

3− α
â · q,

and inserting in the previous equality yields

p − q = q −
2(2− α)

3− α
(â · q)â. (5.31)
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Going back to the value of the supremum and using (5.30), we have

Zε̄/2q · q =
2
ε̄

{
(p − q) · p − |p − q|2

}
=

2
ε̄
(p − q) · q,

and now using (5.31), we finally obtain

Zε̄/2q · q =
2
ε̄

{
|q|2 −

2(2− α)
3− α

(â · q)2
}
.

Therefore 1+$ = 2(2− α)/(3− α) and $ = (1− α)/(3− α).
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