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Abstract. We show that among all the convex bounded domains in R2 having a fixed Fraenkel
asymmetry index, there exists only one convex set (up to similarity) which minimizes the isoperi-
metric deficit. We also show how to construct this set. The result can be read as a sharp improvement
of the isoperimetric inequality for convex planar domains.
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1. Introduction

The classical isoperimetric inequality in the plane states that, among all the subsets of R2

of prescribed finite measure, the disk has the smallest perimeter, that is,

P(E) ≥ (4π |E|)1/2, with equality if and only if E is a disk.

Here |E| and P(E) denote, as usual, the measure and the perimeter of the set E ⊂ R2.
It is almost impossible to give exhaustive references concerning the isoperimetric

inequality, therefore we refer the reader to some pioneering papers [3, 6, 19, 22], to the
paper by De Giorgi [10] in the general framework of finite perimeter sets in Rn, to the
reviews [14, 23, 28] and to the books [8, 9].

In [4, 5] Bonnesen introduced some remarkable inequalities which imply the isoperi-
metric one (see also the reviews [8, 24]). For example, we recall that for bounded convex
planar sets he proved that

P(E)2 − 4π |E| ≥ 4πd2.

Here d is the thickness of the minimal annulus containing the boundary of E. The chief
tool in the proof was a symmetrization technique known as annular symmetrization. Later
Bonnesen’s work led to the study of a wider class of inequalities nowadays known as
Bonnesen-style isoperimetric inequalities (see [8, 24]).
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If we define the isoperimetric deficit of a bounded set E by

1P(E) =
P(E)

(4π |E|)1/2
− 1,

the isoperimetric inequality becomes

1P(E) ≥ 0, with equality if and only if E is a disk.

Following Osserman [8, 24] a Bonnesen-style isoperimetric inequality in general can be
written in the form

1P(E) ≥ F(E), (1.1)

where the function F is nonnegative, vanishes only on the disks, and somehow measures
how much E deviates from a disk. There are many different kinds of functions F satisfy-
ing these properties, and each one leads to a different refinement of the standard isoperi-
metric inequality. In this paper we are interested in those functions F whose dependence
on the set E is only through the so-called Fraenkel asymmetry index, i.e.

α(E) = min
x∈R2

|E \DR(x)|

|E|
, (1.2)

where DR(x) is the disk centered at x and having the same measure as E. Both the
Fraenkel asymmetry index and the isoperimetric deficit have the property of being invari-
ant under similarities.

A remarkable Bonnesen-style inequality valid for convex planar sets was provided by
Hall and Hayman [17]. They proved an inequality which in terms of isoperimetric deficit
and Fraenkel asymmetry index reads

1P(E) ≥
π

2(4− π)
α(E)2 − c0α(E)

3, (1.3)

where the constant π/(2(4−π)) is optimal while c0 is an unknown nonnegative constant.
For completeness we mention that, in the last two decades, Bonnesen-style inequali-

ties were found in higher dimensions and for very general sets, as well as in the anisotropic
case, for example in [11, 12, 13, 15, 16]. In particular, Hall [16] proved that the isoperi-
metric deficit of any smooth open set in Rn is bounded from below by a constant times
a certain power of the Fraenkel asymmetry index. The fact that the optimal power is 2
(regardless of the dimension) has been recently proved in [15].

As far as the authors know, in the literature the investigation of (1.1) is confined to
functions F expressed as powers of α(E). Still several problems are left unsolved. In
particular, according to [15],

inf
E

1P(E)

α(E)2

is positive in the class of measurable sets in Rn, but still unknown. Indeed, even for convex
planar domains, it was unclear whether this constant coincided or not with π/(2(4− π))
in (1.3). As a consequence of our result, we give an answer to this question in Remark 2.1.
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In the present paper we provide a sharp Bonnesen-style inequality for planar convex
domains involving just 1P(E) and α(E). Obviously there exists a maximal function G
such that

1P(E) ≥ G(α(E)). (1.4)

The determination of the function G is somehow connected with the investigation of the
shape of the optimal sets, i.e., those sets which achieve equality in (1.4). We show that, for
any 0 ≤ α0 < 1, it is possible to compute G(α0). In particular, we work out an analytic
expression for the set E with asymmetry index α(E) = α0 which achieves equality in
(1.4). Moreover we prove that such a set is unique up to similarity. Our result is based
on a new symmetrization technique closely related to circular symmetrization [20], and
well suited to the bidimensional framework. Using this tool we show how to reshape a
given planar convex set keeping, step by step, its measure and its Fraenkel asymmetry
index fixed and shortening the perimeter. The procedure eventually provides the family
of optimal sets. We explicitly remark that, in order to keep the Fraenkel asymmetry index
fixed, the convexity assumption on E is needed and that it is not clear how to get rid of it.

2. Main statement

In order to formulate our main statement we begin by defining the family S of optimal
sets. This family contains the circles and any convex set S satisfying the following prop-
erties:

• S is symmetric with respect to two orthogonal axes (following [15] we shall refer to
this property as 2-symmetry);
• S has a smooth C1 boundary made of four circular arcs {ai}1≤i≤4, two of which can

possibly degenerate into parallel segments;
• α(S) = |S \D|/|D|, D being the disk having the same measure as S and centered at

the intersection of the axes of symmetry of S;
• whenever ai is a proper circular arc (for some 1 ≤ i ≤ 4) then it does not cross ∂D,

namely either ai ⊂ D or ai ⊂ R2
\D.

For the sake of completeness we give an explicit analytic expression for the family S.
If the symmetry axes are used as reference axes in the (ξ, η)-plane, then up to similarity,
such a family can be described as a one-parameter family {Hϑ }ϑ∈(0,π/4] where |Hϑ | = π .
We setHπ/4 ≡ D1(0) while for ϑ 6= π/4 the parameter ϑ denotes the angular coordinate
of the intersection of ∂Hϑ with ∂D in the first quadrant of the (ξ, η)-plane. When 0 <
ϑ ≤ arctan(π/4) the part of the setHϑ which lies in the first quadrant is described as (see
Figure 1)

{(ξ, η) ∈ Hϑ : ξ ≥ 0, η ≥ 0}

=

{
(ξ, η) ∈ R2 : 0 ≤ ξ ≤

π

4
cos2 ϑ

sinϑ
+ sinϑ, 0 ≤ η ≤ γ1(ξ)

}
,
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ϑ

η

ξ

Fig. 1. The set Hϑ for 0 < ϑ ≤ arctan(π/4). The dashed line indicates the portion of ∂D lying in
the first quadrant of the (ξ, η)-plane.

where

γ1(ξ) =


sinϑ if 0 ≤ ξ ≤

π

4
cos2 ϑ

sinϑ
,√

sin2 ϑ −

(
ξ −

π

4
cos2 ϑ

sinϑ

)2

if
π

4
cos2 ϑ

sinϑ
< ξ ≤

π

4
cos2 ϑ

sinϑ
+ sinϑ.

In this case we have

1P(Hϑ ) =
(1− sinϑ)2

2 sinϑ
, α(Hϑ ) =

π − 2ϑ − 2 sinϑ cosϑ
π

.

We observe that, when ϑ → 0, Hϑ degenerates into a segment and

lim
ϑ→0

1P(Hϑ ) = +∞, lim
ϑ→0

α(Hϑ ) = 1.

When arctan(π/4) < ϑ < π/4 the part of the set Hϑ which lies in the first quadrant
is bounded by the arcs of circumferences which meet at the point (cosϑ, sinϑ) in such a
way that ∂Hϑ is of class C1. This means that the radii of such circumferences which pass
through the point (cosϑ, sinϑ) belong to the same straight line which forms an angle x
with the η-axis (see Figure 2).

For this type of domain the isoperimetric deficit is given by

1P(Hϑ ) =
2
π

((
sinϑ
cos x

(
π

2
− x

)
+

cosϑ
sin x

x

)
−
π

2

)
, (2.1)

while the Fraenkel asymmetry is given by

α(Hϑ ) =
2
π

(
sin2 ϑ

cos2 x

(
π

2
− x − sin x cos x

)
− ϑ + sinϑ cosϑ

)
. (2.2)
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ϑ

x

η

ξ

Fig. 2. The set Hϑ for arctan(π/4) < ϑ < (π/4). The dashed line indicates the portion of ∂D
laying in the first quadrant of the (ξ, η)-plane.

The condition |�ϑ | = π gives a relation between x and ϑ :

sin2 ϑ

cos2 x

(
π

2
− x

)
+

cos2 ϑ

sin2 x
x −

(cosϑ − tan x sinϑ)2

tan x
=
π

2
. (2.3)

As a result of a straightforward but very tedious calculation both1P(Hϑ ) and α(Hϑ )
turn out to be continuous decreasing functions of ϑ and therefore the following property
holds.

Proposition 2.1. For each 0 ≤ t < 1, up to similarity, there exists a unique set St ∈ S
such that α(St ) = t . Moreover, whenever 0 ≤ t1 < t2 < 1, then 1P(St1) < 1P(St2).

Therefore we can parametrize the family S by the Fraenkel asymmetry index or the
isoperimetric deficit. The statement of our main result follows.

Theorem 2.1. Every convex set � ⊂ R2 satisfies

1P(�) ≥ 1P(Sα(�)), (2.4)

where equality holds if and only if � ∈ S.

Remark 2.1. By using the monotonicity of 1P(Hϑ ) and α(Hϑ ) with respect to ϑ we
deduce the monotonicity of the function G in (1.4) but regretfully it seems impossible to
write its expression in an elementary form. Nevertheless inequality (1.3) can be obtained
by an asymptotic expansion of α(Hϑ ) and1P(Hϑ ) in the limit as ϑ → π/4. In particular
it is quite easy to deduce from (2.1)–(2.3) that

lim
ϑ→π/4

1P(Hϑ )

α(Hϑ )2
=

π

2(4− π)
. (2.5)

What is more interesting is that, for each 0 < ϑ̄ < π/4, we have

min
ϑ̄≤ϑ≤π/4

1P(Hϑ )

α(Hϑ )2
<

π

2(4− π)
' 1.83. (2.6)
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The above statements can be proved, for example, using the fact that from (2.3) the vari-
able ϑ can be explicitly written in terms of x, namely,

tanϑ =
1

tan x
π sin2 x − 2x + 2 sin x cos x

2x − π sin2 x + 2 sin x cos x
.

It follows, after a long but straightforward calculation, that the following expansion holds
as ϑ → π/4:

1P(Hϑ )

α(Hϑ )2
=

π

2(4− π)
−
π3(16− 5π)(14− 3π)

24(4− π)4(π − 2)
α(Hϑ )

2
+O(α(Hϑ )

4).

Here we have given an expansion to the second order, but any order can be obtained.
The observation that the coefficient of the second order term is negative immediately
gives (2.5) and (2.6). Furthermore, we can say that (1.3) does not hold true for c0 = 0
(regardless of how “small” 1P(E) and α(E) are).

By a numerical calculation we can also obtain the following estimate:

min
0<ϑ≤π/4

1P(Hϑ )

α(Hϑ )2
' 1.62.

Finally we propose a different interpretation of Theorem 2.1.

Corollary 2.1. For any given 0 ≤ 1P0 < +∞ let 0 ≤ t̄ < 1 be such that

1P(St̄ ) = 1P0.

Then for all convex sets � ⊂ R2 with 1P(�) = 1P0 we have

α(�) ≤ α(St̄ ).

Therefore, taking into account the meaning of the asymmetry index, our result provides
a sharp control on how much a convex set differs from the disk having the same measure
in terms of its isoperimetric deficit.

3. Rearrangements and pseudo-circular symmetrization

We first recall the definition of symmetric decreasing and symmetric increasing rearrange-
ments of functions, which will be used throughout the paper (see also [1, 2, 18, 27]). Let
f be a positive measurable function defined in (a, b). If µf (t) = |{s ∈ (a, b) : f > t}| is
the distribution function of f , the decreasing rearrangement of f is

f ∗(s) = sup{t ≥ 0 : µf (t) > s}, s ∈ (0, b − a).

The symmetric decreasing and symmetric increasing rearrangements of f are

f ](s) = f ∗(2|s|), s ∈

(
−
b − a

2
,
b − a

2

)
,

f](s) = f
∗(b − a − 2|s|), s ∈

(
−
b − a

2
,
b − a

2

)
.
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Given a coordinate system (ξ, η) in R2, as usual the polar coordinates will be denoted
by (r, θ) with r ≥ 0 and θ ∈ [0, 2π ], such that θ = 0 indicates the positive direction of
the ξ -axis. According to Kawohl [20], a compact domain � ⊂ R2 in polar coordinates
can be Steiner symmetrized with respect to the angular coordinate θ to obtain a set �∗

that is symmetric in θ and that he calls the circular symmetrized of �. If we deal with a
smooth and starshaped set with respect to the origin O, then the circular symmetrization
can also be obtained by the Schwarz symmetrization of its radial function ρ(θ), which is
the function that represents the boundary of the set in polar coordinates. From well-known
properties of symmetrization we get |�∗| = |�| and |∂�∗| ≤ |∂�|.

Our goal is to introduce a new kind of symmetrization which somehow generalizes
the circular one and which we shall call pseudo-circular symmetrization. Let us consider
a smooth and bounded set � ⊂ R2, starshaped with respect to the origin O, and two
directions ν1 and ν2. We fix a coordinate system such that in polar coordinates θ = 0
is the direction of ν1 and denote by θ̄ ∈ [0, 2π ] the direction of ν2. Next we consider
the restriction ρ1(θ) of ρ(θ) to the set [0, θ̄ ] and the restriction ρ2(θ) of ρ(θ) to the set
[θ̄ , 2π ], and we define

ρ̄(θ) =

{
ρ
]
1(θ − θ̄/2), θ ∈ [0, θ̄ ),

ρ
]
2(θ − π − θ̄/2), θ ∈ [θ̄ , 2π),

ρ(θ) =

{
ρ1](θ − θ̄/2), θ ∈ [0, θ̄ ),
ρ2](θ − π − θ̄/2), θ ∈ [θ̄ , 2π).

Roughly speaking, we are considering the rearrangement of ρ obtained by the symmetric
rearrangements of its restrictions ρ1 and ρ2. A similar rearrangement can be found in [21].

Let �ν1ν2 and �ν1ν2 be the two open sets defined by the interior points of {(r, θ) :
0 ≤ r ≤ ρ̄(θ)} and {(r, θ) : 0 ≤ r ≤ ρ(θ)}. They are the two possible pseudo-circular
symmetrizations of �. Obviously |�ν1ν2 | = |�ν1ν2 | = |�| but in general ρ̄ and ρ are
discontinuous at both 0 and θ̄ , a condition which may increase the perimeter of the sym-
metrized set. The rest of this section is devoted to establishing sufficient conditions for
either |∂�ν1ν2 | ≤ |∂�| or |∂�ν1ν2 | ≤ |∂�|.

We first introduce the following definition.

Definition 3.1 (The set 3(a, b)). We say that a function g belongs to 3(a, b) if

• g is a non-negative Lipschitz continuous function on [a, b];
• #{g = t} ≥ 2 whenever minx∈[a,b] g(x) < t < maxx∈[a,b] g(x).

The main result of this section follows.

Lemma 3.1. Let � be an open starshaped set with respect to O, having a Lipschitz
continuous radial function ρ(θ). Let ν1, ν2 and θ̄ be defined as before. If the restrictions
of ρ(θ) to (0, θ̄ ) and (θ̄ , 2π) belong to 3(0, θ̄ ) and 3(θ̄, 2π) respectively, and

min
θ∈(0,θ̄ )

ρ = min
θ∈(θ̄ ,2π)

ρ (resp. max
θ∈(0,θ̄ )

ρ(θ) = max
θ∈(θ̄ ,2π)

ρ(θ)),
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then ρ̄(θ) (resp. ρ(θ)) is Lipschitz continuous, and |∂�ν1ν2 | ≤ |∂�| (resp. |∂�ν1ν2 | ≤

|∂�|).

Lemma 3.1 is a consequence of a well known result involving symmetric rearrangements
[7, 26].

Lemma 3.2. If a function g belongs to 3(a, b) then∫ b

a

g(s)2 ds =

∫ (a+b)/2

−(a+b)/2
g](s)2 ds =

∫ (a+b)/2

−(a+b)/2
g](s)

2 ds,∫ b

a

√
g(s)2 + g′(s)2 ds ≥

∫ (a+b)/2

−(a+b)/2

√
g](s)2 + g]′(s)2 ds, (3.1)∫ b

a

√
g(s)2 + g′(s)2 ds ≥

∫ (a+b)/2

−(a+b)/2

√
g](s)2 + g

′
](s)

2 ds. (3.2)

Equality holds in (3.1) if and only if it holds in (3.2). In that case, if in addition we assume
that |{s ∈ (a, b) : g]′(s) = 0}| = 0 then

• g(a) = g(b) = min[a,b] g if and only if g = g];
• g(a) = g(b) = max[a,b] g if and only if g = g].

4. Preliminary results

Let � be an open bounded and convex subset of R2, and D be a circle of radius R =
(|�|/π)1/2 that achieves the index of asymmetry of �, i.e.

|� \D| = min
x∈R2
|� \DR(x)|. (4.1)

We refer to the last condition as the optimality condition for D with respect to �. From
now on we shall use the centerO ofD as the origin of the coordinate system in R2. Since
� is starshaped with respect to O (it is easy to check that O ∈ �, and a convex set is
starshaped with respect to any interior point) there exists a one-to-one correspondence
8 : ∂D → ∂� such that, for any x ∈ ∂D, we have x/|x| = 8(x)/|8(x)|. Throughout
the paper we shall use the following notation (see Figure 3):

• A = ∂D ∩�;
• B = ∂D \�;
• G = ∂D ∩ ∂� = ∂D \ (A ∪ B);
• αi (i ∈ I ≡ {1, 2, . . . } ⊆ N) are the connected components of A;
• βk (k ∈ K ≡ {1, 2, . . . } ⊆ N) are the connected components of B;
• L denotes the arclength of a curve in R2;
• Tν is the line containingO and orthogonal to the direction ν. As Tν splits R2 in two we

denote by P+ν and P−ν the resulting two open half-planes (ν belongs to P+ν );
• 5ν is the projection operator on Tν .
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O

β1

β2β3

α1

α2

α3

∂�

∂D

Fig. 3. A convex set � and a disk D such that |�| = |D| and α(�) = |� \D|/|D|.

Let us now define hαi = max{|8(x)| : x ∈ αi} and dβk = min{|8(x)| : x ∈ βk}. We
shall assume without loss of generality that for every i ∈ I and k ∈ K,

hαi = max
j≥i

hαj , (4.2.i)

dβk = min
j≥k

dβj , (4.2.ii)

that is, just as in Figure 3, we assume that αi and βk are ordered according to a “descend-
ing height order” in the radial direction. The existence of the maximum and the minimum
in (4.2.i) and (4.2.ii) is a consequence of the fact that � is convex. Indeed, for any C > 0
there exist only a finite number of indices j such that hαj ≥ R + C and a finite number
of j such that dβj ≤ R − C.

In the following five lemmas we derive necessary conditions for the optimality of D
in (4.1).

Lemma 4.1. Let ν be any direction in R2. Then

L(5ν(A ∩ P
+
ν )) ≤ L(5ν(A ∩ P

−
ν ))+ L(5ν(G ∩ P

−
ν )).

Proof. We denote by n̂∂�(x) the outer normal to ∂� at x ∈ ∂� and by n̂∂D(y) the outer
normal to ∂D at y ∈ ∂D. Let h be any positive quantity and �h,ν = �− hν. We observe
that:

(a) if x /∈ ∂D \� there exists h̄x > 0 such that x /∈ ∂D ∩�h,ν for any h ∈ (0, hx);
(b) if x ∈ ∂D ∩� there exists h̄x > 0 such that x ∈ ∂D ∩�h,ν for any h ∈ (0, hx);
(c) if x ∈ ∂D∩∂�∩P−ν there exists h̄x > 0 such that x ∈ ∂D∩�h,ν for any h ∈ (0, hx);
(d) if x ∈ ∂D ∩ ∂� ∩ P+ν and n̂∂�(x) = n̂∂D(x) there exists h̄x > 0 such that x /∈

∂D ∩�x,ν for any h ∈ (0, hx);
(e) H1({x ∈ ∂D ∩ ∂� : n̂∂�(x) 6= n̂∂D(x)}) = 0.
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We denote by χ+h : Tν → [0, 1] the characteristic function of5ν(�h,ν∩∂D∩P+ν ) and by
χ−h : Tν → [0, 1] the characteristic function of 5ν(�h,ν ∩ ∂D ∩ P−ν ). A straightforward
consequence of (a)–(d) is that

lim
h→0+

χ+h = χ5ν (A∩P+ν ) a.e. on Tν,

lim
h→0+

χ−h = χ5ν ((A∪G)∩P−ν ) a.e. on Tν .

If we set

f (h) = L(5ν(�h,ν ∩ ∂D ∩ P
+
ν )), g(h) = L(5ν(�h,ν ∩ ∂D ∩ P

−
ν )),

then using the Fubini theorem and the optimality of D with respect to � we obtain∫ h

0
(f (s)− g(s)) ds = |� \D| − |�h,ν \D| ≤ 0.

In the limit as h goes to 0 this yields f (0+) ≤ g(0+) and the claim easily follows. ut

Lemma 4.2. Let ν be any direction in R2. Then

L(5ν(B ∩ P
+
ν )) ≤ L(5ν(B ∩ P

−
ν ))+ L(5ν(G ∩ P

−
ν )).

Proof. The claim easily follows from the previous lemma on interchanging P+ν and P−ν ,
once we observe that

L(5ν(A ∩ P
±
ν ))+ L(5ν(G ∩ P

±
ν ))+ L(5ν(B ∩ P

±
ν )) = 2R. ut

The following lemma gives a relation between arclengths.

Lemma 4.3. For any i ∈ I and k ∈ K,

L(αi) ≤
∑
j 6=i

L(αj )+ L(G), L(βk) ≤
∑
j 6=k

L(βj )+ L(G).

Proof. First of all we observe that αi and βk cannot be longer than πR. Indeed, if for
instance L(αi) > πR, then there exists a direction ν such that ∂D ∩ P+ν ⊂ αi and from
Lemma 4.1 one easily getsB∩P−ν = ∅ and therefore |�| > |D|, contrary to the definition
of D.

We then apply Lemma 4.1 to αi choosing the direction ν to be orthogonal to the chord
corresponding to αi . Similarly, we apply Lemma 4.2 to βk choosing ν orthogonal to the
chord corresponding to βk . The claim of the lemma then easily follows from the trivial
observation that among all the rectifiable sets γ ⊂ ∂D ∩P+ν of fixed measure, L(5ν(γ ))
reaches its maximum if and only if γ is an arc whose chord is orthogonal to ν. ut

Lemma 4.4. For any i ∈ I and k ∈ K, L(αi)+ L(βk) ≤ πR.
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Proof. Assume that
L(αi)+ L(βk) > πR. (4.3)

As already observed in Lemma 4.3 we have L(αi) ≤ πR and L(βk) ≤ πR, therefore
there exists a direction ν such that αi ⊂ P+ν and βk ⊂ P−ν . Denote by $1 and $2
the two connected components (one possibly empty) of (∂D ∩ P−ν ) \ βk . Then we set
θ̄ = R−1L(αi), θ1 = R

−1L($1) and θ2 = R
−1L($2). Inequality (4.3) yields θ1+θ2 < θ̄

and using Lemma 4.1 we get

R(1− cos(θ1 + θ2)) < R(1− cos θ̄ ) ≤ L(5ν(αi))

≤ L(5ν(A ∩ P
+
ν )) ≤ 2R − L(5ν(B ∩ P−ν ))

≤ 2R − L(5ν(βk)) = L(5ν($1))+ L(5ν($2))

= R(1− cos θ1)+ R(1− cos θ2),

= R(1− cos θ1 cos θ2 + (1− cos θ1)(1− cos θ2))

≤ R(1− cos θ1 cos θ2 +
√
(1− cos2 θ1)(1− cos2 θ2))

= R(1− cos(θ1 + θ2)),

which is a contradiction. We have used the fact that

θ1, θ2 ≥ 0 and θ1 + θ2 ≤ π,

which enforces cos θ1 + cos θ2 ≥ 0 and hence√
(1+ cos θ1)(1+ cos θ2) ≥

√
(1− cos θ1)(1− cos θ2). ut

Finally the following lemma will be of importance when applying the pseudo-circular
symmetrization.

Lemma 4.5. Let

I = max
{

max
k
L(βk),

1
2

∑
k

L(βk)

}
, J = max

{
max
i
L(αi),

1
2

∑
i

L(αi)

}
.

Then I + J ≤ πR.

Proof. In view of Lemma 4.4 and the trivial inequality

1
2

∑
j

L(αj )+
1
2

∑
j

L(βj ) ≤ πR,

it is enough to prove that for any k ∈ K,

L(βk)+
1
2

∑
i

L(αi) ≤ πR.

Assume that
2L(βk)+

∑
i

L(αi) > 2πR.
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Using the trivial equality∑
j

L(αj )+
∑
j

L(βj )+ L(G) = 2πR

we get
L(βk) >

∑
j 6=k

L(βj )+ L(G),

which contradicts Lemma 4.3. In a similar way one can show that for any i ∈ I,

L(αi)+
1
2

∑
k

L(βk) ≤ πR. ut

5. Proof of the main result

We are ready to prove our main result by presenting a reduction algorithm. For the reader’s
convenience we divide the proof into three steps. At each step the procedure preserves
the Fraenkel asymmetry index while not increasing the isoperimetric deficit. In Step 1
we reduce a given bounded convex set to a new set (not necessarily convex) having two
orthogonal axes of symmetry. In Step 2 we reshape the set to obtain a set with boundary
consisting only of circular arcs, but the set is not necessarily convex or smooth. Finally
in Step 3 we show that among all the sets of fixed asymmetry index given in Step 2,
the optimal one (having the smallest possible isoperimetric deficit) is the unique (up to
similarity) smooth set. Incidentally, such a set is convex.

5.1. Step 1: Reduction to a 2-symmetric set

Let us show how to reduce any given convex set � to a set having two orthogonal axes of
symmetry, exactly the same measure and Fraenkel asymmetry index of � but a perimeter
not greater than P(�).

We consider two directions ν1 and ν2 and the two half-lines originating from O and
containing them which split the plane in two angles that we denote by A1 and A2. We fix
ν1 and ν2 according to the occurrence of one of the following cases:

(A1) for all i ∈ I, L(αi) ≤
∑
j 6=i L(αj );

(A2) there exists i ∈ I such that L(αi) >
∑
j 6=i L(αj ).

In the first case we fix ν1 and ν2 such that α1 ⊂ A1, α2 ⊂ A2 andL(A∩A1) = L(A∩A2).
In the second case we choose ν1 and ν2 such that αi = A ∩A1.

In a similar way if µ1 and µ2 are two directions and the two half-lines originating
from the origin and containing them split the plane in two angles denoted by B1 and B2,
we can always fix µ1 and µ2 according to the occurrence of one of the following cases:

(B1) for all k ∈ K, L(βk) ≤
∑
j 6=k L(βj );

(B2) there exists k̂ ∈ K such that L(β
k̂
) >

∑
j 6=k̂

L(βj ).
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In the first case we fixµ1 andµ2 such that β1 ⊂ B1, β2 ⊂ B2 andL(B∩B1) = L(B∩B2).
In the second case we choose µ1 and µ2 such that β

k̂
= B ∩ B1.

Next we consider �+ = D ∪ � and �− = D ∩ � (see Figures 4(b) and 4(c)) and
their pseudo-circular symmetrizations that we denote �ν1ν2 and �µ1µ2 (see Figures 4(d)
and 4(e)).

Remark 5.1. In the notation of Section 3, suppose that the coordinate axes are chosen in
such a way that ν1 and ν2 correspond in polar coordinates to θ = 0 and θ = θ̄ . The radial
function of the set �+ is max{ρ(θ), R}, and from the definition of ν1 and ν2 we notice
that max{ρ(θ), R} belongs to both 3(0, θ̄ ) and 3(θ̄, 2π).

Similarly, the radial function of the set �− is min{ρ(θ), R}. In that case we assume
that µ1 and µ2 correspond in polar coordinates to 0 and θ̄ . Then the definition of µ1 and
µ2 implies that min{ρ(θ), R} belongs to both 3(0, θ̄ ) and 3(θ̄, 2π).

By definition the set�ν1ν2 is symmetric with respect to the axis in the direction ν1+ν2,
while�µ1µ2 is symmetric with respect to the axis in the direction µ1+µ2. We can rotate
the two sets around the point O until their symmetry axes happen to be orthogonal (see
Figures 4(d) and 4(e)). From now on we use these orthogonal axes as a reference system
(ξ, η).

We merge the sets �ν1ν2 and �µ1µ2 into the set �0 = (�ν1ν2 \ D) ∪ �µ1µ2 (see
Figure 4(f)). The following result holds.

Lemma 5.1. �0 has the following properties:

(1) �0 is starshaped;
(2) |�0| = |�|;
(3) |�0 \D| = |� \D|;
(4) |∂�0| ≤ |∂�|.

Proof. We observe that by definition

L(A ∩A1) ≥ L(A ∩A2) and L(B ∩ B1) ≥ L(B ∩ B2).

Moreover by Lemma 4.5 we have

L(A ∩A1)+ L(B ∩ B1) ≤ πR. (5.1)

This implies that �0 is starshaped.
Properties (2)–(3) rely on the following observation: �ν1ν2 and �µ1µ2 are the sets

whose radial functions in polar coordinates are rearrangements of the radial functions of
�+ and�−. Therefore the parametrization ρ0(θ) of ∂�0 in polar coordinates is equimea-
surable with ρ(θ), i.e.

|{ρ > t}| = |{ρ0 > t}| ∀t ≥ 0.

Finally by Remark 5.1 and Lemma 3.1, |∂�ν1ν2 | ≤ |∂�+| and |∂�µ1µ2 | ≤ |∂�
−
| and

property (4) follows immediately. ut

After the above operation, the set �0 is such that the part of the boundary of D given
by ∂D \ ∂�0 consists of at most four arcs which we denote by a1, a2, b1, b2 so that
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L(a1) = L(A∩A1), L(a2) = L(A∩A2), L(b1) = L(B ∩B1) and L(b2) = L(B ∩B2).
Without loss of generality, we assume that a1 belongs to the half-plane ξ ≥ 0. If we
neglect the trivial case � = D then a1 6= ∅ and b1 6= ∅. One of the following four cases
certainly occurs:

(o1) a2 6= ∅ and b2 6= ∅;
(o2) a2 = ∅ and b2 6= ∅;
(o3) a2 = ∅ and b2 = ∅;
(o4) a2 6= ∅ and b2 = ∅.

In any case

a1 ∪ a2 = ∂D ∩�0, L(a1) ≥ L(a2),

b1 ∪ b2 = ∂D \�0, L(b1) ≥ L(b2).

Each of the arcs a1, a2 is symmetric with respect to the ξ -axis, while b1 and b2 are
symmetric with respect to the η-axis. Let d̄ = R sin(L(a1)/2R) and let l1 and l2 be two
lines orthogonal to η and having the same distance d̄ from the origin O (see Figure 4(f)).
We denote by 6in the open subset of R2 between these two lines and by 6out the open
set R2

\ 6in. Moreover we denote by C the smallest angle with vertex at the origin and
containing a1, and by −C its symmetric image with respect to the η-axis. Now we can
state the following result.

Lemma 5.2. The lines l1 and l2 intersect ∂D in four points which belong to ∂�0. More-
over the sets �0 \D and D \�0 are subsets of 6in and 6out respectively.

Proof. It immediately follows from the definition of d̄ that

ai ⊂ 6in, i = 1, 2. (5.2)

According to inequality (5.1) we have

L(a1)+ L(b1) ≤ πR.

We deduce that
bi ⊂ 6out, i = 1, 2, (5.3)

which also proves the first assertion.
In order to prove that �0 \D ⊂ 6in we show that the radial function of �0 restricted

to the angles C and −C is bounded from above by the radial function of l1 ∪ l2 restricted
to the same angles. By using the symmetry of the set �0 it will be enough to prove an
inequality involving the level sets of these functions.

Since L(b1) = L(B ∩ B1) ≥ maxk L(βk) and the distance from 0 to the chord of b1
is not smaller than d̄, it immediately follows that Dd̄(0) ⊂ �. It follows that (see [29])
the radial function ρ of � is a Lipschitz function such that∣∣∣∣ρ(θ1)− ρ(θ2)

θ1 − θ2

∣∣∣∣ ≤ ρ̂d̄
√
ρ̂2 − d̄2,
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�
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�ν1ν2
�µ1µ2

� ∪D � ∩D
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ξ
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�0 �s0
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η η

ξ
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(c)

(e)

(g)

Fig. 4. The symmetrization procedure transforming � into �s0.
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where ρ̂ = max{ρ(θ1), ρ(θ2)}. Since it makes sense to consider the right and left deriva-
tives of ρ, denoted ρ′(θ+) and ρ′(θ−), by passing to the limit when θ2 → θ1 we get∣∣ρ′(θ±)∣∣ ≤ ρ(θ)

d̄

√
ρ(θ)2 − d̄2 ∀θ ∈ [0, 2π ]. (5.4)

Now, we consider the restrictions ρ1 and ρ2 of the function ρ to the anglesA1 andA2.
By the definitions of A1 and A2 for i = 1, 2 we have

#{ρi = t} ≥ 2 for R < t < max ρi,

therefore the coarea formula yields

|{ρi > t}| ≤ |{ρi > R}| −

∫ t

R

ds

∫
ρi=s

1
|ρ′i |

dHo
≤
L(ai)

R
−

∫ t

R

2d̄

s
√
s2 − d̄2

ds

≤
L(a1)

R
− 2 arcsin

d̄

R
+ 2 arcsin

d̄

t
= 2 arcsin

d̄

t
. (5.5)

On the other hand, if ϕ = L(a1)/(2R), the functions

r1(θ) =
d̄

|sin θ |
, θ ∈ (0, ϕ) ∪ (2π − ϕ, 2π),

r2(θ) =
d̄

|sin θ |
, θ ∈ (π − ϕ, π + ϕ),

have distribution functions

m1(t) = |{θ ∈ (0, ϕ) ∪ (2π − ϕ, 2π) : r1(θ) ≥ t}| = 2 arcsin
d̄

t
, (5.6)

m2(t) = |{θ ∈ (π − ϕ, π + ϕ) : r2(θ) ≥ t}| = 2 arcsin
d̄

t
. (5.7)

Because of (5.2) and (5.3) the function ρ]1(θ) describes in polar coordinates a curve
which in C coincides with ∂�0 while the function max{ρ]2(θ − π), R} describes a curve
which in −C coincides with ∂�0. Since r(θ) = d̄|(sin θ)−1

| is the radial function of the
two lines l1 and l2, by comparing inequalities (5.5) with (5.6) and (5.7) we conclude that
�0 \D ⊂ 6in. The proof of D \�0 ⊂ 6out can be obtained in a similar way. ut

We denote by �s0 the Steiner symmetrization of �0 with respect to both axes ξ and η
(see Figure 4(g)). Lemmas 5.1–5.2 both hold on replacing �0 by �s0 with the same lines
l1 and l2 defined above. The set �s0 is the desired 2-symmetric set, which concludes this
step.

Remark 5.2. We observe that, by slightly modifying the last part of the proof of Lemma
5.2, it is possible to prove a regularity property of the boundary of �0, namely that
∂�0 ∩6in can be locally represented as the graph of a Lipschitz function with respect to
the η-axis. Similarly ∂�0 ∩ 6out can be locally represented as the graph of a Lipschitz
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function with respect to the ξ -axis. By the property of the Steiner symmetrization we
deduce that ∂�s0 ∩ 6in can be locally represented as the graph of a Lipschitz function
with respect to the η-axis, while ∂�s0 ∩ 6out can be locally represented as the graph of a
Lipschitz function with respect to the ξ -axis.

Remark 5.3. We came up with the set �s0 only after much effort since, as we indicated
at the beginning of the section, we were looking for an algorithm which leaves the asym-
metry index unchanged during the process of symmetrization. Indeed, by using Lemmas
5.1 and 5.2, it is possible to show that the disk D is still the optimal one, i.e.

α(�s0) =
|�s0 \D|

|�s0|
.

The importance of the last condition is evident. Nevertheless to get through the next step
we do not need it.

5.2. Step 2: Reduction to a 2-symmetric set with the boundary made of arcs

Definition 5.1 (The family Z). We say that E belongs to the family Z(α0, m) (for some
m ≥ 0 and 0 ≤ α0 < 1) if up to a rototranslation:

(a1) E is starshaped with respect to O;
(a2) E has two orthogonal axes of symmetry both passing through O;
(a3) |E| = m;
(a4) |E \D| = α0|E|, where D is the disk having center at O and radius (|E|/π)1/2;
(a5) in the notation of the previous subsection, there exist two lines l1 and l2 orthogonal

to the η-axis and having the same distance from O such that they intersect ∂D in
four points which also belong to ∂E; moreover, E \D and D \E are subsets of 6in
and 6out respectively.

Remark 5.4. Because of the hypotheses (a1)–(a5), it immediately follows that

α(E) =
|E \D|

|E|
, E ∈ Z(α0, m).

The set �s0 obtained above in Step 1 belongs to Z(α(�), |�|) when the lines l1 and l2 are
defined as in the previous subsection, and ∂D \ ∂�s0 is made of four arcs d1, d2, e1, e2
such that

L(d1) = L(d2), L(e1) = L(e2),

d1 ∪ d2 ⊂ 6in, e1 ∪ e2 ⊂ 6out.

Let us consider the four points given by the intersection of l1 and l2 with ∂D. They
are vertices of a rectangle and we denote them Pi , i = 1, . . . , 4, assuming that starting
from the upper left corner they are placed in the clockwise order. It is trivial to check
that Pi ∈ ∂�s0 for all 1 ≤ i ≤ 4. We look for a set belonging to Z(α(�), |�|), having
minimum perimeter, with the further constraint that in (a5) of Definition 5.1 the lines l1
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and l2 are fixed. This implies in particular that P1, P2, P3, P4 belong to its boundary. By
symmetry the problem can be solved by finding the optimal shape of the boundary, namely
by looking for two curves g1 and g2 having the smallest possible length and satisfying the
following properties:

(b1) g1 connects P1 and P2;
(b2) g1 ⊂ 6out ∩D;
(b3) the region between ∂D ∩6out and g1 has measure 1

2α(�)|�|;
(b4) g2 connects P2 and P3;
(b5) g2 ⊂ 6in \D;
(b6) the region between ∂D ∩6in and g2 has measure 1

2α(�)|�|.

The set �a ∈ Z(α(�), |�|) having g1 and g2 as part of the boundary (the rest of the
boundary can be deduced using symmetry) has the desired properties. A simple varia-
tional argument shows that g1 has to be a circular arc. As regards g2, the same argument
can be applied if α(�) is small enough, namely,

α(�) ≤
1
|�|

(
πd2
+ 2d

√
|�|

π
− d2 − 2

(
|�|

π

)1/2

arcsin
d

r

)
. (5.8)

If condition (5.8) is not satisfied, we can find g2 using an argument contained in
[25, Th. 3.32]. Indeed, �a ∩ 6in is the convex hull of two balls of radius d/2. In other
words g2 is the only C1 curve given by the union of a circular arc (more precisely half
circumference) with two segments k1 and k2 of equal length, lying on l1 and l2.

5.3. Step 3: Reduction to a smooth convex set

In this subsection we prove that among all the sets in Z(α(�), π), up to similarity, the set
Sα(�) achieves the minimum isoperimetric deficit.

We begin by proving that, for any m ≥ 0 and 0 ≤ α0 < 1, there exists a set, the
optimal set, having minimum perimeter among all the sets belonging to Z(α0, m).

If we denote by Za(α0, m) the family {E ∈ Z(α0, m) : E = Ea}, a trivial consequence
of the previous subsections is that we achieve our goal if we can prove that there exists a
set having minimum perimeter in Za(α0, m).

The symmetry allows us to restrict our analysis to the part of the (ξ, η)-plane with
ξ, η ≥ 0; we observe that any element in Za(α0, m) is uniquely determined by the point

P = (ξ0,

√
m/π − ξ2

0 ) of intersection of its boundary with ∂D. A straightforward cal-

culation shows that Za(α0, m) is a one-parameter family of sets. Indeed, if 0 < ξ̄ <

(m/π)1/2 is chosen such that

α0 =
1
m

(
2
(
m

π

)1/2

arcsin
[
ξ̄

(
π

m

)1/2]
− 2ξ̄

√
m

π
− ξ̄2

)
, (5.9)



A sharp isoperimetric inequality 203

for any given ξ̄ ≤ ξ0 < (m/π)1/2 there exists only one setEξ0 ∈ Za(α0, m)whose bound-

ary passes through the point P ≡ (ξ0,

√
m/π − ξ2

0 ) and vice versa. Since the isoperimet-
ric deficit 1P(Eξ0) changes continuously with ξ0 and

lim
ξ0→(m/π)1/2

1P(Eξ0) = +∞,

we can conclude that, among the sets belonging to Za(α0, m) there exists at least one
having minimum perimeter.

Now it is not difficult to see that Sα0 belongs to Za(α0, π) and that, up to similarity, it
is the unique smooth set (with C1 boundary) in Za(α0, m). Our goal is to prove that this
set is the optimal set we are looking for. All we have to do is to prove that a non-smooth
set cannot be the optimal one.

A given set E ∈ Za(α0, m) is smooth except at worst at the point P of intersection
with the boundary of the optimal disk D (see Figure 5(a)–(b)). When the boundary of E
is non-smooth, zooming out around the point P , the boundary will look like Figure 5(c).
By using the same notation in Figures 5(a)–(b) and in Figure 5(c), AP and PB represent
pieces of the boundary of E. Due to the zoom around the point P , in Figure 5(c), all the
arcs are schematically represented and treated as segments. Here PC represents a piece
of ∂D.

We want to show that if two points Q′ and Q′′ are chosen in an appropriate way then
in the boundary of E we can replace the polygonal chain APB by AQ′Q′′B. The new
set will have a shorter perimeter but will still belong to Z(α0, m). For this purpose, let Q′

and Q′′ be two points such that:

• Q′Q′′ is parallel to AB;
• Q′Q′′ intersects PC in a point denoted by D;
• the area of the trapezoid AQ′DC is equal to the area of APC;
• the area of the trapezoid CDQ′′B is equal to the area of CPB.

A straightforward but tedious computation yields

(|AP | + |PB|)− (|AQ′| + |Q′Q′′| + |Q′′B|) = K|PD| + o(|PD|)

where K = (|AP | + |PB| + |AB|)/|PC| > 0 is a constant that does not depend on
Q′, Q′′ and D. Therefore if in addition to the previous hypotheses we take Q′ and Q′′

such that |PD| is small enough, the picture in Figure 5(c) represents a way to replace the
polygonal chain APB by AQ′Q′′B shortening the perimeter of E without changing |E|
or |E \D|. We conclude that a non-smooth set cannot be optimal.

5.4. The equality case

To complete the proof of Theorem 2.1 we need to characterize the sets which achieve
equality in (2.4). Let� be such a set. We want to prove that� ∈ S. We shall not consider
the trivial case α(�) = 0.
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Fig. 5. (a) and (b) correspond to the two possible cases in which ∂E is non-smooth in P ; and (c)
represents a possible way to locally change the shape of ∂E, decreasing the isoperimetric deficit
without changing the Fraenkel asymmetry index.

The proof can be split into a chain of statements:

(i) �a ∈ S;
(ii) �s0 = �

a ;
(iii) �0 = �

s
0;

(iv) � = �0.

These are deduced from well known results, therefore we just sketch their proofs.

Proof of (i). According to Step 3, either �a ∈ S or 1P(�a) < 1P(�), but the second
case contradicts the hypothesis.

Proof of (ii). Taking into account the proof of Step 2, either �a = �s0 or 1P(�a) <
1P(�s0). The second case yields a contradiction.

Proof of (iii). We know that �s0 ∈ S, hence there exists 0 < ϑ̄ < π/4 such that
�s0 = Hϑ̄ . Two different cases may now occur:

(A) ϑ̄ ≤ arctan(π/4);
(B) ϑ̄ > arctan(π/4).

In case (A), with the notation of Step 1, �0 ∩ 6out = ∅. Arguing as in the proof of
Lemma 5.2, taking advantage of (5.4), we show that

�0 = {(ξ, η) : η ∈ [−d̄, d̄], ξ ∈ [l(η), r(η)]},
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where l(η) and r(η), in accordance with Remark 5.2, are locally Lipschitz continuous
functions in (−d̄, d̄). This is enough to argue as in [28, Section 3.8, proof of (v), p. 117],
and deduce that either�0 is a translation along the ξ -axis of�s0, or1P(�s0) < 1P(�0).
But the latter yields a contradiction.

In case (B),

�0 ∩6in = {(ξ, η) : η ∈ [−d̄, d̄], ξ ∈ [l(η), r(η)]},

where l(η) and r(η), in accordance with Remark 5.2, are locally Lipschitz continuous
functions in (−d̄, d̄). Moreover

�0 ∩D = {(ξ, η) : ξ ∈ [−1, 1], η ∈ [t (ξ), b(ξ)]},

where t (ξ) and b(ξ), by Remark 5.2, are locally Lipschitz continuous functions in (−1, 1).
We observe that �s0 is the union of two sets: �0 ∩6in Steiner symmetrized with respect
to the η-axis and �0 ∩D Steiner symmetrized with respect to the ξ -axis. Again, arguing
as in [28, p. 117], since 1P(�s0) = 1P(�0) we obtain �s0 = �0.

Proof of (iv). The result easily follows from the characterization of the equality cases in
(3.1) and (3.2) stated in Lemma 3.2.
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[18] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Reprint of the 1952 edition, Cambridge
Math. Library, Cambridge Univ. Press, Cambridge (1988) Zbl 0634.26008 MR 0944909
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