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Abstract. We prove the conjectures of Graham–Kumar [GrKu08] and Griffeth–Ram [GrRa04]
concerning the alternation of signs in the structure constants for torus-equivariant K-theory of gen-
eralized flag varieties G/P . These results are immediate consequences of an equivariant homo-
logical Kleiman transversality principle for the Borel mixing spaces of homogeneous spaces, and
their subvarieties, under a natural group action with finitely many orbits. The computation of the
coefficients in the expansion of the equivariant K-class of a subvariety in terms of Schubert classes
is reduced to an Euler characteristic using the homological transversality theorem for nontransitive
group actions due to S. Sierra. A vanishing theorem, when the subvariety has rational singularities,
shows that the Euler characteristic is a sum of at most one term—the top one—with a well-defined
sign. The vanishing is proved by suitably modifying a geometric argument due to M. Brion in
ordinary K-theory that brings Kawamata–Viehweg vanishing to bear.

Keywords. Flag variety, equivariant K-theory, Kleiman transversality, homological transversality,
Schubert variety, Borel mixing space, rational singularities, Bott–Samelson resolution

1. Introduction

The structure constants of cohomology rings of homogeneous spaces tend to exhibit pos-
itivity properties. Combinatorics often enters, through attempts to interpret positive quan-
tities as enumerators, but it is by geometric means that the positivity is often first—or
most easily—verified (a notable exception being the order of events relating [Buc02] and
[Bri02]). In the typical setup, going back to Ehresmann [Ehr34], the cohomology ring in
question possesses an additive basis of classes carried by algebraic subvarieties. Using
the transitive group action, as pioneered by Kleiman [Kle74], these Schubert subvarieties
can be translated generically; subsequently intersecting them yields cycles whose mul-
tiplicities are positive by virtue of being algebraic. These multiplicities are the structure
constants, which are hence positive.
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That positivity extends beyond ordinary cohomology has recently been demonstrated
in two instances. Graham generalized it to torus-equivariant cohomology of the homoge-
neous spaces G/P [Gra01], confirming and extending conjectures of Billey and Peterson
(cf. [Gra01, Section 4]). At about the same time, Brion proved it for ordinary K-theory
[Bri02], after it had been conjectured by Buch [Buc02]. The very notion of positivity
depends on the context, of course. In K-theory, positivity means sign alternation: if the
dimension of a subvariety differs from the expected dimension by i in a given intersection
product, then the sign of the coefficient on its class is (−1)i . For equivariant cohomology,
the coefficients are polynomials; positivity means that, expressed as polynomials in the
simple roots, the coefficients are nonnegative integers.

In view of the developments for ordinary K-theory and equivariant cohomology, it
should come as no surprise that conjectures for equivariant K-theory, posed by Griffeth–
Ram [GrRa04] and Graham–Kumar [GrKu08], predict sign alternation in equivariant K-
theory. These conjectures again make precise the notion of positivity for polynomials in
terms of which the alternation is phrased. The aim of this paper is to derive these conjec-
tures (Corollaries 5.1–5.3) from an appropriate generalization of Kleiman transversality
(Theorem 4.2).

Several special cases of our main results have been proved over the last two decades.
The first steps in this direction concerned multiplication by the class of a line bundle: pos-
itive “Pieri” formulas in equivariant K-theory were given by Fulton–Lascoux in type A
[FuLa94], and by Pittie–Ram [PiRa99] and Mathieu [Mat00] for general G/B. Griffeth–
Ram verified their conjecture for all rank 2 groups, and Graham–Kumar proved their
conjecture for projective spaces, as well as Schubert expansions of opposite Schubert
varieties in any G/B.

Ordinary Kleiman transversality concerns the movement of subvarieties of a homo-
geneous space G/P into general position using the transitive group action. This has
positivity consequences for nonequivariant cohomology theories, including ordinary K-
theory of G/P , because translation preserves rational equivalence. Equivariantly, on the
other hand, translation alters the classes of cycles. Our equivariant homological Kleiman
transversality principle, Theorem 7.2, and its strong version for subvarieties with rational
singularities, Theorem 4.2, therefore take place on a Borel mixing space of G/P—or,
more precisely, a finite-dimensional approximation X—whose ordinary (i.e., nonequiv-
ariant) homological invariants are the equivariant invariants of G/P .

Roughly speaking, Theorems 4.2 and 7.2 say that X has a large group action, large
enough so that the general translate of the mixing space Y of a torus-stable subvariety Y
(or arbitrary coherent sheaf on G/P ) is homologically transverse in X to the mixing
spaces Xw of the opposite Schubert subvarieties Xw ⊆ G/P . Consequently, each co-
efficient in the Schubert basis expansion of the torus-equivariant K-class [OY ] can be
computed as the Euler characteristic of a certain “boundary” divisor on the intersection
Y ∩ γ.Xw

J of the mixing space Y with a general translate of another mixing space Xw
J

(Theorem 7.2). To be more precise, mixing spaces are bundles over a product P of large
projective spaces (Section 2), and Xw

J is the restriction to a certain product of projective
subspaces, indexed by J , of the mixing space Xw. The strong version in Theorem 4.2
says that when Y has rational singularities, the Euler characteristic is an alternating sum
of terms in which only the last can be nonzero.
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The action of the mixing group 0, introduced in Section 6, is derived from the struc-
ture of the mixing space X as a bundle with fiber G/P over P. The base P has a transi-
tive automorphism group. The fibers G/P obviously also have transitive automorphism
groups, but a priori these only guarantee automorphisms of X over open subsets of P.
Constructing global automorphisms depends on constructing sections of a group scheme
related to X . This, in turn, ultimately relies on a certain positivity hypothesis on the torus
action (Section 2.4) that pervades all of our main results.

In view of the applications in Section 5, the statements of our main results, particularly
Theorems 4.1 and 4.2, as derived from Theorems 7.2 and 10.4, contain always two flavors:
one expands equivariant classes in terms of equivariant Schubert structure sheaves Ow =
[OXw ], while the other expands in terms of Schubert interiors ξw = [OXw (−∂Xw)]. The
boundary divisor ∂Xw is the union of the Schubert varieties properly contained in Xw.
For positivity in the latter case, it does not suffice to start with the structure sheaf OY of
a subvariety with rational singularities; only a twist OY (−∂Y ) by the ideal sheaf of an
effective boundary divisor supporting an ample line bundle will do. The two flavors have
nearly identical proofs: the nuanced differences in the statements result from a symmetry
between the opposite Schubert variety Xw and and arbitrary subvariety Y with rational
singularities; see the proof of Theorem 10.4.

The outline of our method comes from a combination of Anderson’s proof [And07] of
Graham’s equivariant cohomological positivity [Gra01] and Brion’s proof of sign alterna-
tion for ordinaryK-theory [Bri02]. First, we translate equivariant statements onG/P into
nonequivariant ones on the finite-dimensional approximations of Borel mixing spaces in
Section 2.3 and Section 3. After stating our main results and their previously conjectured
corollaries in Sections 4 and 5, we construct the “sufficiently transitive” group action on
the mixing space in Section 6. This results in the weak Kleiman transversality principle
in Section 7. The difference between the weak version and its strong one is the vanish-
ing result in Section 10, particularly Theorem 10.4. The proof requires a result on lifting
rational singularities under smooth morphisms in Section 8, along with explicit construc-
tions of such smooth morphisms, based on Bott–Samelson resolutions of singularities, in
Section 9.

What makes things simpler in cohomology, as opposed to K-theory, is that coho-
mology only requires knowledge on a Zariski dense open subset. Each of the relevant
cohomology computations [And07] is carried by an intersection that occurs in one cell of
a paving of the mixing space by bundles of affine spaces. As the group action is transitive
on each such bundle, ordinary Kleiman transversality suffices. One must then push down
to the base of the mixing space, but this operation transfers the positivity to the resulting
class.

What fails in K-theory? First, unable to restrict to an open cell, we must instead
attend to coherent sheaves on closed subvarieties, where the group action is not transitive.
Second, pushing forward to the base can have higher direct images, a priori causing mixed
negative and positive coefficients.

Getting around the second obstacle is simple, in principle: impose vanishing of the
higher direct images. In practice, this is accomplished by stipulating rational singularities,
which the Graham–Kumar conjecture [GrKu08, Conjecture 7.1] does explicitly, taking
the cue from Brion’s phrasing of the result in ordinary K-theory [Bri02, Theorem 1].
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We proceed by suitably modifying Brion’s geometric argument that brings Kawamata–
Viehweg vanishing to bear.

Dealing with the obstacle of non-transitivity is harder in principle, but it has been
made simple in practice by the happy circumstance of recent developments. After Klei-
man transversality was generalized to non-transitive group actions in cohomology by
Speiser [Spe88], it was recently generalized to homological transversality inK-theory for
transitive actions by Miller and Speyer [MiSp08]. More recently still, Sierra formulated
and proved a K-theoretic version for non-transitive group actions [Sie07], and this (The-
orem 2.3) is the version we use in the proof of (weak) equivariant homological Kleiman
transversality, Theorem 7.2.

Looking to the future, it seems the next step would be to combine the equivariant
positivity statements here with Mihalcea’s in the equivariant quantum setting [Mih06]. In
our (non-quantum) setup we can use functoriality to reduce to the full (generalized) flag
varietyG/B; this is one of many things that will have to change to deal with the quantum
situation.

2. Flag varieties, mixing spaces, and K-theory

Write N ⊂ Z ⊂ C for the monoid of nonnegative integers, the ring of integers, and the
field of complex numbers. All of our schemes are separated and of finite type over C. A
variety is assumed to be reduced and equidimensional, but not necessarily irreducible. If
a group G acts on Y on the right and on Z on the left, then Y ×G Z is defined to be the
quotient of the product Y × Z by the relation (y . g, z) ∼ (y, g . z).

2.1. Lie theory

We refer to Borel [Bor91] for the following standard facts and notation. Let G be a com-
plex semisimple algebraic group of adjoint type, and fix a choice T ⊆ B ⊆ G of a
maximal torus and Borel subgroup. These have Lie algebras t ⊆ b ⊆ g. The weight lat-
tice Hom(T ,C∗) of T contains the set R of roots. Write R+ and R− for the positive and
negative roots, respectively (so R+ is the set of nonzero weights for the action of T on b).
Write 1 = {α1, . . . , αn} ⊆ R

+ for the simple roots; thus every positive root α ∈ R+ can
be written as α =

∑
i kiαi with ki ∈ N.

Since G is adjoint, the root and weight lattices are the same, and 1 is a basis for the
weight lattice. For a weight λ, write eλ : T → C∗ for the corresponding character.

The normalizer N(T ) of the torus T in G has the Weyl group W = N(T )/T as
its quotient. (Following a common abuse of notation, we sometimes identify w ∈ W
with a chosen representative in N(T ) ⊆ G; the choice will never matter.) The simple
roots αi determine simple reflections si ∈ W , and these generate W . The length `(w) of
an element w ∈ W is the smallest number ` such that w has an expression w = si1 · · · si`
as a product of simple reflections. When ` = `(w), such an expression is a reduced word
for w. Let w◦ ∈ W be the (unique) longest element. The (strong) Bruhat partial order
on W is defined by setting v ≤ w if v has a reduced word that occurs as a subword (not
necessarily consecutive) of a reduced word for w.
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2.2. Flag varieties and Schubert varieties

The central object of this paper is the quotient X = G/B, known as the (complete) flag
variety ofG. Let B− = w◦Bw◦ be the opposite Borel subgroup, so T = B∩B−. The flag
variety is paved by the Schubert cells Cw = BwB/B ∼= C`(w) and also by the opposite
Schubert cells Cw = B−wB/B ∼= CdimX−`(w):

X =
∐
w∈W

Cw =
∐
w∈W

Cw.

The Schubert varieties Xw and opposite Schubert varieties Xw are the closures in X of
the cells Cw and Cw, respectively. Bruhat order encodes containments among them:

Xv ⊆ Xw ⇔ v ≤ w ⇔ Xv ⊇ Xw.

More generally, if P ⊆ G is a parabolic subgroup, the partial flag variety G/P corre-
sponding to P has a cell decomposition

G/P =
∐
w∈WP

Cw,

where Cw = BwP and WP is the set of minimal length representatives for the cosets
ofW modulo its parabolic subgroup corresponding to P . Again write Xw and Xw for the
Schubert and opposite Schubert varieties, the closures of Cw and Cw in G/P .

The Schubert varieties Xv and Xw intersect properly and generically transversally in
the Richardson variety Xwv . In particular, Xwv is empty unless v ≥ w, and the intersection
Xw ∩ X

w is transverse at the point wB; moreover, Richardson varieties are irreducible.
Schubert varieties are Cohen–Macaulay and have rational singularities [Ram85], and the
same is true of Richardson varieties, using [Bri02, Lemmas 1 and 2].

2.3. Borel mixing spaces and approximations

We recall some basic notions concerning the Borel mixing space construction; for de-
tails, see [Ful07] or [EdGr98]. Let S be an algebraic torus of dimension r . Fix a basis
{β1, . . . , βr} for the weight lattice of S, thereby identifying S with (C∗)r . In our applica-
tions, S will be a subtorus of the maximal torus T ⊆ G fixed in Section 2.1.

The universal principal S-bundle ES → BS is the union of finite-dimensional alge-
braic approximations EmS → BmS, which may be constructed as

EmS = (Cm+1 r 0)×r → (Pm)×r = BmS,

where S ∼= (C∗)r acts on (Cm+1 r 0)×r diagonally by the standard action. We write

P = EmS/S = BmS

for some fixed sufficiently large m� 0.
If Y is a scheme with a left S-action, the Borel mixing space is ES ×S Y . As with the

universal principal S-bundle, we will only use algebraic approximations Y = EmS ×S Y ,
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for some fixedm� 0. Thus Y is a Zariski-locally trivial fiber bundle over P with fiber Y .
We view the transition Y  Y from an S-scheme to its approximate mixing space as a
functor on S-schemes, and we always indicate it by changing from italic to calligraphic
font. When X = G/P , we denote by p the projection X → P.

A section P→ Y is equivalent to an S-equivariant map EmS → Y , as one sees from
the following fiber diagram, where the horizontal maps are principal S-bundles:

EmS × Y - Y

�

EmS
?

- P
?

2.4. Positivity of subtori

The basis {β1, . . . , βr} in Section 2.3 for the weight lattice of the subtorus S ⊆ T is
• positive if the restrictions α1|S, . . . , αn|S of the simple roots α1, . . . , αn are all nonneg-

ative integer combinations of β1, . . . , βr ;
• full if it is positive, and each βi equals the restriction of some simple root.
The positivity hypothesis will arise systematically, as it is essential to the geometry in our
proof of Theorem 4.2. Notably, it guarantees that the mixing group 0 is big enough: pos-
itivity begets sections. On the other hand, fullness arises as an essential hypothesis only
once in this paper: we mention it in Corollary 5.1, with regard to the diagonal subtorus
S ⊆ T × T inside G×G, so that it can be applied in Corollary 5.2.

2.5. Restrictions and boundary divisors

For each j ∈ {0, . . . , m}, fix a subspace Pj ⊆ Pm. Then, for any r-tuple J = (j1, . . . , jr)

of integers with 0 ≤ ji ≤ m, write

PJ = Pj1 × · · · × Pjr ⊆ P

and similarly
PJ = Pm−j1 × · · · × Pm−jr ⊆ P.

Set |J | = j1 + · · · + jr = dim PJ = codim PJ . The subvariety PJ has boundary divisor

∂PJ = P(j1−1,j2,...,jn) ∪ P(j1,j2−1,...,jn) ∪ · · · ∪ P(j1,j2,...,jn−1).

Our reason for defining PJ is that, for S-invariant subschemes Y ⊆ X = G/B, we
will need to consider the restrictions

YJ = p−1(PJ ) ∩ Y ⊆ X and YJ = p−1(PJ ) ∩ Y ⊆ X

of the bundles Y to PJ and PJ . In particular, when Y = Xw is an opposite Schubert vari-
ety, so YJ = Xw

J = X
w
|PJ , we will additionally need to consider the boundary divisor

∂Xw
J = (X

w
|∂PJ ) ∪

( ⋃
v>w

X v
J

)
.

This variety is Cohen–Macaulay, by [Bri02, Lemma 4].
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We will on many occasions need sheaves of the form OY (−∂Y ) for which a Weil
divisor ∂Y has been defined. When ∂Y is effective, OY (−∂Y ) = I(∂Y ) is the ideal sheaf
of ∂Y in OY . Once ∂Y has been defined, we write ∂Y for the corresponding Weil divisor
on the mixing space. In what follows, we will often write OY (−∂) instead of OY (−∂Y )
because our boundary divisors can be notationally complicated varieties. WhenOY (−∂Z)
is written, it serves to emphasize that Z 6= Y .

2.6. Line bundles and canonical sheaves

A character λ : S → C∗ defines a geometric line bundle

O(λ) = EmS ×S Cλ

on P, where Cλ is the one-dimensional representation in which z . v = λ(z)v for v ∈ Cλ
and z ∈ S. Similarly, λ also defines a line bundle

Lλ = G×B Cw◦λ,

on X = G/B, by extending the character to B. The line bundle Lλ is to be distin-
guished from the equivariantly nontrivial but nonequivariantly trivial line bundle eλ =
X × Cλ. Positivity for line bundles defines a partial order on the weight lattice of S,
in which λ ≥ 0 if and only if O(λ) possesses nonzero global sections; equivalently,
λ = c1β1 + · · · + crβr ≥ 0 if and only if ci ≥ 0 for all i.

Example 2.1. When the character is 2ρ =
∑
α∈R+ α, the line bundle L2ρ is very ample.

By considering the simply-connected form of G, we find that L2ρ has a square root Lρ ,
which is also a B-equivariant very ample line bundle. In general, this line bundle is not
equivariant for the adjoint torus, but the bundle eρLρ is.

For X = G/B, we have ωX ∼= L−2ρ , ωXw ∼= e−ρL−ρ ⊗ OXw (−∂), and ωXw ∼=
eρL−ρ ⊗OXw (−∂) as equivariant sheaves [GrKu08, Proposition 2.2(a-b)]. Similarly, for
the Bott–Samelson varieties X̃w

ϕ
−→ Xw, we have ωX̃w

∼= ϕ∗e−ρL−ρ ⊗ OX̃w (−∂) using
[Ram85, Proposition 2].

2.7. Equivariant K-theory

For this subsection, let X be any smooth variety with a left action of the torus S. (Shortly,
we will return toX = G/P and S ⊆ T , a torus inG.) Denote byKS(X) the Grothendieck
ring of S-equivariant vector bundles onX. The representation ring is naturally isomorphic
to the group algebra

R(S) = Z[3] =
⊕
λ∈3

Z · eλ

of the weight lattice 3 = Hom(S,C∗) of S. It coincides with the equivariant Grothen-
dieck ring of a point. Writing π for the projection to a point, the pullback π∗ therefore
makes KS(X) into an R(S)-module.
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Since X is smooth, the natural R(S)-module homomorphism KS(X) → KS(X) to
the Grothendieck group of S-equivariant coherent sheaves on X is an isomorphism. The
product of the classes of two coherent sheaves E and F is the alternating sum

[E] · [F] =
∑
i≥0

(−1)i[TorXi (E,F)]

of their Tor sheaves.
The K-homology group KS pushes forward along proper morphisms: X

q
−→ Y yields

q∗[F] =
∑
i≥0

(−1)i[Riq∗F],

the point being that all higher direct images are coherent. In particular, ifX is smooth and
proper, there is an R(S)-bilinear pairing on KS(X) given by

〈[E], [F]〉S = π∗([E] · [F]),

where π is the projection to a point.

2.8. Equivariant K-theory of flag varieties

Resume the case X = G/P acted on by a torus S ⊆ T . Since the subvarieties Xw and
Xw are S-stable, their structure sheaves are quotients ofOX by S-stable ideal sheaves and
hence S-equivariant. Let

Ow = [OXw ] and Ow = [OXw ]

be the classes of the structure sheaves of the Schubert varieties and opposite Schubert
varieties inKS(X). Because of the cell decompositions in Section 2.2, the sets {Ow}w∈WP

and {Ow}w∈WP indexed by the minimal length coset representatives are bases for KS(X)
as an R(S)-module. Let ξw = [OXw (−∂)], where ∂ = ∂Xw =

⋃
v>w X

v is the boundary
of Xw, and ξw = [OXw (−∂)], where ∂ = ∂Xw =

⋃
v<w Xv . Then {ξw}w∈WP and

{ξw}w∈WP are two more bases for KS(X).

Lemma 2.2 ([GrKu08, Proposition 2.1]). The O and ξ bases of KS(G/P ) are dual:

〈Ow, ξv〉S = δw,v ∈ R(S) and 〈Ow, ξv〉S = δw,v ∈ R(S).

Further basic information and notation concerning the equivariant K-theory of flag vari-
eties must wait until Section 3, where it is shown how the ordinary K-theory of mixing
spaces approximates it.
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2.9. Homological transversality

Our results depend on a certain kind of transversality that simplifies theK-theoretic prod-
uct of two coherent sheaves. This simplification arises separately a couple of times, in the
proof of Conjecture 5.3, and in Section 7 as part of the proof of our main result, Theo-
rem 4.1.

Two quasicoherent sheaves E andF on an arbitrary varietyX are homologically trans-
verse if all of their higher Tor sheaves vanish:

TorXj (E,F) = 0 for all j ≥ 1.

If E = OY is the structure sheaf of a subvariety Y ⊆ X, we say that F is homologically
transverse to Y . If X is complete and nonsingular, and Y,Z ⊆ X are homologically
transverse subvarieties, then in K(X),

[OY ] · [OZ] = [OY ⊗OZ] = [OY∩Z],

where Y ∩ Z is the scheme-theoretic intersection. When Y and Z intersect properly (i.e.,
the sum of their codimensions equals the codimension of every component of their inter-
section) and both are Cohen–Macaulay, then they are homologically transverse, and their
intersection is Cohen–Macaulay; this is the content of [Bri02, Lemma 1].

We shall need the following special case of a theorem due to Sierra [Sie07].

Theorem 2.3. Let X be a variety with a left action of an algebraic group G and let F
be a coherent sheaf on X. Suppose that F is homologically transverse to the closures of
the G-orbits on X. Then for each coherent sheaf E on X there is a Zariski-dense open set
U ⊆ G such that TorXj (E, g .F) = 0 for all j ≥ 1 and all g ∈ U .

2.10. Relative Kawamata–Viehweg vanishing

Our proof of Theorem 10.4 relies on a relative form of Kawamata–Viehweg vanishing, the
relevant version of which we extract from [EsVi92, Corollary 6.11]. In the statement, f -
nef means f -numerically effective: the line bundle M on Z̃ has nonnegative intersection
with every curve contained in a fiber of f . In addition, f -big means that the powers ofM
give rise to projective morphisms that preserve the dimension of a general fiber of f .

Theorem 2.4. Let f : Z̃ → Z be a proper surjective morphism of varieties, with Z̃
nonsingular. Let M be a line bundle on Z̃ such that MN (−D) is f -nef and f -big for a
normal crossing divisor D =

∑r
j=1 ajDj , where 0 < aj < N for all j . Then

Rif∗(M⊗ ωZ̃) = 0 for all i > 0.
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3. Approximating equivariant K-theory

Resume the notation from Section 2, including X = G/P and an r-dimensional torus
S ⊆ T inG, along with a (not necessarily positive) basis β1, . . . , βr for the weight lattice
of S. What justifies our omission of the integerm from the notation for approximate Borel
mixing spaces in Section 2.3? The essential idea is that, in analogy with the observation by
Totaro, Edidin, and Graham [Tot99, EdGr98] underlying equivariant Chow theory, theK-
theory of the approximate mixing spaces has a well-behaved limit as m increases without
bound. This analogy has been precisely formulated by Edidin and Graham themselves in
their work on equivariant Riemann–Roch [EdGr00]. For us, the required consequence is
as follows.

Proposition 3.1. Let X = G/P and S ⊆ T a torus in G. An equation holds in KS(X) if
and only if its image holds in K(X ) = KS(EmS ×X) for some large m.

Proof. Let R̂(S)Q denote the completion of the rational representation ring R(S)⊗Z Q at
its augmentation ideal. Concretely, the augmentation ideal of R(S) ∼= Z[3] is generated
by the elements 1− eλ for all λ in the weight lattice 3.

The natural morphism R(S)→ R̂(S)Q is clearly injective. Tensoring this morphism
with KS(X) yields the natural map from KS(X) to its completion at the augmentation
ideal of R(S) because KS(X) is finitely generated as an R(S)-module. Moreover, the
morphism remains injective upon this tensoring becauseKS(X) is flat (in fact, free) as an
R(S)-module by Lemma 2.2.

Next, observe that our system Cm×r of S-representations and open subsets EmS con-
stitute a “good system of representations” in the sense of [EdGr00, Section 2.1]. This
“goodness” is easy to verify: it amounts essentially to checking that S acts freely on the
open sets, the system is closed under direct sum, and the complements of the open sets
are linear subspaces; the details are omitted.

In the presence of goodness, [EdGr00, Theorem 2.1] says the topology on KS(X)
coincides with the one induced by the kernels of the surjections KS(Cm×r × X) →
KS(EmS ×X) induced by pullback. The desired result therefore follows from injectivity
of the homomorphism to the completion. ut

Use bars to distinguish classes in the ordinary K-ring K(X ) of the mixing space from
their preimages in KS(X). Thus, we write Ow = [OXw ] and Ow = [OXw ] for the usual
and opposite Schubert classes, as well as ξw and ξw for their duals (Section 2.8).

Proposition 3.2. K(X ) is a K(P)-algebra with additive K(P)-bases {Ow}w∈WP and
{Ow}w∈WP . The dual K(P)-bases are {ξw}w∈WP and {ξw}w∈WP , respectively.

Proof. The corresponding statement forKS(X) as an algebra over R(S) is a consequence
of Lemma 2.2. The desired result follows from the considerations in the proof of Propo-
sition 3.1: KS(EmS × X) = K(X ) is the quotient of KS(Cm×r × X) = KS(X) modulo
the kernel of the surjective homomorphism R(S)→ K(P). ut
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Corollary 3.3. The classes [OPJ ] are a Z-basis for K(P). Set OJ = p∗[OPJ ] ∈ K(X ).
The ordinary K-theory K(X ) has additive Z-bases

{OJ ·Ow}J,w and {OJ · ξw}J,w, where J ∈ {0, . . . , m}r and w ∈ WP .

Moreover,OJ ·Ow = [OX J
w

] andOJ ·Ow = [OXw
J

], whereOJ = p∗[OPJ ] ∈ K(X ). ut

The importance of the K-classes OJ and OJ on the mixing space is that they provide a
geometric interpretation for monomials in the “variables” 1− e−λ.

Lemma 3.4. Let J ∈ {0, . . . , m}r . The ordinaryK-classOJ ∈ K(X ) is the image of the
equivariant “monomial” class (1− e−β1)j1 · · · (1− e−βr )jr ∈ KS(X).

Proof. Use the exact sequence 0→ L−βi → OP → OH i → 0, where H i
= Pβi is the

component of the boundary ∂P having Pm−1 in the ith slot. It immediately implies that
Oβi = 1− e−βi . Clearly Odβi = (1− e−βi )d ; now use the Künneth formula. ut

Remark 3.5. Viewing the Chow ring as the associated graded ring of K-theory, 1− e−λ

gives rise to the class λ (the lowest degree term in the expansion of 1 − e−λ as a power
series). This is another indication that 1− e−λ should be considered “positive”.

Since X is compact, its ordinary K-theory has a pairing given by 〈α, β〉 = χ(α · β),
where χ : K(X )→ Z is the Euler characteristic.

Lemma 3.6. Let I, J ∈ {0, . . . , m}r and v,w ∈ WP . Using (−∂) as in Section 2.5,

〈OJ ·Ow, OI (−∂) ·Ov(−∂)〉 = 〈OJ ·Ow, [OX v
I
(−∂)]〉 = δ(J,w),(I,v).

Proof. Follow [GrKu08, Prop. 2.1] and [Bri02, Lemma 1]; the details are omitted. ut

4. Main theorems

Theorem 4.1. Let a torus S ⊆ T with a positive basis (Section 2.4) act on X = G/P .
Fix an S-stable subvariety Y ⊆ X and an S-stable, Cohen–Macaulay effective divisor
∂ ⊂ Y that supports an ample line bundle on Y . Let Y ⊆ X be the corresponding mixing
spaces, which are fiber bundles over P. Using the bases forK(X ) in Corollary 3.3, define
c YJ,w and d YJ,w by

[OY ] =
∑
J,w

c YJ,w O
J
·Ow and [OY (−∂)] =

∑
J,w

d YJ,w O
J
· ξw,

the equations being in K(X ). If Y has rational singularities, then

(−1)dimY−`(w)+|J |c YJ,w and (−1)dimY−`(w)+|J |d YJ,w

are nonnegative integers.
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Just as positivity for cohomology is an immediate consequence of Kleiman transversal-
ity, Theorem 4.1 is an immediate consequence of the following “positive” homological
interpretation of the coefficients c YJ,w and d YJ,w resulting from a generic translation.

Theorem 4.2 (Strong equivariant homological Kleiman transversality). Assume the sit-
uation of Theorem 4.1. There is an algebraic mixing group 0 acting on X with finitely
many orbits, the closure of each being a mixing space Xw of some Schubert variety
Xw ⊆ X. Fix a general closed point γ ∈ 0, and write γF for the pushforward of any
sheaf F on X under multiplication by γ ∈ 0. If Y has rational singularities, then

(−1)dimY−`(w)+|J |c YJ,w = dimH dimY−`(w)+|J |(Y ∩ γ.Xw
J ,OY∩γ.Xw

J
(−∂)),

where the boundary divisor is ∂ = ∂(Y ∩ γ.Xw
J ) = Y ∩ ∂(γ.X

w
J ), and

(−1)dimY−`(w)+|J |d YJ,w = dimH dimY−`(w)+|J |(YJ ∩ γ.Xw,OYJ∩γ.Xw (−∂γ )),

where the boundary divisor is ∂γ = (∂YJ ) ∩ γ.Xw with ∂YJ = (Y|∂PJ ) ∪ (∂Y)|PJ .

Proof. The group 0 is constructed in Section 6, and the statement about its orbits is
Lemma 6.3. The construction of 0 is where positivity of the basis for the weight lattice
of S is crucial, for it guarantees that a certain vector bundle possesses enough sections.
Knowing the set of orbit closures allows us easily to express the coefficients c YJ,w and d YJ,w
as Euler characteristics in Theorem 7.2, using Sierra’s homological transversality (Theo-
rem 2.3) for group actions that are not necessarily transitive. The desired result follows
from the more difficult Theorem 10.4, which says that each Euler characteristic is an al-
ternating sum of terms in which only the last can be nonzero. ut

Having already explained the roles of Sections 6, 7, and 10 in the proof of Theorem 4.2,
let us complete the discussion by explaining the roles of Sections 8 and 9. The proof of the
vanishing result in Theorem 10.4 is a modification of Brion’s proof of the corresponding
vanishing for ordinary K-theory [Bri02], which is modeled on a Kleiman-type transver-
sality argument. The main difficulty in extending Brion’s methods to our situation is the
failure of transitivity for our group action on X . It requires us to produce an interme-
diate result on lifting rational singularities under smooth morphisms in Proposition 8.1,
and an explicit construction of such smooth morphisms via Bott–Samelson resolutions of
singularities in Proposition 9.2.

5. Applications to positivity conjectures

Corollary 5.1. Fix a positive basis β1, . . . , βr for a torus S ⊆ T acting on X = G/P

(Section 2.4). For any S-stable subvariety Y ⊆ X of X with rational singularities,

[OY ] =
∑
w∈WP

awOw with (−1)dimY−`(w)aw ∈ N[e−βi − 1]ri=1 for all w ∈ WP .

Write e−αiS for the image in R(S) of e−αi ∈ R(T ). If the basis β1, . . . , βr is full (Sec-
tion 2.4), then positivity for [OY ] holds with N[e−αiS − 1]ni=1 in place of N[e−βi − 1]ri=1.
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Proof. Apply Proposition 3.1 and Lemma 3.4 to the statement of Theorem 4.1, noting
that (e−βi − 1)J = (−1)|J |(1 − e−βi )J . When the basis is full, every monomial in 1 −
e−β1 , . . . , 1− e−βr is a monomial in 1− e−α1

S , . . . , 1− e−αnS by definition. ut

The previous corollary is a special case of [GrKu08, Conjecture 7.1]. It suffices for the
applications to Schubert calculus, such as the following; we do not know if our methods
extend to handle the general case, where the subtorus S is arbitrary.

Corollary 5.2 ([GrKu08, Conjecture 3.1]). Let X = G/P . Using the dual classes ξw

(Section 2.8), the Laurent polynomials pwuv ∈ R(T ) defined by

ξuξv =
∑
w∈WP

pwuvξ
w

have alternating coefficients when written in terms of the variables 1− e−αi :

(−1)`(w)−`(u)−`(v)pwuv ∈ N[e−αi − 1]ni=1.

Proof. As Graham and Kumar remark before their Conjecture 7.1, apply Corollary 5.1 to
X × X, with S the diagonal subtorus of T × T and Y the diagonal embedding of Xw; it
is key here that this S possesses a full basis for its weight lattice. ut

Corollary 5.2 is dual to a positivity conjecture, formulated previously by Griffeth and
Ram, for the structure constants with respect to the opposite Schubert class basis. There
does not seem to be a direct way to derive one conjecture from the other: the formulas
expressing one set of structure constants in terms of the other involve Möbius inversion
and are not manifestly positive.

Corollary 5.3 ([GrRa04, Conjecture 5.1]). Let X = G/P . The Laurent polynomials
cwuv ∈ R(T ) defined by

Ou ·Ov =
∑
w∈WP

cwuvOw for u, v ∈ WP

have alternating coefficients when written in terms of the variables 1− e−αi :

(−1)`(w)−`(u)−`(v)cwuv ∈ N[e−αi − 1]ni=1.

Proof. The coefficient cwuv is the pushforward of the product OuOvξw ∈ KT (X) to a
point. The equivariant class Ovξw = [Xvw(−X

v
∩ ∂Xw)] is that of a reflexive sheaf

on a Richardson variety, with Y = Xvw and ∂ = ∂Xw satisfying the hypotheses of Theo-
rem 4.1. Now apply the results in Section 3 to the statement of Theorem 4.1 (with S = T
and w there replaced by u here), noting that (e−αi − 1)J = (−1)|J |(1− e−αi )J . ut

Remark 5.4. As pointed out in [GrKu08, Proposition 3.13], Corollary 5.3 is equivalent
to “signless” positivity for products in the basis of dualizing sheaves: writing

[ωXu ] · [ωXv ] =
∑
w∈WP

dwuv[ωXw ] · [ωG/P ],

the Laurent polynomials dwuv ∈ R(T ) satisfy

dwuv ∈ N[eαi − 1]ni=1.
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Remark 5.5. The positivity results in Corollaries 5.2 and 5.3 hold when restricted to arbi-
trary subtori S ⊆ T , even though we can only show Theorem 4.1 for subtori with positive
bases for their weight lattices. The reason is simply that the statements of the corollaries
restrict without obstacle to arbitrary subtori, regardless of the proofs of the corollaries. In
particular, sign alternation in ordinary K-theory follows from these equivariant results.

6. A group action on the mixing space

For the duration of this section, set X = G/P , and fix a positive basis {β1, . . . , βr} for
the weight lattice of a subtorus S ⊆ T (Section 2.4).

The mixing space functor applied to the quotient map G → X, where S acts on G
by left multiplication, expresses the mixing space X as the quotient of the principal
G-bundle G by the action of the parabolic subgroup P on the right.

On the other hand, let G = EmS ×S G, with S acting on G by inverse conjugation:

t . g = t−1gt for t ∈ S and g ∈ G.

Since S acts by group automorphisms, G is a group scheme over P with fiber G. Indeed,
the evident multiplication map

(EmS ×G)×EmS (EmS ×G)→ EmS ×G

descends to G ×P G → G; the inverse map and identity section are defined similarly
and satisfy appropriate commutative diagrams. Note, however, that G is not a principal
bundle, since there is no right action of G.

Let B = T U be the Levi decomposition of B, with U the maximal unipotent group
in B, and consider the corresponding group scheme

B = EmS ×S B ⊆ G

over P, where again S acts on B by inverse conjugation.
Let 00 = Hom(P,G) be the group of global sections of G, i.e., the P-points of this

group scheme. Write 00(B) = Hom(P,B); this is a connected algebraic group over C.
The following asserts that the group scheme B is “generated by sections”. It requires that
the basis {β1, . . . , βr} be positive.

Lemma 6.1. For any x ∈ P and p ∈ B in the fiber over x, there is a section γ ∈ 00(B)
such that p = γ (x).

Proof. Write T = EmS ×S T and U = EmS ×S U for the corresponding groups over P.
We may assume p ∈ T or p ∈ U.

A section of T is an S-equivariant map EmS → T . Since S acts trivially on T , this
is the same as a map EmS/S = P→ T . These are exactly the constant maps, since P is
projective and T is affine, so sections of T are identified with T ; in particular, every point
of every fiber of T is in the image of some section.
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Forgetting the group structure, upon fixing a parametrization for each root subgroup U
becomes a vector bundle on P which splits as a sum of line bundles: U =

⊕
α O(α),

where the sum runs over the subset of positive roots that are nontrivial upon restriction
to S. The positive roots α ∈ R+ restrict to nonnegative integer linear combinations of
β1, . . . , βr , by our positivity assumption, and it follows that U is generated by sections as
a vector bundle. The lemma follows from this. ut

The action of (GLm+1)
r on P induces a natural action on 00(B), by precomposition with

the projection to P.

Definition 6.2. The mixing group is the semidirect product

0 = 00(B)o (GLm+1)
r .

Thus there is an exact sequence 1→ 00(B)→ 0→ (GLm+1)
r
→ 1. As a semidirect

product of connected groups, 0 is also a connected algebraic group.

Lemma 6.3. The mixing group 0 acts on the mixing space X of X = G/P with finitely
many orbits, the closure of each orbit being a bundle Xw over P associated to some
Schubert variety Xw ⊆ X.

Proof. The action of 00(B) is clear, and (GLm+1)
r acts via its action on EmS (lifting the

action on P). Lemma 6.1 implies that the fiber of a 0-orbit over a point p ∈ P is a B-orbit.
The result follows from this and the definition of Xw. ut

Remark 6.4. Let Q ⊆ G be the parabolic subgroup generated by B and the centralizer
of S, so the Levi decomposition of Q is LUQ with L = CG(S) the centralizer of S, and
UQ the unipotent radical. Let Q = EmS×SQ be the corresponding group scheme over P.
Then B ⊆ Q ⊆ G, and the above discussion applies with B replaced by Q, noting that
S acts trivially on L. The orbits of 00(Q) o (GLm+1)

r are the bundles associated to the
Q-orbits in X.

One can show that 00(Q) = 00 is the largest group generated by sections in the sense
of Lemma 6.1. If the torus S is regular, i.e., CG(S) = T , then Q = B and Q = B.

7. Generic homological transversality

This section reduces the computation of the coefficients from Theorem 4.1 to an Euler
characteristic using an equivariant homological Kleiman transversality principle in The-
orem 7.2. Again let X be the mixing space of X = G/B, with the action of 0. By
Lemma 6.3, the orbit closures of the 0-action are the Schubert bundles Xv .

Lemma 7.1. The coherent sheaves OXw
J

and OXw
J
(−∂) on X are homologically trans-

verse to the orbit closures Xv of the 0-action on X .
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Proof. Consider the mixing spaces Xw
J and Xv . These bundles over PJ and P, respec-

tively, intersect in the bundle that is the restriction to PJ of the mixing space Xw
v of a

Richardson variety. All of these spaces are Cohen–Macaulay, and the intersections are
proper, so Section 2.9 applies, and we see that OXw

J
is homologically transverse to orbit

closures. Similarly, ∂ = ∂Xw
J is Cohen–Macaulay and intersects Xv properly, so O∂ is

homologically transverse to orbit closures. The claim for OXw
J
(−∂) follows from the ex-

act sequence 0→ OXw
J
(−∂)→ OXw

J
→ O∂ → 0. ut

Theorem 7.2 (Equivariant homological Kleiman transversality). Fix notation as in The-
orems 4.1 and 4.2, but weaken the hypotheses to allow the Cohen–Macaulay subvariety
Y not to have rational singularities. Then

c YJ,w = χ(Y ∩ γ.X
w
J ,OY∩γ.Xw

J
(−∂)) and d YJ,w = χ(YJ ∩ γ.X

w,OYJ∩γ.Xw (−∂γ )).

Proof. By Lemma 3.6, we have

〈[OY ], [OXw
J
(−∂)]〉 =

〈∑
I,v

c YI,vO
I
·Ov, [OXw

J
(−∂)]

〉
= c YJ,w.

On the other hand, Theorem 2.3 and Lemma 7.1 guarantee that for general γ ∈ 0,

[OY ] · [γOXw
J
(−∂)] = [OY∩γ.Xw

J
(−∂)].

Since 0 is connected, we have

〈[OY ], [OXw
J
(−∂)]〉 = χ([OY ] · [OXw

J
(−∂)]) = χ([OY ] · [γOXw

J
(−∂)]),

and the theorem for c YJ,w follows. The proof for d YJ,w is essentially the same. ut

8. Rational singularities

A desingularization of a variety X is a nonsingular variety X̃ together with a proper bi-
rational map f : X̃ → X. As is well known, desingularizations exist for any complex
variety X. Moreover, if X is equipped with the action of an algebraic group, the desingu-
larization may be chosen so that the action extends to X̃ and the map f is equivariant. If
D ⊆ X is a divisor (invariant for the group action), one can also arrange that f−1D be a
normal crossings divisor in X̃.

If X is a possibly nonreduced scheme, a desingularization of X is a desingularization
of the underlying variety Xred.

A variety X has rational singularities if X is normal and it has a desingularization
f : X̃→ X such that

Rif∗(OX̃) = 0 for all i > 0. (8.1)

Equivalently, X has rational singularities if it is Cohen–Macaulay and

f∗ωX̃
∼= ωX (8.2)
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for a desingularization f : X̃ → X. In fact, if either of these conditions holds for some
desingularization of X, then it holds for all of them.

A morphism of nonsingular varieties f : X → Y is smooth if the differential dfx :
TxX → Tf (x)Y is surjective for all x ∈ X. (In differential geometry, this is the same as
a submersion.) A smooth morphism is flat (see e.g. [Mum99, III.10, Theorem 3′]), and is
an open map.

Our proof of the vanishing result in Theorem 10.4 requires the following fact.

Proposition 8.1. Fix a nonsingular complex variety X. Let W and Y be varieties with
rational singularities, with morphisms u : W → X and v : Y → X. Let ϕ : W̃ → W and
ψ : Ỹ → Y be desingularizations. If W̃ → X is a smooth map, then W̃×X Ỹ → W×XY

is a desingularization and the vanishing in (8.1) holds. If, in addition,W×XY is a normal
variety, then it has rational singularities.

Proof. Since W̃ and Ỹ are nonsingular and W̃ → X is a smooth map, W̃ ×X Ỹ is nonsin-
gular. Since ϕ and ψ are proper, so is ϕ×ψ : W̃ ×X Ỹ → W ×X Y . Birationality follows
from that of ϕ and ψ , using the openness of W̃ → X.

It remains to check condition (8.1). Since this condition is local on the base, we may
assumeX,W , and Y are affine. Let f : W̃ → X and g : Ỹ → X be the compositions, and
let p : W̃ ×X Ỹ → W̃ and q : W̃ ×X Ỹ → Ỹ be the projections. Since f : W̃ → X is flat,
we have f ∗Rig∗OỸ ∼= Rip∗(q

∗OỸ ) = Rip∗(OW̃×X Ỹ ), by [Har77, Proposition III.9.3].
Also, writing g = v ◦ ψ , the Leray spectral sequence shows that Rig∗OỸ = 0 for i > 0.
(Indeed, for i > 0 we have Riψ∗OỸ = 0 by rational singularities, and Riv∗OY = 0
since v is an affine map.) It follows that

Rip∗(OW̃×X Ỹ ) = 0.

Using this and the fact that W has rational singularities, for i > 0 we have

Ri(ϕ ◦ p)∗(OW̃×X Ỹ ) = 0.

Since W ×X Y and W are affine, [Har77, Proposition III.8.5] gives

Ri(ϕ × ψ)∗OW̃×X Ỹ = H
i(W̃ ×X Ỹ ,OW̃×X Ỹ ) = Ri(ϕ ◦ p)∗(OW̃×X Ỹ ) = 0

for i > 0, completing the proof that (8.1) holds. The final assertion is an immediate
consequence of the definition. ut

9. Bott–Samelson varieties

We will need some basic facts about Bott–Samelson varieties. With the exception of
Lemma 9.1 and Proposition 9.2, the following can be found in standard references; see
e.g. [Jan87, Chapter 13] or [Mag98].

Let Pi = BsiB ∪ B be the minimal parabolic subgroup generated by B and si . Let
w = (si1 , . . . , sir ) be a (not necessarily reduced) word in the simple reflections. The
corresponding Bott–Samelson variety is

X̃w = Pi1 ×
B
· · · ×

B Pir ×
B
{pt} = (Pi1 × · · · × Pir )/B

r ,
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where Br acts by

(b1, b2, . . . , br).(p1, p2, . . . , pr) = (p1b
−1
1 , b1p2b

−1
2 , . . . , br−1prb

−1
r ).

This is a nonsingular variety of dimension r , with B acting by left multiplication. It comes
with a B-equivariant map X̃w → X = G/B, sending the class of (p1, . . . , pr) to the
coset p1 · · ·prB; this map has image Xw, where w is the Demazure product (obtained by
using the relations s2

i = si in place of s2
i = 1) of the reflections si1 , . . . , sir .

When w is a reduced word for w, the map X̃w → Xw is a desingularization; if w ∈
WP is a minimal length coset representative the same is true of the map to Xw ⊆ G/P .
Fix such desingularizations by choosing a reduced word for each w ∈ W , and simply
write X̃w for the corresponding Bott–Samelson variety.

The desingularization map X̃w → Xw is an isomorphism over the Schubert cell Cw,
identifying {[p1, . . . , p`] ∈ X̃w | pj 6∈ B for all j} with Cw. The complement of Cw
in X̃w is the boundary divisor

∂X̃w = X̃1 ∪ · · · ∪ X̃`,

where
X̃j = {[p1, . . . , p`] ∈ X̃w | pj ∈ B}.

Evidently, X̃j is isomorphic to the Bott–Samelson variety X̃w(̂), where

w(̂) = (si1 , . . . , ŝij , . . . , si`);

in particular, ∂X̃w is a transverse union of smooth B-stable codimension 1 subvarieties.

Lemma 9.1. The following map is smooth:

B− × (Pi1 × · · · × Pir )/B
r
→ G/P, (b, (p1, . . . , pr)) 7→ bp1 · · ·prP.

Proof. Consider, for q ≥ 1, the map

B− × Pi1 × · · · × Piq → G (9.1)

given by multiplication. When q = 1 its differential is surjective because of the follow-
ing: the domain is a homogeneous space for B− × Pi1 , with action (b, p).(b′, p′) =
(bb′, p′p−1)); the map is equivariant for the natural action of B− × Pi1 on the domain
and target; and Lie(G) = Lie(B−)+Lie(Pi1). For q > 1 we use induction. The map (9.1)
can be written as the composition of two multiplication maps

B− × Pi1 × · · · × Piq → G× Piq → G.

By induction the differential of the first map is surjective at all points of the domain, and
the second map obviously has the same property. It follows that (9.1) also has surjective
differential everywhere. Upon composing (9.1) with the projection from G to G/P we
see that

f : B− × Pi1 × · · · × Piq → G/P, (b, (p1, . . . , pq)) 7→ bp1 · · ·pqP,
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has surjective differential everywhere. On the other hand, f factors through the map
B− × X̃w → G/P , proving our claim. ut

The opposite Bott–Samelson varieties X̃w are defined similarly. To be precise, given a
word w = (si1 , . . . , sir ) set

X̃w = P−i1
×
B−
· · · ×

B− P−ir ×
B−
{pt},

where B− is the opposite Borel, and the Pi are the opposite minimal parabolics. This
maps to X = G/B via (pi1 , . . . , pir ) 7→ pi1 · · ·pirw◦B. When w is a reduced word for
ww◦, X̃w → Xw is a resolution of the opposite Schubert variety. As before, fix desin-
gularizations X̃w for opposite Schubert varieties by choosing reduced words. Lemma 9.1
applies to opposite Bott–Samelson varieties, exchanging B and B−.

Let X̃w be the approximate mixing space bundle over P corresponding to X̃w, and let
X̃w

J be its restriction to PJ (Section 2.5).

Proposition 9.2. The map 0 × X̃w

J

m̃
−→ X is smooth.

Proof. Since the map in question is a map of fiber bundles

00(B)× X̃w - 0 × X̃w

J
- (GLm+1)

r
× PJ

X
?
m′

- X
?̃
m

- P
?
m′′

and smoothness is local on the source and on the target, it suffices to prove thatm′ andm′′

are smooth. It is easy to see m′′ is smooth: indeed, (GLm+1)
r acts transitively on P and

m′′ is equivariant, so it is a locally trivial fiber bundle with smooth fiber.
The group 00(B) = Hom(P,B) acts on the fiber over x ∈ P by first evaluating at x,

via a surjective group homomorphism 00(B)→ B. Therefore the mapm′ factors through
B × X̃w → X, and the latter map is smooth by Lemma 9.1 applied to opposite Bott–
Samelson and Schubert varieties. Since the group homomorphism from 00(B)→ B has
surjective differential everywhere, m′ is also smooth. ut

Proposition 9.3. The map 0 × Xw
→ X is flat and has normal fibers.

Proof. As in the proof of Proposition 9.2 it suffices to prove that the action map B ×
Xw

a
−→ X is flat and has normal fibers.
We begin with flatness. Note that its image is the union of the Schubert cells Cv such

that v ≥ w; this is an open subset U of X. Since U is nonsingular and Xw is Cohen–
Macaulay, by [Har77, Exercise III.10.9] it suffices to show that the nonempty fibers of m
have constant dimension equal to dim(B × Xw) − dim(X). We will now show that the

fibers ofB×X̃w
ã
−→ Xmap birationally to the fibers of a; since ã is smooth this completes

the proof. Note that the image of the restriction B × Cw → X of a contains Cv for all
v ≥ w since Cv ∩Cw 6= ∅ if v ≥ w. Therefore every nonempty fiber of a meets B×Cw,
and hence is birational to the corresponding fiber of ã.
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For normality of the fibers, observe that by B-equivariance, the fibers of the action
map a over the points in Cv are all isomorphic to the fiber over vP ∈ X. Write Bv =
StabB(vP ) for the stabilizer in B of vP , and Uv for the subgroup of B generated by those
root subgroups not stabilizing vP ; thus the action map gives an isomorphism Uv ∼= Cv .
Let h : Cv → Uv be the inverse isomorphism, with h(uvP ) = u. Then one checks by
computing its inverse that the map Bv × (Cv ∩ Xw) → B × Xw given by (b, x) 7→
(bh(x)−1, x) is an isomorphism onto the fiber over vP , which is therefore normal. ut

10. A vanishing theorem for flag bundles

In this final section, we prove the vanishing theorems required to complete the proof of
Theorem 4.1. We need some preliminary results.

Lemma 10.1 ([FuPr98, Lemma, p. 108]). Let f : W → X be a morphism from a pure-
dimensional scheme W to a nonsingular variety X , and let Y be a Cohen–Macaulay
closed subscheme of X . Set Z = f−1(Y). If W is Cohen–Macaulay and codim(Z,W)

≥ codim(Y,X ), then equality holds and Z is Cohen–Macaulay. ut

Recall the spaces Xw
J from Section 2.5 and the notation from Section 7, and consider the

diagram

Z
µ- Y

�

0 �

π

�
0 × Xw

J

?

∩

ι

m

- X
?

∩

(10.1)

in which Z is defined by the fiber square. Note that

π−1(γ ) ∼= Y ∩ γ.Xw
J .

When this fiber is nonempty for general γ ∈ 0, it is nonempty for all γ , so π is surjective.
We shall assume surjectivity below, since all the statements are trivial if Z is empty.

Lemma 10.2. With notation as above, if Y has rational singularities then Z does, too.
In particular, Z is Cohen–Macaulay, so it has a dualizing sheaf ωZ .

Proof. We first construct a desingularization of Z. Let Ỹ → Y be an S-equivariant desin-
gularization of Y , and let X̃w → Xw be the Bott–Samelson desingularization of Xw,
which is also S-equivariant. Let ϕ : Ỹ → Y and ψ : X̃w

J → Xw
J be the induced desingu-

larizations of bundles, and define notation by the diagram

Z̃
µ̃- Ỹ

�

0 �

π̃

�
0 × X̃w

J

?
ι̃

m̃

- X
?

(10.2)
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mapping to (10.1). By Proposition 8.1, the map f : Z̃ → Z is a desingularization, and
Rif∗OZ̃ = 0 for i > 0. (The maps to 0 do not arise until the proof of Theorem 10.4.)
Thus it suffices to show that Z is a normal variety.

In fact, we shall show that Z is Cohen–Macaulay and nonsingular in codimension 1.
Since m̃ is smooth,

dim Z̃ − dim Ỹ = dim(0 × X̃w
J )− dimX ,

and therefore

codim(Z, 0 × Xw
J ) = dim(0 × X̃w

J )− dim Z̃ = dimX − dim Ỹ
= codim(Y,X ).

Applying Lemma 10.1 with 0 × Xw
J in place of W , we see that Z is Cohen–Macaulay.

To see that Z is nonsingular in codimension 1, note that the singular locus Sing(Z)
of Z is contained in the union Z1 ∪ Z2, where Z1 = (0 × Sing(Xw

J )) ×X Y and Z2 =

(0 × Xw
J )×X Sing(Y). Indeed, this follows from Propositions 8.1 and 9.2.

Since Y is normal and the map 0 × Xw
J → X is flat, dim(Z2) ≤ dim(Z) − 2.

Since Schubert varieties are normal, Sing(Xw
J ) has codimension at least 2 in Xw

J . Also,
Sing(Xw) is a union of Schubert varieties, so it can be resolved by a union of Bott–
Samelson varieties. Therefore 0× Sing(Xw

J ) has a resolution W̃ → 0× Sing(Xw
J ) such

that the composed map W̃ → X is smooth, and the dimension argument of the previous
paragraph shows that dim(Z1) ≤ dim(Z)− 2. ut

The proof of Lemma 10.2 also shows the following.

Lemma 10.3. For general γ ∈ 0,

dim(Y ∩ γ.Xw
J ) = dimY − codimXw

J = dimY − `(w)+ |J |.

Proof. A general fiber of π : Z→ 0 has dimension

dimZ − dim0 = dimY + dim(0 × Xw
J )− dimX − dim0

= dimY + dimXw
J − dimX

= dimY − codim(Xw
J ,X ),

as claimed. ut

Since sheaf cohomology can only be nonzero in cohomological degrees between zero and
the dimension of the ambient scheme, the following vanishing theorem finishes the proof
of Theorem 4.1. Parts 1 and 2 are, respectively, the statements needed for positivity of
the c coefficients and the d coefficients. Part 1 is based on the diagram (10.1), where Z
has a boundary divisor arising from a given boundary on 0 × Xw

J . Part 2 simply swaps
the roles of 0 × Xw and Y: the boundary divisor on Z is pulled back from the boundary
of YJ , which also carries the restriction to PJ .
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Theorem 10.4. Assume the hypotheses and notation from Theorems 4.1 and 4.2, includ-
ing the hypothesis that Y has rational singularities. Fix a general element γ ∈ 0.

1. For all w ∈ W and i < dim(Y ∩ γ.Xw
J ) = dimY − `(w)+ |J |,

H i(Y ∩ γ.Xw
J ,O(−∂)) = 0.

Equivalently, for all w ∈ W and i > 0,

H i(Y ∩ γ.Xw
J , ωY∩γ.Xw

J
(∂)) = 0.

2. For all w ∈ W and i < dim(YJ ∩ γ.Xw) = dimY − `(w)+ |J |,

H i(YJ ∩ γ.Xw,O(−∂γ )) = 0.

Equivalently, for all w ∈ W and i > 0,

H i(YJ ∩ γ.Xw, ωYJ∩γ.Xw (∂γ )) = 0.

Proof. The statements beginning “Equivalently” follow from Serre duality, using the fact
that Y ∩ γ.∂Xw

J and ∂YJ ∩ γ.Xw are Cohen–Macaulay to get degeneration of the local-
to-global spectral sequence (cf. [Bri02, Lemma 4]).

The rest of the proof follows that of [Bri02, Theorem 3]. We will assume X = G/B
until the very end of this section; in fact, the entire proof works verbatim for generalG/P
except the verification of Corollary 10.7.

Recall the notation defined by the diagram (10.1). Define the boundary divisor

∂Z = Y ×X (0 × ∂Xw
J )

of Z. For general γ ∈ 0, we have

ωZ(∂)|π−1(γ )
∼= ωY∩γ.Xw

J
(∂),

so it will suffice to prove that

Riπ∗ωZ(∂) = 0 for i > 0. (10.3)

We shall accomplish this by applying the Kawamata–Viehweg theorem, in the form of
Theorem 2.4, to the desingularization of Z constructed in the proof of Lemma 10.2.

Recall the diagram (10.2). We have seen that f : Z̃ → Z is a desingularization, and
Z has rational singularities. Let X̃1, . . . , X̃` be the bundles over P corresponding to the
components of the boundary divisor ∂X̃w = X̃1 ∪ · · · ∪ X̃`.

Lemma 10.5. The boundary divisor

∂X̃w
J = X̃

w
|∂PJ ∪

⋃̀
i=1

X̃i |PJ

of X̃w
J supports an ample line bundle on X̃w

J .
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Proof. This follows in a straightforward manner from Example 2.1 by pulling back very
ample line bundles. The details are omitted. ut

The divisor in Lemma 10.5 gives rise to a boundary divisor

∂Z̃ = Ỹ ×X (0 × ∂X̃w
J )

that is a union of nonsingular irreducible divisors intersecting transversally—that is, with
normal crossings—by Proposition 9.2 applied to the components of ∂X̃w

J and all of their
intersections, each of which is still a Bott–Samelson fibration.

Our next goal is to prove vanishing on Z̃.

Proposition 10.6. Ri π̃∗ωZ̃(∂) = 0 for i > 0.

Proof. For this, let b0X̃0 + b1X̃1 + · · · + b`X̃` be the divisor of a very ample line bundle
supported on ∂X̃w

J =
⋃`
i=0 X̃i , as in Lemma 10.5, and let Z̃i = Ỹ ×X (0 × X̃i). Fix

an integer N greater than every bi , and write ai = N − bi . Set M = OZ̃(∂Z̃) and
D = a0Z̃0 + · · · + a`Z̃`. Then

M⊗N (−D) = OZ̃(b0Z̃0 + · · · + b`Z̃`) = ι̃
∗O

0×X̃w
J
(0 × (b0X̃0 + · · · + b`X̃`))

is the pullback under the map ι̃ of a very ample sheaf on 0 × Xw
J , so it is nef (i.e., its

intersection with every curve is nonnegative). In particular, it is π̃ -nef and f -nef. It is
π̃ -big, because a general fiber π̃−1(γ ) = Ỹ × γ.X̃w

J maps birationally onto its im-
age under ι̃. This verifies the hypotheses of Theorem 2.4, whose conclusion says that
Ri π̃∗(M⊗ ωZ̃) = 0 for i > 0, concluding the proof of the proposition. ut

Corollary 10.7. Rif∗ωZ̃(∂Z̃) = 0 for i > 0.

Proof. Continuing notation as in the proof of Proposition 10.6, M⊗N (−D) is f -nef and
f -big, the latter because f is birational. ut

The final constituent in the proof of part 1 is the following.

Proposition 10.8. f∗ωZ̃(∂Z̃) = ωZ(∂Z).

Proof. Consider the factorization of f : Z̃→ Z given by

Z̃
f ′- Z′

ϕ′- Z

µ̃ �

Ỹ
?
µ′

ϕ

-

-

Y
?
µ (10.4)

in which the � denotes a fiber square. Note that all fibers of the flat morphism µ′ are
normal, since they are the same as those of m : 0 × Xw

J → X , which are normal by
Proposition 9.3. Therefore Z′ is normal by [Mat89, Corollary 23.9].
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We will establish the following:

ωZ̃(∂Z̃)
∼= µ̃

∗(ωỸ ⊗ ϕ
∗eρLρ(c · ∂P)), (10.5)

ωZ(∂Z) ∼= µ
∗(ωY ⊗ e

ρLρ(c · ∂P)), (10.6)

where c = (c1, . . . , cr) is a multi-index, with

ci =

{
m− ji + 1 if ji < m,

0 if ji = m,

being the coefficient of the corresponding component of ∂P, so that ωPJ ∼= OPJ (−c · ∂).
Granting these isomorphisms for the moment, we have

f ′∗ωZ̃(∂Z̃) = f
′
∗f
′∗µ′∗(ωỸ ⊗ ϕ

∗eρLρ(c · ∂P)) = µ′∗(ωỸ ⊗ ϕ
∗eρLρ(c · ∂P)),

using the projection formula and the fact that f ′∗OZ̃ = OZ′ , since Z′ is normal. Therefore

f∗ωZ̃(∂Z̃) = ϕ
′
∗µ
′∗(ωỸ ⊗ ϕ

∗eρLρ(c · ∂P)) = µ∗ϕ∗(ωỸ ⊗ ϕ
∗eρLρ(c · ∂P)),

because µ is flat (by Proposition 9.3). Finally, using the projection formula, rational sin-
gularities of Y , and (10.6), we obtain

f∗ωZ̃(∂Z̃) = µ
∗(ωY ⊗ e

ρLρ(c · ∂P)) = ωZ(∂Z),

proving the proposition.
It remains to check (10.5) and (10.6). The morphism µ̃ is smooth, by (10.2) and

Proposition 9.2. Therefore,
ωZ̃
∼= µ̃

∗ωỸ ⊗ ωZ̃/Ỹ .

Moreover, since the projection X̃w
J → PJ is a locally trivial fibration, ωX̃w

J /PJ
is isomor-

phic to the line bundle on X̃w
J induced by the equivariant line bundle ωX̃w on the (non-

mixing space) Bott–Samelson variety X̃w. The latter bundle is eρL−ρ ⊗OX̃w (−∂), so

ωX̃w
J /PJ

∼= e
ρL−ρ ⊗OX̃w

J
(−X̃1 − · · · − X̃`) ∼= eρL−ρ ⊗OX̃w

J
(−∂X̃w

J + ∂PJ ).

Finally, using the formula ωX ∼= L−2ρ (here we use X = G/B) and suppressing
notation for some obvious pullbacks, we have

ω
Z̃/Ỹ = ι̃

∗ω
(0×X̃w

J )/X

= ι̃∗(ω
0×X̃w

J
⊗m̃∗ω−1

X )

= ι̃∗(ω0⊗ωX̃w
J /PJ
⊗ωPJ⊗m̃

∗ω−1
X /P⊗m̃

∗ω−1
P )

= ι̃∗(O0⊗m̃∗eρL−ρ⊗OX̃w
J
(−∂X̃w

J +∂PJ )⊗OPJ (−c
′
·∂PJ )⊗m̃∗L2ρ⊗m̃

∗OP(c
′′
·∂P))

= ι̃∗(O
0×X̃w

J
(−∂X̃w

J )⊗m̃
∗eρLρ⊗m̃∗OP((1J−c′+c′′)·∂P))

= OZ̃(−∂Z̃)⊗̃ι
∗m̃∗eρLρ(c·∂P)

= OZ̃(−∂Z̃)⊗µ̃
∗ϕ∗eρLρ(c·∂P).
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Here

c′i =

{
ji + 1 if ji > 0,
0 if ji = 0,

(1J )i =

{
1 if ji > 0,
0 if ji = 0,

and c′′ = (m+ 1, . . . , m+ 1), so OPJ (−c
′
· ∂PJ ) ∼= ωPJ and OP(−c′′ · ∂P) ∼= ωP. Thus

1J − c′ + c′′ = c.
This proves (10.5). As in Brion’s proof, (10.6) is proved similarly, by restricting to

the smooth locus of the normal variety Z. Thus Proposition 10.8 is proved. ut

Proposition 10.8, together with Proposition 10.6, Corollary 10.7, and the Leray spectral
sequence for π̃ = π ◦ f , implies (10.3), which completes the proof of part 1.

For part 2, the restriction to PJ now appears as YJ instead of Xw
J . Using � to denote

a pullback square, define notation by the diagram

Z
µ- YJ

�

0 �

π

�
0 × Xw
?

∩

ι

m

- X
?

∩

(10.7)

and let ∂Z = ∂YJ ×X (0 × Xw). Lemma 10.2 holds verbatim in this notation, with
the same proof, mutatis mutandis. Similarly, the analogue of Lemma 10.3 still holds. The
proof of vanishing for part 2, however, is somewhat different from the proof of part 1.

Since µ is flat, we have OZ(∂Z) = µ∗OYJ (∂YJ ). Choose (using [Vil92], say) an S-
equivariant resolution of singularities Ỹ → Y so that ∂Ỹ = ϕ−1∂Y is a normal crossings
divisor with ideal sheaf I(∂Y) · OỸ , where ϕ : Ỹ → Y . The analogue of (10.2) has the
subscript J on Ỹ instead of X̃w; using that notation, the divisor ∂Z̃ = ∂ỸJ ×X (0× X̃w)

also has normal crossings, andOZ̃(∂Z̃) = µ̃∗OỸ (∂Ỹ). Write ∂Z̃ = D1+ · · · +D`, with
each Di a (nonsingular) irreducible component.

The sheaf OZ(∂) is reflexive of rank 1 on the normal variety Z. Writing f : Z̃→ Z,

Hom(f ∗OZ(−∂),OZ̃) = f
∗OZ(∂)/torsion = f ∗µ∗OYJ (∂Y)/torsion

is a reflexive rank 1 sheaf M on the smooth variety Z̃; therefore it is a line bundle. Note
that f∗M ∼= OZ(∂). Since µ̃ is smooth and ϕµ̃ = µf ,

OZ̃(∂Z̃) = µ̃
∗OỸJ (ϕ

−1∂Y) = µ̃∗((ϕ∗OYJ (∂Y))/torsion)

= ((ϕµ̃)∗OYJ (∂Y))/torsion =M.

Since Z has rational singularities,

f∗(ωZ̃ ⊗M) = f∗Hom(f ∗OZ(−∂), ωZ̃) = ωZ(∂).

So it will suffice to prove the analogues of Proposition 10.6 and Corollary 10.7.

Lemma 10.9. Ri π̃∗(ωZ̃ ⊗M) = 0 for i > 0, and Rif∗(ωZ̃ ⊗M) = 0 for i > 0.
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Proof. It suffices to find a divisor D such that M⊗N (−D) is π̃ -big, f -big, π̃ -nef, and
f -nef. Fix an ample line bundle L supported on ∂Y . Writing µ̃∗ϕ∗L ∼= OZ̃(b1D1 +

· · · + b`D`), let ai = N − bi for an integer N greater than all the bi’s, and let D =
a1D1 + · · · + a`D`. Thus M⊗N (−D) ∼= µ̃∗ϕ∗L. This is nef, since it is a pullback of
the ample line bundle L; hence it is π̃ -nef and f -nef. It is π̃ -big and f -big for the same
reasons as in part 1. This concludes the proof of the lemma, and with it part 2. ut

To finish the proof of Theorem 10.4, it remains to treat the generalG/P case, as opposed
to the G/B case we have been assuming until now. We proceed as in [Bri02, Lemma 4].
As noted earlier, our entire G/B proof works verbatim for general G/P except for the
verification of Corollary 10.7. In particular, the proof for part 2 is the same, so we may
assume the situation of part 1.

For the rest of this proof, write X = G/P and X̂ = G/B, and similarly for Schu-
bert varieties and mixing spaces. (Thus we have a proper birational map X̂w

J → Xw
J of

Schubert varieties, with w a maximal-length coset representative.) Given an S-invariant
subvariety Y ⊆ X, let Ŷ be its inverse image in X̂. Note that the projection X̂ → X is a
locally trivial fiber bundle, with fiber P/B, so the same is true of X̂ → X , Ŷ → Y , and
ŶJ → YJ . Define notation by the diagram

Ẑ
µ̂- Ŷ

�

0 �

π̂

�
0 × X̂w

J

?

∩

ι̂

m̂

- X̂
?

∩

(10.8)

and let ζ : Ẑ → Z be the induced map. It is easy to see that ζ is proper and birational,
and in fact the resolution f : Z̃ → Z factors as f = ζ ◦ f̂ , where f̂ : Z̃ → Ẑ is the
resolution for theG/B case. Since we know f̂∗ωZ̃(∂Z̃) = ωẐ(∂Ẑ), it will suffice to show
that

ζ∗ωẐ(∂Ẑ) = ωZ(∂Z). (10.9)
For this, first note that ζ∗OẐ = OZ , since Z is normal, and ζ−1(∂Z) = ∂Ẑ from the
definitions. Therefore ζ∗OẐ(−∂) = OZ(−∂). Also, we have ζ∗ωẐ = ωZ , since f and f̂
are rational resolutions, so f∗ωZ̃ = ωZ and f̂∗ωZ̃ = ωẐ . Now we compute:

ζ∗ωẐ(∂Ẑ) = ζ∗(Hom(OẐ(−∂Ẑ), ωẐ) = Hom(ζ∗OẐ(∂Ẑ), ζ∗ωẐ)
= Hom(OZ(∂Z), ωZ) = ωZ(∂Z).

This proves (10.9), completing the proof of Theorem 10.4. ut
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