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Abstract. Asymptotics of solutions to Schrodinger equations with singular magnetic and electric
potentials is investigated. By using an Almgren type monotonicity formula, separation of variables,
and an iterative Brezis—Kato type procedure, we describe the exact behavior near the singularity of
solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square
electric potential and a singular magnetic potential with homogeneity of order —1.
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1. Introduction

In quantum mechanics, the hamiltonian of a nonrelativistic charged particle in an electro-
magnetic field has the form (—iV+.4)>+ V, where V : RV — R is the electric potential
and A : RN — RV is a magnetic potential associated to the magnetic field B = curl A.
For N = 2, 3, “curl” denotes the usual curl operator, whereas for N > 3 by B = curl A
we mean the 2-form (Bji) with Bji = 9;Ax — ¢ A;, where A = (A;);—1,...n. Linear
and nonlinear elliptic equations associated to electromagnetic hamiltonians have been the
object of a wide recent mathematical research; we cite, among others, 2,7} 18, 9, [10} [17]].

In this paper we are concerned with singular homogeneous electromagnetic potentials
(A, V) which make the operator invariant by scaling, namely of the form

Ay S AGIED et/

|x| |x|2
inRN, where N > 2, A € CH(SV—1,RY), anda € L®°(SV~1, R). A prototype in dimen-
sion 2 is given by potentials associated to thin solenoids: if the radius of the solenoid tends
to zero while the flux through it remains constant, then the particle is subject to a §-type
magnetic field, which is called an Aharonov—Bohm field. A vector potential associated to
the Aharonov—Bohm magnetic field in R? has the form
X2 X1

A(.X1,XZ) = (X(_Wv W)s (-xl’-xz) € sz (1)
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with « € R representing the circulation of A around the solenoid. We notice that the
potential in is singular at 0, homogeneous of degree —1 and satisfies the following
transversality condition:

A@©)-6=0 forallg e SN

We refer to 3} 115} 23] for properties of Aharonov—Bohm magnetic potentials and related
Hardy inequalities. In the present paper, we consider, for N > 2, a larger class of singular
vector potentials, characterized by the presence of a homogeneous isolated singularity of
order —1 and by the transversality (or Poincaré) condition (we address the reader to [[16]
and [26| §8.4.2] for details about the transversal or Poincaré gauge). Such a class includes,
for N = 2, the Aharonov-Bohm magnetic potential (I). The Aharonov—Bohm potential
in dimension N = 3 is singular on a straight line and is not covered by the analysis
performed here, which only allows treating isolated singularities. In a forthcoming paper,
we will extend the present results to potentials with cylindrical singularity including the
3-dimensional Aharonov—Bohm case.

Singular homogeneous electric potentials which scale as the laplacian arise in non-
relativistic molecular physics, where the interaction between an electric charge and the
dipole moment D € RY of a molecule is described by an inverse square potential with an
anisotropic coupling strength of the form

AMx-d)

in RV,
|x|®

Vix)=—

where A > 0 is proportional to the magnitude of the dipole moment D and d = D/|D)|
denotes the orientation of D (see [12, |13} 21]). We notice that the above electric potential
is singular at 0 and homogeneous of degree —2.

We aim to describe the asymptotic behavior near the singularity of solutions to equa-
tions associated to the following class of Schrodinger operators with singular homoge-
neous electromagnetic potentials:

A<x/|x|))2 _at/lx)

|x| |x|2

LAg:= <—iV +

We study both linear and nonlinear equations obtained as perturbations of the operator
LA, in a domain & C RV containing either the origin or a neighborhood of co. More
precisely, we deal with linear equations of the type

Laqu=h(x)u inQ )

where h € Liy (2 '\ {0}) is negligible with respect to the inverse square potential x| 2

near the singularity, and semilinear equations

Laqux) = f(x,u(x)) 3

with f having at most critical growth.
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Regularity properties of solutions to Schrédinger equations with less singular mag-
netic and electric potentials have been studied by several authors. In particular, in [7],
boundedness and decay at oo of solutions are proved in dimensions N > 3 for leoc mag-
netic potentials and electric potentials with LN/2 negative part. It is also worth quoting
[L8] and [17], where, in dimensions N > 3, local boundedness and, respectively, a unique
continuation property are established under the assumption that the electric potential and
the square of the magnetic one belong to the Kato class. In [[18]] the continuity of solutions
is also obtained under restricted assumptions on the potentials.

Due to the presence of a stronger singularity which keeps potentials in LA , out of
the Kato class, it is natural to expect that solutions to equations (2) and (3] behave sin-
gularly at the origin: our purpose is to describe the rate and the shape of the singularity
of solutions, by relating them to the eigenvalues and the eigenfunctions of a Schrédinger
operator on the sphere SV ! corresponding to the angular part of LA

As remarked in [11} [13]] for the case A = 0 (i.e. no magnetic vector potential), the
estimate of the behavior of solutions to elliptic equations with singular potentials near the
singularities has several important applications to the study of spectral properties of the
associated Schrodinger operator, such as essential self-adjointness, positivity, etc. In [12]],
the exact asymptotic behavior near the singularity of solutions to Schrodinger equations
with singular dipole-type electric potentials is established, using separation of variables
combined with a comparison method. Comparison and maximum principles play a cru-
cial role also in [24], where the existence of the limit at the singularity of any quotient
of two positive solutions to Fuchsian type elliptic equations is proved. In the presence of
a singular magnetic potential, comparison methods are no more available, preventing us
from a direct extension of the results of [[12} |24]]. This difficulty is overcome by an Alm-
gren type monotonicity formula (see [[1,14]) and blow-up methods which allow avoiding
the use of comparison methods.

1.1. Assumptions and functional setting

As already mentioned, we shall deal with electromagnetic potentials (A, V) in RV,
N > 2, satisfying the following assumptions:

Aa/lx) V(x):_a(X/IXI)
|x| |x|2

(A2) AeC!/S""',RV) and aeL®S" ! R)
(regularity of angular coefficients),

(A3) A®B)-06=0 foralld e SN~! (transversality).
Under assumption (A.3), the operator L4 , acts on functions u : RV — C as

A1  Ax) =

(homogeneity),

_ale/IxD) = JAGe/IxDI + i divgy-1 AGx/x]) K AG/IXD
|x|? |x|

Laqu=—Au — Vu,
where divgv—1 A denotes the Riemannian divergence of A on the unit sphere S¥~! en-

dowed with the standard metric.
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The positivity properties of the Schrodinger operator L4 , are strongly related to the
first eigenvalue of the angular component of the operator on the sphere S¥~!. More pre-
cisely, the positivity of the quadratic form associated to L4 , is ensured under the as-
sumption

N —2)? i .
Ad) wAa) >— — (positive definiteness)

(see Lemma[2.2)), where 111(A, a) is the first eigenvalue of the angular component of the
operator on the sphere SV, i.e. of the operator

Lag = (—iVgv-1 +A)* —a.
When dealing with the nonlinear problem (3) we introduce the stronger condition

N —2\?
(A5)  wi1(0,a) > _(T) )

From the diamagnetic inequality it follows that ©1(0,a) < w1(A, a) with equality
holding if and only if curl(A/|x|) = 0 in the sense of distributions (see Lemma[A.2]in the
Appendix). In particular the assumption (A.5) is in general stronger than (A.4).

The spectrum of the angular operator Ly , is discrete and consists of a nondecreasing
sequence of eigenvalues (1(A, a) < ua2(A, a) < --- diverging to +oo (see Lemmal|A.5).
Condition (A.4) is fundamental to introduce a proper functional setting in which to frame
our analysis. Let us define Di’z(RN , C) as the completion of CJ° (RN \ {0}, C) with
respect to the norm

2 1/2
||u||Di,2(RN’(C) = (AAW <|Vu(x)|2 + |u|§cx|;| )dx) . (Y]

It is easy to verify that

DI2RY,C) = {u e L), R¥ \ {0}, C) : u/|x| € L*R",C) and Vu € L2 RN, CV)}.

The following lemma ensures that, under assumption @]) the space Di’z(RN ,C) co-
incides with the Hilbert space generated by the quadratic form Qa , associated to the
operator L4 g4,

Oaq:DI*RY,C) — R,

QA,a(u) Z:/ ['(V_‘_ZM)M(X)
RY x|

Lemma 1.1. Assume that N > 2 and (A2)~(AA) hold. Then

. . QA,a (u)
@) inf — 5
ueDL2@®N C)\{0} fRN [x|~=|u(x)|=dx

2 5
_ MW(XHZ] dx. )
|x|?

]
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m >
1,2
ueDL2 (RN C)\(0} ”M”Di’z(RN,(C)

(iii) Dy*(RY,C) = Dy% (RN), where D> (RV) is the completion of C*(RN \ {0}, C)
with respect to the norm

(ii) Qa4 Is positive definite in Di’z(RN, C), i.e. >0,

lull pr2 gy 3= (Qa.a (@)%,

Moreover the norms || - ”DLZ(RN,C) and | - ”Dxla'z ®N) are equivalent.

.a

In any open bounded domain & C R¥ containing 0, we introduce the function space
H*1 (K2, C) as the completion of

{u e HY(Q,C)NC>®(Q, C) : u vanishes in a neighborhood of 0}

with respect to the norm

2 2 2 1/2
||u||H%3(Q,(C) = (”vu”[}(Q!CN) + ||u||L2(Q,(C) + ”u/|x|”L2(Q,(C)) /

It is easy to verify that
HI(Q,0) ={ue H(Q,C) 1 u/lx| € L*(Q,0)}.

If N > 3, then H*1 (Q,C) = H'(Q, C) and their norms are equivalent, as one can easily
deduce from the Hardy type inequality with boundary terms from [27] (see (I31))) and
continuity of Sobolev trace imbeddings. On the other hand, if N = 2, then H*1 (2,C)is
strictly smaller than H' (2, C).

For any h satisfying

heLi(2\{0},0), |hx)|= O(lx|7%*%) as|x| — Oforsomee > 0, (6)

we introduce the notion of weak solution to : we say that a function u € H*1 (2,0)is
an H}(Q, C)-weak solution to (2) if, for all w € H} (Q, C) such that w/|x| € L*(Q, C),

0F (. w) = [ heourCrdx,
Q

where Qg’a : HJ(Q, C) x H*] (2, C) — Cis defined by

Qg,a(u, w) = / <Vu(x) +imu(x)> . <Vu)(x) —l—imw(x)) dx
Q

|x] |x]

_ / Mu(x)mdx.
Q

x|

In an analogous way, we define the notion of weak solution to (3) in a bounded domain
for every Carathéodory function f : Q@ x C — C satisfying the growth restriction

'f(x,z) -
Z

@)

Crl+12177%) it N > 3,
Cy(1+|z]P72) forsome p > 2 if N =2,
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for a.e. x € Q and for all z € C\ {0}, where 2* = 2N /(N — 2) is the critical Sobolev
exponent and the constant Cy > 0 is independent of x € Q2 and z € C \ {0}: we say that
a function u € H*l (2,C)is an H*1 (2, C)-weak solution to if, forall w € HO1 (2,0
such that w/|x| € L*(R, C),

f ,(u, w) = /Q S u)wix) dx.

Regularity of solutions to (2) or (3) outside the singularity follows from classical elliptic
regularity theory, as described in the following remark.

Remark 1.2. If A € C'(SV~1,RN), a € L®@SV~1, R), and h € L® (2 \ {0}), then,

loc
from standard regularity theory and bootstrap arguments, it follows that any H (2, C)-

weak solution u of (2)) satisfies u € leo’cp (2\ {0}) for any 1 < p < oo and in particular
u e Cllo’ct (2\ {0}, C) for any = € (0, 1). The Brezis—Kato technique introduced in [4]],

standard regularity theory, and bootstrap arguments, lead to the same conclusion also for
H*1 (22, C)-weak solutions to with f asin .

1.2. Statement of the main results

The following theorem provides a classification of the behavior of any solution « to (2))
near the singularity based on the limit as r — 07 of the Almgren frequency function
(see [14])

r [y, [[Vu(x) + i%u(x)yz — LD 1y () |2 — R | ()] dx

x|

Nu,h(r) = faBr |u(x)|2dS

El

®)

where, for any r > 0, B, denotes the ball {x € RN : x| <r}.

Theorem 1.3. Let Q@ C RN, N > 2, be a bounded open set containing 0, let (A.1)-(A4)
hold, and let u be an H*1 (2, C)-weak solution to u # 0, with h satisfying l@ Then,
for Ny n(r) as in (@) there exists kg € N, ko > 1, such that

-2 —2\?
lim Nja() = -2 =24 / (N—) + g (A, @) )
r—0* 2 2

Furthermore, if y denotes the limit in O), m > 1 is the multiplicity of the eigenvalue
1ky (A, @), and {y; = jo <i < jo+m —1} (o < ko < jo+m — 1) isan LA SV, C)-
orthonormal basis for the eigenspace of the operator Ly , associated to i, (A, a), then

Jot+m—1
AV u(r) — Z Bivi(0) inC TSV, C)asr — 0T, (10

i=jo
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and

j0+m—l
MTVu0) > Y By i) + Vev11i(0))  in COFEVTLC) as - 07,
i=jo
(1)
forany T € (0, 1), where

. _ R n(soyu(so) [ _ sytN-1 —
ﬁi_/SNI[R Vu(R@)-}-/(; m(s V_W)ds}p,(@)d.?(@) (12)

forall R > 0 such that Bg = {x e RN : |x| < R} C Q and Bjgs Big+1s - - > Big+m—1) #
0,0,...,0).

‘We notice that is actually a Cauchy integral type formula for u which allows retracing
the behavior of u at the singularity from the values of u along any circle centered at 0, up
to some term depending on the perturbation 4.

An application of Theorem I.3]to the special case of Aharonov—Bohm magnetic fields
in R? of the form (1) is described in Section

Theorem|[I.3|implies a strong unique continuation property as the following corollary
states. Moreover, if ¥ > 0 (as happens e.g. under assumption (A.4) in dimension N = 2)
then the solutions to (2)) are Holder continuous for 0 < y < 1 and Lipschitz continuous
fory > 1.

Corollary 1.4. Suppose that all the assumptions of Theorem[L.3|hold true. Let y denote
the limit in @) and u be an H*1 (22, C)-weak solution to .

Q) Ifukx)= 0(x|¥) as |x| — 0 forallk € N, thenu =0 in Q.
(i) If0 <y < lthenu € CY (R, C).
@iii) If y = 1 then u is locally Lipschitz continuous in 2.

We notice that the unique continuation property proved in [17] for electromagnetic po-
tentials in the Kato class does not contain the result stated in part (i) of Corollary [I.4]for
singular homogeneous magnetic potentials. We also remark that the monotonicity argu-
ment used to prove Theorem [I.3] (see Sections [5]and [6]) actually applies when perturbing
the magnetic homogeneous potential with a nonsingular term, namely with a magnetic
potential of the form

A(x/]x])

|x|

where b € C1(Q \ {0}, CV) satisfies |b(x)| = O(|x|~'*) and |[Vb(x)| = O(Jx|~2+%)
as |x| — O for some ¢ > 0 as |x| — 0. For the sake of simplicity, we omit the details
of case (I3), which can be treated following closely the strategy developed in Sections 3]
and[6

Due to the homogeneity of the potentials, the Schrodinger operators L4 , are invariant
under the Kelvin transform

Ax) = +b(x) (13)

i(x) = x| N Pu(x/|x ),
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which is an isomorphism of DL’Z(RN , C). Indeed, if u € H*1 (2, C) weakly solves (2)) in
a bounded open set €2 containing 0, then its Kelvin transform u weakly solves (2) with i
replaced by Ix|~*h(x/|x|?) in the exterior domain Q = {x € RN : x/|x|? € Q}. By a
weak solution of problem (2)) with % satisfying

heLg(Q,C), hx)=O0(xI"""*) as|x| > +ooforsomee >0,  (14)

in an exterior domain Q (i.e. a domain € such that RV \ Br, C 2 C RN\ Bpg, for some
Ro > Ry > 0), we mean a function « such that u/|x| € L?(2, C), Vu € L*(Q,CVN),
and

Qﬁa(u, w) :/ h(x)u(x)w(x) dx
Q

for any w € Dl’z(Q, C), where Di’z(Q, C) is the completion of C°(€2, C) with respect
2
to the norm [l 120 = (V|72 e, + /151125 ).
Theorem [T.3] and invariance under the Kelvin transform provide the following de-
scription of the behavior of solutions to (2) as |x| — oco. The Almgren frequency type

function in exterior domains has the form

R ~ r frwn g, [| V) + i%umf - %m(mz — R u(x)[?] dx
wh(r) = faB, O ds .

s)

Theorem 1.5. Let 2 C RY, N > 2 bean open set such that RN\BRO CQCRY \ Bg,
for some Ry > Ry > 0, let (Ad)—(A-4) hold, and let u be a weak solution to 2), u # 0,
with h satisfying . Then, for N, j, as in , there exists kg € N, ko > 1, such that

- N -2 N —2\?
rLiIEOONu,h(’") =5 \/<T) + i (A, a). (16)

Moreover, if y denotes the limit in , m > 1 is the multiplicity of the eigenvalue
Hio(A, @), and (i © jo <i < jo+m— 1} (jo<ko < jo+m—1)isan L* SV, ©)-
orthonormal basis for the eigenspace of La 4 associated to jui, (A, a), then
B Jo+m—1 N
A u(ro) — Z Bivi(0) inCT(SNT, C)asr > +oo
i=jo

and

i Jogm=1
A HVu0) — Z Bi (=7 ¥ (0)04+Ven-19;©)) in COT SN CV)as » — +oo,

i=jo
forevery T € (0, 1), where
~ 5 T n(sOu(sh) = S S S
Bi= [ | Ruroy [ SR (et g2 N 4y [ @as )
N1 R 2y—N+2

forall R > 0 such that RN \ Bg € Q and (Bjy. - - ., Bjg+m—1) # (0, ..., 0).
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A Brezis—Kato type iteration (see [4]) allows us to obtain the asymptotics of solutions
also for semilinear problems with at most critical growth. In order to start such an it-
erative procedure, we require assumption (A.5) which allows transforming equation (3)
into a degenerate elliptic equation without singular potentials to which the Brezis—Kato
method applies successfully (see Lemmas [9.1] and [T0.3). The iteration scheme devel-
oped in Sections [9] and [I0] provides an upper bound for solutions and then reduces the
semilinear problem to a linear one with enough control on the perturbing potential at the
singularity to apply Theorem [I.3]and to recover the exact asymptotic behavior, as stated
in the following theorem.

Theorem 1.6. Let Q@ C R, N > 2, be a bounded open set containing 0, let (A1)-(A3)
and (A3) hold, and let u be an H) (2, C)-weak solution to , u # 0, with f being a
Carathéodory function satisfying (7). Then there exists ko € N, ko > 1, such that

N-2 N —2\?
li (- = — A, a). 17
ri%l_‘_/\/u,/(,u)/u(r) ) +\/( B ) +/‘Lko( a) a7
Furthermore, if y denotes the limit in (I7), m > 1 is the multiplicity of the eigenvalue
1y (A, @), and (Wi = jo <i < jo+m—1} (jo < ko < jo+m—1)isan L* SV, 0)-
orthonormal basis for the eigenspace of La 4 associated to jui, (A, a), then

Jjo+m—1
A u(ro) - Z Bivi(0) inC TSN C)asr — 0t
i=jo
and
Jjo+m—1
MTVu0) > Y B0 + Vev-11:(0))  in COFESVTL CY) as h — 0%,
i=jo

for any T € (0, 1), where

R £(s0. u(s0 y+N—1
ﬂi = /;N71 I:R_VM(RQ) + ) %(sl_y — m) dsi|'¢fl(9) dS(Q)

forall R > 0 such that Bg C Q and (Bjy, - . ., Bjgtm—1) # (0, ..., 0).

Similar conclusions to those in Corollary [I.4]can be deduced from the above theorem for
solutions to semilinear equations of type (3): under the same assumption as in Theorem
[[:6 if y > O then the solutions to (3) are y-Holder continuous for 0 < y < 1 and
Lipschitz continuous for y > 1.

The following result is the counterpart of Theorem [I.6]in exterior domains.

Theorem 1.7. Let Q2 C RY, N > 2, be an open set such that RN \Bgr, C 2 C RN \ Bg,
for some Ry > Ry > 0, let (Ad)~(A3) and (A3) hold, and let u be a weak solution to
in Q, u # 0, with f satisfying, for some Cy > 0,
‘ f(x,2)
Z

<

CrxI™ + 121772 ifN >3,
Cf|x|_4(1 + |z|P72) forsome p > 2 if N =2,
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fora.e. x € Q and for all 7 € C\ {0}. Then there exists kg € N, ko > 1, such that

- N-2 N —2\?
lim Nu,f(.yu)/u(r)Z > +\/< > + i, (A, a). (18)

r—+o00 2

Moreover, if  denotes the limit in (18), m > 1 is the multiplicity of the eigenvalue

Hio(A @), and (i © jo <i < jo+m —1} (o < ko < jo+m—1)isan L> SV, O)-
orthonormal basis for the eigenspace of the operator Ly 4 associated to jix, (A, a), then

B Jjo+m—1 N
Wug) > Y Bivi0) inCTENTNL C)as k- +oo
i=jo
and

_ Jo+m—1 -
A Ve > Z Bi (=7 ¥i(0)0+Venv 11 () in COT (SN CNyas » — +o0,
i=jo

forevery Tt € (0, 1), where

~ +00 . . . S
Bi =fSN_1 [RM(R@H/R —2;59_ 7\/(:?)2) (s7*! —R2V—N+2s—y+N—1)ds}/fi ©)dS(®)

forall R > 0 such that RN \ Bg C Q and (Bjy. - - ., Bjg+m—1) # (0, ..., 0).

The paper is organized as follows. In Section [2] we prove Lemma I.1] and discuss the re-
lation between the positivity of the quadratic form associated to L4 , and the first eigen-
value of the angular operator on the sphere S¥~!. In Section [3{ we prove a Hardy type
inequality with boundary terms and singular electromagnetic potential, while in Section[4]
we derive a Pohozaev type identity for solutions to (2)). Section [5| contains an Almgren
type monotonicity formula, which is used in Section [6] together with a blow-up method
to prove Theorems and Section [/] contains an application of Theorem to
Aharonov-Bohm magnetic potentials. In Section 8 we prove a Hardy—Sobolev inequality
with magnetic potentials which is needed in Section[J]to start a Brezis—Kato iteration pro-
cedure in order to obtain a priori pointwise bounds for solutions to the nonlinear equation
and to prove Theorems and in dimension N > 3. The proofs of Theorems
and in dimension N = 2 can be found in Section In a final appendix, we recall
well known results such as the diamagnetic inequality, Hardy’s inequality with boundary
terms, and the description of the spectrum of the angular operator Ly 4.

Notation. We list some notation used throughout the paper.

e For all r > 0, B, denotes the ball {x € RY : |x| < r} in RV with center at 0 and
radius r.

Forallr > 0, B, = {x € R" : |x| < r} denotes the closure of B,.

dS denotes the volume element on the spheres dB,, r > 0.

For every z € C, 9z denotes its real part and Jz its imaginary part.

For every z € C, 7 denotes its complex conjugate.
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2. Positivity of the quadratic form

In this section, we study the quadratic form associated to the Schrodinger operator L4 4
and defined in (3)). To study the sign of Q4 4, we define the first eigenvalue of Q4 , with
respect to the Hardy singular weight as

A(Aya) = inf 0A,a(u)

. lu(x) 2
ueDY* RN ,ON0} [ u\xx|2 dx

and discuss the relation between A1 (A, a) and the first eigenvalue of the angular compo-
nent of the operator on the sphere SV =1, i.e. of the operator

Lag = (—iVen-1 +A)? —a = —Agn—1 — (a(0) — |A]> + i divgn—1 A) — 2iA - Ven-1.

We notice that, by (A.2)), A1 (A, a) is well defined and finite. Let us introduce the Sobolev
space

Hy SV Y= {y e L2SV7,0) : Vv v +iA@)y € L2SV,cN), (19)

endowed with the norm

1/2
1913 -1y = ( /S NIVt + iA@Y O)F + [ 0)F] dsw)) SN
dS denoting the volume element on the sphere S¥~1. If A € C!(SN~!,RY), then
H 1{ (S¥-1y is equal to the classical Sobolev space H L(S¥=1 C) and its norm is equiv-
alent to the H!(SV~!, C)-norm (see Lemma in the appendix).

Under assumption (A.2), the operator La , on SV ~1 admits a diverging sequence of
real eigenvalues (t1(A, a) < ua(A, a) < -- -, the first of which can be characterized as
[I(Vgn-1 + iA@Y (O) 1> — a®) |y (0)[*] dS (O
(A a) = min Jon-1[1(Van-1 +iA0)) ¥ ( )I2 a(@)|y(0)1°]dS®)
yeH) SV-1\(0} Jsn-1 1 (©)12dS©)
2D

(see Lemma[A.5). The relation between A1 (A, a) and 11 (A, a) is clarified in the following
lemma.

Lemma 2.1. If N > 2, and (A.2) and (A.3) hold, then
N —2\°
)\'l(Ai Cl) = //LI(A, Cl) + <T> .

Proof. Letyr € Hy(SN™1), ¢ % 0, attain p (A, a) and let ¢ € C°((0, +00), R) so that
g x> o(x]) € C@RN\ {0}, R). If u(x) = @(Ix)¥ (x/|x]), then

(V + im>u(x) = (0’(|x|)1/f<i)i + i90(|)C|)VSNH/f(i>

|x| Ix[/ lxl x| |x|

+ iA(i)w(uw(i)
el ] x|



130 Veronica Felli et al.

and, by assumption (A.3),

2
’(V—i—im)ux
| x|

2

() + (i) ()

Therefore, from the definition of A (A, a) it follows that

+o00 2
r(A, a)(/o s 1“"(2)' )(/S l|w(9)|2d8(9)>
E/ [< A(x/l |>> (x >|u(x>|2}dx
RN x| |x|?
+oo
- (/0 PN- llw(r)l dr (f |w<9>|2d5(9))

+oo N— |‘P(’")| . 2 2
+</0 > IVSNfIW(9)+lA(9)1ﬂ(9)| —a@)|y ()] ]dS(Q))

+oo 2
= (/ v ©) dS(G))[/ PN )P dr + (A, a)/ py-1 10O dr].
SN-1 0 .

Hence

(1)

=l¢'(

lo(xDI? 2

+
|x[?

SN P dr [ IVP@)2 dx
Jo Nl Rdr foy BOE gy

MA,a) —pni(A,a) <

for every radial function ¢ € Cé"’(RN \ {0}, R). Hence by Schwarz symmetrization

Vox)|*d
MA @) — pi(A a) < inf Jry IVE@)I" dx

FeCE®MN(OLRNO)  [oy I«J(x;\z dx
¢ radial x|

= inf Jrw IVo(x)? dx (N—2>2
mn
00 2 )
veC (RN \{0},R)\{0} fRN Ivlgcxl)zl dx 2

where the last identity is due to the optimality of the classical best Hardy constant for
N > 3 and to direct calculations for N = 2. In order to prove the reverse inequality, let
uecCr (RN \ {0}, C). The magnetic gradient of u can be written in polar coordinates as

A(x/]x]) 1 u(r 0)
Vulx)+i——— | u(x) = (0,u(r,0))0 + — VSN wu(r,0) +i

A(9),

X
r=|x|, 6=—.

x|
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By assumption (A.3),

Vu(x) + i%u(x)
X

2

|

= 18,u(r, 0)* + = |Vgv-1u(r, 0) + iA@u(r. )P, (22)
r

hence

+00
OAra(u) = / (/ NN, 9)|2dr> ds(o)
sv-1\Jo

+o0 .N—1
+/ i 5 (/ [ Vev-1u(r, 8) + iA@)u(r, 0)1* — a®)|u(r, 9>|2]d5(0)> dr.
0 r SN-1
(23)

For all € SN~!, let gy € C2°((0, +00), C) be defined by ¢g(r) = u(r,6), and let
o € C° (RN \ {0}, C) be the radially symmetric function given by @ (x) = @g(|x|). If
N > 3, Hardy’s inequality yields

+o0 —+00
/ (/ rN‘|a,u(r,9)|2dr> dS(@):/ (/ rN‘|¢g(r)|2dr) ds®)
SN—I 0 SN—I 0
1 -
= / ( / |V<P9(x)|2dx> ds()
WN—-1 JsN-1 \JRWN
1 /N—=2\? To ()2
(5 L (] S
WN—1 2 SN-1 RN |)C|2
N =2 2 400 rN—l
=<—> / (/ - |u(r,0)|2dr>d5(9)
2 SN-1 0 r
N—=2\* [ |u()?
=(—= dx, 24
( > ) /ﬂé w2 @9
where wy_1 denotes the volume of the unit sphere SVl ie oy ] = fSN—l dS(6). For

N =2, @ holds trivially. On the other hand, from the definition of w1 (A, @) it follows
that

f [I[Vgn-1u(r,0) +iA@)u(r, 0)1> — a®)|u(r, 0)1*1dS®)
SN-1

> pi(A,a) /S L G 0)2ds®). 25

From 23)-(23)), we deduce that

—9\2 2
Onalu) > [<N72> (A, a)] A{N O e forallu e CP RN\ {0}, ©),

x|

which, by density of C2°(RN \ {0}, C) in D}*(RY, C), implies

N —2\2
A(A,a) > <T) + 1A, a),

thus completing the proof. O
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The relation between the positivity of Qa , and the values w1(A, a), A1 (A, a) is described
in the following lemma.

Lemma2.2. If N > 2, and (A2) and (A3) hold, then the following conditions are

equivalent:

u
(i) Qa.q is positive definite in DLY*(RN, C), i.e. inf %“—“() > 0;
ueDI2 RN C)\(0) “”“D”(RN o)

(i) A1(A,a) > 0;

—2\2

(i) 1A @) > —(52)"

Proof. The equivalence between (ii) and (iii) is an immediate consequence of Lemma[2.1]
The fact that (i) implies (ii) follows easily from (@). It remains to prove that (ii) implies
(1). One can proceed as in the proof of [25, Proposition 1.3]. For completeness we give
the details. Assume (ii) and suppose towards a contradiction that (i) is not true. Then for
any & > 0 there exists u, € DI2(RY, C) such that

2
DLA(RV,C)

< 2(IIAlIZ e g1 gy + D

X (/ <V+im>u(x)
]RN

x|
and hence, for ¢ small,

QA,a(”s) < &llugll

2 2
dx +/ 1 (x)] dx
rY  |x)?

1 26 (Il cogv-1 gy + D
Al A, 5 al < 5 . )
1 - 28(||A||LOO(SN—1,RN) +1) 1 - 25(||A||LOO(SN—I’RN) +1)

On the other hand, from the characterization of A1(A, a) given in Lemma [2.1] the map
a — Xi(A, a) is continuous with respect to the L®(SY~H-norm and hence, letting
g — 0, we obtain A (A, a) < 0, a contradiction. O

The previous lemma allows relating DL’Z(RN , C) to the Hilbert space D}fa(RN ) gener-
ated by the quadratic form Q4 4, thus proving Lemma|[L.T}

Proof of Lemma (i) follows from Lemma [2.1 and assumption (A.4). (ii) is a direct
consequence of Lemma and (Ad). From (ii) we deduce that (Qa 4())'/? defines

a norm in CJ° (RN \ {0}, C) which is equivalent to || - o2 ®RN.C)" Hence completing
CgO(RN \ {0}, C) with respect to the norms (QA,a(-))l/2 and || - ”DLZ(RN,C) yields two
coinciding spaces with equivalent norms. O

By Hardy type inequalities, it is possible to compare the function space Di’z(RN , C) with
the classical Sobolev space DL2(RN, C) defined as the completion of C° (RN, C) with

respect to the norm
1/2
lullprewy, ¢y == (/ IVM(X)Ide)
]RN
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and with the space DXZ(RN ) given by the completion of CSO(RN \ {0}, C) with respect
A(x/|x])

to the magnetic Dirichlet norm
2 1/2
””HD,L'Z(]RN) = </RN ‘Vu(x) +i o u(x) dx) )

The presence of a vector potential satisfying a suitable nondegeneracy condition allows
recovering a Hardy inequality even for N = 2. Indeed, if N = 2 and (A.3) holds, and

1 2
Dy = > / a(t)dt € Z, where a(t) := A(cost,sint) - (—sint,cost), (26)
7 Jo
then functions in Dkz(Rz) satisfy the following Hardy inequality:

2 2
(min|k—<1>A|) / LICI. 5/
keZ rR2  |x[? R?

(mingcy, |k — ®a)> being the best constant, as proved in [[19]. It is easy to verify that, for
N =2,

2
—A(T::xbu(x) dx, @7

Vu(x) +i

A~ om0 WO +iaOy@Pdr

2T
YeH' ((0,2m),C) t)|? dt
¥ ()= (27) Jo" Wl

where «(t) := A(cost, sint) - (—sint, cost). Furthermore, (A, 0) > 0 if and only if
(26) holds. Combining Lemma[2.T](in the case N = 2 and a = 0) with [19]], we conclude
that, for N = 2,

1(A,0) = (min |k - <1>A|)2 (28)
’ keZ '

Lemma 2.3. (i) IfN >3 then Dy (RN, C)=D" 2RV, C) and the norms |-|| 1.2
and || - |Ipr2wn ) are equivalent. '
(i) IfA € CY (SN, RY) and either N > 3, or N = 2 and (A.3) and hold, then
D};z(RN, C) = DXZ(RN) with equivalent norms.
Proof. By the classical Hardy inequality, for N > 3 the norms || - [p12gvy ) and
Il - ”Di*z(RN,C) are equivalent over the space CSO(RN \ {0}, C). The proof of (i) then
follows by completion after observing that, for N > 3, C° (RN \ {0}, C) is dense in
DL2RN, C).
In order to prove (ii), let u € CS® (RN \ {0}, C). Then

RN.C)

A(x/|x])
el pragy, = | Vo +i =
A ( ) |x| LZ(RN,(CN)
Alx/|x])
< IVull 2@y cvy + H—“
|)C| LZ(RN’(CN)

|ul?

1/2
< ||IVull;2qrn cny + Su |A|(/ —dx) < const ||u]| 1.2 .
Lawy.en R =y X2 Dy (RVN.0)
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On the other hand, by the diamagnetic inequality in Lemma[A-T] classical Hardy inequal-
ity for N > 3, and (27) for N = 2, we have

||u||’D],2(RN’(C) = ||VM||L2(RN’(CN)
Ax/|x[)
—u

Alx/Ix])
—Uu
|x|

L2(RN ,CN) H |x|

> \'2
< el + 300 AI( [ i )

< Nl pr2gyy + const [ Viul] oy ovy < (14 constllullpra g,

< |\Vu+1i

L2(RN,CN)

The above inequalities show that || - ”Di‘z ®Y .C) and | - ”D}{z (RN are equivalent norms

over the space CZ° (RN\ {0}, C). The lemma then follows immediately from the definition
of the spaces DL*(RY, C) and Dkz(RN ). o

3. A Hardy type inequality with boundary terms

We extend to singular electromagnetic potentials the Hardy type inequality with boundary
terms proved by Wang and Zhu in [27] (see Lemma[A.3|in the Appendix).

Lemma 3.1. If N > 2, and (A.2) and (A.3) hold, then

/[ <V+iA(X/IXI)>u

|x]

2 alx/lx)

x|
—2\?2 2
> (m(A, a)+ <N72> )/B |u|ix|§| dx  (29)

Proof. By scaling, it is enough to prove @9) for r = 1. Letu € C*°(B;, C) N H} (B, C)
with 0 ¢ supp u. Passing to polar coordinates and using (22)), we have

o)
B |x]

l —
=/ </ rN—1|3ru(r,9)|2dr>dS(9)+N_2/ (L. )2 dS @)
sM=1\Jo 2 SN-1

1 .N—1
+/ rrz (/ [|VSN1u(r,0)+iA(9)u(r,9)|2—a(0)|u(r,9)|2]d5(9)>dr.
0 SN-1
(30)

N-2
|u|2] dx+2—/ lu(x)|>ds
r 9B,

forallr >0andu € H*I(Br, O©).

2
N -2
3 a(x/|2x|)|u|2i| dx + _/ u(x)*dS
|x| B

2

Forall € S¥=! let gy € C2°((0, +00), C) be defined by @y(r) = u(r,6), and let
Yy € CX (RN \ {0}, C) be the radially symmetric function given by @y (x) = @g(|x|).
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The Hardy inequality with boundary term proved in [27] (see Lemma [A3]in the Ap-
pendix) yields, for N > 3,

1 —
/. (/1rN‘W8ﬂwn9N2dr+-N zm(L9n2>dsw)
SN-1\Jo 2
! N -2
=”/ (/1rN‘W¢éUM2dr+ |¢90)F>dsw)
sv-1\Jp 2
1 - N—2 N
/ (/vauﬁdx+———/ wamﬁdﬂdﬂm
WN—-1 JSN-1\J B, 2 9B,
_9\2 ~ 2
s | (N_2>/ (/ 1B ()] dx>ds(9)
v\ 2 ) Jor\Jp IxP
_ 2 1 ,.N-1
(ﬁ_ﬁ) f (/ - mmenﬁu)dﬁm
2 §N—1 0 r
C(N=2\ [ lu@)?
_<fTJ.L Mpdm 31)

On the other hand, (31)) trivially holds also for N = 2. From (30), (1), and (23), we
deduce that

f [(V+iA(x/|x|))u
B |x]

2

N -2

_a(x/|;:|)|u|2}dx+—\/ |u(x)|2dS
| x| 2 Jyp

N —2)\? [u(x) |2
Z[( 2 )’L‘“(A’“)UBI B

forallu € C*(B;,C)N Hﬂ} (B1, C) with 0 ¢ supp u, which, by density, yields the stated
inequality for all H*l (B, C)-functions for r = 1. O

Remark 3.2. In view of (28), Lemma[3.1]for N = 2 and a = 0 yields

2 2
/ [(V_HA(X/IXI))M . (minlk—‘bA|>2/ P
B, keZ B,

x| lx|2
forall» > Oandu € H*l (B, C).

4. A Pohozaev type identity

Solutions to (2) satisfy the following Pohozaev type identity.

Theorem 4.1. Let © C RN, N > 2, be a bounded open set such that 0 € Q. Let a, A
satisfy (A.2), and let u be a weak H] (2, C)-solution to (2) in Q, with h satisfying @
Then
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2]

<V+iA(x/|x|)>u

|x|

2
~ a(x/|x|>|u|2} "

x|

2
+5/ [(V—i—iA(x/lxD)u _a(x/|2x|)|u|2}ds
2 JaB, |x] x|
2
=r/ a_u dS—i—/ S}i(h(x)u(x)(x-Vu(x)))dx (32)
3B, |0V B,

forallr > 0 such that B, C 2, where v = v(x) is the outer normal vector v(x) = x/|x|.

Proof. Letr > 0 be such that B, C Q. Since

, 2 2 2
/[/ [(V—i—im)u Ly }ds]ds
o LJaB, x| |x|? v
2 2 2
:/ H(V—}—i—A(x”x'))u ﬂ—i— 8_14 :|dx<+oo
a x| |x|? v

there exists a sequence {8, },en C (0, r) such that lim,,_, y 5o §, = 0 and

8n/ |: (V + im)u
dBs, |x|

From classical elliptic regularity theory, u € Wli’p (2 \ {0}) for all p € [1,00) and
u e CIIO’CT (2\{0}, C) forany t € (0, 1) (see Remark , hence we can multiply equation
by x - Vu(x), integrate over B, \ Bs,, and take the real part, thus obtaining

2
|u|?

|x]2

ou

av

2
i|dS—>0 asn — +oo. (33)

/ R(Vux) - V(x - Vu(x))) dx
B/\Bs,

) .
o DAy . Tt a
B\ Bs),

|x|2

B:\Bs),

x|

b f A (v ax
BBy, Xl

2
ds — 5n/
0Bs,

Integration by parts yields

u

:r/
3B, | 0

v

2
- dS—i—/ R(h@ux)(x - Vux)))dx. (34)
B,\Bs,

av
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/ Vu(x)-V(x-Vu(x))dx
Br\Bén

=—(N-1 |Vu(x)|2dx+r/ IVu(x)|>ds
B, \Bs, 9B,

du  0%u
-4 v as — P — dx. 35
n /azs |Vu(x)? Z / X o, w05 x. (35)

i, / 1 ’\Ban

A further integration by parts leads to

N = a2

d d

/ gyt T =N |Vu(x)|2dx+r/ |Vu(x)|*ds
=1 BB, 0x; 0x;0x; B, \Bs,

B,

du  0%u
-4 / |Vu(x)| ds — dx
" Bs, 1121 B/\Bs, ax, 3x,8x]

and hence
N a7 a2
d d
E / %(xj—u—u> dx
=1 B\ Bs, ax,' 3xiaxj'

N b
=__ IVu(x)|>dx + f/ [Vu(x)|>ds — —”/ [Vux)>dS. (36)
2 Jp,\8s, 2 JaB, 2 Jass,

Collecting (33) and (36) we obtain

- N-2 5
R(Vux) - V(x - Vux)))dx = ——— [Vu(x)|* dx
B.\Bs, 2 JB\Bs,
8
+f/ [Vux)>dS — —”/ [Vu(x)|*dSs. ((37)
2 Jam, 2 JoBs,

Letting f(0) = |A®)|*> — a(0), we find that f € LSV ! R) and, passing to polar
coordinates r = |x|, & = x/|x|, and observing that d,u(r, 0) = Vu(r9) - 0,

[ e Fawax = | f(e)[/rsN_zu(s9)_8su(s9)dS]d5(9)
Br\Ban SN 3n

x|

= [, 1Ok - 8 ue.or

—(N=2) fr sV 3 u(s0) > ds — /r sNzu(SO)BSu(SQ)ds} ds®)
Sn

S
= [ LD pas s, [ LI s
ag,  Ixl 9B, |
~(N-2) T o2 ax / TOID TS o - v dx,
B\Bs, |xl B\Bs, Ixl
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thus leading to

NE E}i(u(x)(x . Vu(x))) dx

/ IA/Ix)? = a(x/Ix)
B:\Bj,

__N-2 JACx/IxDI? —al/l) oo gy
2 Jpss, |x|?
N 5/ A/ 1xDI> = alx/lx)
2 JaB, |x|?
_a_n/ JAG/IxDI? = alx/Ix)
3 Bs,

2 x|

lu(x)|*>dsS

[u(x)|*ds. (38)

From integration by parts it follows that

/ mw -V(Vu(x) -x)dx
Br\Bé‘n

x|
= —(N-2) T AXXD G dx
B,\Bs, |x]
—|—r/ T Aw/1xD .Vu(x)dS—sn/ T AED G as
3B, x| 9Bs, x|

- / ACID G x - i) da
BB,  IxI

and therefore

-TS((Vu(x) -x)Vu(x)) dx

/ AG/lx) -S(ﬁ(x)V(Vu(x)-x))dx—i—/ AL/lxD
Br\Ba,,

|x| BBy, Xl

= (N -2) S(A(x/'xb : wm@) dx
By \Bs, | x|

+r/ %(A(x/'x') .Vu(x)m) ds
0

B, |x]

-3, / s(mvm)m) ds. (39)
0Bs,

x|

Putting together (34) and (37)—(39) and taking into account that

‘(V—l—iA(x/'x'))u
|x]

2 2
A A
= |Vul> +2 (T/:xl) -S@Vu) + AG/IXDE (T/:;C')l |u|?,
x X
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we obtain

H( A(X/IXI))
- u
Br\Bsn |x]
/ [ ( A(X/IXI))M
x|
L)
2 o5, x|
_ r/ du |? g — 3n/ du|?
B, dBs,

Letting n — o0 in the above identity and using (33) we obtain (32). |

a(x/|x|)| | ]

x|

a(X/IXI)l | }

|x|2

a(X/IXI)|u|2} s

x|

ds —i—/ Si(h(x)u(x)(x . Vu(x))) dx
v B/ \Bs,

5. The Almgren type frequency function

Let u# be an H (22, C)-weak solution to equatlon in a bounded domain @ ¢ R¥
containing the origin with £ satisfying (@) Let R > 0 be such that B C Q. Thus, the

following functions are well defined for every r € (0, R]:

2
D(’)zr%z/g |:Vu(x)+iwwx) “(T/|'x')| @2 m(h(x))m(xnz}dx
’ (40)
and
1 2
H(r) = ”N__I/SB, 2 ds. 41)

We are going to study the regularity of D and H. We first differentiate H.

Lemma 5. 1 Let Q ¢ RN, N > 2, be a bounded open set such that 0 € Q. Let a, A
satisfy (A.2), and let u be a weak H (2, C)-solution to (2)) in 2, with h satisfying (EI) If
H is the functlon defined in @ then HeCY(0,R) and

H'(r) = VN%/ ‘ﬁ( 2u)dS foreveryr € (0, R). (42)
3B,

v

Proof. Fix ro € (0, R) and consider the limit

— 2 _ 2
i 20 = HGo) _ lim/ lu(r0)|” — lu(rof)| 45(0). 3)
r—ro 9B

r—ro r—ro r—ro

Since u € Cl(Bﬁ\ {0}, C) (see Remark, for every 6 € 0 B; we have

i lu(ro)|? — lu(rod)?
1m

r—=rg r—ro

= 23i<a—ﬁ(r06’)u(l’09)>- (44)
v
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On the other hand, for any r € (ry/2, R)and 0 € 3B,

u(ro)|* — |u(rof)|?
r —rg

<2 sup |u|l- sup [Vul,
BR\Byy 2 BR\Byy 2

and hence, by @3), #4), and the Dominated Convergence Theorem, we obtain

) o 2 o
H'(ro) = | 29 5 ro)utrod) ) dS©) = — R(ul)ds.
B v ro 3B, v

The continuity of H’ on the interval (0, R) follows from this representation, the fact that
uecC! (Bz \ {0}, C), and the Dominated Convergence Theorem. O

In the lemma below, we study the regularity of the function D.

Lemma 5.2. Let @ ¢ RN, N > 2, be a bounded open set such that 0 € Q. Let a, A
satisfy (A.2), and let u be a weak H] (2, C)-solution to (2) in Q, with h satisfying @ If

D is the function defined in , then D € Wli)’cl (0, E). Moreover
s+ / §)f(h(x)u(x)(x . Vu(x))) dx

D'(r) = N2 l[r/
ree 3B, .

+E/ RO () |u(x)]? dox — ff 5)%(h(x))|u(x)|2dS:| (45)
2 Jp 2 Jam,

ou |

ov

in the distributional sense and for a.e. r € (0, R).
Proof. Forany r € (0, R) let

2
I(r):/ |:Vu(x)+lA(x/|-x|)u(x) _a(-x/|2x|)|u(x)|2_m(h(x)ﬂu(x)lzjldx
By |x] |x]
r 2
0 9By |x] |x|

(46)
From the fact that u € H*] (Bg, C), we deduce that I € w10, R) and

oy Ac/lxl) P ale/IxD)
rn= /33[ x| NE

for a.e. 7 € (0, R) and in the distributional sense. Therefore by , , and (@, we
deduce that D € Wl’l(O, R) and

loc

D'(r) =r""N[—(N =2 (r) +rI'(r)]

Vu(x)+i u(x)

|u(x)|2—m(h<x)>|u<x>|2} ds (47)

u

= rl_N|:2r/ 0
9B, v

+ (N -2) R(h(x))|u(x)|?dx — r/

By 3B,

2
ds+2 / R(h)ux)(x - Vu(x))) dx

2)%(h(x))|u(x)|2dSi| (48)

for a.e. r € (0, R) and in the distributional sense. ]
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We now show that H (r) does not vanish for every » > 0 sufficiently close to zero.

Lemma5.3. Ler @ ¢ RY, N > 2, be a bounded open set such that 0 € R, let a, A
satisfy —, and let u #% 0 be an HJ (2, C)-weak solution to H in , with h
satisfying (6). Let H = H (r) be the function defined in @1). Then there exists 7 > 0 such
that H(r) > O foranyr € (0,7).

Proof. Suppose towards a contradiction that there exists a sequence r, — 07 such that
H(r,) = 0. Then for any n, u = 0 on 90B,,. Multiplying both sides of (]2[) by u and
integrating by parts over B,, we obtain

/ AG/lD,
B [x]

=[ h(x)|u(x>|2dx+/ g—zﬁdSz/ B ) dox.
T, dB,,

n B n B’n

2
Vu(x) +i (x) dx—/ M|u(x)|2dx
B

x|

n n

Taking the real part on both sides it follows that

J

Since u = 0 on dB,,, Lemma @ and @ yield, for some positive constant ¢, > 0
depending only on A,

A/l

Vu(x)+i
x|

2
(x) dx—/B Mm(xnzdx:/ R(h(x))|u(x)]* dx.

|x]

n n B 'n

2
02/ Vu(x)—l—imu(x) dx
By, x|
2
_/ —a(x/lle)|u(x)|2dx—chr,f/ L 4
Il ]
—2\?2 2
> (m(A, a)+<N—2) —chr,2>/ LF 4. (49)
2 B, |xI

n

Since p1(A, a) + (NT_2)2 > 0 and r, — 0T, we conclude that u = 0 in B,, for n
sufficiently large. Since u = 0 in a neighborhood of the origin, we may apply, away from
the origin, a unique continuation principle for second order elliptic equations with locally
bounded coefficients (see e.g. [28]]) to conclude that u = 0 in €2, a contradiction. m]

By virtue of Lemma|[5.3] the Almgren type frequency function

D(r)

N(V) =Nu,h(r) = H(r)

(50)

is well defined in a suitably small interval (0, 7). Combining Lemmas [5.1] and [5.2] we
compute the derivative of \V.
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Lemma5.4. Let Q ¢ RY, N > 2, be a bounded open set such that 0 € , let a, A
satisfy tbli and let u # 0 be an H*l (2, C)-weak solution to in 2, with h
satisfying @i Then, letting N be as in , we have N' € W10, 7) and

loc

g_ﬂzds) ’ (faB,‘ |”|2d5) - (faB, “‘(MS—f) ds)z]
(faB, |“|2dS)2
N Z[fs, R(h@)u)(x - Vu(x))) dx + NT*2 I3, R(h ) u(x)|*>dx — 5 fss, R(h () u(x)]>dS]
Jyp, lul>dS

zr[(faB,

N'(r) =

(51)
in the distributional sense and for a.e. r € (0, 7).

Proof. From Lemmas , it follows that N € Wli)’cl (0, 7). Multiplying both sides of
(2) by u, integrating by parts, and taking the real part we obtain the identity

2
f [ Vu(x) + i%m) - %wmﬂ - m(h(x))m(x)ﬁ} dx
! ou
= [ ) e
Therefore, by (@0) and (@2) we infer that
D(r) = %VH/(V) (52)

for every r € (0, 7). From (52) we have

D'(r)H(r) — D(NH'(r) _ D'(NH() — 3r(H'(r)?
(H(r))? B (H(r))?

N'(r) =
and, using (@) and @), the assertion of the lemma easily follows. O
We now prove that A (r) admits a finite limit as » — 0.
Lemma 5.5. Under the same assumptions as in Lemma([5.4] the limit
y = rgr(l)lJr N(r)

exists and is finite.

Proof. We start by proving that AV (r) is bounded from below as r — 01. By Lemma
proceeding as in (9) we arrive, for some positive constant ¢, > 0 depending only on /,
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at
A 2
f Vi) + i 2D o ax —/ a(x/|2x|)|u(x)|2dx —/ R () |u(x)]? dx
B, x| B x| B,
N -2 N —2)\? 2
> — f |u(x)|2dS+ wiA,a)+ | ——) —cpr® f de
o Jis 2 e
N-2
> — / lu(x)|>ds (53)
2r 9B,
for r > 0 sufficiently small. This together with @0)—(@1)) yields
N-2

for any r > O sufficiently close to zero. Thanks to @, for some C; > 0, we estimate
S N -2 2
S}t(h(x)u(x)(x . Vu(x))) dx + 5 Rh(x))|u(x)|“dx
B, B,
r ; 2
- = R |ux)|“dS
2 JyB,

2
dx—i—f uCo)l dx+rN_2H(r)).

x|

2

AG/]x])
i—u

Vu +
|x]

§C1r8</

Together with (53), this implies that there exist C; > 0 and 7 > 0 such that, for any
re(0,7),

/ S’t(h(x)m(x.vbt(x)))derNT_z R(h () |ux)|? dx
r Br

2

r 2
_r f R(h(x))|u(x)dS 2
0B,

< CoprttN _Z[D(r) + N—_2H(r)i|.

Therefore, for any r € (0, ), we have

g, WA U (x - Vux)) dx + 852 [ R0 u)2dx =5 [35 RAC) () dS‘
Jyg, ()2 dS

D(r)+ " 2H N-2
(V) H(;) (r) < C2r71+€N(r)+C2 5 r7]+€' (55)

< Cyr 17

By Lemma 5.4 and Schwarz’s inequality, one sees that

N'(r)
s R(hCOuC) (x - V() dx + Y52 [ REE)u@ P dx =5 [y RG)|u@)?dS
- Jym, U012 dS
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and hence by (33) we obtain
N'(r) = =2Cor "N (r) — Co(N — 2)r 1 (56)
for any r € (0, 7). After integration it follows that, for some C3 > 0,

N () < N(7)e@C/O0 =) 4 (N — 2)Cpe2C2/O" / R CIO N <C; (57)

r

for any r € (0, ). This shows that the left hand side of belongs to LY0,7).In partic-
ular by Lemma and Schwarz’s inequality we see that A/ is the sum of a nonnegative
function and an L!-function. Therefore

NG = N @ — / " N(s) ds

admits a limit as » — 0T, which is necessarily finite in view of (54) and (57). O

A first consequence of the above analysis of the Almgren frequency function is the fol-
lowing estimate of H (r).

Lemma 5.6. Under the same assumptions as in Lemma[5.4] let y := lim, o+ N'(r) be
as in Lemma[5.3] Then there exists a constant Ky > 0 such that

H(r) < Kir®  forallr € (0, 7). (58)

On the other hand for any o > 0 there exists a constant K>(0) > 0 depending on o such
that
H(r) > Kz(a)rzy+” forallr € (0,r). (59)

Proof. We start by proving . Since, by Lemma N’ e L'(0,7) and \V is bounded,
by (56) we infer that

-
NE)—y = / N (s)ds > —Cyr® (60)

0
for some constant C4 > 0 and r € (0, 7) with O < 7 < r. Therefore by and we

deduce that for r € (0, 7),

H'(r) _ 2N (r) - 2_y o1t
H(r) Ty ~r 4 ’

Then (58) follows immediately after integration of the previous differential inequality
over the interval (r, 7) and by continuity of H outside 0.

Let us prove (39). Since y = lim,_, o+ N(r), for any o > 0 there exists r, > 0 such
that N'(r) < y + o /2 for any r € (0, r,) and hence

H'(r) 2N(r) - 2y +o
H(r)  r

Integrating over the interval (r, r,) and by the continuity of H outside 0, we obtain (59)
for some constant K> (o) depending on o. O

forall r € (0, ry).
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6. Proofs of Theorems 1.3 and

In this section we use the monotonicity properties established in Section[5]combined with
a blow-up technique to deduce the asymptotics of solutions near the singularity and to

prove Theorems[I.3|and [T.3]

Lemma 6.1. Let Q@ ¢ RY, N > 2, be a bounded open set containing 0, let a, A be

such that (A.2)-(A.4) hold, and let h be as in @ Foru € H}(Q, C) weakly solving ,
u #0, let y :=lim, o+ N'(r) be as in Lemmal[5.5] Then

(1) there exists ko € N such that

N -2 N —2\?
v=-"— + > + iy (A, a);

ii) for every sequence A, — OF, there exist a subsequence {\, and an eigen-
ry seq q kJkeN 8
Sfunction  of the operator L , associated to the eigenvalue i, (A, a) such that

IVl 2n-1,c) =1 and
A
u(—”kx) — |x|V¢<i>
|x]

Vv H (hny)

weakly in H'(B1,C), strongly in H'(B,,C) for every 0 < r < 1, and in
C110’.3r (B1 \ {0}, C) for any T € (0, 1).

Proof. Let us set

‘We notice that f 3B, |wA |2 dS = 1. Moreover, by scaling and ,

A

Hence, by (29) and (6) there exists ¢;, > 0 such that

N2 Ay [2 —
(m(A,a)+ <NTZ> _Ch)\8>/ o) dx < N-2 + N (2),
By

x| 2

A(x/]x]) W ()

Vuwt(x) +i
|x]

2
dx—/ wm*(x)ﬁdx
B |x|

—/ AR Ox)) | wh (x) > dx = N (L) < const.  (61)
By

and consequently there exist A > 0 and const > 0 such that

A 2

w™ (x _

f % dx <const forevery) <X <A,
B X

which, in view of li implies that {wk})\e(o,i) is bounded in H*1 (By, C).
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Therefore, for any given sequence A, — 0%, there exists a subsequence Anp — ot
such that w** — w weakly in Hj(Bl, C) for some w € Hj (B, C). We notice that
H*1 (B1, C) is continuously imbedded into H 1 (B1, C), hence whie = weakly also in
H'(Bi, C). Due to compactness of the trace imbedding H!(B;, C) — L*(dBy, C), we
obtain [, 0B, |w|?>dS = 1. In particular w # 0. Furthermore, weak convergence allows
passing to the weak limit in the equation

Laaw™s (x) = Ay hOux)we (x) (62)

which holds in a weak sense in By S D Bj (see the beginning of Section |§| for the

definition of R), thus yielding
Laqw(x)=0 in Bj. (63)
A bootstrap argument and classical regularity theory lead to
wh — w  in CLT(By \ {0}, C)
for any 7 € (0, 1) and
w* — w in H'(B,,C) and in H}(B,, C) (64)

for any r € (0, 1). Since the functions w’ solve equation , for any r € (0, 1) we
may define the functions

2

i| dx

1
Dk(”)=rN—_2/B|:

-;;2A[MXEWWWWF+ﬁﬁmwM»mMuW}M

AG/XD o

Vw’ (x) + i
|x|

and |
Hi(r) = —/ Iwk"k|2dS.
FN-1 3B,

On the other hand, since w solves (63), we put

1 A(x/|x 2 ax/lx
Dy (r) = ﬂ/ HVw(x) +iww(x) - L|2|)|w(x)|2i| dx (65)
r B, |x] |x]
forall » € (0, 1) and
1
H,(r) = ﬁ/ |lw|>dS forallr € (0, 1). (66)
r 3B,
Using a change of variables, one sees that
D D(x

Netry o= 2 DO 3 ) forall 7 e (0, 1). (67)

Hi(r)  HQOuy,r)
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By (6) and (64), for any fixed r € (0, 1) we have
Dy (r) = Dy(r). (68)

On the other hand, by compactness of the trace imbedding H 1 (B;,C) — L2(8 B, 0),
we also have
Hy(r) - Hy(r) forany fixed r € (0, 1). (69)

From it follows that Dy, (r) > —%Hw (r) for all r € (0, 1). Therefore, if, for some
r € (0,1), Hy(r) = 0 then Dy (r) > 0, and passing to the limit in (67) would give a
contradiction with Lemma[5.3] Hence H,,(r) > 0 for all r € (0, 1). Thus the function

is well defined for r € (0, 1). This, together with (67)—(69) and Lemma|[5.5] shows that

Nuw(r) = kli)ngo/\/(?»nkr) =y (70)

for all r € (0, 1). Therefore N,, is constant in (0, 1) and hence N}, (r) = 0 for any
r € (0, 1). By (63) and Lemma[5.4) with 2 = 0, we obtain

9 2 9w 2
</ o dS>~</ |w|2dS>—</ m(w—w)dS) —0 forallre (0, 1),
9B, | OV 9B, 3B, v
i.e. 5 5
Jw ow
R w— )dS| = |wl|?,,. ”— .
/33, ( 3V> L2080 | gy L2(3B,.C)

This shows that w and dw/dv have the same direction as vectors in L2(3Br, C) and
hence there exists a real valued function n = 5(r) such that %—'f(r, 0) = n(r)w(r, 9) for
r € (0, 1). After integration we obtain

w(r, 0) = eI 10d5y,(1.0) = o)W (@), re(0,1),8eSV!, (71)
where we put p(r) = e/l 16)ds and ¥ (0) = w(l, #). Since

Pw N-1low 1

LAW=——— — ——— + — L w,
A.at ar? r or + r2 A.att
(1) yields
N —1 r)
(-(/)”(V) - TWU))%D(@) + (pr—zLA,al/f(9) =0.

Taking r fixed we deduce that v is an eigenfunction of the operator La .. If i, (A, a) is
the corresponding eigenvalue then ¢(r) solves the equation

N -1 A,
—¢'() - — go(r>+’“‘°(rz D yry =0




148 Veronica Felli et al.

and hence ¢(r) is of the form

N _
@(r) = c1r’ + corro

for some c1, ¢z € R, where

N-2 N —2\2
P (Y S

__ N-2 N —2)? A
=5 5 ) TreAa.

Since x|~ (]x| oy (x/|x])) ¢ L2(By,C) and hence |x|"oy(x/|x]) ¢ H}(B;,0), it

T
follows that c; = 0 and ¢(r) = clrakO. Since ¢(1) = 1, we obtain ¢; = 1 and then

.
w(r, 0) =r’oy(@®) forallr € (0,1)ando e SN (72)

It remains to prove part (i). Since w solves (63)), after integration by parts

2
/ [ A/lxh _a(x/|x|)|w(x)|2] dx:/ ow g
: 0

x| x| B, IV
Therefore, by (63), (66), (70), and (72), it follows that

w—
Dy(r) 7 [yp GewdS ¥

= 5 =0, .
Ho(r)  Jyp [wPdS 0

Vw(x) +i

V:Nw(r):

This completes the proof of the lemma. O

A further step towards a priori bounds for solutions to (2) lies in uniformly estimating the
supremum of |u| on d B, with H (r).

Lemma 6.2. Ler @ C RN, N > 2, be a bounded open set containing 0, let a, A be such

that 1i|| hold, and let h be as in (@) Then, for any H: (2, C)-weak solution u to
() there exist 5 > 0 and C > 0 such that

sup [ul* <
9 By

Proof. Lety = lim,_, o+ N (r) be as in Lemma[5.5]and kg € N be such that

N -2 N —2\?
y=-—5— (5 ) tmAa

(see Lemma @ Denote by Ag the eigenspace of the operator Ly , associated to the
eigenvalue i, (A, a). Since dim Ay is finite, it is easy to verify that

N_I/ lul>ds forevery) <s < 5.
s 0 B;

2
supen-—1 |v
A = Sup pSN—]ll < 400
vedo\(0) Jon—1 (V12 dS
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Let C > 2V=1A. We claim that there exists A such that

sup |wh|? < 5/ lw*>dS forevery A € (0, 1). (73)
9B1)> B2

To prove (73)), assume towards a contradiction that there exists a sequence {A,},cn such
that A, — 0% and

sup |w* > > 5/ |w* % dS. (74)
331/2 aBI/Z

Lemma@implies that there exist a subsequence {A,; };cN and an eigenfunction ¢ € Ao
such that ”w”iz(SN_l o = 1 and w™ — [x|Y ¥ (x/]x]) weakly in H'(Bi,C) and in
ChT(By \ {0}, C) for any 7 € (0, 1). Passing to the limit in (74), this would imply that

c
sup ¥/ > o3 / W>dS > A/ [y ds.
SN-1 SN-1 SN-1

giving rise to a contradiction with the definition of A. Claim (73) is thereby proved.
Estimate (73)) can be written as

sup |u|2 < w3 f |u|2dS for every A € (0, A).
9By )2 A 9B;.2
Choosing § = %)1 and C =21-NC , the conclusion follows. O

From Lemmas(5.6and[6.2]we deduce the following pointwise estimate for solutions to (2).

Corollary 6.3. Let @ ¢ RN, N > 2, be a bounded open set containing 0, let a, A be

such that li hold, anfi let h be as in (EI) Then, for any H*l (22, C)-weak solution
u to (2)) there exist s > 0 and C > 0 such that

lu(x)| < C|x|¥  foreveryx € B,

where y = lim,_, g+ N'(r) is as in Lemma@
Proof. This follows from (58) and Lemmal6.2] |

Let us now describe the behavior of H(r) as r — 07
Lemma 6.4. Under the same assumptions as in Lemmal[5.4and letting y :=1im, _, o+ N(r)

be as in LemmaB.3) the limit

lim =2 H(r)
r—0t

exists and is finite.
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Proof. In view of it is sufficient to prove that the limit exists. By @I)), (52), and
Lemma[5.5] we have

d Hor)

- = 2 T O + T H ) =207 TN D) — y H ()
rr

=2r"2""'H(r) /VN’(s) ds.
0

Denote by M (r) and M, (r) respectively the first and the second term on the right hand
side of (5I). After integration over (r, 7'), we obtain

H(;) . H(V) — /r ZS_ZV_IH(S)</S Ml(l)dl) ds
0

P2 rv ,

+ / 25721 H(s)(/s M (t) dt) ds. (75)
r 0

By Schwarz’s inequality we have M1 (¢) > 0 and hence the limit

lim 2s_27_1H(s)</A My (1) dt) ds
0

r—>0% J,

exists. On the other hand, by and li we deduce that |M,(r)| = O(r‘“rs) and
H(r) = O(r*) as r — 0F. Therefore, if 7 is sufficiently small, for some const > 0 we

have
‘S_ZV_IH(S)</ M (1) dt)
0

for all r € (0,7), which proves that s™2 ~'H(s)([, Ma(t)dt) € L'(0,7). We may
conclude that both terms on the right hand side of (75) admit a limit as » — 0T, thus
completing the proof of the lemma. O

const
< 5" 1+e¢

The limit lim,_, o+ r—2” H(r) is indeed strictly positive, as we prove in the following
lemma.

Lemma 6.5. Under the same assumptions as in Lemma[5 Aland letting y :=1im,_, o+ N (r)
be as in Lemma5.3] we have

lim r~H(r) > 0.
r—0t

Proof. Let us fix R > 0 such that Bx C . For any k € N\ {0}, let ¥ be an L>-
normalized eigenfunction of the operator La , on the sphere associated to the k-th eigen-
value ug (A, a), i.e. satisfying

{LA,M@ = (A, @)Y (0) inSVL, 6

Jon1 1Y @) > dS(©) = 1.
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We can choose the functions v in such a way that they form an orthonormal basis of
L>(SV~!,C), hence u and hu can be expanded as

u(x) =u(r0) =Y gy ©),  hxux) =hAOu(0) =Y G)Yr®), (7

k=1 k=1

where A = |x| € (0, R],0 = x/|x| € S¥~!, and

or(r) = /SN*I u@O)yr(0)ds®), o) = /;Nil h(A0)u(A0) i (0) dS(©).  (78)

Equations (Z) and (76) imply that, for every k,

(A, a)
e

N —1 Mk
o (1) + :

- (1) — k(X)) = &) in (0, R).

A direct calculation shows that, for some c’]‘, c’z‘ e R,

e R (=0 +1 o e R s
Pr(h) = A% (C1+A — =) ds)—{—k k <C2+//\ — &) dS>, (79)

O — Ok O — Ok

N-2 N —2\?
R (= S

N -2 N —2\?
e G S Y e S A, a).

In view of Lemma@, there exist jo, m € N, jo, m > 1, such that m is the multiplicity of
the eigenvalue wj, (A, a) = pjy+1(A,a) = -+ = pjy+m—1(A, a) and

where

y = lir61+./\/'(r)=0i+, i=jo,...,jo+m—1. (80)
r—

The Parseval identity yields

o0
H() = / u(r0)*dS©) = > x> forall0 < A < R. (81)
sV k=1
Assume for contradiction that lim, o+ A2 H(A) = O and fix i € {jo, ..., jo+m — 1}.

Then and (8T) imply that
lim A% ¢;(A) = 0. (82)
A—>0t
From (@) and Corollary[6.3] we obtain

() = O 29"y asa s 07, (83)
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and consequently the functions

g0+l g0+l
s> —/——¢&i(s) and s> ————=(s)
o —o; o —o;

i
belong to L'((0, R), C). Hence
v R s—a,.++1 B
A (c’l +/ ———=¢i(s) ds) =0o(A% ) asi— 0",
r 0] —o0;
and thus, since u/|x| € L?>(Bg, C) and |x|% /|x| & L?(Bg, C), we conclude that
R s7<7f+1
i
cy = —/ — i) ds.
0 0, —0;
Using (83)), we then deduce that
_ R S7<7,7+l _ A s7<7f+1 4
o; i o; o, +e
AT <02+/ _—+§‘,-(s)ds) = A (/ ﬁé’i(s)ds> =0@% ™) (84
r 0] —O0; 0 o, —o;
as A — 0. From , , and , we obtain
) R S—al.++1
< +/ ———¢Gi(®)ds =0,
0 0, —o;
thus implying, together with (83),
. R —al.++l A —0',-++1
A% (c’l + f SR _Q(s)ds) =27 / 29 ds = 0057 (89)
A O —o0; 0 0, —o0;
as A — 0. Collecting (79), (84), and (85), we conclude that
. . o'l_++£ + . . . _
pi(A) =0 ) asiA — 0" foreveryi € {jo,..., jo+m — 1},
namely, setting u* () = u(10),
W Y 2en-1.0) = O™ ash— 0F

for every ¥ € Ap, where Ap is the eigenspace of La , associated to the eigenvalue
i (A, a) = pjpr1(A, @) = -+ = Wjgym—1(A, a). Let w*(0) = (H(1))~"?u(16). From
, there exists C(g) > 0 such that /H(A) > C(e)AY /2 for A small, and therefore

W ) pen-1,0) = 0% = o) ash — 0F (86)

for every ¥ € Ap. From Lemma for every sequence A, — 07, there exist a subse-
quence {A,; }jeN and an eigenfunction y € Ap such that

f W@))2dS=1 and w™ — ¢ inL2S¥"!,0). (87)
SN-1
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From (86) and (87), we infer that

. Y ~ 9
0= lim (w ’J/f)L2(SN71,(C) = ”w”LZ(SN—I,(C) =1,

Jj—>+00
thus reaching a contradiction. O

The analysis carried out in this section leads to a complete description of the behavior of
solutions to (2)) near the singularity and hence to the proof of Theorem[I.3]

Proof of Theorem|[I.3] Identity (9) follows from part (i) of Lemma [6.1] thus there exists
ko € N, kg > 1, such that

, N-2 N —2)\?

Let us denote by m the multiplicity of 1, (A, a), so that, for some jo € N, jo > 1,
Jjo = ko = jo+m—1, uj(A,a) = pjp+1(A,a) = -+ = pj+m—1(A, a) and let
{Yi : jo <i < jo+m—1}bean L2(SN~!, C)-orthonormal basis for the eigenspace
of L 4 associated to i, (A, a). Let {A,},en C (0, +00) be such that lim,,—, ;o0 A, = 0.
Then, from Lemmas [6.1](ii), [6.4] and [6.5] there exist a subsequence {A; }xen and m real
numbers Bj;, ..., Bj,+m—1 € Rsuch that (8j,, ..., Bjg+m-1) # (0,...,0) and

Jo+m—1
o 40 0) > D Biyi®)  in TSV C)ask > +oo (88)
i=jo
and
Jjo+m—1

Jo VUG 0) =Y By i (0)0 + Ven-11:(0)
i=Jo

inCOT (SN, CNyask - +oo,  (89)

for any v € (0, 1). We now prove that the ;s depend neither on the sequence {\,},cN
nor on its subsequence {A,, }reN.

Let us fix R > 0 such that B C Q. Defining ¢; and ¢; as in and expanding u as
in (77), from (88) it follows that, for any i = jo, ..., jo+m — 1,

- A 0) ——
hond @i ) = /S . “(kyk Y@ ase)
ni
Jo+m—1
- 2B /S V@) dS®) = pi (90)

J=Jo
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as k — 400. As deduced in the proof of Lemmal6.3] for any i = jo, ..., jo+m — 1 and

A € (0, R] we have

i ) R s—ai++l _ A S—ol._+l
@i(A) = A <Cll +/ ——G) dS) + A% (/ ———¢i(®)ds
» o —o; 0 o —o;

i i

o R (=0 +1 +
=% (c’l +/ ﬁm)ds) +0G5 ™) asa— 07,
A 9%

i

for some c| € R, where

N -2 N —2\?
O'i+:)/=— ) +\/( ) ) +//Lk0(A,a),

_ N-2 N —2\?
o =——5— () Fm@a.

Choosing A = R in the first line of (91]), we obtain

R (—o +1
. - s i
o = R_"f+(pi(R) — R _"f+/ ———=Gi(s)ds.
0 o] —o0;

Hence (O] yields

)

oD

N _ 4 [R goi+l R =0 +1
AT ei() = R gi(R) — R% / ———=Gi(s)ds +/ ———=¢i(s)ds
0 0; —O0; 0 0; —0;

i i

as . — 0%, and therefore, from we deduce that

B =R / u(ROYJ @) dS(6)
SN—1

—2y—N+2 R gy+N-1
- /0 —(f& lh(s”)“(sﬂ)lﬁi(n)dS(n)>d

2y + N — 2\ Jsn-

R sl—y JE—
T /O m(/sl\’l h(smu(sn)y; () dS(n)) ds.

N

In particular the B;’s depend neither on the sequence {A,},cN nor on its subsequence
{An; }ken, thus implying that the convergences in and (B9) actually hold as A — 0T

and proving the theorem.

[}

Proof of Corollary Statement (i) follows directly from (I0). Statement (iii) is an
immediate consequence of (I0) and (TI)). To prove (ii), we notice that classical elliptic
regularity theory yields Holder continuity away from 0, so it remains to prove that u is
Holder continuous in every B, C 2. Assume towards a contradiction that there exist

sequences {X, },eNs {Vn}nen C B, such that

fim O ZuOl

n—+o0o  |x; — yp|¥

92)
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Holder continuity away from O implies that either |x,| — 0 or |y,| — 0 along a subse-
quence. We can assume, without loss of generality, that |y,| — 0 and |x,| > |y,|. Two
cases can occur.

Case 1: there exists a positive constant ¢ > 1 such that |x,|/|y.| < c. Then |x,| — 0
and, letting A, = 2c|x,| and observing that x, /A, yn/An € B1/@2¢) \ B]/(ZCz) € B1\ {0},
from Lemmas [6.1ii), [6.4] and [6.3]it follows that

[l 22) = @& () = A (n 3) + B ()|
Y

lim =0
n——+00 X In

A

for some eigenfunction y of L ,. Since the function |x|¥ v (x/|x|) is Holder continuous
away from 0, from above we conclude that

i) = uQa)l _ Ao u(nz) = ha b2

|xn — yul” v

o In

An An

is bounded uniformly in n, thus giving rise to a contradiction.

Case 2: There exist subsequences {x,, }ren and {yy, JxeN such that |x,,|/|ys, | — +o00.
In particular |y,,| = o(|xn,|) as k — +oc. From (92) we deduce that |x,,| — 0 as
k — +o0 and by Corollary[6.3]

|u(xnk) - u(ynk)l

|xnk - )’nk |y

| (Xn; ) — u(yn;)|
Xrp o Imk |V
|xnk‘ |xnk|

|xnk|y + |ynk|y
Xny _ Yny |)/
|xnk| |xnk|

= |xp, |77 < const|x,, |77 < const,

in contradiction with (92). o

Invariance under Kelvin’s transform allows rewriting equations in exterior domains as
equations in bounded neighborhoods of 0, thus reducing the problem of asymptotics at
infinity to the problem of asymptotics at 0. Hence we can deduce Theorem [I.3] from
Theorem [T.3]

Proof of Theorem[I.3] Let u be a weak solution of (2) where Q is an exterior domain as
in the statement of the theorem. Let v be the Kelvin transform of u, i.e.

o) = P Nu/ix?), xeQ={xeRY:x/|x]* e Q). (93)
If we put y = x/|x|2, then
Au(x) = |y|N*t2Av(y) forally € Q, (94)
and

a(x/lx]) — |A(x/]x])I? + i divgy-1 A(X/le)u
|x|?

y|N+2a(y/|y|) — |AG/1yDI? + i divgy-1 A(y/lyl)v
lyl?

(x)

(y) forallye Q. (95)
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Moreover, by the transversality assumption (A.3) we also have

% S Vu(x) = |y|N+2m -Vu(y) forally e Q. (96)
X y
Therefore, by (93)—(96) we obtain

Laav(y) = y|*h(y/1yPvy)  in 2\ {0}, 97

From a direct computation we infer that Vv € L2(§, CM), v/|x| € L2(§~2, C), and hence
v € H*1 (2, €). This is sufficient for proving that v is an Hl -weak solution of equation

in Q.

On the other hand, by (T4),
lIyI~*h(y/Iy1P)| = 0(yI72T)  as|y| — 0F,

and hence v satisfies all the assumptions of Theorem [I.3] Then (I6) and the asymptotic
estimate for u follow from Theorem[I.3] (©3), and the fact that

~

Nody=4nyy2 @) = Nun(1/r) = N +2 (98)

with /\N/u, n asin . To prove the estimate on the gradient one may proceed as follows.
Let 7 be as in the statement of the theorem and let y = lim, _, g+ N, |y~4(y/|y2) (")- From
(©8) it follows that y = y — N + 2, hence by (93) we have

ATV 0) = 2= NATTu®/0)0 + 177 IVu@/0) — 20771 (Vu@/20) - 0)6 (99)
for any A such that B, C € and for any 6 € SV~!. Applying Theorem to the func-
tion v, from the previous identity we infer

_ _ Jo+m—1 N
Q= NTTu@/n) =27 Vu@/0)-0) >y Y Bivi(0)
i=jo

in COT(SN~1, C) for any t € (0, 1) as A — 0T. From the first part of the theorem we
also have

B Joxm—1
A u@/r) — Z Bivi(9), (100
i=jo
from which we obtain
B Jotm—1
AN/ 0) > —7 Y Bivi(6) (101)

i=jo
in C%7(SN=1,C) forany 7 € (0, 1) as A — 0F. Letting » — 0% in (99), applying again
Theorem [I.3|to v and using (T00)—(T0T) we deduce that

_ Jjo+m—1 N
2TTTIVuO/) = Y Bi(=7i(0)6 + Ven-11(6))
i=jo

in COT(SN=1,CN) forany 7 € (0, 1) as A — 0. By replacing A with 1/ we obtain the
desired estimate. O
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7. An example: Aharonov-Bohm magnetic potentials in dimension 2

In this section we discuss an application of Theorem [I.3]to Schrédinger equations with
Aharonov—Bohm vector potentials , i.e.welet N=2, A(cost, sint) =« (—sint, cost),
a(cost, sint) = ag for some ag € R, and consider the corresponding equation

2
. X2 X1 ap
—iVt+oal ——, — u— ——u=hu,
( ( |x|? IXI2>> |x|2

with x = (x1, x2) in a bounded domain of R2 containing 0, and % satisfying @ In this
case, an explicit calculation yields

(A a) 1k e N\ {0}) = {(@ — j)* —ao: j € Z},

hence, in particular,
1A, @) = (dist(e, Z))* — ao.

If dist(er, Z) # 1/2, then all eigenvalues are simple and the eigenspace associated to the
eigenvalue (a — j)* —ag is generated by ¥ (cost, sint) = e~/ If dist(a, Z) = 1/2, then
all eigenvalues have multiplicity 2. Theorem [I.3]hence yields:

(i) if ap < (dist(a, Z))? and dist(a, Z) # 1/2, then there exist jo € Z and B € C such

that
ATV @0 =a0y, ) cost, Asint) — Be 0 asn — OF,

in C17(0, 27, C) forall T € (0, 1);
(1) if ag < (dist(«, Z))2 and dist(«, Z) = 1/2, then there exist jo € Z and 81, 8, € C
such that 2o — jp € Z and

AV @l =0y (3 cost, Asing) — Bre 0 4 Bre I PATI g5 — 0T,

in C17(0, 27, C) forall T € (0, 1).

The constants 8, B1, B> can be computed as in @ Furthermore, in view of Corollary
if (dist(e, Z))> < 14 ag then u € Cpt (2.C) with y = /(dist(, Z))2 — ao,

loc
whereas u is locally Lipschitz continuous in €2 if (dist(«, 7))? > 1 + ay.

8. Magnetic Hardy-Sobolev type inequalities

This section is devoted to the proof of a weighted electromagnetic Hardy—Sobolev in-
equality in dimension N > 3. We start by observing that, from Lemma[2.2] and the clas-
sical Sobolev inequality, the following electromagnetic Hardy—Sobolev inequality holds.

Proposition 8.1. Let N > 3 and let a, A satisfy (A.2)-(Ad). Then

inf 0A,q(u)
ueD2RN N0} (fpu [u(x)|?" dx)?/?
Proof. This follows from Lemma [2.2] Lemma[2.3|i), and Sobolev’s inequality. ]

S(A,a) = > 0.
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We assume N > 3 and (A.5) so that the number

N-2 \/ N —2)\?
oc=o0@,N) =———+ (—) + u11(0, a) (102)

2 2

is well defined. Let ¢ € H'(SV~1, R) with @l 2@v-1 Ry = 1 be the first positive
eigenfunction of the eigenvalue problem

—Agv-16(0) — a@)¢(©) = 110, a)$@) inSV.
We recall from [12} Lemma 2.1] that 11 (0, a) is simple and mingv—1 ¢ > 0. Let
w(x) = |x|¢(x/|x]) forallx e RV \ {0} (103)

and introduce the weighted space D}”‘Z(RN , C) as the closure of C° (RN, C) with respect

to the norm
) 12
o 2
HUHDJAZ(RN,C) = (A.{N w (x)|Vv(x)| dx) )

By the Caffarelli-Kohn—Nirenberg inequality (see [3]] and [6]), v € D}U*Z(RN ,C) if and
only if wv € DH?(RY, C) and there exists Cy, > 0 such that

lv()?

Cw/ wz(x)—de/ wz(x)|Vv(x)|2dx
RN |x|? RN

for every v € ’D}AZ(RN ,0).

Proposition 8.2. Let N > 3, let a, A satisfy (A.2), (A3), and (A3), and let w be the
function defined in (103). Then

/ w?(x)
RN

forallv e D}U’Z(RN, O).

A(x/|x])

Vu(x)+i
x|

2 2/2*
v(x)| dx > S(A, a)(/ w? () vx)|F dx>
RN

(104)

Proof. First of all, one can check by explicit computation that w solves the equation

a(x/|x))

P wx) =0 inRN\{0}. (105)

—Aw(x) —

Letv € CP (RN \ {0}, C) ¢ DL2(RY, C) so that the function u(x) := w(x)v(x) is in
C>(RN\ {0},C) DRV, €). By (105) and integration by parts we have

a(x/|x|)

2

/ Vw @)V (wx)|vx)|?) dx —/ w?(x)|v(x)|>dx = 0. (106)
RN RN

|x|
By a direct computation we infer

VuV(wv|?) = |[Vw*v|> + wVYw@Vv 4+ vV1) (107)
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and
2
= |Vw|2|v|2 + wVw(@Vv 4+ vVo) + w2|Vv|2

A A 2
- 2s<—()|€/l|x|)w2vvv> 4 AG/DE (T/:jm w2, (108)
X X
From (106)—(T08), we obtain

2
/ ‘Vu(x) + imu(x) dx — / wlu(x)lzdx
RN x| RN |x]

— /RN w2 ()| Vo) dx — /RN ZS(A(X/M)wz(x)v(x)Vi(x)) dx

|x|

2
+ f sz(x)h}(xﬂz dx
]RN
A(x/]x])

|x|?
= f w?(x)
RN |x]

By the above identity and Proposition we obtain (104) for any v € C° (RN \ {0}, C).
By a density argument (see [6, Lemma 2.1]), we deduce that inequality (I04) holds for
any v € D}U’Z(RN, C). O

Ax/]x])
I——Uu

'Vu+
x|

2

Vo(x)+i v(x)| dx.

9. A Brezis—Kato type lemma for N > 3

This section is devoted to the proof of a Brezis—Kato type result in dimension N > 3.
Let w be the function defined in (103). We define the weighted space H, (2, C) as the
closure of H' (2, C) N C*®(2, C) with respect to the norm

1/2
Il g1 @.0) = ( fg wz(x)[|w<x)|2+|v(x>|2]dx) , (109)

and the space D}U’2(§2, C) as the closure of CJ°(£2, C) with respect to

172
Wlpi2q ¢y = (/ wz(x)|Vv(x)|2dx> )
W Q

It is easy to verify that v € H,})(Q, C) if and only if wv € H' (2, C). For N > 3 and any
q > 1, we also denote as LY (wz*, 2, C) the weighted L?-space endowed with the norm

1/q
10l Lo w2t .0 = (/ w? (x)|v(x)|qu> :
Q

where 2* = 2N /(N — 2) is the critical Sobolev exponent. We say that a function
Ve Ll (\ {0}, C) is form-bounded with respect to the weight w if

loc

2% 2
w” ()| V()| |u(x)|*dx
sup Jow* (x)] 2( ) u(x)| < 400
ueHL(@,0\(0) el @.0)



160 Veronica Felli et al.

Lemma9.1. Let Q CRY, N >3, bea bounded open set containing 0, let (A.2) .
and 1) hold, and let v € H (Q,C)NL1(w%, Q,C), q > 2, be a weak solutlon to

2i A(X/\XDV Ne 1¢( ) |A(
ERPTR) PG/ VS
div(w=(x)Vv(x)) NE

o, JAG/]x]) 2* .
—2iw (X)T -Vox)=w” ) V(x)v(x) in, (110)
X
where V is form-bounded with respect to the weight w and (N(V))y € L® (wz*, Q,C) for
some s > N /2. Then, for any Q' € Q such that 0 € Q/, we have v € L¥42(w?" Q' C)
and

)17+ i divgy-1 A(g)

|x]|

w? (x)v(x)

I v||L2*fI/2(w2*’Q’,C)

< S(A, a)_l/q||v||Lq(w2*,Q,C)<

2 17 @@, ) %q)“q ()
Co @@y | C@)

where C(gq) := min {%, %}, M = mingv-1 ¢ > 0,

q
C@, o) = | diam . i (0,a) <0,
dist(0, R" \ Q') if n1(0,a) > 0,
_N_
£ = | max | vy 12" A vy 2 o
q_ S(A, a) w20 254, a)' L w?.2.0)

Proof. Holder’s inequality and (104) yield, for any u € D}U’2(Q, O,
[ ¥ @y ueo P ax

<l / w? () u(x)|* dx
MV x)))+=ty

+ f w? 2RV (1)) 4 w? () u(x) | dx
MV x)+=L

2/2*
<t /Q wz*(x)|u(x>|2dx+< /Q w?” () [ux) > dx)

2/N
x(/ w? OV N2 d )
V)2,

1 ) AG/lx) P
= S, a) (/Qw ) dx)

Vulx) +i———u(x)
2/N
x(/ w2 @RV )N d ) +zqf w2 (o) u(x) [ dx.
AV @)+ 2 Q

x|
(112)
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By Holder’s inequality and by the choice of £, it follows that
* , N/2

f w2 )RV N dx

RV )N+=44

N 2s—N

< (/ wz*(x)(m(v(x)))idx)h (/ wZ*(x)dx> )
Q OV )+ 2

5 ZS?N
< (/ w? () RV (1)) dx> ) (/ (w) wz*(x)dx> :
Q OV ()42 tq

2

N/2
, —sN/2 . | SA,a) 25(A,a)
S ”(m(v))ﬁ‘”is(wZ*’Q’C)Et] S mln{ 8 ) q +4 i (113)
and hence from ti we find that for any u € D}U’z(Q, ©),
2% an 24y <4 2% 2y
; w” (X)RV )4 lux)|"dx < £, . w” (x)|u(x)|”dx
1 2 A 2

+min{—, —}</ w2 (x)|Vu(x) +iwu(x) dx). (114)

8 g+4 Q |x|

Let n € C°(2, R) be a nonnegative cut-off function such that

2
€ Q, =1 Q, |V <.
supp(1) n on IVn(x)| < dst(Y . 0%

Set v := min(n, |v|) € HL (S, C). Let us test (110) with n?(v")7~%v € D.2(Q, C) and

take the real part. Observing that (vVv) = |v|V|v| and using the elementary inequality
2ab < %az + 2b? and the diamagnetic inequality (see Lemma , we thus obtain

(@—2) /Q w? ()N () " ()X (yeq: [v(y)|<n) (X) V0] (x)]* dx

+ / w? ()n? () " (x)? 2|V (x)|* dx
Q

2
+ Q%wz(x)n2<x><v”<x))H|v(x)|2dx
+2 / wz(x)nz(x)(vn(x»q*z% - I(@(x) V(x)) dx
Q X

= / w? RV )2 @) )2 (0" (x))4 2 dx
Q

-2 /Q w? ()N () (" ()T () | VIvl(x) - Vip(x) dx
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< / w2 RV ()02 (@) )2 (0" (x))9 2 dx
Q

+2 / w? () [V (x) > (W™ ()42 v(x)* dx
Q

2
N / W22 (0" ()12 Vo) + i D ol gy
2 Jo | x|

and hence

(@—2) /Q w? ()N () " ()X (yeq: [v(y)|<n) (X) |V [0](x)]* dx

2
+% f w? ()n? (x) (V" (x))1 72 vava dx
Q

< / w? )RV ()02 (@) v (@) (" (x))4 2 dx
Q

+2 f w? )V P@" ) )P dx.  (115)
Q

Furthermore, by the diamagnetic inequality (see Lemma[A-T)) we have

V(@92 o) + i%(v”)‘”z_lvn'z
= [V o) + 2% P"ITAI(@OV) + %w—%f
. +4)4<q =2 (22 e P 4 2022 e 4 l.A(T;:XI)v g
+ q—f(v"ﬂ—zwlzwmz. (116)

Letting C(g) := min {J—P q%}, from 1) and l| we obtain

2
%(vﬂu))q”“v@)"“) “

< / w? RV )N @) o)A (0" (x))4 2 dx
Q

C(q) f w? ()| V("2 o) (x) +i
Q

+2 / w2 (1) (W ()42 o) 2V () dx
Q

2
+C(q)% fg w? ()" () @) PV P dx.  (117)
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Estimate (114) applied to (v")?/?>~1v gives

fQ W OOV )4 () " )2 o) P dx

= Eq/ w? () ) (" () > () [* dx + min {l,
Q

8
X (/ wz(x)
Q

Using (II8) to estimate the term with V in (T17), (I04) yields

q+4}

A(x/Ix]) 2 dx). 118

o 1) @" ()7 u(x)

Vin"? oy (x) +i

2/2*
( / wz*(x)|v"(x>|<‘f/21>2*|v<x)|2*n2*<x)dx>
Q

2¢,
< 1
~ C(@)SA,a) Jg
4+C(g)(g+2)
C(q)S(A, a)

w? () [v" ()97 u(x))? dx
w? () [v" ()92 o ()2 Vi (x)]? dx
Q

L 2% 2 n g-2 )
= C(q)S(A, a) /Qw O ) )T v )" dx

+aesa fL P I @RI P
Letting n — o0 in the above inequality, (TTT] follows. O
Remark 9.2. It is possible to extend the result of Lemma[9.] also to the case
@V)+ € LM, 2,0

and obtain estimate (TTT). Indeed, by the previous summability assumption on (R (V)),
it is possible to find £, such that

w2 )RV (0))Y? dx < min {

S(A,a) 2S(A,a) }N/2

/<m<V(x))>+>eq 8 ~ g+4

But we have no control on the constant £, in terms of g as in Lemma@ since it is not
possible to apply Holder’s inequality in (IT3) when s = N /2. The rest of the proof in the
case s = N /2 coincides with the proof of Lemma[9.1]

The previous lemma allows starting a Brezis—Kato type iteration.

Theorem 9.3. Let @ C RN, N > 3, be a bounded open set containing 0, and let (A.2),

@, and @) hold.



164 Veronica Felli et al.

(i) If V is form-bounded with respect to the weight w and (R(V))4 € LS (w?, Q,C)
for some s > N /2, then, for any Q' € , there exists a positive constant

Coo = Coo(N, A, @, NV 11l s 2+ 0.y dist(R', 39, C(Q, ).

depending only on the indicated quantities, such that for any H' (2, C)-weak solution
u to
Laqu(x)=w? 2@)V@ux) inQ, (119)

we have |x|"%u € L*°(Q/, C) and
|| |x|_6u ”LOO(Q/,C) < COO”””LZ* (©,0)"

(1) IfV is form-bounded with respect to the weight w and (R(V)) 4+ € LN/Z(wZ*, Q,0C),
then, for any Q' € Q and for any s > 1, there exists a positive constant

CS = CS (Na Av a, ”(m(v))ﬁ-”LN/z(wz*’Q’(C)’ s, diSt(Q/v 8Q)a E(Qa Q/))a

depending only on the indicated quantities, such that for any H' (2, C)-weak solution
u to (119) in Q we have |x|%u € Ls(wz*, Q' C) and

—0
|||x| Ul Ls2* .0y = Csllull 2@ c)-

Proof. (i) Let u be an H!(Q2, C)-weak solution to . It is easy to verify that the
function v := w~lu belongs to Hul)(Q, C) and is a weak solution to . Let R > Obe
such that

Q' eQ + B(0,2R) € Q.
Using Lemmain Q = Q +BO,R2—-r1)) € Q + B(0,2R), r1 = 1, with
q = q1 = 2%, we infer that v € L(z*)Z/z(wz*’ Q,C) and

IVl em2 202 0, .0)
n M7 E Q/))U(Z—Z*) N 20 )”ql
Clan (Rrp)? Can/

Using again Lemma [0.1in @, := Q' + B0, R(2 — ri — r2)) € Qy, r2 = 1/4, with
g = g>» = (2%)2/2, we infer that v € L(2*)3/4(w2*, Q,, C) and

< S, @) ol (wz*,g,@(

1ol 2378 2% 0, .0)
32 MPTCQ, )% 2, >1/q2”U” *
Clq2) (Rr2)? C(qn) L2 w?".21.0)
32 MTY(CQ, Q)72 2, \V0
Clq1) (Rr1)? C(Ch))
32 MEP2(C(Q, Q) @) 2¢,, 1/q2
* (C(CD) (Rrp)? + C(q2)> Vil 2 2t .0y

< S(A, a)‘l/‘”(

< S(A, a)—(l/q|+1/qz)(




Schrodinger equations with singular electromagnetic potentials 165

Setting, forany n € N, n > 1,

2* n n 1
and using iteratively Lemmal9.1] we deduce that, for any n > 1,

-7 1
”U”an-*—l(wZ*,Q/,(C) = ||U||L‘1n+1(w2*,g2n,((j) = ”v”LZ*(wZ*’Q’(C)(S(Av a)) Lk Vak

ﬁ 32 M272*(5(Q’Q/))G(272*) N zeqk 1/qx 120
(C(cm (Rre)? C(qk>) S

k=1

‘We notice that

n 32 M2—2* 6 Q, Q/ o (2—-2%) 20 1/qk n
(2 e e e
k=1

iei \C (k) (Rry)? C(qk)
where .~ i
1 32 MPE(C(Q, )72 2,
by = — log 5 s
Gk C(qk) (Rr) C(qx)

and, for some constant C = C(N, A, a, IRV D+l s (2 .0)» dist(/, 9%2), 6(9, Q),

172\ 2%\ b\ =%
by ~ 5(;) 10g|:C(2(?) ) ] as k — +o0.
Hence ) 2, b, converges to some positive sum depending only on N, A, a,

IRV D11l 2 0.0y dist(, 3K2), C (€2, ), hence

o (2-2%)

- -2(C ! 1/qx
lim (S(A,a))ZLll/qkl—[( 2 M (C(Q,Qz)) 20 )
n——+00 =1 C(Qk) (Rry) C(qk)

is finite and depends only on the same quantities. Hence, from (120), we deduce that there
exists a positive constant C (depending only on the same quantities) such that

ol a1 2.y < Cllvll 2 g, foralln € N.

Letting n — +o0o we deduce that |v| is essentially bounded in Q" with respect to the
measure w? dx and
||U||L00(w2*,ng,(c) = C”v”LZ*(wZ*,Q,(C) = C”u”LZ*(Q’(C)a

where ||v|| Low?* . 2.C) denotes the essential supremum of v with respect to the measure

w2 dx. Since w?" dx is absolutely continuous with respect to the Lebesgue measure and
vice versa, we have [[v]l ;oo (,,2* o ) = IIVllLee(,C), hence v € L (2, C) and

IvlliLe@,c) = Cllull 2+ g ¢y
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thus completing the proof of part (i). We recall that for any x € @ \ {0} we have

b~ u(x) = w ()P (/X Du(x) = ¢ (x/|xDv(x) < (g}[aj]i P)v(x).

(i) Since u € H'(Q, C) is a weak solution to (119), the function v := w~'u is
an H)! (Q, C)-weak solution of (110). Using Remark and the iterative scheme used
to prove part (i), for any 1 < s < oo, after a finite number of iterations we arrive at
ve LS (w?, Q,C)and

||U||L~v(w2*’g/’(c) =< Cs“U”LZ*(wZ*,Q’(C)'
This completes the proof. O

Applying Theorem [0.3]to the nonlinear equation (3, we can obtain a pointwise estimate
for solutions to (3).

Theorem 9.4. Let Q@ C RN, N > 3, be a bounded open set containing 0, and let 1}

(A.3), and (A.5) hold. Let u be an H'(Q2, C)-weak solution of with f(x, u) satisfy-
ing . Then for any Q' € 2 there exists a positive constant

Coo = Coo(N, A, @, Cy, dist(€, 82), C(2, Q)),
depending only on the indicated quantities, such that |x|”°u € L (2, C) and

[ 1] ey < Coollitll 2 g - (121)

Proof. If we put

Vi(x) = wzfz*f();’(’;;x» ifux) #0,

0 ifu(x) =0,

then, by and the Sobolev imbedding H LQ,0 c L (22, C), we conclude that
V e LN2w? | Q, C) and u weakly solves

Laqu(x) =w> 2V(@)u(x) ingQ.

From Theorem ii), it follows that |x|°u € L*(w?", €/, C) for any Q' € € and any
s > 1. Fixnow so = N/2+4¢9 with0 < g9 < N(N —2)/(4|o]). By (7) we easily deduce
that V e L% (w?", ', C). The assertion now follows from Theorem i). O

The a priori estimate of solutions to the nonlinear problem obtained above allows deduc-
ing Theorem [I.6|from Theorem [I.3]

Proof of Theorem [[.6 for N > 3. Note that all the assumptions of Theorem [0.4] are
satisfied and hence
lu(x)| = O(|x|°) as|x| =0, (122)

where 0 > —(N — 2)/2 is defined by (T02). Therefore, by (7) and (122),

‘f(x,u) <const(1+|x|_2+ﬁ‘/(NT_2)2+M(O'a)>

u
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for some constant const > 0. Hence, the function

flx,u@)/ux) ifulx) #0,
0

h(x) = { (o) = 0,

satisfies 7(x) = O(|x|~2¢) as |x| — 01 for some ¢ > 0. On the other hand, by Remark
[1.2] we also have u € L{3, (2 \ {0}) and in turn by (7), & € L{5, (2 \ {0}). This shows that

loc loc

all the assumptions of Theorem|[I.3]are satisfied and the assertion of Theorem|[I.6|follows
in the case N > 3. The proof for N = 2 is postponed to Section [I0} O

Proof of Theorem|[[.7|for N > 3. This follows from Theorems [I.5]and [I.€] by the use of
the Kelvin transform. a

Since the proof of the pointwise a priori estimate (I2I)) (and then of Theorems [I.6 and
in dimension N = 2 starts from a different inequality than (I04) and requires a
somewhat different notation, we devote the next section to a sketched description of the
modifications to be made in the above argument to treat the case N = 2.

10. A Brezis—Kato type lemma in dimension N = 2

Similarly to Section @ for N = 2 we define the spaces Dil(Q, C) and Diji(Q, C) as
the completion of C2°(2 \ {0}, C) respectively with the norms

2 12
llpi g0 = (/Q<|Vu(x)|2 i |u|5cx|‘;| )dx>

@y
llpi2 g c) = (/sz(|w<x)|2+ )9

where @ C R? is a bounded domain containing the origin and w is defined by (103).
We observe that the space D}JZ(Q, C) is smaller than HO1 (2, C). Moreover, it is easy to
verify that v € DL2(Q, C) if and only if wv € Dy?*(, C). Similarly, we define the
space H*l,w (2, C) as the completion of

and

{ve H'(Q,C)NC*®(,C) : v vanishes in a neighborhood of 0}

with respect to the norm

vl 2
Wlg, @0 = (/sz[|Vv(x)|2+ x| + @) |dx ) .

The following weighted Poincaré—Sobolev inequality holds.
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Proposition 10.1. Let N = 2 and let a, A satisfy (A.2), (A3), and (A.3). Then, for any
1 <p<oo

Jall(V + iw)”()‘”z - MIu(x)lz] dx

x| |x|2

SA,a, p,Q) = inf >0
ueDL*(Q,0)\(0) (Jolu@)|? dx)z/”
(123)
Moreover
A 2 2/p
/ w2 Vo(x) + i()r;:xDv(x) dx > S(A,a, p, Q)(/ wp|v(x)|pdx) (124)
Q X Q

forallv e Dy5 (%2, C).

Proof. Inequality follows from Lemma[2.2]and the classical Poincaré—Sobolev in-
equality. To obtain the second part of the statement, by density it is sufficient to prove
inequality (124)) for functions v € CZ° (€2 \ {0}, C), which one can easily do by following
the same procedure developed in the proof of Proposition [8:2] O

Remark 10.2. We notice that the constant in (124) depends on the domain €2, unlike the
constant appearing in (104) in the case N = 3 and p = 2*. Moreover S(A, a, p, Q) is
decreasing with respect to €, i.e. if Q1 C Q7 then S(A, a, p, Q1) > S(A, a, p, Q).

We are now ready to prove the following 2-dimensional version of Lemma[9.1]

Lemma 10.3. Let Q@ C R? be a bounded open set containing 0, let (A.2), (A.3), and
li hold, and, for some p,q > 2, let v € H*l’w(SZ, C) N L1(w?, 2,C) be a weak
solution to

— div(w?(x)Vo(x))
2 2?;{;"; Ven-1(x/Ix]) — |:\(|;C/|x|)|2 + i divgy-1 A(x/|x|) P
X
- 2iw2(x)M -Vox) = w?(x)Vx)v(x) inQ,

|x|

where V is form-bounded with respect to the weight w and R(V))y+ € L*(w?,Q,C)
for some s > p/(p — 2). Then, for any Q' € Q such that 0 € K/, it follows that
ve LP2(wP, Q' C) and

Il U||qu/2(wp,gz',(C)

~ 32 M2P(C(Q, Q)P 20, \ 4
<SA,a,p,Q l/q”U”Lq(wP,Q,(C)( . )

C(g)  (dist(€', 9%2))? C(q)
where C(q) := min{ g, (ﬁ}, C(RQ, Q) = dist(0, RN \ '), M = mingv_1 ¢ > 0, and
s(p=2)/p __pr___
_[max MO iwrge) _atd gy o2 T
e SA,a,p, Q) 25, a,p,Q) s @r.2.0)

Proof. Proceed as in the proof of Lemma[9.1] using (124) in place of (T04). |
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The counterpart in dimension N = 2 of Theorem [0.3]is the following Brezis—Kato type
result.

Theorem 10.4. Let Q@ C R? be a bounded open set containing 0, let (A.2), (A.3), and
@ hold, and let p > 2.

@) If V is form-bounded with respect to the weight w and (R(V))y € L*(w?, 2, C) for
some s > p/(p — 2), then for any Q' € Q2 there exists a positive constant

Coo2 = Coo2(Q. p. A @, [(R(V)) 4 llLswr..0)- dist(€2, 992), C(2, Q).

depending only on the indicated quantities, such that for any H*1 (2, C)-weak solution
u to

Laqux)=w’2V(xu(x) inQ, (125)

we have |x|"%u € L®(Q', C) and
1]~ u| Loy = Coo2llullLr@.c)-

(i) IfV isform-bounded with respect to the weight w and (R(V)) . € LP/(P=2 (w? Q. C),
then for any Q' € Q and for any 1 <s < oo there exists a positive constant

Cea = Coa(Q, p. A, a, |OMV)) 4 s ur.2.0)- dist(2, 992), C(Q, Q).

depending only on the indicated quantities, such that for any H*1 (2, C)-weak solution
u to (125) in Q we have |x|~°u € L*(w?, @', C) and

“ |x|7ﬂu ”Ls(wp’gl’(c) = CS,2||M ”LP(Q,(C)'

Proof. This theorem can be proved by iterating the estimate proved in Lemma [T0.3] and
following the same scheme as in the proof of Theorem[9.3] We notice that the constants
S(A, a, p, ;) appearing at each step (at a negative power) can be uniformly controlled
with S(A, a, p, ) in view of Remark[10.2] O

From the above analysis, Theorems[I.6|and [I.7]in dimension N = 2 follow.

Proof of Theorem[I.6|for N = 2. Arguing as in the proof of Theorem[9.4] from Theorem
we deduce that |u(x)| = O(]x|?) as |x| — 0. In particular, from (7), the function
WX {x :u(x)0) 1s bounded. The conclusion then follows from Theorem ]
Proof of Theorem[[.7|for N = 2. As in dimension N > 3, the conclusion follows from
Theorems [I.5]and [T.6] by the use of the Kelvin transform. |
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Appendix

We recall the following well known result proved in [22].
Lemma A.1 (Diamagnetic inequality). Let N > 2. Ifu € Di’z(RN , C) then

A/lxp

IVIul(0)] <
|x|

Vu(x) +i

(x)‘ fora.e x € RV,

Proof. We only give the idea of the proof. We have

[VI|u|(x)| = i)t(EVu(x))‘
u(x)]
< SR((Vu(x)—i-iA(x/'x')u(x)) ”(x)> < |Vue) +i 2D ol (126
|x] |u(x)] |x]
fora.e. x € RV, |

An analogous result can be easily shown also for H, (2, C)-functions. The following
lemma allows comparing assumptions (A.4) and (A.5).

Lemma A.2. Let N > 2 and assume (A.2) and (A3) hold. Then 1 (A, a) > 11(0,a)
with equality holding if and only if curl(A/|x|) = O in the distributional sense.

Proof. The fact that 41 (A, a) > ©1(0, a) follows by (ZI)) and the diamagnetic inequality
on the sphere,

|Vsn11¥1(0)] < |Ven1 9 (0) +iA@)y(©) forae.0 e SV, (127)

which holds for any function ¥ € H'(S¥~1). Indeed, if ¥, € H'(S¥~!) is a nontrivial
eigenfunction of (A, a) then
Jov-1 Vn-191(0) + iA@) Y1 (0)* dS — [sn-1 a@)|Y1(0)|*dS

Jsn-1 11 (0)12dS

2
- Jonv—1 Vv 1y 10)]"dS — fon-1 a®)|¥1(0)>dS
- Jsn—1 W1 (0)12dS

We start by assuming that 11 (A, a) = u1(0, a). Let y; be as in (128)) so that by (127) we
infer

ni(A, a) =

> u1(0,a). (128)

|Ven—191(0) + iA©@)Y1(0)] = |Vev—11¥1](0)| forae. 6 e SN (129)
Similarly to (126) we have

(0
[Vav-ily11®)] < ‘m(fz;é;' (Vev-191(6) + IA®) (9)))‘

< [Ven-191(6) +iA@O)¥1(0)], (130)
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which together with (T129) gives
S(¥1(0)(Vgn191(8) +iA@)Y1(0))) =0 forae. 6 € SV™!

and in turn

Vgn-1¥1(8)

AB) = =3
© 9( V1)

) fora.e. 0 e SV7L
This implies

Alx/lx]) _%<V(tﬂ1 (x/1x1)
x| "\ iG/IxD
By direct computation this gives curl(A/|x|) = O in the distributional sense.

Suppose now that curl(A/|x|) = O in the distributional sense and let us prove that
ni(A, a) = pi(0,a). By [20] there exists ¢ € L (RV) such that V¢ = A/|x| in the
distributional sense. From (A.J) it follows that ¢(x) = ¢ (x/|x|) and Vgv-1¢ = A. Let
W be a nontrivial eigenfunction of (0, a) and define the angular function v (0) by

V() = e ?Ow(g).

) fora.e. x € RV,

Then
A a) < 8 V¥ ©) +IAGW O)P dS — fgu-1 a@)Y @) dS
Jow-1 W ©)2dS
Jsn1 [Ven 1 W ()12 dS — fon—1 a(®)|W(0)]>dS
- fSN_l |‘~IJ(9)|2dS = u1(0, a).
Since the reverse inequality is always satisfied, the proof is complete. O

The following Hardy type inequality with boundary terms is due to Wang and Zhu [27].
Lemma A.3 (Wang and Zhu). For everyr > 0 andu € H'(B,, C),

— — 2 2
[+ X2 [ uepas= (Y72) [ MR asn
B, 2r  Jas, 2 B, Ixl

Proof. See [27, Theorem 1.1]. O

The following lemma establishes the relation between the classical H!-space on the
sphere and its magnetic counterpart.

LemmaA4. If N > 2 and A € L¥(SN~!, RN), then the space HA(SN_I) defined in
(T9)-(20) coincides with the Sobolev space

H' SV C) =y e LSV, 0) : Vevary € L2SVL, V).

Moreover the norms || - ”H/]‘(SN’I) and

. 2 2 12
” : ”Hl(SN—',(C) = (HVSN—] . ”LZ(SNfl’CN) + ” . ”LZ(SN’I,(C)) /
are equivalent.

Proof. This follows easily from the boundedness of the function 6 — |A(0)]. O
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We finally describe the spectrum of the angular operator Ly 4.

Lemma A.5. Leta € LSV, R) and A € CY(SN~1,RN). Then the spectrum of
the operator Ly 4, on SN —1 consists of a diverging sequence of real eigenvalues with
finite multiplicity u1(A, a) < u2(A,a) < ---, the first of which admits the variational
characterization 21)).

Proof. For A = 1+ ||a| pocgv-1 ). the operator T : LA(SN~! C) — L2SV~1, C)
defined as

Tf=u ifandonlyif (—iVgv-1+ Au—au+ru=f

is well defined, symmetric, and compact. The lemma then follows from classical spectral
theory. O
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Note added in proof. After the present paper was accepted for publication, Prof. F. Pacard
brought to our attention that related asymptotic expansions were obtained in previous works such
as [R. Mazzeo, Elliptic theory of differential edge operators. I, Comm. Partial Differential Equa-
tions 16, 1615-1664 (1991)] and [R. Mazzeo, Regularity for the singular Yamabe problem, Indiana
Univ. Math. J. 40, 1277-1299 (1991)] for elliptic equations on manifolds with conical singularities
by Mellin transform methods. The common aspects and differences between our results and the
results of the aforementioned papers are discussed in the addendum [V. Felli, A. Ferrero, S. Ter-
racini, Addendum to “Asymptotic behavior of solutions to Schrodinger equations near an isolated
singularity of the electromagnetic potential”, http://arxiv.org/abs/1007.4434], where some variants
and improvements are obtained under weaker assumptions on the perturbing potential /. In the
addendum, it is also pointed out that a great advantage of the monotonicity approach lies in its
applicability to semilinear problems, for which it allows one to directly prove (without passing
through Brezis—Kato iteration) sharper a priori pointwise bounds and asymptotics.
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