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Abstract. We analyze the problem of switching controls for control systems endowed with differ-
ent actuators. The goal is to control the dynamics of the system by switching from an actuator to
another in a systematic way so that, at each instant of time, only one actuator is active. We first
address a finite-dimensional model and show that, under suitable rank conditions, switching control
strategies exist and can be built in a systematic way. To do this we introduce a new variational prin-
ciple building a new functional based on the adjoint system whose minimizers yield the switching
controls. When the above rank condition fails, the same variational strategy applies but the controls
obtained this way fail to be of switching form since they may be, for some instants of time, convex
combinations of both controllers. We then address the same issue for the 1-d heat equation endowed
with two pointwise controls. We show that, due to the time analyticity of solutions, under suitable
conditions on the location of the controllers, switching control strategies exist. We also show that
the controls we obtain are optimal in the sense that, for instance, for two scalar valued controls,
they are of minimal L2(0, T ;R2)-norm, the space R2 being endowed with the `1-norm. We also
discuss some possible extensions to multi-dimensional heat equations which require a preliminary
analysis of generic properties of the spectrum that, as far as we know, are not yet well understood.

Keywords. Switching control, variational approach, rank conditions, finite-dimensional system,
heat equation, genericity

1. Introduction

Control systems in real applications are often endowed with several actuators. It is then
desirable to design switching control strategies guaranteeing that, at each instant of time,
only one control is activated.

In this article we develop a first analysis of this problem of switching controls ad-
dressing some model cases, although the ideas and methods we use can be greatly gener-
alized.

We first consider the case of linear finite-dimensional systems. We show that, un-
der suitable rank conditions, switching controllers exist. Furthermore we introduce a
variational principle for the solutions of the adjoint system and show that, under those
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rank conditions, minimizers exist and lead naturally to switching controls, although their
uniqueness may not be guaranteed due to the lack of strict convexity. We also show that
the controls obtained in this way, in addition to being of switching form, fulfill a certain
minimality condition.

The same variational strategy may be applied in the absence of the rank conditions
above, provided the system is controllable by means of the simultaneous use of both
controllers. However, the controls obtained this way in this case fail to be of switching
form since they may be, for some instants of time, convex combinations of both con-
trollers.

We then analyze how these methods can be adapted to some infinite-dimensional sys-
tems for which solutions are known to be time analytic. As an example of application
we consider the 1-d heat equation with two pointwise controllers. Under suitable condi-
tions on the placement of actuators we show that our approach allows building switching
controls. The techniques we use in this case are inspired by those developed in [1] for
oscillating controllers.

We then analyze the multi-dimensional heat equation with two controls located on
two different open subsets, for which the methods we develop apply as well. However, in
order for the method we propose to be effective and yield controls of genuinely switching
form, a spectral non-degeneracy condition has to be fulfilled. For this spectral condition
to be true the spectrum of the Laplacian must be simple, but this last generic property fails
to be sufficient. As we shall see, actually, a number of interesting open problems arise on
these generic spectral properties.

The method we propose fails when the evolution problem under consideration is lack-
ing time analyticity. In that case, although our method leads to effective control strate-
gies, the switching property may fail. This issue has recently been further investigated by
M. Gugat [5] for the 1-d wave equation where the use of d’Alembert’s formula allows
giving a sufficient condition for the existence of switching controls. In [5] it has also been
shown that the switching controls of minimal norm, when they exist, are not necessarily
unique. In those cases our variational approach allows building distinguished switching
controls of minimal norm.

To some extent the main ideas we develop here are similar to those employed to
analyze the existence of bang-bang controls ([3]). In the latter context the switching re-
quirement is imposed on the extremal values of the same controller, while here switching
refers to a change of the actuator that is activated at each time instant ([9], [6], [19]). As
we shall see, the combination of these ideas allows also building switching bang-bang
controls.

Switching controllers arise in many fields of applications (see the survey article [16]).
Switching may also refer to the possibility of the state equation itself to change from
one configuration to another at some time instants (see [7] for an application to transport
on networks). This issue is not analyzed in this paper. It should be emphasized that our
analysis only refers to the case where the state equation is given a priori and where only
the controllers are allowed to switch. In this setting the problem can be dealt with the
variants of the existing linear theory we develop here. Dealing with the case where the
state equation itself may switch requires further important developments.
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2. Finite-dimensional linear systems

2.1. The main result

Consider the finite-dimensional linear control system{
x′(t) = Ax(t)+ u1(t)b1 + u2(t)b2,

x(0) = x0.
(2.1)

In (2.1) the (column) vector valued function x(t) = (x1(t), . . . , xN (t)) ∈ RN is the state
of the system, A is an N × N matrix, u1 = u1(t) and u2 = u2(t) are two scalar controls
and b1, b2 are given (column) control vectors in RN .

We address the problem of controllability. Given a control time T > 0 and a final
target x1

∈ RN we look for control pairs (u1, u2) such that the solution of (2.1) satisfies

x(T ) = x1. (2.2)

In the absence of constraints on the controls, controllable systems can be fully charac-
terized in algebraic terms. Indeed, if B = (b1, b2) is the N × 2 matrix containing the two
column vectors b1 and b2, the Kalman rank condition which is necessary and sufficient
for the controllability of (2.1) is as follows:

rank[B,AB, . . . , AN−1B] = N. (2.3)

Here we are interested in analyzing the existence of switching controls u1 = u1(t)

and u2 = u2(t) such that

u1(t)u2(t) = 0, a.e. t ∈ (0, T ). (2.4)

Condition (2.4) ensures that, at each instant of time, at most one of the two controllers
is active. Of course, when one single control u1 or u2 suffices for controlling the system,
condition (2.4) may be trivially achieved by taking simply the other one to vanish. But
this would require the rank condition (2.3) to be satisfied on replacing B by b1 or b2, and
this is, obviously, not guaranteed under assumption (2.3) above for B = (b1, b2). Despite
this,1 as we shall see, in the present finite-dimensional setting, this weaker rank condition
suffices to guarantee the existence of these switching controls. To be more precise, as
we shall see, one can set a priori a splitting strategy by choosing a partition of the time
interval and imposing the controls to alternate following that partition. Controllability
then holds by means of switching strategies given a priori, depending on the partition of
the time interval [0, T ] one chooses.

Here we are interested in developing a systematic method allowing one to get switch-
ing controls without imposing a priori an artificial partition of the time interval. The con-
trols we shall build are characterized through a variational principle which guarantees that

1 We thank Th. Seidman for this interesting observation.
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they are optimal in the sense that they are of minimal norm in L2(0, T ;R2), the space R2

being endowed with the `1-norm, i.e. with respect to the norm

‖(u1, u2)‖L2(0,T ;`1) =

[ ∫ T

0
(|ũ1| + |ũ2|)

2 dt

]1/2

. (2.5)

The problem is that the condition that the pair (A,B) satisfies the Kalman rank condition
does not suffice. Actually one needs that both pairs (A, b1 + b2) and (A, b1 − b2) satisfy
the Kalman rank condition, which is a stronger condition than simply requiring it for the
pair (A,B), of course. One can slightly modify the argument by weighting differently the
two controllers so that the sufficient condition for switching control becomes that both
pairs (A, b1+αb2) and (A, b1−αb2) satisfy the Kalman rank condition for some α > 0.

Our analysis of this problem is based on minimizing suitable functionals associated
to the adjoint system {

−ϕ′(t) = A∗ϕ(t), t ∈ (0, T ),
ϕ(T ) = ϕ0.

(2.6)

The novelty of the approach we propose relies on the new class of functionals we intro-
duce.

Let us first recall some elements of the existing theory.
The classical theory of controllability (see [19]) guarantees that, under the condition

(2.3), the controls (u1, u2) may be built by minimizing the functional

J (ϕ0) =
1
2

∫ T

0
[|b1 · ϕ(t)|

2
+ |b2 · ϕ(t)|

2] dt − x1
· ϕ0
+ x0

· ϕ(0). (2.7)

Here and below, we denote by · the scalar product in the euclidean space RN .
The functional J : RN → R is trivially continuous and convex. On the other hand,

the coercivity of J is equivalent to the rank condition (2.3) for B = (b1, b2). To be more
precise, as shown in [18], for instance, this rank condition is equivalent to the following
unique-continuation property:(

b1 · ϕ(t) = b2 · ϕ(t) = 0, ∀t ∈ [0, T ]
)
⇒ ϕ ≡ 0,

which is itself equivalent to the coercivity of J .
Under the rank condition (2.3), the functional J achieves its minimum at a single ϕ̌0,

which corresponds to a unique solution ϕ̌ of the adjoint system (2.6) yielding the controls

u1(t) = b1 · ϕ̌(t), u2(t) = b2 · ϕ̌(t) (2.8)

which fulfill the final requirement (2.2), and turn out to be of minimalL2(0, T ;R2)-norm,
the image space R2 being endowed with the standard euclidean norm.

However, the switching condition (2.4) fails in general for this choice of controls.
Indeed, in view of the structure of the controls we obtain in (2.8) it is easy to see that,
generically, each of the controls vanishes only at a finite number of time instances.
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Remark 2.1. As mentioned above, the same argument allows considering, for a given
partition τ = {t0 = 0 < t1 < · · · < t2N = T } of the time interval (0, T ), a functional of
the form

Jτ (ϕ
0) =

1
2

N−1∑
j=0

∫ t2j+1

t2j

|b1 · ϕ(t)|
2 dt

+
1
2

N−1∑
j=0

∫ t2j+2

t2j+1

|b2 · ϕ(t)|
2 dt − x1

· ϕ0
+ x0

· ϕ(0). (2.9)

Under the same rank condition this functional is coercive too. In fact, in view of the time
analyticity of solutions, the above unique continuation property implies the apparently
stronger one:

[b1 · ϕ(t) = 0, t ∈ (t2j , t2j+1); b2 · ϕ(t) = 0, t ∈ (t2j+1, t2j+2), j = 0, . . . , N − 1]
⇒ ϕ ≡ 0,

and this suffices to show the coercivity of Jτ . Thus, Jτ has a unique minimizer ϕ̌ and this
yields the controls

u1(t) = b1 · ϕ̌(t), t ∈ (t2j , t2j+1);

u2(t) = b2 · ϕ̌(t), t ∈ (t2j+1, t2j+2), j = 0, . . . , N − 1,

which are obviously of switching form.
Of course a different ordering of both controllers in the subintervals is also possible

and yields the same result.
Note however that this argument requires introducing a priori a partition of the time

interval and that the controls one obtains depend on it.

The key observation of this article is that, under further rank conditions, the following
functional, which is a variant of the one in (2.7), with the same coercivity properties,
allows building switching controllers:

Js(ϕ
0) =

1
2

∫ T

0
max(|b1 · ϕ(t)|

2, |b2 · ϕ(t)|
2) dt − x1

· ϕ0
+ x0

· ϕ(0). (2.10)

The following holds:

Theorem 2.1. Assume that the pairs (A, b2−b1) and (A, b2+b1) satisfy the rank condi-
tion (2.3). Then, for all T > 0, the functional Js in (2.10) achieves at least one minimum
at some minimizer ϕ̃0. Furthermore, the switching controllers{

u1(t) = ϕ̃(t) · b1 when |ϕ̃(t) · b1| > |ϕ̃(t) · b2|,

u2(t) = ϕ̃(t) · b2 when
∣∣ϕ̃(t) · b2

∣∣ > |ϕ̃(t) · b1|,
(2.11)

where ϕ̃ is the solution of (2.6) with datum ϕ̃0 at time t = T , are such that the solution of
(2.1) satisfies the final requirement (2.2).
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Remark 2.2. • It is interesting to observe that we impose the condition that the pairs
(A, b2 ± b1) satisfy the Kalman rank condition. This is a necessary and sufficient con-
dition for the controllability of the systems

x′ + Ax = (b2 ± b1)u(t). (2.12)

The fact that these systems are controllable implies that system (2.1) is controllable as
well and this is equivalent to the fact that the pair (A,B), with B = (b1, b2), satisfies
the same condition. But the latter does not suffice to ensure that the controls obtained
by minimizing Js are of switching form. In fact, as we shall see below, without extra
rank conditions the controls obtained by minimizing Js may be convex combinations
of both controllers b1, b2 at some instances.
• The rank conditions on the pairs (A, b2 ± b1) are needed to ensure that the switching

controls in (2.11) are well defined, i.e. to guarantee that the set

{t ∈ (0, T ) : |ϕ(t) · b1| = |ϕ(t) · b2|} (2.13)

is of zero measure, which ensures that the controls in (2.11) are genuinely of switching
form. Indeed, the choice (2.11) of the controls u1 and u2 guarantees the switching
structure if and only if the set in (2.13) is of null measure.
• Similar conditions on the pairs (A, b1 ± b2) appear when dealing with minimal time

controls under polyhedral constraints (see, for instance, Corollary 1 on p. 133 of [9]).

Proof of Theorem 2.1. Without loss of generality we can assume that x1
6= eAT x0. In-

deed, when x1
= eAT x0 the null controls u1 ≡ u2 ≡ 0 suffice to drive the initial datum x0

to the final one x1, and they satisfy the switching condition (2.4). Thus, in what follows,
we assume that x0 and x1 are such that x1

6= eAT x0.
The functional Js : RN → R in (2.10) is clearly continuous and convex. Therefore,

the existence of a minimizer will be guaranteed as soon as the coercivity of Js holds.
Under the assumptions of Theorem 2.1 the functional Js is coercive, i.e.,

lim
‖ϕ0‖→∞

Js(ϕ
0)

‖ϕ0‖
= ∞.

To see this it is sufficient to show that there exists a positive constant C > 0 such that

‖ϕ0
‖

2
≤ C

∫ T

0
max{|ϕ(t) · b1|

2, |ϕ(t) · b2|
2
} dt.

This is immediate if we take into account that

|ϕ(t) · b1|
2
+ |ϕ(t) · b2|

2
≤ 2 max[|ϕ(t) · b1|

2, |ϕ(t) · b2|
2]

and that the inequality

‖ϕ0
‖

2
≤ C

∫ T

0
[|ϕ(t) · b1|

2
+ |ϕ(t) · b2|

2] dt

holds as well, since the pair (A,B) satisfies the rank condition (see [18]).
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Let ϕ̃0 be a minimizer of Js and ϕ̃ the corresponding solution of (2.6), and let us write
the Euler–Lagrange equations for the minimization of Js .

At this point the following property plays a key role: under the assumptions of Theo-
rem 2.1 the set

I = {t ∈ (0, T ) : |ϕ̃ · b1| = |ϕ̃ · b2|} (2.14)

is of null measure. Indeed, the set I is in fact the union of the two subsets

I± = {t ∈ (0, T ) : ϕ̃(t) · b1 = ±ϕ̃(t) · b2}, (2.15)

both of null measure. To see this assume, for instance, that the set I+ = {t ∈ (0, T ) :
ϕ̃(t) · (b1 − b2) = 0} is of positive measure. Then the time analyticity of ϕ̃ · (b1 − b2)

implies that I+ = (0, T ). Accordingly ϕ̃ · (b1 − b2) ≡ 0, and consequently, taking into
account that the pair (A, b1 − b2) satisfies the Kalman rank condition, this implies that
ϕ̃ ≡ 0. This would imply that the minimum of Js is achieved at ϕ̃0

≡ 0, which would
mean that

Js(ϕ
0) =

1
2

∫ T

0
max(|ϕ(t) · b1|

2, |ϕ(t) · b2|
2) dt − x1

·ϕ0+ x
0
·ϕ(0) ≥ 0, ∀ϕ0

∈ RN .

Taking into account that

max(|ϕ(t) · b1|
2, |ϕ(t) · b2|

2) ≤ |ϕ(t) · b1|
2
+ |ϕ(t) · b2|

2

this would imply that
J (ϕ0) ≥ 0, ∀ϕ0

∈ RN ,

as well, and the minimizer of J as in (2.7) would also be the trivial state. This corresponds
to the case that the system (2.1) reaches the target (2.2) by means of the trivial controls
u1 ≡ u2 ≡ 0. This can only happen in the case where x1

= eAT x0, which has been
excluded.

We are now in a position to derive the Euler–Lagrange equations.
For any ψ0

∈ RN we have

Js(ϕ̃
0) ≤ Js(ϕ̃

0
+ hψ0), ∀h.

Therefore

x1
· ψ0
− x0

· ψ(0) ≤ lim
h→0+

1
2h

∫ T

0
[max(|(ϕ̃ + hψ) · b1|

2, |(ϕ̃ + hψ) · b2|
2)

−max(|ϕ̃ · b1|
2, |ϕ̃ · b2|

2)] dt, (2.16)

where ψ = ψ(t) stands for the solution of the adjoint system (2.6) with ψ0 as datum at
time t = T .

We claim that the limit on the right hand side of (2.16) coincides with∫
S1

ϕ̃ · b1ψ · b1 dt +

∫
S2

ϕ̃ · b2ψ · b2 dt (2.17)
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where {
S1 = {t ∈ (0, T ) : |ϕ̃(t) · b1| > |ϕ̃(t) · b2|},

S2 = {t ∈ (0, T ) : |ϕ̃(t) · b1| < |ϕ̃(t) · b2|}.
(2.18)

At this point it is essential that the set I as in (2.14) is of null measure.
To see this we first observe that, pointwise a.e. in (0, T ), the following holds:

1
2h

[max(|(ϕ̃ + hψ) · b1|
2, |(ϕ̃ + hψ) · b2|

2)−max(|ϕ̃ · b1|
2, |ϕ̃ · b2|

2)]

→

{
ϕ̃ · b1ψ · b1, a.e. t ∈ S1,

ϕ̃ · b2ψ · b2, a.e.t ∈ S2,

as h → 0. This is an immediate consequence of the fact that the sets I± in (2.15) are
of zero measure and that, within S1 (resp. S2), for h sufficiently small (depending on t),
max(|(ϕ̃+hψ) ·b1|

2, |(ϕ̃+hψ) ·b2|
2) is simply |(ϕ̃+hψ) ·b1|

2 (resp. |(ϕ̃+hψ) ·b2|
2).

To get the limit (2.17) it is then sufficient to apply the dominated convergence theo-
rem. To do that it suffices to show that

1
h

∣∣(|(ϕ̃(t)+ hψ(t)) · b1|
2, |(ϕ̃(t)+ hψ(t)) · b2|

2)
−max(|ϕ̃(t) · b1|

2, |ϕ̃(t) · b2|
2)
∣∣

≤ C(t), a.e. t ∈ (0, T ), (2.19)

with C(t) ∈ L1(0, T ) depending on ψ , for all h > 0 small enough.
The only difficulty in proving this kind of uniform bound arises on the set where the

two maxima are not taken over the same component. Indeed, when both maxima are taken
over the same component, for instance, if

max
(
|(ϕ̃(t)+ hψ(t)) · b1|

2, |(ϕ̃(t)+ hψ(t)) · b2|
2)
= |(ϕ̃(t)+ hψ(t)) · b1|

2

and
max(|ϕ̃(t) · b1|

2, |ϕ̃(t) · b2|
2) = |ϕ̃(t) · b1|

2,

then the quotient in (2.19) can be bounded above by 2|ϕ̃(t) · b1| |ψ(t) · b1|, which is in
L1(0, T ) since both ϕ̃ and ψ belong to L2(0, T ). A similar argument can be applied when
the maxima are taken over the second components.

Let us then consider the remaining case where, for instance,

max
(
|(ϕ̃(t)+ hψ(t)) · b1|

2, |(ϕ̃(t)+ hψ(t)) · b2|
2)
= |(ϕ̃(t)+ hψ(t)) · b1|

2 (2.20)

but
max(|ϕ̃(t) · b1|

2, |ϕ̃(t) · b2|
2) = |ϕ̃(t) · b2|

2. (2.21)

In that case the quotient in (2.19) coincides with

1
h

[|(ϕ̃(t)+ hψ(t)) · b1|
2
− |ϕ̃(t) · b2|

2]

= [|(ϕ̃(t)+ hψ(t)) · b1| + |ϕ̃(t) · b2|]
1
h

[|(ϕ̃(t)+ hψ(t)) · b1| − |ϕ̃(t) · b2|].



Switching control 93

It is then sufficient to get an upper bound on

1
h

∣∣|(ϕ̃(t)+ hψ(t)) · b1| − |ϕ̃(t) · b2|
∣∣ ≤ |ψ(t) · b1| +

∣∣∣∣ |ϕ̃(t) · b1| − |ϕ̃(t) · b2|

h

∣∣∣∣. (2.22)

To do this the only difficulty is to get an upper bound on∣∣∣∣ |ϕ̃(t) · b1| − |ϕ̃(t) · b2|

h

∣∣∣∣. (2.23)

But, obviously, for (2.20) and (2.21) to hold we need that

|h| |ψ(t) · b1| + |h| |ψ(t) · b2| > |ϕ̃(t) · b2| − |ϕ̃(t) · b1| =
∣∣|ϕ̃(t) · b2| − |ϕ̃(t) · b1|

∣∣,
which also guarantees the uniform boundedness of (2.23).

As a consequence of this analysis, the Euler–Lagrange equations associated to the
minimization of Js take the form∫

S1

ϕ̃(t) · b1ψ(t) · b1 dt +

∫
S2

ϕ̃(t) · b2ψ(t) · b2 dt − x
1
· ψ0
+ x0

· ψ(0) = 0 (2.24)

for all ψ0
∈ RN . In view of (2.24) we conclude that the switching controllers

u1(t) = ϕ̃(t) · b1 1S1(t), u2(t) = ϕ̃(t) · b2 1S2(t), (2.25)

where 1S1 and 1S2 stand for the characteristic functions of the sets S1 and S2 in (2.18), are
such that the switching condition (2.4) holds and the solution of (2.1) satisfies the final
requirement (2.2).

This concludes the proof of Theorem 2.1. ut

2.2. Some extensions

The main result in Theorem 2.1 can be extended in various ways. We comment here on
some possibilities.

Other switching strategies. Similar arguments can be applied for variants of the func-
tional Js of the form

J αs (ϕ
0) =

1
2

∫ T

0
max(|b1 · ϕ(t)|

2, |αb2 · ϕ(t)|
2) dt − x1

· ϕ0
+ x0

· ϕ(0) (2.26)

with α > 0.
In this case the sufficient condition for the controls obtained by minimizing this func-

tional to be of switching form is that the pairs (A, b1 + αb2) and (A, b1 − αb2) satisfy
the Kalman rank condition. As a consequence, in particular, we see that, under the sole
condition that the pair (A, b1) satisfies the Kalman rank condition (which ensures that
the system is controllable using only the controller u1), this switching strategy applies
for some α > 0 since, for α small enough, by continuity, the pairs (A, b1 ± αb2) satisfy
the Kalman rank condition as well. The same argument applies when the Kalman rank
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condition is satisfied by (A, b2). It is then sufficient to minimize the functional J αs for α
large enough.

In this case the switching controls obtained are of the form{
u1(t) = ϕ̃(t) · b1 when |ϕ̃(t) · b1| > |αϕ̃(t) · b2|,

u2(t) = α
2ϕ̃(t) · b2 when |ϕ̃(t) · b2| > |αϕ̃(t) · b1|.

(2.27)

Time dependent switching strategies. The same functional as above can also be con-
sidered with α = α(t), a time dependent function:

J αs (ϕ
0) =

1
2

∫ T

0
max(|b1 · ϕ(t)|

2, |α(t)b2 · ϕ(t)|
2) dt − x1

· ϕ0
+ x0

· ϕ(0), (2.28)

with α(t) > 0 for a.e. t ∈ [0, T ].
To show that the minimizer of this functional yields a control of switching form we

have to show that there is no non-trivial solution satisfying

b1 · ϕ(t) = ±α(t)b2 · ϕ(t) (2.29)

on a set of positive measure.
At this point we can use the arguments in [1].
Assume that α = α(t), which, a priori, is defined on the time interval [0, T ], can be

extended analytically to the whole real line. Then, using the time analyticity of ϕ(t), we
can deduce that if either b1 · ϕ(t) = α(t)b2 · ϕ(t) or b1 · ϕ(t) = −α(t)b2 · ϕ(t) vanishes
on a set of positive measure, then they vanish everywhere.

Let us assume, for instance, that b1 · ϕ(t)− α(t)b2 · ϕ(t) ≡ 0 for all t .
We claim that, in order to guarantee that this condition implies that ϕ ≡ 0, as desired,

it is sufficient that the pair (A, b1 − α∞b2) satisfies the Kalman rank condition for some
α∞ in the set of accumulation points of {α(t)} at infinity.

We decompose the solution ϕ in the basis of eigenvectors of the matrix A:

ϕ(t) =
∑
λ

aλe
λtwλ.

Let 3 be the eigenvalue with the greatest real part and assume it is unique. Then, if
b1 · ϕ(t)− α(t)b2 · ϕ(t) ≡ 0 we also have

a3(b1 · w3 − α(t)b2 · w3)+
∑
λ 6=3

aλe
(λ−3)t (b1 · wλ − α(t)b2 · wλ) ≡ 0.

Passing to the limit as t →∞ we deduce that a3(b1 · w3 − α∞b2 · w3) = 0 for all α∞
in the set of accumulation points of {α(t)} as t → ∞. This, together with the fact that
the pair (A, b1 − α∞b2) satisfies the Kalman rank condition, guarantees that a3 = 0. By
induction this argument allows showing that aλ = 0 for all λ provided the real parts of all
the eigenvalues of A are distinct.

In case there are several eigenvalues with equal real parts the argument above does
not work. Indeed, if there are, for instance, several eigenvalues with the same real part as
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that of 3, the leading term in the expansion above, instead of being time independent, is
a finite combination of complex exponentials:∑

Re(λ)=Re(3)

aλe
iIm(λ−3)t (b1 · wλ − α(t)b2 · wλ),

which tends to zero as t →∞. In this case passing to the limit t →∞ along sequences
so that α(t) (resp. eiIm(λ−3)t ) accumulates around α∞ (resp. cλ,∞), we deduce that∑

Re(λ)=Re(3)

aλcλ,∞(b1 · wλ − α∞b2 · wλ) = (b1 − α∞b2) ·
∑

Re(λ)=Re(3)

aλcλ,∞wλ = 0.

But this is not sufficient to conclude since some non-trivial linear combinations of the
eigenvectors wλ could be orthogonal to the vector b1 · wλ − α∞b2.

The same argument can be applied as t → −∞. This is why, under the assumption
that all the real parts of the eigenvalues are distinct, it is sufficient that the Kalman rank
condition is satisfied by (A, b1 − α∞b2) for some α∞ in the set of accumulation points
of α(t) as t →±∞. The same can be said about the other linear combination b1 · ϕ(t)+

α(t)b2 · ϕ(t).
Consequently, the following holds:

Theorem 2.2. Let α = α(t) be a real analytic function on the whole real line and let
A± be the set of accumulation points of α(t) as t → ±∞. Assume that the real parts of
the eigenvalues of A are all distinct and that (A, b1 − α−b2) and (A, b1 + α+b2) satisfy
the Kalman rank condition for some values of α± in the sets A± of accumulation points.
Then minimizing the functional (2.28) yields a switching control of the form{

u1(t) = ϕ̃(t) · b1 when
∣∣ϕ̃(t) · b1| > |α(t)ϕ̃(t) · b2|,

u2(t) = α
2(t)ϕ̃(t) · b2 when |ϕ̃(t) · b2

∣∣ > |α(t)ϕ̃(t) · b1|.
(2.30)

Remark 2.3. • As a consequence of this result, if the real parts of the eigenvalues of A
are all distinct and the controllers b1 and b2 are such that the rank condition is fulfilled
for (A, b1 − α−b2) and (A, b1 + α+b2) for some values of α− and α+, regardless
of whether they belong to A− or A+, then one can always find a function α = α(t)

whose set of accumulation points contains α± (or even a monotonic function with those
as asymptotic values) and that yields switching controls.
• We impose the assumption that the real parts of the eigenvalues are all distinct. But cer-

tainly, this assumption is not sharp. A further analysis is needed to completely identify
the class of matrices A for which this theorem holds.

Bang-bang switching controls. Under the assumptions of Theorem 2.1 one can slightly
change the construction of the controls to build switching controllers of bang-bang form.
For that it is sufficient to consider the functional

Jsb(ϕ
0) =

1
2

[∫ T

0
max(|ϕ(t) · b1|, |ϕ(t) · b2|) dt

]2

− x1
· ϕ0
+ x0

· ϕ(0). (2.31)
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The controls obtained through the minimization of this functional are then of the form

u1(t) = λ sgn(ϕ̃(t) · b1)1S1(t), u2(t) = λ sgn(ϕ̃(t) · b2)1S2(t) (2.32)

where

λ =

∫ T

0
max(|ϕ̃(t) · b1|, |ϕ̃(t) · b2|) dt (2.33)

and the sets S1 and S2 are as in (2.18).
Therefore they are switching controls of bang-bang form taking the values ±λ when

they are active.

Higher number of controllers. Similar issues can also be addressed when more than
two controllers are applied. Consider, for instance, the system x

′
= Ax +

p∑
j=1

uj (t)bj , 0 < t < T,

x(0) = x0,

(2.34)

in which p controllers enter. It is then natural to consider the functional

Js(ϕ
0) =

1
2

∫ T

0
max(|ϕ(t) · b1|

2, . . . , |ϕ(t) · bp|
2) dt − x1

· ϕ0
+ x0

· ϕ(0). (2.35)

It is easy to see that it achieves its minimum under the condition that the pair (A,B)
satisfies the Kalman rank condition where B = (b1, . . . , bp).

When writing the Euler–Lagrange equations for Js , to guarantee that the controllers
obtained in this way are of switching form, one has to make sure that the sets

I`m = {t ∈ (0, T ) : |ϕ(t) · b`| = |ϕ(t) · bm|} (2.36)

are of zero measure for all ` 6= m. For this to hold it is sufficient that all the pairs
(A, b` ± bm) with ` 6= m satisfy the Kalman rank condition.

The corresponding controls are then of the form

uj (t) = ϕ̂(t) · bj 1Sj (t), t ∈ (0, T ), j = 1, . . . , p, (2.37)

where
Sj = {t ∈ (0, T ) : |ϕ̂(t) · bj | > |ϕ̂(t) · bm|, ∀m 6= j}. (2.38)

Summarizing, the following holds:

Theorem 2.3. Assume that the pairs (A, b` ± bm) satisfy the Kalman condition for all
`,m = 1, . . . , p, ` 6= m. Then system (2.34) is controllable with switching controls
satisfying

u`(t)um(t) = 0, a.e. t ∈ (0, T ), ∀` 6= m. (2.39)

Furthermore, the controls are of the form (2.37)–(2.38) where ϕ̂ is the solution of the
adjoint system (2.6) associated to the minimizer ϕ̂0 of Js in (2.35).
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Furthermore, the controls may also be built to be of bang-bang form while the switch-
ing condition (2.39) is kept by minimizing the functional

Jsb(ϕ
0) =

1
2

(∫ T

0
max(|ϕ(t) · b1|, . . . , |ϕ(t) · bp|) dt

)2

− 〈x1, ϕ0
〉 + x0

· ϕ(0). (2.40)

Vector valued controllers. Similar problems arise in the case where the controllers are
not scalar. Let us consider, for instance, the more general system{

x′(t) = Ax(t)+ B1u1(t)+ B2u2(t),

x(0) = x0,
(2.41)

where B1 and B2 are N ×M1 and N ×M2 matrices and the controllers u1 and u2 are
vectors of M1 and M2 components, respectively.

So far we have considered the particular case in which M1 = M2 = 1. In the present
case the functional to be minimized is

Js(ϕ
0) =

1
2

∫ T

0
max(|B∗1ϕ(t)|

2, |B∗2ϕ(t)|
2) dt − x1

· ϕ0
+ x0

· ϕ(0), (2.42)

where B∗1ϕ (resp. B∗2ϕ) are M1 (resp. M2) dimensional vectors and | · | stands for their
euclidean norm. This functional has a minimizer when it is coercive and this holds when
the pair (A,B) satisfies the Kalman rank condition with B = (B1, B2).

The minimizer yields a control of switching form if the set of time instants t for which
|B∗1ϕ(t)| = |B

∗

2ϕ(t)| can be guaranteed to be of null measure.
In the case where M1 = M2 = 1 and B1 = b1, B2 = b2 we have seen that the

sharp condition to guarantee that the minimizer of Js yields switching controls is that
(A,B1 ± B2) satisfy the Kalman rank condition.

In the more general case under consideration we can use the Fourier expansion of
solutions

ϕ(t) =
∑
λ

aλe
λtwλ,

λ being the eigenvalues of A and wλ the corresponding eigenvectors. Then

|B∗j ϕ(t)|
2
=

∑
k,`

aka`e
(λk+λ`)tγ

j
k,`

where
γ
j
k,` = 〈B

∗

j wk, B
∗

j w`〉, j = 1, 2.

Arguing as above, in the case of time dependent switching strategies (see also Section 6.1)
we see that a sufficient condition to guarantee that the controls obtained by minimizing
Js be of switching form is that, for all 3, if∑

λk+λ`=3

aka`[γ 1
k,` − γ

2
k,`] = 0, (2.43)

then, necessarily, {ak} ≡ 0.
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Assuming that

(H) the matrix A is such that for each 3, there is at most one pair of (k, `) such that
λk + λ` = 3,

it is easy to see that the condition above implies that

a2
k [γ 1

k,k − γ
2
k,k] = 0, ∀k.

It is then sufficient to make sure that γ 1
k,k 6= γ 2

k,k to ensure that all the coefficients ak
vanish. In case this last condition fails for given control matrices B1 and B2 it is easy to
see that it can be guaranteed to hold under suitable arbitrarily small perturbations of the
matrices B1 and B2.

It would be of interest to investigate the class of matrices A for which the spectral
condition (H) holds. We shall return to this matter below in the context of the multi-
dimensional heat equation. As we shall see, according to the results in [15], the analogue
of this assumption holds for the Dirichlet Laplacian generically with respect to the domain
within the class of domains which are topological balls. It would also be of interest to
see when system (2.43) implies that all the coefficients ak vanish in the absence of the
condition (H).

Of course, the spectrum of A being simple is a necessary condition for (H) to hold.2

2.3. An example

Let us now give an example of application. Consider the case where A is the diagonal
matrix

A =

(
1 0
0 2

)
and the control vectors are

b1 =

(
1
0

)
, b2 =

(
0
1

)
.

It is easy to see that none of the pairs (A, b1) and (A, b2) fulfills the Kalman rank con-
dition. The rank of the corresponding Kalman matrices is actually 1. Thus, the system is
not controllable with a single control, either b1 or b2. This is easy to predict because of
the diagonal structure of the matrix A that shows that the two components of the system
are decoupled. This, together with the fact that the control vectors b1, b2 only excite one
of the components, makes the controllability impossible.

However it is easy to see that the pairs (A, b1 ± b2) do satisfy the Kalman rank con-
dition. Consequently, the system is controllable under the action of the controls b1 ± b2.

Accordingly the hypotheses of (2.1) are satisfied and a switching control strategy may
be built following the method of the previous subsection.

2 As pointed out to us by S. Ervedoza, when the eigenvalues are all real or purely imaginary this
suffices to conclude under the assumption that γ 1

k,k
6= γ 2

k,k
, for all k. For instance, if the eigenvalues

are all real, we order them increasingly and then taking 3 = λ1 we deduce that a1 = 0. Taking
next 3 = λ1 + λ2 we conclude that a2 = 0. Iterating this argument we can show that ak = 0 for
all k.
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In the figure we draw the controls of this finite-dimensional system in four different
situations. First (top left) we show the classical smooth controls obtained by minimizing
the functional J in (2.7). Then (top right) we present classical bang-bang controls. Then
(bottom left) we draw the switching controls under discussion. Finally (bottom right) we
plot the graph of switching bang-bang controls that we shall discuss below. All this is done
in the case where the initial datum is x0 = (2,−3) and the final datum xT = (−4, 7).

3. Relaxed switching controls

In this section we discuss the output of the minimization of functionals of the form Js as
in (2.26) when the condition guaranteeing that the pairs (A, b1 ± b2) satisfy the Kalman
rank condition fails. In this case the sets I± in (2.15), where ϕ̃ is a minimizer of Js , cannot
be guaranteed to be of null measure. In this section we discuss what the corresponding
Euler–Lagrange equation and control result are.

The following holds:

Theorem 3.1. Assume that the pair (A,B) with B = (b1, b2) fulfills the Kalman rank
condition. Then the functional Js in (2.10) is coercive. Moreover if ϕ̃ is a minimizer of Js
then system (2.1) is controllable with controls (u1, u2) such that

u1(t) = ϕ̃(t) · b1, u2(t) = 0 when |ϕ̃(t) · b1| > |ϕ̃(t) · b2|,

u1(t) =
1
2 ϕ̃(t) · b1, u2(t) =

1
2 ϕ̃(t) · b2 when |ϕ̃(t) · b2| = |ϕ̃(t) · b1|,

u1(t) = 0, u2(t) = ϕ̃(t) · b2 when |ϕ̃(t) · b2| > |ϕ̃(t) · b1|.

(3.1)
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In particular, both controls u1 and u2 are active on the set |ϕ̃(t) · b1| = |ϕ̃(t) · b2|, when
it is of positive measure.

Observe that the controls we obtain in this case are not of switching form in a strict
sense since the switching condition fails in the set |ϕ̃(t) · b1| = |ϕ̃(t) · b2| where the
amplitudes of the two positive quantities entering the quadratic term of the functional Js
to be minimized coincide.

Proof. The proof is similar to the one of Theorem 2.1. We have, however, to pay special
attention to the derivation of the Euler–Lagrange equations. The arguments developed
in the proof of Theorem 2.1 apply within the set |ϕ̃(t) · b1| 6= |ϕ̃(t) · b2| and yield the
controls in (3.1). But we have to analyze the behavior of the functional within the set
|ϕ̃(t) · b1| = |ϕ̃(t) · b2|. To do this we introduce some notation. Let ϕ̃ be a minimizer and
set 

S1 = {t ∈ (0, T ) : |ϕ̃(t) · b1| > |ϕ̃(t) · b2|},

S− = {t ∈ (0, T ) : ϕ̃(t) · (b1 − b2) = 0},
S+ = {t ∈ (0, T ) : ϕ̃(t) · (b1 + b2) = 0},
S2 = {t ∈ (0, T ) : |ϕ̃(t) · b1| < |ϕ̃(t) · b2|}.

(3.2)

It is easy to see that ϕ̃, being a minimizer of Js , is also a minimizer of the modified
functional

J̃s(ϕ
0) =

1
2

∫
S1∪S2

max(|b1 · ϕ(t)|
2, |b2 · ϕ(t)|

2) dt

+
1
4

∫
S−∪S+

[
∣∣b1 · ϕ(t)|

2
+ |b2 · ϕ(t)|

2] dt − x1
· ϕ0
+ x0

· ϕ(0) (3.3)

over the set of solutions ϕ such that

X = {ϕ : ϕ(t) · (b1 − b2) = 0 in S−;ϕ(t) · (b1 + b2) = 0 in S+}.

In this case there exist Lagrange multipliers λ− and λ+ such that the Euler–Lagrange
equations read∫
S1

ϕ̃(t) · b1ψ(t) · b1 dt +

∫
S2

ϕ̃(t) · b2ψ(t) · b2 dt

+
1
2

∫
S−∪S+

[ϕ̃(t) · b1ψ(t) · b1 + ϕ̃(t) · b2ψ(t) · b2] dt − x1
· ψ0
+ x0

· ψ(0)

= λ−

∫
S−

ϕ̃(t) · (b1− b2)ψ(t) · (b1− b2) dt + λ+

∫
S+

ϕ̃(t) · (b1+ b2)ψ(t) · (b1+ b2) dt.

This means that the control defined as

u1(t) = ϕ̃(t) · b1 in S1,

u1(t) = (1/2−λ−)ϕ̃(t)·b1+λ−ϕ̃(t)·b2, u2(t) = (1/2−λ−)ϕ̃(t)·b2+λ−ϕ̃(t)·b1 in S−,
u1(t) = (1/2−λ+)ϕ̃(t)·b1−λ+ϕ̃(t)·b2, u2(t) = (1/2−λ+)ϕ̃(t)·b2−λ+ϕ̃(t)·b1 in S+,

u2(t) = ϕ̃(t) · b2 in S2,

fulfills the final requirement (2.2).
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In view of the definition of the sets S− and S+ and, more precisely, taking into account
that ϕ̃(t) · b1 = ϕ̃(t) · b2 in S− and ϕ̃(t) · b1 = −ϕ̃(t) · b2 in S+ we see that, on the set
S− ∪ S+, the controls take the form

u1(t) =
1
2
ϕ̃(t) · b1, u2(t) =

1
2
ϕ̃(t) · b2.

This completes the proof of the theorem.

4. Optimality conditions

We have built switching controllers by minimizing functionals Js of the form (2.26) or
their variants. In this section we show that the controls obtained this way, in addition to
being of switching form, are also optimal in some sense.

In this respect it is worth mentioning that by now it is well known that the con-
trols obtained when minimizing functionals of the form (2.7) yield controls of minimal
L2(0, T ;R2)-norm, while those obtained when replacing (2.7) by

Jbb(ϕ
0) =

1
2

[∫ T

0
(|ϕ(t) · b1| + |ϕ(t) · b2|) dt

]2

− x1
· ϕ0
+ x0

· ϕ(0)

yield bang-bang controls which turn out to be of minimal L∞(0, T ;R2)-norm. The latter
can be proved using the Fenchel–Rocafellar duality principle as in [3] or using directly
the characterization of the controls as minimizers of Jbb (see [13]).

In the present setting the following holds:

Theorem 4.1. Let the assumptions of Theorem 2.1 be satisfied. Then the controls (ũ1, ũ2)

obtained by minimizing the functional Js in (2.26), in addition to satisfying the switching
condition (2.4), are of minimal norm in L2(0, T ;R2), the space R2 being endowed with
the `1-norm. More precisely,∫ T

0
(|ũ1| + |ũ2|)

2 dt ≤

∫ T

0
(|u1| + |u2|)

2 dt (4.1)

for all other admissible control pairs (u1, u2) satisfying the final requirement (2.2).

Proof. We first observe that, in view of the fact that the controls (ũ1, ũ2) are of switching
form, it follows that

|ũ1(t)| + |ũ2(t)| = max(|ũ1(t)|, |ũ2(t)|), ∀t ∈ (0, T ).

Let (u1, u2) be any other pair of switching controls. Multiplying the state equation (2.1)
by ϕ̃, the solution of the adjoint system associated to the minimizer of Js , both for the
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controls (u1, u2) and (ũ1, ũ2), and using the fact that in both cases the final requirement
(2.2) is satisfied, we deduce that

〈x1, ϕ̃0
〉 − 〈x0, ϕ̃(0)〉 =

∫ T

0
(u1(t)b1 · ϕ̃(t)+ u2(t)b2 · ϕ̃(t)) dt,

〈x1, ϕ̃0
〉 − 〈x0, ϕ̃(0)〉 =

∫ T

0
(ũ1(t)b1 · ϕ̃(t)+ ũ2(t)b2 · ϕ̃(t)) dt.

In view of the very nature of the switching controls (ũ1, ũ2) we deduce that∫ T

0
(ũ1(t)b1 · ϕ̃(t)+ ũ2(t)b2 · ϕ̃(t)) dt =

∫ T

0
max(b1 · ϕ̃(t), b2 · ϕ̃(t))

2 dt

=

∫ T

0
(|ũ1| + |ũ2|)

2 dt.

Combining these identities we deduce that∫ T

0
(|ũ1| + |ũ2|)

2 dt =

∫ T

0
(u1(t)b1 · ϕ̃(t)+ u2(t)b2 · ϕ̃(t)) dt

≤

∫ T

0
(|u1(t)| + |u2(t)|)max(|b1 · ϕ̃(t)|, |b2 · ϕ̃(t)|) dt

=

∫ T

0
(|u1(t)| + |u2(t)|)max(|ũ1(t)|, |ũ2(t)|) dt

=

∫ T

0
(|u1(t)| + |u2(t)|)(|ũ1(t)| + |ũ2(t)|) dt

≤

[∫ T

0
(|u1(t)| + |u2(t)|)

2 dt

]1/2[∫ T

0
(|ũ1(t)| + |ũ2(t)|)

2 dt

]1/2

,

which implies that ∫ T

0
(|ũ1| + |ũ2|)

2 dt ≤

∫ T

0
(|u1(t)| + |u2(t)|)

2 dt,

as desired. �

Remark 4.1. • Similar arguments allow showing that the bang-bang switching con-
trollers we have built by minimizing the functional Jsb in (2.31) are minimal in the
sense of the L∞(0, T ; `1)-norm.
• Also the same ideas and results apply when the number of controllers is greater than

two.
• The same optimality condition holds for the relaxed switching controls obtained in

Theorem 3.1 under the weaker condition guaranteeing that the pair (A,B) with B =
(b1, b2) fulfills the Kalman rank condition.
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Once more we have

〈x1, ϕ̃0
〉 − 〈x0, ϕ̃(0)〉 =

∫ T

0
(u1(t)b1 · ϕ̃(t)+ u2(t)b2 · ϕ̃(t)) dt,

〈x1, ϕ̃0
〉 − 〈x0, ϕ̃(0)〉 =

∫ T

0
(ũ1(t)b1 · ϕ̃(t)+ ũ2(t)b2 · ϕ̃(t)) dt,

and, in view of the very nature of the minimizing controls (ũ1, ũ2),∫ T

0
(ũ1(t)b1 · ϕ̃(t)+ ũ2(t)b2 · ϕ̃(t)) dt =

∫ T

0
(|ũ1| + |ũ2|)

2 dt.

Combining these identities we deduce that∫ T

0
(|ũ1| + |ũ2|)

2 dt =

∫ T

0
(u1(t)b1 · ϕ̃(t)+ u2(t)b2 · ϕ̃(t)) dt

≤

∫ T

0
(|u1(t)| + |u2(t)|)max(|b1 · ϕ̃(t)|, |b2 · ϕ̃(t)|) dt

=

∫ T

0
(|u1(t)| + |u2(t)|)(|ũ1(t)| + |ũ2(t)|) dt

≤

[∫ T

0
(|u1(t)| + |u2(t)|)

2 dt

]1/2[∫ T

0
(|ũ1(t)| + |ũ2(t)|)

2 dt

]1/2

,

which implies the optimality of the controls (ũ1, ũ2).

5. The 1-d heat equation

The 1-d heat equation, due to its particularly simple geometry and the time analyticity
of its solutions, is the model more closely related to the finite-dimensional systems we
have considered in the previous section. Certainly the most natural problem to consider
in this case is that of switching between two boundary controls. But, as we shall see,
even though switching controls trivially exist, we have to carefully adapt our strategy to
develop a systematic variational way of computing them, due to the space symmetry of
the problem. To break this symmetry, it is also natural to consider the problem of two
pointwise actuators, placed at different points of the domain where the equation evolves.
As we shall see, our methods apply in that case under suitable irrationality conditions on
the points where the controls are placed.

5.1. Boundary controls

Consider the heat equation in the space interval (0, 1) with two controls located at the
extremes x = 0, 1:

yt − yxx = 0, 0 < x < 1, 0 < t < T,

y(0, t) = u0(t), y(1, t) = u1(t), 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1.
(5.1)



104 Enrique Zuazua

We consider the problem of null controllability. More precisely, given an initial datum
y0
∈ L2(0, 1) we look for controls u0, u1 ∈ L

2(0, T ) such that the solution of (5.1)
satisfies

y(x, T ) ≡ 0. (5.2)
It is by now well known that system (5.1) is null controllable (we refer to [19] for a recent
survey on this topic both in one and several space dimensions). In fact, the system is
controllable by means of one single control: either u0 located at x = 0 or u1 located at
x = 1.

Here we are interested in switching controllers such that

u0(t)u1(t) = 0, a.e. t ∈ (0, T ). (5.3)

Obviously, switching controllers exist since any of the controls u0 and u1 by itself suffices
to control the system and therefore one could take, for instance, u1 ≡ 0, which clearly
fulfills (5.3). In the finite-dimensional context of the previous section, this would corre-
spond to the situation in which both the pairs (A, b1) and (A, b2) fulfill the Kalman rank
condition.

We now analyze whether in the present context the methodology that we have de-
scribed in the previous section can be adapted to give a systematic way of building those
controls of switching form.

To do this we consider the adjoint system
ϕt + ϕxx = 0, 0 < x < 1, 0 < t < T,

ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T,

ϕ(x, T ) = ϕ0(x), 0 < x < 1.
(5.4)

The following observability inequality for the solutions of (5.4) is well known:

‖ϕ(x, 0)‖2
L2(0,1) ≤ C

∫ T

0
[|ϕx(0, t)|2 + |ϕx(1, t)|2] dt. (5.5)

Actually, the same is true if the right hand side of (5.5) only involves the L2(0, T )-norm
of ϕx(0, t) or ϕx(1, t).

It is also well known that the null control of (5.1) may be computed by minimizing
the quadratic functional

J (ϕ0) =
1
2

∫ T

0
[|ϕx(0, t)|2 + |ϕx(1, t)|2] dt +

∫ 1

0
y0(x)ϕ(x, 0) dx (5.6)

over the class H of initial data given by

H =
{
ϕ0 :

∫ T

0
[|ϕx(0, t)|2 + |ϕx(1, t)|2] dt <∞

}
, (5.7)

which, endowed with the canonical norm

‖ϕ0
‖H =

[∫ T

0
(|ϕx(0, t)|2 + |ϕx(1, t)|2) dt

]1/2

, (5.8)

constitutes a Hilbert space.
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The controls obtained this way take the form

u0(t) = −ϕ̂x(0, t), u1(t) = ϕ̂x(1, t), t ∈ (0, T ), (5.9)

where ϕ̂ is the solution of (5.4) associated to the minimizer ϕ̂0
∈ H of J .

Obviously these controls, generically, do not fulfill the switching conditions (5.3).
In view of the results of the previous section, when looking for switching controls, it

is natural to consider the functional

Js(ϕ
0) =

1
2

∫ T

0
max[|ϕx(0, t)|2, |ϕx(1, t)|2] dt +

∫ 1

0
y0(x)ϕ(x, 0) dx. (5.10)

This functional Js : H → R is well defined, continuous and convex. It is also coercive
in view of the observability inequality (5.5). Consequently, its minimizer exists: ϕ̂0

∈

L2(0, 1).
It is natural to analyze whether the controls are of switching form

u0(t) = ϕ̂x(0, t)1S0(t), u1(t) = ϕ̂x(1, t)1S1(t), (5.11)

ϕ̂ being the solution of (5.4) associated to the initial datum ϕ̂0, and S0 and S1 being,
respectively, the sets where |ϕ̂x(0, t)| > |ϕ̂x(1, t)| and |ϕ̂x(0, t)| < |ϕ̂x(1, t)|.

For this to be true and to guarantee that the controls obtained this way are of switching
form, one has to check that the set

I = {t ∈ (0, T ) : |ϕ̂x(0, t)| = |ϕ̂x(1, t)|}

is of zero measure, which is equivalent to the following two sets being of null measure:

I± = {t ∈ (0, T ) : ϕ̂x(0, t) = ±ϕ̂x(1, t)}.

But this may not be guaranteed to hold. Actually, the following unique continuation prop-
erties are clearly false:

[ϕx(0, t) = ±ϕx(1, t) for a.e. t ∈ I±, and |I±| > 0] ⇒ ϕ ≡ 0.

Indeed, every even (with respect to the center x = 1/2) solution is a counterexample with
the − sign, while odd solutions show that the result fails for the + sign too.

In the finite-dimensional setting of the previous section this would correspond to the
failure of the property that the pairs (A, b1 − b2) and (A, b1 + b2) satisfy the Kalman
rank condition. In our setting this corresponds to the fact that system (5.1) is not null
controllable with controls (u0, u1) satisfying either u0 = u1 or u0 = −u1, because of the
symmetry properties of the system.

In this case applying the arguments of Section 3.1 we can show that the controls
obtained by minimizing the functional J have a generalized switching form, namely

u0(t) = −ϕ̂x(0, t), u1(t) = 0 when |ϕ̂x(0, t)| > |ϕ̂x(1, t)|,
u0(t) = −

1
2 ϕ̂x(0, t), u1(t) =

1
2 ϕ̂x(1, t) when |ϕ̂x(0, t)| = |ϕ̂x(1, t)|,

u0(t) = 0, u1(t) = ϕ̂x(1, t) when |ϕ̂x(1, t)| > |ϕ̂x(0, t)|.
(5.12)
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Arguing as in the previous section, we can consider a more general functional of the form

J αs (ϕ
0) =

1
2

∫ T

0
max[|ϕx(0, t)|2, |αϕx(1, t)|2] dt +

∫ 1

0
y0(x)ϕ(x, 0) dx. (5.13)

By the same arguments, a minimizer exists. To guarantee that it is of switching form we
have to make sure that the unique solution satisfying

ϕx(0, t) = ±αϕx(1, t)

in a set of positive measure is the trivial one.
Let us analyze this issue. For this, it is convenient to use the Fourier representation of

solutions of (5.4).
If ϕ0

∈ L2(0, 1) has the Fourier expansion

ϕ0(x) =
∑
k≥1

βkwk(x) (5.14)

with
wk(x) =

√
2 sin(kπx), (5.15)

then the solution ϕ of (5.4) is of the form

ϕ(x, t) =
∑
k≥1

βke
k2(t−T )wk(x). (5.16)

Then

ϕx(0, t)± ϕx(1, t) =
∞∑
k=1

βke
k2(t−T )(wk,x(0)± αwk,x(1)). (5.17)

The functions ϕx(0, t) ± αϕx(1, t) are time analytic for t ≤ T . Consequently, if they
vanish for a set of time instants of positive measure, then they vanish for all t ≤ T . It
is then easy to see, multiplying in (5.17) by the real exponentials e−`

2(t−T ) successively,
starting from ` = 1, and taking limits as t →−∞, that

βk(wk,x(0)± αwk,x(1)) = 0, ∀k ≥ 1.

To conclude that βk = 0 for all k ≥ 1 it is sufficient to show that

wk,x(0)± αwk,x(1) =
√

2kπ(1± α cos(kπ)) 6= 0, ∀k ≥ 1,

which is obviously true if |α| 6= 1.
We have proved the following result:

Theorem 5.1. By minimizing J αs with |α| 6= 1 we obtain switching controls.

A similar argument can be developed when the weight α = α(t) in the definition of J αs
depends on time and is analytic for t ≤ T . In that case it is sufficient that, as t → −∞,
the set of accumulation points of {α(t)} contains a value α such that |α| 6= 1, since
the spectrum is obviously simple. But it is not necessary to add such complexity to the
functional since, as we have seen, taking a constant α with |α| 6= 1 suffices.
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5.2. Pointwise controls

It is also natural to consider the case in which two pointwise controllers act at two different
points a and b of the space interval (0, 1) where the equation is satisfied.

The corresponding control system is
yt − yxx = ua(t)δa + ub(t)δb, 0 < x < 1, 0 < t < T,

y(0, t) = y(1, t) = 0, 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1.
(5.18)

The quadratic functional associated to the adjoint system for this control problem is as
follows:

Js(ϕ
0) =

1
2

∫ T

0
max(|ϕ(a, t)|2, |ϕ(b, t)|2) dt −

∫ 1

0
y0(x)ϕ(x, 0) dx. (5.19)

There are two main issues to address:

• The coercivity of the functional Js in an appropriate space. This is closely related to
whether the quantity

‖ϕ0
‖H =

[ ∫ T

0
[|ϕ(a, t)|2 + |ϕ(b, t)|2] dt

]1/2

(5.20)

defines a norm, and what additional information we can get from it.
• Whether the condition

ϕ(a, t)+ ϕ(b, t) = 0 (or ϕ(a, t)− ϕ(b, t) = 0) (5.21)

over a set of positive measure guarantees that the corresponding solution ϕ is trivial.

The second issue is essential to conclude that the controls that one may possibly obtain by
minimizing the functional Js in (5.19) satisfy the switching condition. Let us first analyze
that issue.

Using again the Fourier representation of solutions of (5.16) we have

ϕ(a, t)± ϕ(b, t) =

∞∑
k=1

βke
k2(t−T )(wk(a)± wk(b)). (5.22)

The functions ϕ(a, t)± ϕ(b, t) are time analytic for t ≤ T . Consequently, if they vanish
for a set of time instants of positive measure, then they vanish for all t ≤ T . It is then
easy to see, multiplying in (5.22) by the real exponentials e−k

2(t−T ) and taking limits as
t →−∞, that

βk(wk(a)± wk(b)) = 0, ∀k ≥ 1.

To conclude that βk = 0 for all k ≥ 1 it is sufficient to show that

wk(a)± wk(b) = sin(kπa)± sin(kπb) 6= 0, ∀k ≥ 1.
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This holds if and only if

kπa ± kπb 6= mπ, ∀k ≥ 1, m ∈ Z,

i.e.
a ± b 6= m/k, ∀k ≥ 1, m ∈ Z. (5.23)

In other words, a necessary and sufficient condition for the switching property to hold is
that a ± b be irrational. This is, in the present setting, the analogue to the property that
the pairs (A, b1 ± b2) satisfy the Kalman rank condition in the finite-dimensional case.

As in Section 3.1, when condition (5.23) fails the controls obtained are of relaxed
switching form.

Note that condition (5.23) implies that a and/or b are irrational and then system (5.18)
is controllable with controls located only at x = a or x = b. Indeed, the heat equation

yt − yxx = ua(t)δa, 0 < x < 1, 0 < t < T,

y(0, t) = y(1, t) = 0, 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1,

is controllable if and only if a is irrational. In fact, when a is rational the system fails to
be approximately controllable3 since the following unique continuation property fails for
the solutions of the adjoint system:

[ϕ(a, t) = 0, 0 < t < T ] ⇒ ϕ ≡ 0.

Let us finally analyze the class of initial data for system (5.18) for which switching
controllers exist. By duality it is sufficient to analyze the positivity of the norm ‖ · ‖H in
(5.20).

We have

‖ϕ0
‖

2
H =

∫ T

0
[|ϕ(a, t)|2 + |ϕ(b, t)|2] dt

=

∫ T

0

[∣∣∣∑
k≥1

βke
k2(t−T )wk(a)

∣∣∣2 + ∣∣∣∑
k≥1

βke
k2(t−T )wk(b)

∣∣∣2] dt.
We can now use well known estimates on families of real exponentials that in this case
guarantee that (see [12])∫ T

0

∣∣∣∑
k≥1

βke
k2(t−T )

∣∣∣2 dt ≥ c1
∑
k≥1

e−c2k
2T α2

k

for suitable positive constants c1, c2 > 0 independent of {βk}k≥1.

3 The property of approximate controllability consists in driving the solution to an ε-
neighborhood of an arbitrary target y1

∈ L2(0, 1), with ε > 0 arbitrarily small. Null controllability
is a stronger property which, roughly, ensures that the controls remain bounded in the corresponding
norm as ε → 0 for the target y1

≡ 0.
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We then get the weighted observability inequality

‖ϕ0
‖

2
H ≥ c1

∑
k≥1

e−c2k
2T [|wk(a)|2 + |wk(b)|2]α2

k .

The space of null controllable initial data is the dual one H′.
Summarizing, the following holds:

Theorem 5.2. Assume that a and b in the interval (0, 1) are such that the irrationality
conditions (5.23) hold. Let the initial datum y0 be in H′. More precisely, let y0 be of the
form

y0(x) =
∑
k≥1

y0
kwk(x) (5.24)

with ∑
k≥1

ec2k
2T

|wk(a)|2 + |wk(b)|2
|y0
k |

2 <∞. (5.25)

Then, for all T > 0, there exist switching controls ua and ub such that

ua(t)ub(t) = 0, a.e. t ∈ (0, T ),

and that the solution of (5.18) satisfies

y(T ) ≡ 0.

These controls can be obtained by minimizing the functional (5.19).

Remark 5.1. How positive the weights in (5.25) are as k → ∞, which determines the
nature of the space of controllable data, depends strongly on the Diophantine properties
of the irrational numbers a and b. This issue often arises in 1-d control problems. We
refer for instance to [2] for a discussion of this issue in the context of the control of wave
processes on 1-d networks.

5.3. Lumped controls

Similar results hold in the case of lumped controls, in which the pointwise Dirac controls
of the previous section are replaced by controls distributed by means of given control
functions. To be more precise, let f0 = f0(x) and f1 = f1(x) be two control profiles and
consider the heat equation

yt − yxx = u0(t)f0(x)+ u1(t)f1(x), 0 < x < 1, 0 < t < T,

y(0, t) = y(1, t) = 0, 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1.
(5.26)

Assume that the controls f0 and f1 have Fourier series expansions of the form

f0(x) =
∑
k≥1

f0,kwk(x), f1(x) =
∑
k≥1

f1,kwk(x). (5.27)
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Then the system (5.26) is null controllable with switching controls under the condition

f0,k ± f1,k 6= 0, ∀k ≥ 1, (5.28)

which is the analogue of the condition (5.23) in the case of pointwise controllers.
As in Section 3.1, when condition (5.28) fails the controls obtained are of relaxed

switching form.
The initial data that can be controlled this time have Fourier coefficients {y0

k } satisfy-
ing ∑

k≥1

ec2k
2T

|f0,k|2 + |f1,k|2
|y0
k |

2 <∞.

The controls can be obtained by minimizing the functional

Js(ϕ
0) =

1
2

∫ T

0
max

(∣∣∣∣∫ 1

0
f0(x)ϕ(x, t) dx

∣∣∣∣2, ∣∣∣∣∫ 1

0
f1(x)ϕ(x, t) dx

∣∣∣∣2) dt
−

∫ 1

0
y0(x)ϕ(x, 0) dx.

6. The multi-dimensional heat equation

The techniques we have developed in the previous section can also be applied in the multi-
dimensional case. However, the non-degeneracy conditions that need to be imposed are
this time less explicit because they depend on the spectrum of the underlying elliptic
operator. We illustrate this fact in the most commonly considered cases: boundary and
internal controls.

6.1. Internal controls

Let � be a bounded smooth subset of Rd with d ≥ 1 and ω1, ω2 be two subsets of �.
Consider the controlled heat equation

yt −1y = u1(x, t)1ω1 + u2(x, t)1ω2 in Q = �× (0, T ),
y = 0 on 6 = ∂Q,
y(x, 0) = y0(x) in �.

(6.1)

We assume that y0
∈ L2(�) and u1, u2 ∈ L

2(� × (0, T )) so that (6.1) admits a unique
solution

y ∈ C([0, T ];L2(�)) ∩ L2(0, T ;H 1
0 (�)).

We consider the problem of null controllability with switching controls. Thus, we
look for u1 and u2 such that the solution of (6.1) satisfies

y(T ) ≡ 0, (6.2)
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and, furthermore,

‖u1(t)‖L2(ω1)
‖u2(t)‖L2(ω2)

= 0, a.e. t ∈ (0, T ). (6.3)

Condition (6.3) guarantees that, at each time instant t , only one control is activated.
To analyze the existence of such controls, and to build them whenever they exist, we

consider the functional

Js(ϕ
0) =

1
2

∫ T

0
max

(∫
ω1

|ϕ(x, t)|2 dx,

∫
ω2

|ϕ(x, t)|2 dx

)
dt −

∫ 1

0
y0(x)ϕ(x, 0) dx,

(6.4)
where ϕ satisfies the adjoint system

ϕt +1ϕ = 0 in Q,
ϕ = 0 on 6,
ϕ(x, T ) = ϕ0(x) in �.

(6.5)

Arguing as in the previous sections and using the existing observability inequalities, it
is easy to see that the functional Js : L2(�) → R, which is continuous and convex, is
coercive too. The relevant observability inequality is

‖ϕ(0)‖2
L2(�)

≤ C

∫ T

0

∫
ω1∪ω2

ϕ2 dx dt. (6.6)

We claim that, minimizing this functional, one obtains the switching controls

u1(x, t) = ϕ̂1(x, t)1S1 , u2(x, t) = ϕ̂2(x, t)1S2 (6.7)

where

S1 = {t ∈ (0, T ) : ‖ϕ̂(t)‖L2(ω1)
> ‖ϕ̂(t)‖L2(ω2)

},

S2 = {t ∈ (0, T ) : ‖ϕ̂(t)‖L2(ω2)
> ‖ϕ̂(t)‖L2(ω1)

}.

But for this to be true we have to show that the set

I = {t ∈ (0, T ) : ‖ϕ(t)‖L2(ω1)
= ‖ϕ(t)‖L2(ω2)

} (6.8)

is of null measure whenever ϕ is non-trivial.
Let us now discuss this condition. Using the time analyticity of the functions t ∈

(−∞, T ] 7→ ‖ϕ(t)‖2
L2(ωj )

for j = 1, 2 it follows that if I is of positive measure, then
I = (−∞, T ].

We now employ the Fourier expansion of the solution ϕ. We have

ϕ(x, t) =
∑
k≥1

βke
λk(t−T )wk(x),

where {λk}k≥1 are the eigenvalues of the Dirichlet Laplacian and {wk}k≥1 is an orthogonal
basis of L2(�) consisting of the corresponding eigenfunctions.
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We also have∫
ωj

ϕ2(x, t) dx =
∑
k,`≥1

βkβ`e
(λk+λ`)(t−T )γ

j
k,` where γ

j
k,` =

∫
ωj

wk(x)w`(x) dx.

Let us now assume that I+ = (−∞, T ]. Then∑
k,`≥1

βkβ`e
(λk+λ`)(t−T )[γ 1

k,` − γ
2
k,`] = 0, ∀t ≤ T .

Multiplying this expression by exp(3t) and passing to the limit we deduce that∑
λk+λ`=3

βkβ`[γ 1
k,` + γ

2
k,`] = 0 (6.9)

for all 3 > 0.
Let us assume that4

(H1) for every 3 > 0, there is only one pair (λk, λ`) such that λk + λ` = 3.

Then ∑
k,`≥1

βkβ`e
(λk+λ`)(t−T )[γ 1

k,` − γ
2
k,`] = 0, ∀t ≤ T .

Arguing as above we deduce that∑
λk+λ`=3

βkβ`[γ 1
k,` − γ

2
k,`] = 0. (6.10)

Under assumption (H1) we have, in particular, α2
m[γ 1

m,m − γ
2
m,m] = 0.

Obviously, given two arbitrary open subsets ω1 and ω2 of �, we cannot exclude that,
for some value of m ≥ 1, γ 1

m,m − γ
2
m,m = 0, in which case we would not be able to

conclude that αm = 0. But, by making, if necessary, an arbitrarily small deformation of
one of the domains one can arrange that γ 1

m,m − γ
2
m,m 6= 0. In fact, using the classical

tools developed for proving the generic simplicity of the spectrum of the Laplacian (see
[17], [14]), one can easily show that, generically with respect to the subsets ω1 and ω2 of
the domain �, γ 1

m,m − γ
2
m,m 6= 0 for all m ≥ 1.

This shows that, under the assumption (H1), generically with respect to the subdo-
mains ω1 and ω2, the switching property is fulfilled. More precisely, we see that under
assumption (H1) and

(H2)

∫
ω1

w2
m dx 6=

∫
ω2

w2
m dx, ∀m ≥ 1,

it follows that the equation (6.1) is null controllable in L2(�) in an arbitrarily small time
T > 0 with switching controls satisfying (6.3).

4 Note that this is the infinite-dimensional analogue of the assumption (H ) introduced in Section
2.2 when discussing vector valued controls.
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On the other hand, according to the results in [15], generically with respect to the
domain �, the assumption (H1) is satisfied within the class of domains which are topo-
logical balls.

Summarizing, we see that the switching strategy we propose here works generically
with respect to the domain � and the subdomains ω1 and ω2.

As in Section 3.1, when these conditions fail the controls are of relaxed switching
form.

6.2. Boundary controls

The arguments of the previous section apply in the context of boundary control. The
problem can now be formulated for the following controlled system:

yt −1y = 0 in Q,
y = u1(x, t)101 + u2(x, t)102 on 6,
y(x, 0) = y0(x) in �,

(6.11)

where 01 and 02 are two open non-empty subsets of the boundary ∂�. The switching
condition can now be written as

‖u1(t)‖L2(01)
‖u2(t)‖L2(02)

= 0, a.e. t ∈ (0, T ). (6.12)

The same techniques apply in this case, under the condition (H1) (which holds generically
with respect to the domain � within the class of domains which are topological balls (see
[15]) and by replacing (H2) by the following boundary version of it:

(H ′2)

∫
01

∣∣∣∣∂wm∂ν
∣∣∣∣2 dσ 6= ∫

02

∣∣∣∣∂wm∂ν
∣∣∣∣2 dσ, ∀m ≥ 1.

In the 1-d case this condition cannot be satisfied, as we have seen in the previous section.
For that reason we modified the functional Js by adding a weighting factor α. But in the
multi-dimensional case, for a given domain �, the condition holds generically within the
class of open subsets 01 and 02 of the boundary.

As in Section 3.1, when these conditions fail the controls are of relaxed switching
form.

6.3. Generic spectral properties

In the previous sections we have used in an essential manner the result in [15] showing
that the condition (H1) holds generically with respect to the domain �.

The same question may be formulated with respect to variations of the coefficients of
the equation.

To be more precise, we can consider eigenvalue problems with variable density{
−1w = λ(1+ ρ(x))w, x ∈ �,

w = 0, x ∈ ∂�.
(6.13)
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The question is then whether arbitrarily small variations of the density ρ may guarantee
this equation not to have any non-trivial solution.

This problem can be addressed with the classical tools allowing one to prove the
generic simplicity of the spectrum. Computing the derivative of the eigenvalues with re-
spect to ρ at ρ = 0 we get

λ′ =

∫
�

ρ(x)w2(x) dx.

Therefore, if the domain � is, exceptionally, such that the equation

λk + λ` = 3

has two different pairs of solutions (λk, λ`) and (λp, λq), then the equality

λk + λ` = λp + λq (6.14)

holds. In case the derivatives of the two sides of the identity are different in some direction
ρ = ρ(x), arbitrarily small deformations of the density coefficient in that direction would
immediately make the identity (6.14) fail. In view of the expression of the derivative this
would require that ∫

�

ρ(x)[w2
k + w

2
` ] dx 6=

∫
�

ρ(x)[w2
p + w

2
q ] dx.

This holds if the squares of the eigenfunctions are linearly independent, a result which
has recently been proved in [15] generically with respect to the domain� within the class
of domains which are topological balls.

The same question can be formulated for variations of the density localized in some
subset O of the domain �. To do this one needs to know whether the squares of the
eigenfunctions are linearly independent when restricted to O. Using the analyticity of
eigenfunctions this can be shown to hold for all open non-empty subsets O (and even for
any measurable set of positive measure) if it holds in the domain �, a property that is
known to be generically true in the class of topological balls (see [15]).

Note that the same problem was formulated in [8] in connection with the optimal
design of dampers for dissipative wave equations. Similar issues arise for 1-d Sturm–
Liouville problems. In that context, it is well known that there are many counterexamples
to this linear independence property (see [10]). But this is not incompatible with the
property being true generically.

7. Further comments and open problems

The results of this paper can be extended in various ways.

Approximate controllability. The same methods can be applied in the context of ap-
proximate controllability or finite-approximate controllability. For instance, in the context
of approximate controllability of the heat equation (6.1) in which the goal is to drive the
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solution from an initial datum y0 to an ε-neighborhood of a final target y1, it is sufficient
to modify the functional (6.4) to the following one:

Japs(ϕ
0) =

1
2

∫ T

0
max

(∫
ω1

|ϕ(x, t)|2 dx,

∫
ω2

|ϕ(x, t)|2 dx

)
dt

+ ε‖ϕ0
‖L2(�) −

∫ 1

0
y0(x)ϕ(x, 0) dx +

∫ 1

0
y1(x)ϕ0(x) dx.

The rest of the analysis remains unchanged. The conclusions are also the same: under
the same spectral conditions (H1) and the same assumption (H2) on the subdomains ω1
and ω2, the controls obtained by minimizing this functional are of switching form.

There are also several issues, worth addressing, that have not been considered in this
paper. We mention here some of them.

Complexity of the switching structure. It would be natural to address the issue of the
number of switchings that the controls obtained through the variational principle intro-
duced in this article perform. This is a completely open issue.

More general parabolic systems. All our developments in the context of the heat equa-
tion are based on Fourier series expansions. It would be interesting to see if the methodol-
ogy we have applied and the results on switching controls can be adapted to more general
equations involving, for instance, potentials depending both on space and time. There is a
rich literature on the null control of those equations (see [19]). But the problem of switch-
ing controls has not been addressed so far. Obviously, the main issue to address in this
case is how to show that, under suitable geometric conditions on the domains �, ω1 and
ω2, the fact that the measure of the set of time instants t ∈ (0, T ) such that

‖ϕ̂(t)‖L2(ω2)
= ‖ϕ̂(t)‖L2(ω1)

vanishes whenever ϕ is a non-trivial solution of a heat equation with potential of the form
ϕt +1ϕ + p(x, t)ϕ = 0 in Q,
ϕ = 0 on 6,
ϕ(x, T ) = ϕ0(x) in �,

(7.1)

p being a measurable and bounded potential, for instance, implies that ϕ is identically
equal to zero.

The same can be said in the context of the pointwise control of the 1-d heat equation
with time-dependent potentials.

The wave equation. The same problems make sense for the wave equation. Consider for
instance the 1-d case with two pointwise controllers:

yt t − yxx = ua(t)δa + ub(t)δb, 0 < x < 1, 0 < t < T,

y(0, t) = y(1, t) = 0, 0 < t < T

y(x, 0) = y0(x), yt (x, 0) = y1(x), 0 < x < 1.
(7.2)
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Consider also the corresponding adjoint system
ϕt t − ϕxx = 0, 0 < x < 1, 0 < t < T,

ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T,

ϕ(x, T ) = ϕ0(x), ϕt (x, T ) = ϕ
1(x), 0 < x < 1.

(7.3)

The key issue to address to show that the methods above apply and yield switching con-
trols is whether the sets

I± = {t ∈ (0, T ) : ϕ(a, t)± ϕ(b, t) = 0}

can be guaranteed to be of null measure when ϕ is a non-trivial solution of the adjoint
system. Obviously, due to the finite velocity of propagation, this is far from being the
case. Indeed, it is easy to build non-trivial solutions of the adjoint wave equation that for
a short time interval (0, τ ) satisfy, for instance,

ϕ(a, t) = ϕ(b, t), ∀t ∈ (0, τ ).

In particular, the arguments we have used above for the heat equation do not apply in the
present setting because of the lack of time analyticity of solutions.

It would be interesting to develop new methods allowing one to build switching con-
trollers for wave like equations or, more generally, in the absence of time analyticity of
solutions of the semigroups under consideration.

The 1-d wave equation has been discussed in [5] where sufficient conditions for the
existence of switching controls are given by means of the d’Alembert representation for-
mula. This issue is also related to the on-off stabilization property analyzed in [11].
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