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Abstract. Asymptotics of solutions to Schrödinger equations with singular magnetic and electric
potentials is investigated. By using an Almgren type monotonicity formula, separation of variables,
and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of
solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square
electric potential and a singular magnetic potential with homogeneity of order −1.
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1. Introduction

In quantum mechanics, the hamiltonian of a nonrelativistic charged particle in an electro-
magnetic field has the form (−i∇+A)2+V , where V : RN → R is the electric potential
and A : RN → RN is a magnetic potential associated to the magnetic field B = curl A.
For N = 2, 3, “curl” denotes the usual curl operator, whereas for N > 3 by B = curl A
we mean the 2-form (Bjk) with Bjk := ∂jAk − ∂kAj , where A = (Aj )j=1,...,N . Linear
and nonlinear elliptic equations associated to electromagnetic hamiltonians have been the
object of a wide recent mathematical research; we cite, among others, [2, 7, 8, 9, 10, 17].

In this paper we are concerned with singular homogeneous electromagnetic potentials
(A, V ) which make the operator invariant by scaling, namely of the form

A(x) =
A(x/|x|)
|x|

and V (x) = −
a(x/|x|)

|x|2

in RN , whereN ≥ 2, A ∈ C1(SN−1,RN ), and a ∈ L∞(SN−1,R). A prototype in dimen-
sion 2 is given by potentials associated to thin solenoids: if the radius of the solenoid tends
to zero while the flux through it remains constant, then the particle is subject to a δ-type
magnetic field, which is called an Aharonov–Bohm field. A vector potential associated to
the Aharonov–Bohm magnetic field in R2 has the form

A(x1, x2) = α

(
−
x2

|x|2
,
x1

|x|2

)
, (x1, x2) ∈ R2, (1)
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with α ∈ R representing the circulation of A around the solenoid. We notice that the
potential in (1) is singular at 0, homogeneous of degree −1 and satisfies the following
transversality condition:

A(θ) · θ = 0 for all θ ∈ SN−1.

We refer to [3, 15, 23] for properties of Aharonov–Bohm magnetic potentials and related
Hardy inequalities. In the present paper, we consider, for N ≥ 2, a larger class of singular
vector potentials, characterized by the presence of a homogeneous isolated singularity of
order −1 and by the transversality (or Poincaré) condition (we address the reader to [16]
and [26, §8.4.2] for details about the transversal or Poincaré gauge). Such a class includes,
for N = 2, the Aharonov–Bohm magnetic potential (1). The Aharonov–Bohm potential
in dimension N = 3 is singular on a straight line and is not covered by the analysis
performed here, which only allows treating isolated singularities. In a forthcoming paper,
we will extend the present results to potentials with cylindrical singularity including the
3-dimensional Aharonov–Bohm case.

Singular homogeneous electric potentials which scale as the laplacian arise in non-
relativistic molecular physics, where the interaction between an electric charge and the
dipole moment D ∈ RN of a molecule is described by an inverse square potential with an
anisotropic coupling strength of the form

V (x) = −
λ(x · d)
|x|3

in RN ,

where λ > 0 is proportional to the magnitude of the dipole moment D and d = D/|D|
denotes the orientation of D (see [12, 13, 21]). We notice that the above electric potential
is singular at 0 and homogeneous of degree −2.

We aim to describe the asymptotic behavior near the singularity of solutions to equa-
tions associated to the following class of Schrödinger operators with singular homoge-
neous electromagnetic potentials:

LA,a :=
(
−i∇ +

A(x/|x|)
|x|

)2

−
a(x/|x|)

|x|2
.

We study both linear and nonlinear equations obtained as perturbations of the operator
LA,a in a domain � ⊂ RN containing either the origin or a neighborhood of ∞. More
precisely, we deal with linear equations of the type

LA,au = h(x)u in � (2)

where h ∈ L∞loc(� \ {0}) is negligible with respect to the inverse square potential |x|−2

near the singularity, and semilinear equations

LA,au(x) = f (x, u(x)) (3)

with f having at most critical growth.



Schrödinger equations with singular electromagnetic potentials 121

Regularity properties of solutions to Schrödinger equations with less singular mag-
netic and electric potentials have been studied by several authors. In particular, in [7],
boundedness and decay at∞ of solutions are proved in dimensions N ≥ 3 for L2

loc mag-
netic potentials and electric potentials with LN/2 negative part. It is also worth quoting
[18] and [17], where, in dimensionsN ≥ 3, local boundedness and, respectively, a unique
continuation property are established under the assumption that the electric potential and
the square of the magnetic one belong to the Kato class. In [18] the continuity of solutions
is also obtained under restricted assumptions on the potentials.

Due to the presence of a stronger singularity which keeps potentials in LA,a out of
the Kato class, it is natural to expect that solutions to equations (2) and (3) behave sin-
gularly at the origin: our purpose is to describe the rate and the shape of the singularity
of solutions, by relating them to the eigenvalues and the eigenfunctions of a Schrödinger
operator on the sphere SN−1 corresponding to the angular part of LA,a .

As remarked in [11, 13] for the case A = 0 (i.e. no magnetic vector potential), the
estimate of the behavior of solutions to elliptic equations with singular potentials near the
singularities has several important applications to the study of spectral properties of the
associated Schrödinger operator, such as essential self-adjointness, positivity, etc. In [12],
the exact asymptotic behavior near the singularity of solutions to Schrödinger equations
with singular dipole-type electric potentials is established, using separation of variables
combined with a comparison method. Comparison and maximum principles play a cru-
cial role also in [24], where the existence of the limit at the singularity of any quotient
of two positive solutions to Fuchsian type elliptic equations is proved. In the presence of
a singular magnetic potential, comparison methods are no more available, preventing us
from a direct extension of the results of [12, 24]. This difficulty is overcome by an Alm-
gren type monotonicity formula (see [1, 14]) and blow-up methods which allow avoiding
the use of comparison methods.

1.1. Assumptions and functional setting

As already mentioned, we shall deal with electromagnetic potentials (A, V ) in RN ,
N ≥ 2, satisfying the following assumptions:

(A.1) A(x) =
A(x/|x|)
|x|

and V (x) = −
a(x/|x|)

|x|2
(homogeneity),

(A.2) A ∈ C1(SN−1,RN ) and a ∈ L∞(SN−1,R)
(regularity of angular coefficients),

(A.3) A(θ) · θ = 0 for all θ ∈ SN−1 (transversality).

Under assumption (A.3), the operator LA,a acts on functions u : RN → C as

LA,au = −1u−
a(x/|x|)− |A(x/|x|)|2 + i divSN−1 A(x/|x|)

|x|2
u− 2i

A(x/|x|)
|x|

· ∇u,

where divSN−1 A denotes the Riemannian divergence of A on the unit sphere SN−1 en-
dowed with the standard metric.
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The positivity properties of the Schrödinger operator LA,a are strongly related to the
first eigenvalue of the angular component of the operator on the sphere SN−1. More pre-
cisely, the positivity of the quadratic form associated to LA,a is ensured under the as-
sumption

(A.4) µ1(A, a) > −
(
N − 2

2

)2

(positive definiteness)

(see Lemma 2.2), where µ1(A, a) is the first eigenvalue of the angular component of the
operator on the sphere SN−1, i.e. of the operator

LA,a := (−i∇SN−1 + A)2 − a.

When dealing with the nonlinear problem (3) we introduce the stronger condition

(A.5) µ1(0, a) > −
(
N − 2

2

)2

.

From the diamagnetic inequality it follows that µ1(0, a) ≤ µ1(A, a) with equality
holding if and only if curl(A/|x|) = 0 in the sense of distributions (see Lemma A.2 in the
Appendix). In particular the assumption (A.5) is in general stronger than (A.4).

The spectrum of the angular operator LA,a is discrete and consists of a nondecreasing
sequence of eigenvalues µ1(A, a) ≤ µ2(A, a) ≤ · · · diverging to+∞ (see Lemma A.5).
Condition (A.4) is fundamental to introduce a proper functional setting in which to frame
our analysis. Let us define D1,2

∗ (RN ,C) as the completion of C∞c (RN \ {0},C) with
respect to the norm

‖u‖D1,2
∗ (RN ,C) :=

(∫
RN

(
|∇u(x)|2 +

|u(x)|2

|x|2

)
dx

)1/2

. (4)

It is easy to verify that

D1,2
∗ (RN ,C) =

{
u ∈ L1

loc(R
N
\ {0},C) : u/|x| ∈ L2(RN ,C) and ∇u ∈ L2(RN ,CN )

}
.

The following lemma ensures that, under assumption (A.4), the space D1,2
∗ (RN ,C) co-

incides with the Hilbert space generated by the quadratic form QA,a associated to the
operator LA,a ,

QA,a : D1,2
∗ (RN ,C)→ R,

QA,a(u) :=
∫

RN

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u(x)

∣∣∣∣2 − a(x/|x|)
|x|2

|u(x)|2
]
dx.

(5)

Lemma 1.1. Assume that N ≥ 2 and (A.2)–(A.4) hold. Then

(i) inf
u∈D1,2

∗ (RN ,C)\{0}

QA,a(u)∫
RN |x|

−2|u(x)|2 dx
> 0,
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(ii) QA,a is positive definite in D1,2
∗ (RN ,C), i.e. inf

u∈D1,2
∗ (RN ,C)\{0}

QA,a(u)

‖u‖2
D1,2
∗ (RN ,C)

> 0,

(iii) D1,2
∗ (RN ,C) = D1,2

A,a(R
N ), where D1,2

A,a(R
N ) is the completion of C∞c (RN \ {0},C)

with respect to the norm

‖u‖D1,2
A,a(RN )

:= (QA,a(u))
1/2.

Moreover the norms ‖ · ‖D1,2
∗ (RN ,C) and ‖ · ‖D1,2

A,a(RN )
are equivalent.

In any open bounded domain � ⊂ RN containing 0, we introduce the function space
H 1
∗ (�,C) as the completion of

{u ∈ H 1(�,C) ∩ C∞(�,C) : u vanishes in a neighborhood of 0}

with respect to the norm

‖u‖H 1
∗ (�,C) =

(
‖∇u‖2

L2(�,CN ) + ‖u‖
2
L2(�,C) + ‖u/|x|‖

2
L2(�,C)

)1/2
.

It is easy to verify that

H 1
∗ (�,C) =

{
u ∈ H 1(�,C) : u/|x| ∈ L2(�,C)

}
.

If N ≥ 3, then H 1
∗ (�,C) = H 1(�,C) and their norms are equivalent, as one can easily

deduce from the Hardy type inequality with boundary terms from [27] (see (131)) and
continuity of Sobolev trace imbeddings. On the other hand, if N = 2, then H 1

∗ (�,C) is
strictly smaller than H 1(�,C).

For any h satisfying

h ∈ L∞loc(� \ {0},C), |h(x)| = O(|x|−2+ε) as |x| → 0 for some ε > 0, (6)

we introduce the notion of weak solution to (2): we say that a function u ∈ H 1
∗ (�,C) is

an H 1
∗ (�,C)-weak solution to (2) if, for all w ∈ H 1

0 (�,C) such that w/|x| ∈ L2(�,C),

Q�A,a(u,w) =
∫
�

h(x)u(x)w(x) dx,

where Q�A,a : H 1
∗ (�,C)×H 1

∗ (�,C)→ C is defined by

Q�A,a(u,w) :=
∫
�

(
∇u(x)+ i

A(x/|x|)
|x|

u(x)

)
·

(
∇w(x)+ i

A(x/|x|)
|x|

w(x)

)
dx

−

∫
�

a(x/|x|)

|x|2
u(x)w(x) dx.

In an analogous way, we define the notion of weak solution to (3) in a bounded domain
for every Carathéodory function f : �× C→ C satisfying the growth restriction∣∣∣∣f (x, z)z

∣∣∣∣ ≤
{
Cf (1+ |z|2

∗
−2) if N ≥ 3,

Cf (1+ |z|p−2) for some p > 2 if N = 2,
(7)
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for a.e. x ∈ � and for all z ∈ C \ {0}, where 2∗ = 2N/(N − 2) is the critical Sobolev
exponent and the constant Cf > 0 is independent of x ∈ � and z ∈ C \ {0}: we say that
a function u ∈ H 1

∗ (�,C) is an H 1
∗ (�,C)-weak solution to (3) if, for all w ∈ H 1

0 (�,C)
such that w/|x| ∈ L2(�,C),

Q�A,a(u,w) =
∫
�

f (x, u(x))w(x) dx.

Regularity of solutions to (2) or (3) outside the singularity follows from classical elliptic
regularity theory, as described in the following remark.

Remark 1.2. If A ∈ C1(SN−1,RN ), a ∈ L∞(SN−1,R), and h ∈ L∞loc(� \ {0}), then,
from standard regularity theory and bootstrap arguments, it follows that any H 1

∗ (�,C)-
weak solution u of (2) satisfies u ∈ W 2,p

loc (� \ {0}) for any 1 ≤ p < ∞ and in particular
u ∈ C

1,τ
loc (� \ {0},C) for any τ ∈ (0, 1). The Brezis–Kato technique introduced in [4],

standard regularity theory, and bootstrap arguments, lead to the same conclusion also for
H 1
∗ (�,C)-weak solutions to (3) with f as in (7).

1.2. Statement of the main results

The following theorem provides a classification of the behavior of any solution u to (2)
near the singularity based on the limit as r → 0+ of the Almgren frequency function
(see [14])

Nu,h(r) =
r
∫
Br

[∣∣∇u(x)+ i A(x/|x|)
|x|

u(x)
∣∣2 − a(x/|x|)

|x|2
|u(x)|2 −<(h(x))|u(x)|2

]
dx∫

∂Br
|u(x)|2 dS

,

(8)
where, for any r > 0, Br denotes the ball {x ∈ RN : |x| < r}.

Theorem 1.3. Let � ⊂ RN , N ≥ 2, be a bounded open set containing 0, let (A.1)–(A.4)
hold, and let u be an H 1

∗ (�,C)-weak solution to (2), u 6≡ 0, with h satisfying (6). Then,
for Nu,h(r) as in (8), there exists k0 ∈ N, k0 ≥ 1, such that

lim
r→0+

Nu,h(r) = −
N − 2

2
+

√(
N − 2

2

)2

+ µk0(A, a). (9)

Furthermore, if γ denotes the limit in (9), m ≥ 1 is the multiplicity of the eigenvalue
µk0(A, a), and {ψi : j0 ≤ i ≤ j0 +m− 1} (j0 ≤ k0 ≤ j0 +m− 1) is an L2(SN−1,C)-
orthonormal basis for the eigenspace of the operator LA,a associated to µk0(A, a), then

λ−γ u(λθ)→

j0+m−1∑
i=j0

βiψi(θ) in C1,τ (SN−1,C) as λ→ 0+, (10)



Schrödinger equations with singular electromagnetic potentials 125

and

λ1−γ
∇u(λθ)→

j0+m−1∑
i=j0

βi(γψi(θ)θ +∇SN−1ψi(θ)) in C0,τ (SN−1,CN ) as λ→ 0+,

(11)
for any τ ∈ (0, 1), where

βi =

∫
SN−1

[
R−γ u(Rθ)+

∫ R

0

h(sθ)u(sθ)

2γ +N − 2

(
s1−γ
−
sγ+N−1

R2γ+N−2

)
ds

]
ψi(θ) dS(θ) (12)

for all R > 0 such that BR = {x ∈ RN : |x| ≤ R} ⊂ � and (βj0 , βj0+1, . . . , βj0+m−1) 6=

(0, 0, . . . , 0).

We notice that (12) is actually a Cauchy integral type formula for uwhich allows retracing
the behavior of u at the singularity from the values of u along any circle centered at 0, up
to some term depending on the perturbation h.

An application of Theorem 1.3 to the special case of Aharonov–Bohm magnetic fields
in R2 of the form (1) is described in Section 7.

Theorem 1.3 implies a strong unique continuation property as the following corollary
states. Moreover, if γ > 0 (as happens e.g. under assumption (A.4) in dimension N = 2)
then the solutions to (2) are Hölder continuous for 0 < γ < 1 and Lipschitz continuous
for γ ≥ 1.

Corollary 1.4. Suppose that all the assumptions of Theorem 1.3 hold true. Let γ denote
the limit in (9) and u be an H 1

∗ (�,C)-weak solution to (2).

(i) If u(x) = O(|x|k) as |x| → 0 for all k ∈ N, then u ≡ 0 in �.
(ii) If 0 < γ < 1 then u ∈ C0,γ

loc (�,C).
(iii) If γ ≥ 1 then u is locally Lipschitz continuous in �.

We notice that the unique continuation property proved in [17] for electromagnetic po-
tentials in the Kato class does not contain the result stated in part (i) of Corollary 1.4 for
singular homogeneous magnetic potentials. We also remark that the monotonicity argu-
ment used to prove Theorem 1.3 (see Sections 5 and 6) actually applies when perturbing
the magnetic homogeneous potential with a nonsingular term, namely with a magnetic
potential of the form

A(x) =
A(x/|x|)
|x|

+ b(x) (13)

where b ∈ C1(� \ {0},CN ) satisfies |b(x)| = O(|x|−1+ε) and |∇b(x)| = O(|x|−2+ε)

as |x| → 0 for some ε > 0 as |x| → 0. For the sake of simplicity, we omit the details
of case (13), which can be treated following closely the strategy developed in Sections 5
and 6.

Due to the homogeneity of the potentials, the Schrödinger operatorsLA,a are invariant
under the Kelvin transform

ũ(x) = |x|−(N−2)u(x/|x|2),
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which is an isomorphism of D1,2
∗ (RN ,C). Indeed, if u ∈ H 1

∗ (�,C) weakly solves (2) in
a bounded open set � containing 0, then its Kelvin transform ũ weakly solves (2) with h
replaced by |x|−4h(x/|x|2) in the exterior domain �̃ = {x ∈ RN : x/|x|2 ∈ �}. By a
weak solution of problem (2) with h satisfying

h ∈ L∞loc(�,C), h(x) = O(|x|−2−ε) as |x| → +∞ for some ε > 0, (14)

in an exterior domain � (i.e. a domain � such that RN \BR0 ⊂ � ⊂ RN \BR1 for some
R0 > R1 > 0), we mean a function u such that u/|x| ∈ L2(�,C), ∇u ∈ L2(�,CN ),
and

Q�A,a(u,w) =
∫
�

h(x)u(x)w(x) dx

for any w ∈ D1,2
∗ (�,C), where D1,2

∗ (�,C) is the completion of C∞c (�,C) with respect
to the norm ‖u‖D1,2

∗ (�)
:= (‖∇u

∥∥2
L2(�,CN ) + ‖u/|x|‖

2
L2(�,C))

1/2.
Theorem 1.3 and invariance under the Kelvin transform provide the following de-

scription of the behavior of solutions to (2) as |x| → ∞. The Almgren frequency type
function in exterior domains has the form

Ñu,h(r) =
r
∫
RN\Br

[∣∣∇u(x)+ i A(x/|x|)
|x|

u(x)
∣∣2 − a(x/|x|)

|x|2
|u(x)|2 −<(h(x))|u(x)|2

]
dx∫

∂Br
|u(x)|2 dS

.

(15)

Theorem 1.5. Let� ⊂ RN ,N ≥ 2, be an open set such that RN \BR0 ⊂ � ⊂ RN \BR1

for some R0 > R1 > 0, let (A.1)–(A.4) hold, and let u be a weak solution to (2), u 6≡ 0,
with h satisfying (14). Then, for Ñu,h as in (15), there exists k0 ∈ N, k0 ≥ 1, such that

lim
r→+∞

Ñu,h(r) =
N − 2

2
+

√(
N − 2

2

)2

+ µk0(A, a). (16)

Moreover, if γ̃ denotes the limit in (16), m ≥ 1 is the multiplicity of the eigenvalue
µk0(A, a), and {ψi : j0 ≤ i ≤ j0 +m− 1} (j0 ≤ k0 ≤ j0 +m− 1) is an L2(SN−1,C)-
orthonormal basis for the eigenspace of LA,a associated to µk0(A, a), then

λγ̃ u(λθ)→

j0+m−1∑
i=j0

β̃iψi(θ) in C1,τ (SN−1,C) as λ→+∞

and

λγ̃+1
∇u(λθ)→

j0+m−1∑
i=j0

β̃i(−γ̃ ψi(θ)θ+∇SN−1ψi(θ)) in C0,τ (SN−1,CN ) as λ→+∞,

for every τ ∈ (0, 1), where

β̃i=

∫
SN−1

[
Rγ̃ u(Rθ)+

∫
+∞

R

h(sθ)u(sθ)

2γ̃ −N + 2
(s γ̃+1

− R2γ̃−N+2s−γ̃+N−1) ds

]
ψi(θ) dS(θ)

for all R > 0 such that RN \ BR ⊂ � and (β̃j0 , . . . , β̃j0+m−1) 6= (0, . . . , 0).
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A Brezis–Kato type iteration (see [4]) allows us to obtain the asymptotics of solutions
also for semilinear problems with at most critical growth. In order to start such an it-
erative procedure, we require assumption (A.5) which allows transforming equation (3)
into a degenerate elliptic equation without singular potentials to which the Brezis–Kato
method applies successfully (see Lemmas 9.1 and 10.3). The iteration scheme devel-
oped in Sections 9 and 10 provides an upper bound for solutions and then reduces the
semilinear problem to a linear one with enough control on the perturbing potential at the
singularity to apply Theorem 1.3 and to recover the exact asymptotic behavior, as stated
in the following theorem.

Theorem 1.6. Let � ⊂ RN , N ≥ 2, be a bounded open set containing 0, let (A.1)–(A.3)
and (A.5) hold, and let u be an H 1

∗ (�,C)-weak solution to (3), u 6≡ 0, with f being a
Carathéodory function satisfying (7). Then there exists k0 ∈ N, k0 ≥ 1, such that

lim
r→0+

Nu,f (·,u)/u(r) = −
N − 2

2
+

√(
N − 2

2

)2

+ µk0(A, a). (17)

Furthermore, if γ denotes the limit in (17), m ≥ 1 is the multiplicity of the eigenvalue
µk0(A, a), and {ψi : j0 ≤ i ≤ j0 +m− 1} (j0 ≤ k0 ≤ j0 +m− 1) is an L2(SN−1,C)-
orthonormal basis for the eigenspace of LA,a associated to µk0(A, a), then

λ−γ u(λθ)→

j0+m−1∑
i=j0

βiψi(θ) in C1,τ (SN−1,C) as λ→ 0+

and

λ1−γ
∇u(λθ)→

j0+m−1∑
i=j0

βi(γψi(θ)θ +∇SN−1ψi(θ)) in C0,τ (SN−1,CN ) as λ→ 0+,

for any τ ∈ (0, 1), where

βi =

∫
SN−1

[
R−γ u(Rθ)+

∫ R

0

f (sθ, u(sθ))

2γ +N − 2

(
s1−γ
−

sγ+N−1

R2γ+N−2

)
ds

]
ψi(θ) dS(θ)

for all R > 0 such that BR ⊂ � and (βj0 , . . . , βj0+m−1) 6= (0, . . . , 0).

Similar conclusions to those in Corollary 1.4 can be deduced from the above theorem for
solutions to semilinear equations of type (3): under the same assumption as in Theorem
1.6, if γ > 0 then the solutions to (3) are γ -Hölder continuous for 0 < γ < 1 and
Lipschitz continuous for γ ≥ 1.

The following result is the counterpart of Theorem 1.6 in exterior domains.

Theorem 1.7. Let� ⊂ RN ,N ≥ 2, be an open set such that RN \BR0 ⊂ � ⊂ RN \BR1

for some R0 > R1 > 0, let (A.1)–(A.3) and (A.5) hold, and let u be a weak solution to
(3) in �, u 6≡ 0, with f satisfying, for some C̃f > 0,∣∣∣∣f (x, z)z

∣∣∣∣ ≤
{
C̃f (|x|

−4
+ |z|2

∗
−2) if N ≥ 3,

C̃f |x|
−4(1+ |z|p−2) for some p > 2 if N = 2,
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for a.e. x ∈ � and for all z ∈ C \ {0}. Then there exists k0 ∈ N, k0 ≥ 1, such that

lim
r→+∞

Ñu,f (·,u)/u(r) =
N − 2

2
+

√(
N − 2

2

)2

+ µk0(A, a). (18)

Moreover, if γ̃ denotes the limit in (18), m ≥ 1 is the multiplicity of the eigenvalue
µk0(A, a), and {ψi : j0 ≤ i ≤ j0 +m− 1} (j0 ≤ k0 ≤ j0 +m− 1) is an L2(SN−1,C)-
orthonormal basis for the eigenspace of the operator LA,a associated to µk0(A, a), then

λγ̃ u(λθ)→

j0+m−1∑
i=j0

β̃iψi(θ) in C1,τ (SN−1,C) as λ→+∞

and

λγ̃+1
∇u(λθ)→

j0+m−1∑
i=j0

β̃i
(
−γ̃ ψi(θ)θ+∇SN−1ψi(θ)

)
in C0,τ (SN−1,CN ) as λ→+∞,

for every τ ∈ (0, 1), where

β̃i=

∫
SN−1

[
Rγ̃ u(Rθ)+

∫
+∞

R

f (sθ, u(sθ))

2γ̃ −N + 2
(s γ̃+1

−R2γ̃−N+2s−γ̃+N−1) ds

]
ψi(θ) dS(θ)

for all R > 0 such that RN \ BR ⊂ � and (β̃j0 , . . . , β̃j0+m−1) 6= (0, . . . , 0).

The paper is organized as follows. In Section 2 we prove Lemma 1.1 and discuss the re-
lation between the positivity of the quadratic form associated to LA,a and the first eigen-
value of the angular operator on the sphere SN−1. In Section 3 we prove a Hardy type
inequality with boundary terms and singular electromagnetic potential, while in Section 4
we derive a Pohozaev type identity for solutions to (2). Section 5 contains an Almgren
type monotonicity formula, which is used in Section 6 together with a blow-up method
to prove Theorems 1.3 and 1.5. Section 7 contains an application of Theorem 1.3 to
Aharonov–Bohm magnetic potentials. In Section 8 we prove a Hardy–Sobolev inequality
with magnetic potentials which is needed in Section 9 to start a Brezis–Kato iteration pro-
cedure in order to obtain a priori pointwise bounds for solutions to the nonlinear equation
and to prove Theorems 1.6 and 1.7 in dimension N ≥ 3. The proofs of Theorems 1.6
and 1.7 in dimension N = 2 can be found in Section 10. In a final appendix, we recall
well known results such as the diamagnetic inequality, Hardy’s inequality with boundary
terms, and the description of the spectrum of the angular operator LA,a .

Notation. We list some notation used throughout the paper.

• For all r > 0, Br denotes the ball {x ∈ RN : |x| < r} in RN with center at 0 and
radius r .
• For all r > 0, Br = {x ∈ RN : |x| ≤ r} denotes the closure of Br .
• dS denotes the volume element on the spheres ∂Br , r > 0.
• For every z ∈ C, <z denotes its real part and =z its imaginary part.
• For every z ∈ C, z denotes its complex conjugate.
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2. Positivity of the quadratic form

In this section, we study the quadratic form associated to the Schrödinger operator LA,a
and defined in (5). To study the sign of QA,a , we define the first eigenvalue of QA,a with
respect to the Hardy singular weight as

λ1(A, a) := inf
u∈D1,2

∗ (RN ,C)\{0}

QA,a(u)∫
RN
|u(x)|2

|x|2
dx

and discuss the relation between λ1(A, a) and the first eigenvalue of the angular compo-
nent of the operator on the sphere SN−1, i.e. of the operator

LA,a = (−i∇SN−1 + A)2 − a = −1SN−1 − (a(θ)− |A|2 + i divSN−1 A)− 2iA · ∇SN−1 .

We notice that, by (A.2), λ1(A, a) is well defined and finite. Let us introduce the Sobolev
space

H 1
A(S

N−1) :=
{
ψ ∈ L2(SN−1,C) : ∇SN−1ψ + iA(θ)ψ ∈ L2(SN−1,CN )

}
, (19)

endowed with the norm

‖ψ‖H 1
A(SN−1) :=

(∫
SN−1

[
|(∇SN−1 + iA(θ))ψ(θ)|2 + |ψ(θ)|2

]
dS(θ)

)1/2

, (20)

dS denoting the volume element on the sphere SN−1. If A ∈ C1(SN−1,RN ), then
H 1

A(S
N−1) is equal to the classical Sobolev space H 1(SN−1,C) and its norm is equiv-

alent to the H 1(SN−1,C)-norm (see Lemma A.4 in the appendix).
Under assumption (A.2), the operator LA,a on SN−1 admits a diverging sequence of

real eigenvalues µ1(A, a) ≤ µ2(A, a) ≤ · · · , the first of which can be characterized as

µ1(A, a) = min
ψ∈H 1

A(SN−1)\{0}

∫
SN−1

[
|(∇SN−1 + iA(θ))ψ(θ)|2 − a(θ)|ψ(θ)|2

]
dS(θ)∫

SN−1 |ψ(θ)|2 dS(θ)

(21)
(see Lemma A.5). The relation between λ1(A, a) andµ1(A, a) is clarified in the following
lemma.

Lemma 2.1. If N ≥ 2, and (A.2) and (A.3) hold, then

λ1(A, a) = µ1(A, a)+
(
N − 2

2

)2

.

Proof. Let ψ ∈ H 1
A(S

N−1), ψ 6≡ 0, attain µ1(A, a) and let ϕ ∈ C∞c ((0,+∞),R) so that
ϕ̃ : x 7→ ϕ(|x|) ∈ C∞c (RN \ {0},R). If u(x) = ϕ(|x|)ψ(x/|x|), then(

∇ + i
A(x/|x|)
|x|

)
u(x) = ϕ′(|x|)ψ

(
x

|x|

)
x

|x|
+

1
|x|
ϕ(|x|)∇SN−1ψ

(
x

|x|

)
+

i

|x|
A
(
x

|x|

)
ϕ(|x|)ψ

(
x

|x|

)
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and, by assumption (A.3),∣∣∣∣(∇ + iA(x/|x|)|x|

)
u(x)

∣∣∣∣2 = |ϕ′(|x|)|2∣∣∣∣ψ( x

|x|

)∣∣∣∣2
+
|ϕ(|x|)|2

|x|2

∣∣∣∣∇SN−1ψ

(
x

|x|

)
+ iA

(
x

|x|

)
ψ

(
x

|x|

)∣∣∣∣2.
Therefore, from the definition of λ1(A, a) it follows that

λ1(A, a)
(∫
+∞

0
rN−1 |ϕ(r)|

2

r2 dr

)(∫
SN−1
|ψ(θ)|2 dS(θ)

)
≤

∫
RN

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u(x)

∣∣∣∣2 − a( x

|x|

)
|u(x)|2

|x|2

]
dx

=

(∫
+∞

0
rN−1
|ϕ′(r)|2 dr

)(∫
SN−1
|ψ(θ)|2 dS(θ)

)
+

(∫
+∞

0
rN−1 |ϕ(r)|

2

r2 dr

)(∫
SN−1

[|∇SN−1ψ(θ)+ iA(θ)ψ(θ)|2−a(θ)|ψ(θ)|2] dS(θ)
)

=

(∫
SN−1
|ψ(θ)|2 dS(θ)

)[∫
+∞

0
rN−1
|ϕ′(r)|2 dr + µ1(A, a)

∫
+∞

0
rN−1 |ϕ(r)|

2

r2 dr

]
.

Hence

λ1(A, a)− µ1(A, a) ≤
∫
+∞

0 rN−1
|ϕ′(r)|2 dr∫

+∞

0 rN−3|ϕ(r)|2 dr
=

∫
RN |∇ϕ̃(x)|

2 dx∫
RN
|ϕ̃(x)|2

|x|2
dx

for every radial function ϕ̃ ∈ C∞c (RN \ {0},R). Hence by Schwarz symmetrization

λ1(A, a)− µ1(A, a) ≤ inf
ϕ̃∈C∞c (RN\{0},R)\{0}

ϕ̃ radial

∫
RN |∇ϕ̃(x)|

2 dx∫
RN
|ϕ̃(x)|2

|x|2
dx

= inf
v∈C∞c (RN\{0},R)\{0}

∫
RN |∇v(x)|

2 dx∫
RN
|v(x)|2

|x|2
dx
=

(
N − 2

2

)2

,

where the last identity is due to the optimality of the classical best Hardy constant for
N ≥ 3 and to direct calculations for N = 2. In order to prove the reverse inequality, let
u ∈ C∞c (RN \ {0},C). The magnetic gradient of u can be written in polar coordinates as

∇u(x)+ i
A(x/|x|)
|x|

u(x) = (∂ru(r, θ))θ +
1
r
∇SN−1u(r, θ)+ i

u(r, θ)

r
A(θ),

r = |x|, θ =
x

|x|
.
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By assumption (A.3),∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 = |∂ru(r, θ)|2 + 1
r2 |∇SN−1u(r, θ)+ iA(θ)u(r, θ)|2, (22)

hence

QA,a(u) =

∫
SN−1

(∫
+∞

0
rN−1
|∂ru(r, θ)|

2 dr

)
dS(θ)

+

∫
+∞

0

rN−1

r2

(∫
SN−1

[|∇SN−1u(r, θ)+ iA(θ)u(r, θ)|2 − a(θ)|u(r, θ)|2] dS(θ)
)
dr.

(23)

For all θ ∈ SN−1, let ϕθ ∈ C∞c ((0,+∞),C) be defined by ϕθ (r) = u(r, θ), and let
ϕ̃θ ∈ C

∞
c (RN \ {0},C) be the radially symmetric function given by ϕ̃θ (x) = ϕθ (|x|). If

N ≥ 3, Hardy’s inequality yields∫
SN−1

(∫
+∞

0
rN−1
|∂ru(r, θ)|

2 dr

)
dS(θ) =

∫
SN−1

(∫
+∞

0
rN−1
|ϕ′θ (r)|

2 dr

)
dS(θ)

=
1

ωN−1

∫
SN−1

(∫
RN
|∇ϕ̃θ (x)|

2 dx

)
dS(θ)

≥
1

ωN−1

(
N − 2

2

)2 ∫
SN−1

(∫
RN

|ϕ̃θ (x)|
2

|x|2
dx

)
dS(θ)

=

(
N − 2

2

)2 ∫
SN−1

(∫
+∞

0

rN−1

r2 |u(r, θ)|
2 dr

)
dS(θ)

=

(
N − 2

2

)2 ∫
RN

|u(x)|2

|x|2
dx, (24)

where ωN−1 denotes the volume of the unit sphere SN−1, i.e. ωN−1 =
∫
SN−1 dS(θ). For

N = 2, (24) holds trivially. On the other hand, from the definition of µ1(A, a) it follows
that ∫

SN−1
[|∇SN−1u(r, θ)+ iA(θ)u(r, θ)|2 − a(θ)|u(r, θ)|2] dS(θ)

≥ µ1(A, a)
∫

SN−1
|u(r, θ)|2 dS(θ). (25)

From (23)–(25), we deduce that

QA,a(u) ≥

[(
N − 2

2

)2

+ µ1(A, a)
] ∫

RN

|u(x)|2

|x|2
dx for all u ∈ C∞c (R

N
\ {0},C),

which, by density of C∞c (RN \ {0},C) in D1,2
∗ (RN ,C), implies

λ1(A, a) ≥
(
N − 2

2

)2

+ µ1(A, a),

thus completing the proof. ut
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The relation between the positivity ofQA,a and the valuesµ1(A, a), λ1(A, a) is described
in the following lemma.

Lemma 2.2. If N ≥ 2, and (A.2) and (A.3) hold, then the following conditions are
equivalent:

(i) QA,a is positive definite in D1,2
∗ (RN ,C), i.e. inf

u∈D1,2
∗ (RN ,C)\{0}

QA,a(u)

‖u‖2
D1,2
∗ (RN ,C)

> 0;

(ii) λ1(A, a) > 0;
(iii) µ1(A, a) > −

(
N−2

2

)2.

Proof. The equivalence between (ii) and (iii) is an immediate consequence of Lemma 2.1.
The fact that (i) implies (ii) follows easily from (4). It remains to prove that (ii) implies
(i). One can proceed as in the proof of [25, Proposition 1.3]. For completeness we give
the details. Assume (ii) and suppose towards a contradiction that (i) is not true. Then for
any ε > 0 there exists uε ∈ D1,2

∗ (RN ,C) such that

QA,a(uε) < ε‖uε‖
2
D1,2
∗ (RN ,C)

≤ 2(‖A‖2
L∞(SN−1,RN ) + 1)ε

×

(∫
RN

∣∣∣∣(∇ + iA(x/|x|)|x|

)
u(x)

∣∣∣∣2 dx + ∫RN

|u(x)|2

|x|2
dx

)
and hence, for ε small,

λ1

(
A,

1
1− 2ε(‖A‖2

L∞(SN−1,RN ) + 1)
a

)
<

2ε(‖A‖2
L∞(SN−1,RN ) + 1)

1− 2ε(‖A‖2
L∞(SN−1,RN ) + 1)

.

On the other hand, from the characterization of λ1(A, a) given in Lemma 2.1, the map
a 7→ λ1(A, a) is continuous with respect to the L∞(SN−1)-norm and hence, letting
ε→ 0, we obtain λ1(A, a) ≤ 0, a contradiction. ut

The previous lemma allows relating D1,2
∗ (RN ,C) to the Hilbert space D1,2

A,a(R
N ) gener-

ated by the quadratic form QA,a , thus proving Lemma 1.1.

Proof of Lemma 1.1. (i) follows from Lemma 2.1 and assumption (A.4). (ii) is a direct
consequence of Lemma 2.2 and (A.4). From (ii) we deduce that (QA,a(·))

1/2 defines
a norm in C∞c (RN \ {0},C) which is equivalent to ‖ · ‖D1,2

∗ (RN ,C). Hence completing

C∞c (RN \ {0},C) with respect to the norms (QA,a(·))
1/2 and ‖ · ‖D1,2

∗ (RN ,C) yields two
coinciding spaces with equivalent norms. ut

By Hardy type inequalities, it is possible to compare the function spaceD1,2
∗ (RN ,C)with

the classical Sobolev space D1,2(RN ,C) defined as the completion of C∞c (RN ,C) with
respect to the norm

‖u‖D1,2(RN ,C) :=
(∫

RN
|∇u(x)|2 dx

)1/2
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and with the space D1,2
A (RN ) given by the completion of C∞c (RN \ {0},C) with respect

to the magnetic Dirichlet norm

‖u‖D1,2
A (RN ) :=

(∫
RN

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx)1/2

.

The presence of a vector potential satisfying a suitable nondegeneracy condition allows
recovering a Hardy inequality even for N = 2. Indeed, if N = 2 and (A.3) holds, and

8A :=
1

2π

∫ 2π

0
α(t) dt 6∈ Z, where α(t) := A(cos t, sin t) · (− sin t, cos t), (26)

then functions in D1,2
A (R2) satisfy the following Hardy inequality:(

min
k∈Z
|k −8A|

)2
∫

R2

|u(x)|2

|x|2
dx ≤

∫
R2

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx, (27)

(mink∈Z |k−8A|)
2 being the best constant, as proved in [19]. It is easy to verify that, for

N = 2,

µ1(A, 0) = min
ψ∈H 1((0,2π),C)
ψ(0)=ψ(2π)

∫ 2π
0 |ψ

′(t)+ iα(t)ψ(t)|2 dt∫ 2π
0 |ψ(t)|

2 dt
,

where α(t) := A(cos t, sin t) · (− sin t, cos t). Furthermore, µ1(A, 0) > 0 if and only if
(26) holds. Combining Lemma 2.1 (in the case N = 2 and a ≡ 0) with [19], we conclude
that, for N = 2,

µ1(A, 0) =
(

min
k∈Z
|k −8A|

)2
. (28)

Lemma 2.3. (i) IfN≥3 thenD1,2
∗ (RN ,C)=D1,2(RN ,C) and the norms ‖·‖D1,2

∗ (RN ,C)
and ‖ · ‖D1,2(RN ,C) are equivalent.

(ii) If A ∈ C1(SN−1,RN ) and either N ≥ 3, or N = 2 and (A.3) and (26) hold, then
D1,2
∗ (RN ,C) = D1,2

A (RN ) with equivalent norms.

Proof. By the classical Hardy inequality, for N ≥ 3 the norms ‖ · ‖D1,2(RN ,C) and
‖ · ‖D1,2

∗ (RN ,C) are equivalent over the space C∞c (RN \ {0},C). The proof of (i) then

follows by completion after observing that, for N ≥ 3, C∞c (RN \ {0},C) is dense in
D1,2(RN ,C).

In order to prove (ii), let u ∈ C∞c (RN \ {0},C). Then

‖u‖D1,2
A (RN ) =

∥∥∥∥∇u+ iA(x/|x|)|x|
u

∥∥∥∥
L2(RN ,CN )

≤ ‖∇u‖L2(RN ,CN ) +

∥∥∥∥A(x/|x|)
|x|

u

∥∥∥∥
L2(RN ,CN )

≤ ‖∇u‖L2(RN ,CN ) + sup
SN−1
|A|
(∫

RN

|u|2

|x|2
dx

)1/2

≤ const ‖u‖D1,2
∗ (RN ,C).
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On the other hand, by the diamagnetic inequality in Lemma A.1, classical Hardy inequal-
ity for N ≥ 3, and (27) for N = 2, we have

‖u‖D1,2(RN ,C) = ‖∇u‖L2(RN ,CN )

≤

∥∥∥∥∇u+ iA(x/|x|)|x|
u

∥∥∥∥
L2(RN ,CN )

+

∥∥∥∥A(x/|x|)
|x|

u

∥∥∥∥
L2(RN ,CN )

≤ ‖u‖D1,2
A (RN ) + sup

SN−1
|A|
(∫

RN

|u|2

|x|2
dx

)1/2

≤ ‖u‖D1,2
A (RN ) + const

∥∥∇|u|∥∥
L2(RN ,CN ) ≤ (1+ const)‖u‖D1,2

A (RN ).

The above inequalities show that ‖ · ‖D1,2
∗ (RN ,C) and ‖ · ‖D1,2

A (RN ) are equivalent norms

over the spaceC∞c (RN \{0},C). The lemma then follows immediately from the definition
of the spaces D1,2

∗ (RN ,C) and D1,2
A (RN ). ut

3. A Hardy type inequality with boundary terms

We extend to singular electromagnetic potentials the Hardy type inequality with boundary
terms proved by Wang and Zhu in [27] (see Lemma A.3 in the Appendix).

Lemma 3.1. If N ≥ 2, and (A.2) and (A.3) hold, then∫
Br

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 − a(x/|x|)
|x|2

|u|2
]
dx +

N − 2
2r

∫
∂Br

|u(x)|2 dS

≥

(
µ1(A, a)+

(
N − 2

2

)2)∫
Br

|u(x)|2

|x|2
dx (29)

for all r > 0 and u ∈ H 1
∗ (Br ,C).

Proof. By scaling, it is enough to prove (29) for r = 1. Let u ∈ C∞(B1,C)∩H 1
∗ (B1,C)

with 0 6∈ supp u. Passing to polar coordinates and using (22), we have∫
B1

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 − a(x/|x|)
|x|2

|u|2
]
dx +

N − 2
2

∫
∂B1

|u(x)|2 dS

=

∫
SN−1

(∫ 1

0
rN−1
|∂ru(r, θ)|

2 dr

)
dS(θ)+

N − 2
2

∫
SN−1
|u(1, θ)|2 dS(θ)

+

∫ 1

0

rN−1

r2

(∫
SN−1

[|∇SN−1u(r, θ)+ iA(θ)u(r, θ)|2 − a(θ)|u(r, θ)|2] dS(θ)
)
dr.

(30)

For all θ ∈ SN−1, let ϕθ ∈ C∞c ((0,+∞),C) be defined by ϕθ (r) = u(r, θ), and let
ϕ̃θ ∈ C

∞
c (RN \ {0},C) be the radially symmetric function given by ϕ̃θ (x) = ϕθ (|x|).
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The Hardy inequality with boundary term proved in [27] (see Lemma A.3 in the Ap-
pendix) yields, for N ≥ 3,∫

SN−1

(∫ 1

0
rN−1
|∂ru(r, θ)|

2 dr +
N − 2

2
|u(1, θ)|2

)
dS(θ)

=

∫
SN−1

(∫ 1

0
rN−1
|ϕ′θ (r)|

2 dr +
N − 2

2
|ϕθ (1)|2

)
dS(θ)

=
1

ωN−1

∫
SN−1

(∫
B1

|∇ϕ̃θ (x)|
2 dx +

N − 2
2

∫
∂B1

|ϕ̃θ (x)|
2 dS

)
dS(θ)

≥
1

ωN−1

(
N − 2

2

)2 ∫
SN−1

(∫
B1

|ϕ̃θ (x)|
2

|x|2
dx

)
dS(θ)

=

(
N − 2

2

)2 ∫
SN−1

(∫ 1

0

rN−1

r2 |u(r, θ)|
2 dr

)
dS(θ)

=

(
N − 2

2

)2 ∫
B1

|u(x)|2

|x|2
dx. (31)

On the other hand, (31) trivially holds also for N = 2. From (30), (31), and (25), we
deduce that∫

B1

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 − a(x/|x|)
|x|2

|u|2
]
dx +

N − 2
2

∫
∂B1

|u(x)|2 dS

≥

[(
N − 2

2

)2

+ µ1(A, a)
] ∫

B1

|u(x)|2

|x|2
dx

for all u ∈ C∞(B1,C)∩H 1
∗ (B1,C) with 0 6∈ supp u, which, by density, yields the stated

inequality for all H 1
∗ (Br ,C)-functions for r = 1. ut

Remark 3.2. In view of (28), Lemma 3.1 for N = 2 and a ≡ 0 yields∫
Br

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 dx ≥ (min
k∈Z
|k −8A|

)2
∫
Br

|u(x)|2

|x|2
dx

for all r > 0 and u ∈ H 1
∗ (Br ,C).

4. A Pohozaev type identity

Solutions to (2) satisfy the following Pohozaev type identity.

Theorem 4.1. Let � ⊂ RN , N ≥ 2, be a bounded open set such that 0 ∈ �. Let a,A
satisfy (A.2), and let u be a weak H 1

∗ (�,C)-solution to (2) in �, with h satisfying (6).
Then
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−
N − 2

2

∫
Br

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 − a(x/|x|)
|x|2

|u|2
]
dx

+
r

2

∫
∂Br

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 − a(x/|x|)
|x|2

|u|2
]
dS

= r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS + ∫

Br

<
(
h(x)u(x)(x · ∇u(x))

)
dx (32)

for all r > 0 such that Br ⊂ �, where ν = ν(x) is the outer normal vector ν(x) = x/|x|.

Proof. Let r > 0 be such that Br ⊂ �. Since

∫ r

0

[∫
∂Bs

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 + |u|2
|x|2
+

∣∣∣∣∂u∂ν
∣∣∣∣2] dS] ds

=

∫
Br

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 + |u|2
|x|2
+

∣∣∣∣∂u∂ν
∣∣∣∣2] dx < +∞

there exists a sequence {δn}n∈N ⊂ (0, r) such that limn→+∞ δn = 0 and

δn

∫
∂Bδn

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 + |u|2
|x|2
+

∣∣∣∣∂u∂ν
∣∣∣∣2] dS → 0 as n→+∞. (33)

From classical elliptic regularity theory, u ∈ W
2,p
loc (� \ {0}) for all p ∈ [1,∞) and

u ∈ C
1,τ
loc (�\{0},C) for any τ ∈ (0, 1) (see Remark 1.2), hence we can multiply equation

(2) by x · ∇u(x), integrate over Br \ Bδn , and take the real part, thus obtaining

∫
Br\Bδn

<
(
∇u(x) · ∇(x · ∇u(x))

)
dx

+

∫
Br\Bδn

|A(x/|x|)|2 − a(x/|x|)
|x|2

<
(
u(x)(x · ∇u(x))

)
dx

+

∫
Br\Bδn

A(x/|x|)
|x|

· =
(
u(x)∇(∇u(x) · x)

)
dx

+

∫
Br\Bδn

A(x/|x|)
|x|

· =
(
(∇u(x) · x)∇u(x)

)
dx

= r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS − δn ∫

∂Bδn

∣∣∣∣∂u∂ν
∣∣∣∣2 dS + ∫

Br\Bδn

<
(
h(x)u(x)(x · ∇u(x))

)
dx. (34)

Integration by parts yields
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Br\Bδn

∇u(x) · ∇(x · ∇u(x)) dx

= −(N − 1)
∫
Br\Bδn

|∇u(x)|2 dx + r

∫
∂Br

|∇u(x)|2 dS

− δn

∫
∂Bδn

|∇u(x)|2 dS −

N∑
i,j=1

∫
Br\Bδn

xj
∂u

∂xi

∂2u

∂xi∂xj
dx. (35)

A further integration by parts leads to

N∑
i,j=1

∫
Br\Bδn

xj
∂u

∂xi

∂2u

∂xi∂xj
dx = −N

∫
Br\Bδn

|∇u(x)|2 dx + r

∫
∂Br

|∇u(x)|2 dS

− δn

∫
∂Bδn

|∇u(x)|2 dS −

N∑
i,j=1

∫
Br\Bδn

xj
∂u

∂xi

∂2u

∂xi∂xj
dx

and hence

N∑
i,j=1

∫
Br\Bδn

<

(
xj
∂u

∂xi

∂2u

∂xi∂xj

)
dx

= −
N

2

∫
Br\Bδn

|∇u(x)|2 dx +
r

2

∫
∂Br

|∇u(x)|2 dS −
δn

2

∫
∂Bδn

|∇u(x)|2 dS. (36)

Collecting (35) and (36) we obtain∫
Br\Bδn

<
(
∇u(x) · ∇(x · ∇u(x))

)
dx = −

N − 2
2

∫
Br\Bδn

|∇u(x)|2 dx

+
r

2

∫
∂Br

|∇u(x)|2 dS −
δn

2

∫
∂Bδn

|∇u(x)|2 dS. (37)

Letting f (θ) = |A(θ)|2 − a(θ), we find that f ∈ L∞(SN−1,R) and, passing to polar
coordinates r = |x|, θ = x/|x|, and observing that ∂ru(r, θ) = ∇u(rθ) · θ ,∫
Br\Bδn

f (x/|x|)

|x|2
u(x)(x · ∇u(x)) dx =

∫
SN−1

f (θ)

[∫ r

δn

sN−2u(sθ)∂su(sθ) ds

]
dS(θ)

=

∫
SN−1

f (θ)

[
rN−2
|u(rθ)|2 − δN−2

n |u(δnθ)|
2

− (N − 2)
∫ r

δn

sN−3
|u(sθ)|2 ds −

∫ r

δn

sN−2u(sθ)∂su(sθ) ds

]
dS(θ)

= r

∫
∂Br

f (x/|x|)

|x|2
|u(x)|2 dS − δn

∫
∂Bδn

f (x/|x|)

|x|2
|u(x)|2 dS

− (N − 2)
∫
Br\Bδn

f (x/|x|)

|x|2
|u(x)|2 dx −

∫
Br\Bδn

f (x/|x|)

|x|2
u(x)(x · ∇u(x)) dx,
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thus leading to

∫
Br\Bδn

|A(x/|x|)|2 − a(x/|x|)
|x|2

<
(
u(x)(x · ∇u(x))

)
dx

= −
N − 2

2

∫
Br\Bδn

|A(x/|x|)|2 − a(x/|x|)
|x|2

|u(x)|2 dx

+
r

2

∫
∂Br

|A(x/|x|)|2 − a(x/|x|)
|x|2

|u(x)|2 dS

−
δn

2

∫
∂Bδn

|A(x/|x|)|2 − a(x/|x|)
|x|2

|u(x)|2 dS. (38)

From integration by parts it follows that

∫
Br\Bδn

u(x)
A(x/|x|)
|x|

· ∇(∇u(x) · x) dx

= −(N − 2)
∫
Br\Bδn

u(x)
A(x/|x|)
|x|

· ∇u(x) dx

+ r

∫
∂Br

u(x)
A(x/|x|)
|x|

· ∇u(x) dS − δn

∫
∂Bδn

u(x)
A(x/|x|)
|x|

· ∇u(x) dS

−

∫
Br\Bδn

A(x/|x|)
|x|

· ∇u(x)(x · ∇u(x)) dx

and therefore

∫
Br\Bδn

A(x/|x|)
|x|

·=(u(x)∇(∇u(x)·x)) dx+

∫
Br\Bδn

A(x/|x|)
|x|

·=
(
(∇u(x)·x)∇u(x)

)
dx

= −(N − 2)
∫
Br\Bδn

=

(
A(x/|x|)
|x|

· ∇u(x)u(x)

)
dx

+ r

∫
∂Br

=

(
A(x/|x|)
|x|

· ∇u(x)u(x)

)
dS

− δn

∫
∂Bδn

=

(
A(x/|x|)
|x|

· ∇u(x)u(x)

)
dS. (39)

Putting together (34) and (37)–(39) and taking into account that

∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 = |∇u|2 + 2
A(x/|x|)
|x|

· =(u∇u)+
|A(x/|x|)|2

|x|2
|u|2,
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we obtain

−
N − 2

2

∫
Br\Bδn

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 − a(x/|x|)
|x|2

|u|2
]
dx

+
r

2

∫
∂Br

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 − a(x/|x|)
|x|2

|u|2
]
dS

−
δn

2

∫
∂Bδn

[∣∣∣∣(∇ + iA(x/|x|)|x|

)
u

∣∣∣∣2 − a(x/|x|)
|x|2

|u|2
]
dS

= r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS − δn ∫

∂Bδn

∣∣∣∣∂u∂ν
∣∣∣∣2 dS + ∫

Br\Bδn

<
(
h(x)u(x)(x · ∇u(x))

)
dx.

Letting n→+∞ in the above identity and using (33) we obtain (32). ut

5. The Almgren type frequency function

Let u be an H 1
∗ (�,C)-weak solution to equation (2) in a bounded domain � ⊂ RN

containing the origin with h satisfying (6). Let R > 0 be such that BR ⊆ �. Thus, the
following functions are well defined for every r ∈ (0, R]:

D(r) =
1

rN−2

∫
Br

[∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2− a(x/|x|)
|x|2

|u(x)|2−<(h(x))|u(x)|2
]
dx

(40)
and

H(r) =
1

rN−1

∫
∂Br

|u|2 dS. (41)

We are going to study the regularity of D and H . We first differentiate H .

Lemma 5.1. Let � ⊂ RN , N ≥ 2, be a bounded open set such that 0 ∈ �. Let a,A
satisfy (A.2), and let u be a weak H 1

∗ (�,C)-solution to (2) in �, with h satisfying (6). If
H is the function defined in (41), then H ∈ C1(0, R) and

H ′(r) =
2

rN−1

∫
∂Br

<

(
u
∂u

∂ν

)
dS for every r ∈ (0, R). (42)

Proof. Fix r0 ∈ (0, R) and consider the limit

lim
r→r0

H(r)−H(r0)

r − r0
= lim
r→r0

∫
∂B1

|u(rθ)|2 − |u(r0θ)|
2

r − r0
dS(θ). (43)

Since u ∈ C1(BR \ {0},C) (see Remark 1.2), for every θ ∈ ∂B1 we have

lim
r→r0

|u(rθ)|2 − |u(r0θ)|
2

r − r0
= 2<

(
∂u

∂ν
(r0θ)u(r0θ)

)
. (44)
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On the other hand, for any r ∈ (r0/2, R) and θ ∈ ∂B1,∣∣∣∣ |u(rθ)|2 − |u(r0θ)|2r − r0

∣∣∣∣ ≤ 2 sup
BR\Br0/2

|u| · sup
BR\Br0/2

|∇u|,

and hence, by (43), (44), and the Dominated Convergence Theorem, we obtain

H ′(r0) =

∫
∂B1

2<
(
∂u

∂ν
(r0θ)u(r0θ)

)
dS(θ) =

2

rN−1
0

∫
∂Br0

<

(
u
∂u

∂ν

)
dS.

The continuity of H ′ on the interval (0, R) follows from this representation, the fact that
u ∈ C1(BR \ {0},C), and the Dominated Convergence Theorem. ut

In the lemma below, we study the regularity of the function D.

Lemma 5.2. Let � ⊂ RN , N ≥ 2, be a bounded open set such that 0 ∈ �. Let a,A
satisfy (A.2), and let u be a weak H 1

∗ (�,C)-solution to (2) in �, with h satisfying (6). If
D is the function defined in (40), then D ∈ W 1,1

loc (0, R). Moreover

D′(r) =
2

rN−1

[
r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS + ∫

Br

<
(
h(x)u(x)(x · ∇u(x))

)
dx

+
N − 2

2

∫
Br

<(h(x))|u(x)|2 dx −
r

2

∫
∂Br

<(h(x))|u(x)|2 dS

]
(45)

in the distributional sense and for a.e. r ∈ (0, R).
Proof. For any r ∈ (0, R) let

I (r) =

∫
Br

[∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 − a(x/|x|)
|x|2

|u(x)|2 −<(h(x))|u(x)|2
]
dx

=

∫ r

0

(∫
∂Bρ

[∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2− a(x/|x|)
|x|2

|u(x)|2−<(h(x))|u(x)|2
]
dS

)
dρ.

(46)
From the fact that u ∈ H 1

∗ (BR,C), we deduce that I ∈ W 1,1(0, R) and

I ′(r) =

∫
∂Br

[∣∣∣∣∇u(x)+iA(x/|x|)|x|
u(x)

∣∣∣∣2− a(x/|x|)
|x|2

|u(x)|2−<(h(x))|u(x)|2
]
dS (47)

for a.e. r ∈ (0, R) and in the distributional sense. Therefore by (32), (46), and (47), we
deduce that D ∈ W 1,1

loc (0, R) and

D′(r) = r1−N [−(N − 2)I (r)+ rI ′(r)]

= r1−N
[

2r
∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS + 2

∫
Br

<
(
h(x)u(x)(x · ∇u(x))

)
dx

+ (N − 2)
∫
Br

<(h(x))|u(x)|2 dx − r

∫
∂Br

<(h(x))|u(x)|2 dS

]
(48)

for a.e. r ∈ (0, R) and in the distributional sense. ut
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We now show that H(r) does not vanish for every r > 0 sufficiently close to zero.

Lemma 5.3. Let � ⊂ RN , N ≥ 2, be a bounded open set such that 0 ∈ �, let a,A
satisfy (A.2)–(A.4), and let u 6≡ 0 be an H 1

∗ (�,C)-weak solution to (2) in �, with h
satisfying (6). LetH = H(r) be the function defined in (41). Then there exists r > 0 such
that H(r) > 0 for any r ∈ (0, r).

Proof. Suppose towards a contradiction that there exists a sequence rn → 0+ such that
H(rn) = 0. Then for any n, u ≡ 0 on ∂Brn . Multiplying both sides of (2) by u and
integrating by parts over Brn we obtain

∫
Brn

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx − ∫
Brn

a(x/|x|)

|x|2
|u(x)|2 dx

=

∫
Brn

h(x)|u(x)|2 dx +

∫
∂Brn

∂u

∂ν
u dS =

∫
Brn

h(x)|u(x)|2 dx.

Taking the real part on both sides it follows that∫
Brn

∣∣∣∣∇u(x)+iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx−∫
Brn

a(x/|x|)

|x|2
|u(x)|2 dx =

∫
Brn

<(h(x))|u(x)|2 dx.

Since u ≡ 0 on ∂Brn , Lemma 3.1 and (6) yield, for some positive constant ch > 0
depending only on h,

0 ≥
∫
Brn

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx
−

∫
Brn

a(x/|x|)

|x|2
|u(x)|2 dx − chr

ε
n

∫
Brn

|u(x)|2

|x|2
dx

≥

(
µ1(A, a)+

(
N − 2

2

)2

− chr
ε
n

)∫
Brn

|u(x)|2

|x|2
dx. (49)

Since µ1(A, a) +
(
N−2

2

)2
> 0 and rn → 0+, we conclude that u ≡ 0 in Brn for n

sufficiently large. Since u ≡ 0 in a neighborhood of the origin, we may apply, away from
the origin, a unique continuation principle for second order elliptic equations with locally
bounded coefficients (see e.g. [28]) to conclude that u ≡ 0 in �, a contradiction. ut

By virtue of Lemma 5.3, the Almgren type frequency function

N (r) = Nu,h(r) =
D(r)

H(r)
(50)

is well defined in a suitably small interval (0, r̄). Combining Lemmas 5.1 and 5.2, we
compute the derivative of N .
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Lemma 5.4. Let � ⊂ RN , N ≥ 2, be a bounded open set such that 0 ∈ �, let a,A
satisfy (A.2)–(A.4), and let u 6≡ 0 be an H 1

∗ (�,C)-weak solution to (2) in �, with h
satisfying (6). Then, letting N be as in (50), we have N ∈ W 1,1

loc (0, r) and

N ′(r) =
2r
[(∫

∂Br

∣∣ ∂u
∂ν

∣∣2 dS) · (∫
∂Br
|u|2 dS

)
−
(∫
∂Br
<
(
u ∂u
∂ν

)
dS
)2](∫

∂Br
|u|2 dS

)2
+

2
[∫
Br
<
(
h(x)u(x)(x · ∇u(x))

)
dx+ N−2

2
∫
Br
<(h(x))|u(x)|2 dx− r

2
∫
∂Br
<(h(x))|u(x)|2 dS

]∫
∂Br
|u|2 dS

(51)

in the distributional sense and for a.e. r ∈ (0, r).

Proof. From Lemmas 5.1–5.3, it follows that N ∈ W 1,1
loc (0, r). Multiplying both sides of

(2) by u, integrating by parts, and taking the real part we obtain the identity

∫
Br

[∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 − a(x/|x|)
|x|2

|u(x)|2 −<(h(x))|u(x)|2
]
dx

=

∫
∂Br

<

(
u
∂u

∂ν

)
dS.

Therefore, by (40) and (42) we infer that

D(r) =
1
2
rH ′(r) (52)

for every r ∈ (0, r̄). From (52) we have

N ′(r) =
D′(r)H(r)−D(r)H ′(r)

(H(r))2
=
D′(r)H(r)− 1

2 r(H
′(r))2

(H(r))2

and, using (42) and (45), the assertion of the lemma easily follows. ut

We now prove that N (r) admits a finite limit as r → 0+.

Lemma 5.5. Under the same assumptions as in Lemma 5.4, the limit

γ := lim
r→0+

N (r)

exists and is finite.

Proof. We start by proving thatN (r) is bounded from below as r → 0+. By Lemma 3.1,
proceeding as in (49) we arrive, for some positive constant ch > 0 depending only on h,
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at∫
Br

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx − ∫
Br

a(x/|x|)

|x|2
|u(x)|2 dx −

∫
Br

<(h(x))|u(x)|2 dx

≥ −
N − 2

2r

∫
∂Br

|u(x)|2 dS +

(
µ1(A, a)+

(
N − 2

2

)2

− chr
ε

)∫
Br

|u(x)|2

|x|2
dx

> −
N − 2

2r

∫
∂Br

|u(x)|2 dS (53)

for r > 0 sufficiently small. This together with (40)–(41) yields

N (r) > −
N − 2

2
(54)

for any r > 0 sufficiently close to zero. Thanks to (6), for some C1 > 0, we estimate∣∣∣∣∫
Br

<
(
h(x)u(x)(x · ∇u(x))

)
dx +

N − 2
2

∫
Br

<(h(x))|u(x)|2 dx

−
r

2

∫
∂Br

<(h(x))|u(x)|2 dS

∣∣∣∣
≤ C1r

ε

(∫
Br

∣∣∣∣∇u+ iA(x/|x|)|x|
u

∣∣∣∣2 dx + ∫
Br

|u(x)|2

|x|2
dx + rN−2H(r)

)
.

Together with (53), this implies that there exist C2 > 0 and r̃ > 0 such that, for any
r ∈ (0, r̃),∣∣∣∣∫
Br

<
(
h(x)u(x)(x · ∇u(x))

)
dx +

N − 2
2

∫
Br

<(h(x))|u(x)|2 dx

−
r

2

∫
∂Br

<(h(x))|u(x)|2 dS

∣∣∣∣ ≤ C2r
ε+N−2

[
D(r)+

N − 2
2

H(r)

]
.

Therefore, for any r ∈ (0, r̃), we have∣∣∣∣
∫
Br
<
(
h(x)u(x)(x · ∇u(x))

)
dx + N−2

2
∫
Br
<(h(x))|u(x)|2 dx − r

2
∫
∂Br
<(h(x))|u(x)|2 dS∫

∂Br
|u(x)|2 dS

∣∣∣∣
≤ C2r

−1+ε D(r)+
N−2

2 H(r)

H(r)
≤ C2r

−1+εN (r)+ C2
N − 2

2
r−1+ε. (55)

By Lemma 5.4 and Schwarz’s inequality, one sees that

N ′(r)

≥ 2

∫
Br
<
(
h(x)u(x)(x · ∇u(x))

)
dx + N−2

2
∫
Br
<(h(x))|u(x)|2 dx − r

2
∫
∂Br
<(h(x))|u(x)|2 dS∫

∂Br
|u(x)|2 dS
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and hence by (55) we obtain

N ′(r) ≥ −2C2r
−1+εN (r)− C2(N − 2)r−1+ε (56)

for any r ∈ (0, r̃). After integration it follows that, for some C3 > 0,

N (r) ≤ N (r̃)e(2C2/ε)(r̃
ε
−rε)
+ (N − 2)C2e

−(2C2/ε)r
ε

∫ r̃

r

sε−1e(2C2/ε)s
ε

ds ≤ C3 (57)

for any r ∈ (0, r̃). This shows that the left hand side of (55) belongs to L1(0, r̃). In partic-
ular by Lemma 5.4 and Schwarz’s inequality we see that N ′ is the sum of a nonnegative
function and an L1-function. Therefore

N (r) = N (r̃)−
∫ r̃

r

N ′(s) ds

admits a limit as r → 0+, which is necessarily finite in view of (54) and (57). ut

A first consequence of the above analysis of the Almgren frequency function is the fol-
lowing estimate of H(r).

Lemma 5.6. Under the same assumptions as in Lemma 5.4, let γ := limr→0+ N (r) be
as in Lemma 5.5. Then there exists a constant K1 > 0 such that

H(r) ≤ K1r
2γ for all r ∈ (0, r̄). (58)

On the other hand for any σ > 0 there exists a constant K2(σ ) > 0 depending on σ such
that

H(r) ≥ K2(σ )r
2γ+σ for all r ∈ (0, r̄). (59)

Proof. We start by proving (58). Since, by Lemma 5.5,N ′ ∈ L1(0, r̄) andN is bounded,
by (56) we infer that

N (r)− γ =
∫ r

0
N ′(s) ds ≥ −C4r

ε (60)

for some constant C4 > 0 and r ∈ (0, r̃) with 0 < r̃ < r̄ . Therefore by (52) and (60) we
deduce that for r ∈ (0, r̃),

H ′(r)

H(r)
=

2N (r)
r
≥

2γ
r
− 2C4r

−1+ε.

Then (58) follows immediately after integration of the previous differential inequality
over the interval (r, r̃) and by continuity of H outside 0.

Let us prove (59). Since γ = limr→0+ N (r), for any σ > 0 there exists rσ > 0 such
that N (r) < γ + σ/2 for any r ∈ (0, rσ ) and hence

H ′(r)

H(r)
=

2N (r)
r

<
2γ + σ
r

for all r ∈ (0, rσ ).

Integrating over the interval (r, rσ ) and by the continuity of H outside 0, we obtain (59)
for some constant K2(σ ) depending on σ . ut
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6. Proofs of Theorems 1.3 and 1.5

In this section we use the monotonicity properties established in Section 5 combined with
a blow-up technique to deduce the asymptotics of solutions near the singularity and to
prove Theorems 1.3 and 1.5.

Lemma 6.1. Let � ⊂ RN , N ≥ 2, be a bounded open set containing 0, let a,A be
such that (A.2)–(A.4) hold, and let h be as in (6). For u ∈ H 1

∗ (�,C) weakly solving (2),
u 6≡ 0, let γ := limr→0+ N (r) be as in Lemma 5.5. Then

(i) there exists k0 ∈ N such that

γ = −
N − 2

2
+

√(
N − 2

2

)2

+ µk0(A, a);

(ii) for every sequence λn → 0+, there exist a subsequence {λnk }k∈N and an eigen-
function ψ of the operator LA,a associated to the eigenvalue µk0(A, a) such that
‖ψ‖L2(SN−1,C) = 1 and

u(λnkx)√
H(λnk )

→ |x|γψ

(
x

|x|

)
weakly in H 1(B1,C), strongly in H 1(Br ,C) for every 0 < r < 1, and in
C

1,τ
loc (B1 \ {0},C) for any τ ∈ (0, 1).

Proof. Let us set

wλ(x) =
u(λx)
√
H(λ)

.

We notice that
∫
∂B1
|wλ|2 dS = 1. Moreover, by scaling and (57),

∫
B1

∣∣∣∣∇wλ(x)+ iA(x/|x|)|x|
wλ(x)

∣∣∣∣2 dx − ∫
B1

a(x/|x|)

|x|2
|wλ(x)|2 dx

−

∫
B1

λ2
<(h(λx))|wλ(x)|2 dx = N (λ) ≤ const. (61)

Hence, by (29) and (6) there exists ch > 0 such that(
µ1(A, a)+

(
N − 2

2

)2

− chλ
ε

)∫
B1

|wλ(x)|2

|x|2
dx ≤

N − 2
2
+N (λ),

and consequently there exist λ̄ > 0 and const > 0 such that∫
B1

|wλ(x)|2

|x|2
dx ≤ const for every 0 < λ < λ̄,

which, in view of (61), implies that {wλ}λ∈(0,λ̄) is bounded in H 1
∗ (B1,C).
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Therefore, for any given sequence λn → 0+, there exists a subsequence λnk → 0+

such that wλnk ⇀ w weakly in H 1
∗ (B1,C) for some w ∈ H 1

∗ (B1,C). We notice that
H 1
∗ (B1,C) is continuously imbedded into H 1(B1,C), hence wλnk ⇀ w weakly also in

H 1(B1,C). Due to compactness of the trace imbedding H 1(B1,C) ↪→ L2(∂B1,C), we
obtain

∫
∂B1
|w|2 dS = 1. In particular w 6≡ 0. Furthermore, weak convergence allows

passing to the weak limit in the equation

LA,aw
λnk (x) = λ2

nk
h(λnkx)w

λnk (x) (62)

which holds in a weak sense in BR/λnk
⊃ B1 (see the beginning of Section 5 for the

definition of R), thus yielding

LA,aw(x) = 0 in B1. (63)

A bootstrap argument and classical regularity theory lead to

wλnk → w in C1,τ
loc (B1 \ {0},C)

for any τ ∈ (0, 1) and

wλnk → w in H 1(Br ,C) and in H 1
∗ (Br ,C) (64)

for any r ∈ (0, 1). Since the functions wλnk solve equation (62), for any r ∈ (0, 1) we
may define the functions

Dk(r) =
1

rN−2

∫
Br

[∣∣∣∣∇wλnk (x)+ iA(x/|x|)|x|
wλnk (x)

∣∣∣∣2] dx
−

1
rN−2

∫
Br

[
a(x/|x|)

|x|2
|wλnk (x)|2 + λ2

nk
<(h(λnkx))|w

λnk (x)|2
]
dx

and

Hk(r) =
1

rN−1

∫
∂Br

|wλnk |2 dS.

On the other hand, since w solves (63), we put

Dw(r) =
1

rN−2

∫
Br

[∣∣∣∣∇w(x)+ iA(x/|x|)|x|
w(x)

∣∣∣∣2 − a(x/|x|)
|x|2

|w(x)|2
]
dx (65)

for all r ∈ (0, 1) and

Hw(r) =
1

rN−1

∫
∂Br

|w|2 dS for all r ∈ (0, 1). (66)

Using a change of variables, one sees that

Nk(r) :=
Dk(r)

Hk(r)
=
D(λnk r)

H(λnk r)
= N (λnk r) for all r ∈ (0, 1). (67)
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By (6) and (64), for any fixed r ∈ (0, 1) we have

Dk(r)→ Dw(r). (68)

On the other hand, by compactness of the trace imbedding H 1(Br ,C) ↪→ L2(∂Br ,C),
we also have

Hk(r)→ Hw(r) for any fixed r ∈ (0, 1). (69)

From (29) it follows thatDw(r) > −N−2
2 Hw(r) for all r ∈ (0, 1). Therefore, if, for some

r ∈ (0, 1), Hw(r) = 0 then Dw(r) > 0, and passing to the limit in (67) would give a
contradiction with Lemma 5.5. Hence Hw(r) > 0 for all r ∈ (0, 1). Thus the function

Nw(r) :=
Dw(r)

Hw(r)

is well defined for r ∈ (0, 1). This, together with (67)–(69) and Lemma 5.5, shows that

Nw(r) = lim
k→∞

N (λnk r) = γ (70)

for all r ∈ (0, 1). Therefore Nw is constant in (0, 1) and hence N ′w(r) = 0 for any
r ∈ (0, 1). By (63) and Lemma 5.4 with h ≡ 0, we obtain(∫

∂Br

∣∣∣∣∂w∂ν
∣∣∣∣2 dS) · (∫

∂Br

|w|2 dS

)
−

(∫
∂Br

<

(
w
∂w

∂ν

)
dS

)2

= 0 for all r ∈ (0, 1),

i.e. ∣∣∣∣∫
∂Br

<

(
w
∂w

∂ν

)
dS

∣∣∣∣2 = ‖w‖2L2(∂Br ,C) ·

∥∥∥∥∂w∂ν
∥∥∥∥2

L2(∂Br ,C)
.

This shows that w and ∂w/∂ν have the same direction as vectors in L2(∂Br ,C) and
hence there exists a real valued function η = η(r) such that ∂w

∂ν
(r, θ) = η(r)w(r, θ) for

r ∈ (0, 1). After integration we obtain

w(r, θ) = e
∫ r

1 η(s) dsw(1, θ) = ϕ(r)ψ(θ), r ∈ (0, 1), θ ∈ SN−1, (71)

where we put ϕ(r) = e
∫ r

1 η(s) ds and ψ(θ) = w(1, θ). Since

LA,aw = −
∂2w

∂r2 −
N − 1
r

∂w

∂r
+

1
r2LA,aw,

(71) yields (
−ϕ′′(r)−

N − 1
r

ϕ′(r)

)
ψ(θ)+

ϕ(r)

r2 LA,aψ(θ) = 0.

Taking r fixed we deduce that ψ is an eigenfunction of the operator LA,a . If µk0(A, a) is
the corresponding eigenvalue then ϕ(r) solves the equation

−ϕ′′(r)−
N − 1
r

ϕ(r)+
µk0(A, a)

r2 ϕ(r) = 0
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and hence ϕ(r) is of the form

ϕ(r) = c1r
σ+k0 + c2r

σ−k0

for some c1, c2 ∈ R, where

σ+k0
= −

N − 2
2
+

√(
N − 2

2

)2

+ µk0(A, a),

σ−k0
= −

N − 2
2
−

√(
N − 2

2

)2

+ µk0(A, a).

Since |x|−1(|x|
σ−k0ψ(x/|x|)) /∈ L2(B1,C) and hence |x|σ

−

k0ψ(x/|x|) /∈ H 1
∗ (B1,C), it

follows that c2 = 0 and ϕ(r) = c1r
σ+k0 . Since ϕ(1) = 1, we obtain c1 = 1 and then

w(r, θ) = r
σ+k0ψ(θ) for all r ∈ (0, 1) and θ ∈ SN−1. (72)

It remains to prove part (i). Since w solves (63), after integration by parts∫
Br

[∣∣∣∣∇w(x)+ iA(x/|x|)|x|
w(x)

∣∣∣∣2 − a(x/|x|)
|x|2

|w(x)|2
]
dx =

∫
∂Br

∂w

∂ν
w dS.

Therefore, by (65), (66), (70), and (72), it follows that

γ = Nw(r) =
Dw(r)

Hw(r)
=
r
∫
∂Br

∂w
∂ν
w dS∫

∂Br
|w|2 dS

= σ+k0
.

This completes the proof of the lemma. ut

A further step towards a priori bounds for solutions to (2) lies in uniformly estimating the
supremum of |u| on ∂Br with H(r).

Lemma 6.2. Let � ⊂ RN , N ≥ 2, be a bounded open set containing 0, let a,A be such
that (A.2)–(A.4) hold, and let h be as in (6). Then, for any H 1

∗ (�,C)-weak solution u to
(2) there exist s̄ > 0 and C > 0 such that

sup
∂Bs

|u|2 ≤
C

sN−1

∫
∂Bs

|u|2 dS for every 0 < s < s̄.

Proof. Let γ = limr→0+ N (r) be as in Lemma 5.5 and k0 ∈ N be such that

γ = −
N − 2

2
+

√(
N − 2

2

)2

+ µk0(A, a)

(see Lemma 6.1). Denote by A0 the eigenspace of the operator LA,a associated to the
eigenvalue µk0(A, a). Since dimA0 is finite, it is easy to verify that

3 = sup
v∈A0\{0}

supSN−1 |v|2∫
SN−1 |v|2 dS

< +∞.
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Let C̃ > 2N−13. We claim that there exists λ̄ such that

sup
∂B1/2

|wλ|2 ≤ C̃

∫
∂B1/2

|wλ|2 dS for every λ ∈ (0, λ̄). (73)

To prove (73), assume towards a contradiction that there exists a sequence {λn}n∈N such
that λn→ 0+ and

sup
∂B1/2

|wλn |2 > C̃

∫
∂B1/2

|wλn |2 dS. (74)

Lemma 6.1 implies that there exist a subsequence {λnj }j∈N and an eigenfunction ψ ∈ A0

such that ‖ψ‖2
L2(SN−1,C) = 1 and wλnj → |x|γψ(x/|x|) weakly in H 1(B1,C) and in

C
1,τ
loc (B1 \ {0},C) for any τ ∈ (0, 1). Passing to the limit in (74), this would imply that

sup
SN−1
|ψ |2 ≥

C̃

2N−1

∫
SN−1
|ψ |2 dS > 3

∫
SN−1
|ψ |2 dS,

giving rise to a contradiction with the definition of 3. Claim (73) is thereby proved.
Estimate (73) can be written as

sup
∂Bλ/2

|u|2 ≤
C̃

λN−1

∫
∂Bλ/2

|u|2 dS for every λ ∈ (0, λ̄).

Choosing s̄ = 1
2 λ̄ and C = 21−N C̃, the conclusion follows. ut

From Lemmas 5.6 and 6.2 we deduce the following pointwise estimate for solutions to (2).

Corollary 6.3. Let � ⊂ RN , N ≥ 2, be a bounded open set containing 0, let a,A be
such that (A.2)–(A.4) hold, and let h be as in (6). Then, for any H 1

∗ (�,C)-weak solution
u to (2) there exist s̄ > 0 and C̄ > 0 such that

|u(x)| ≤ C̄|x|γ for every x ∈ Bs̄,

where γ = limr→0+ N (r) is as in Lemma 5.5.

Proof. This follows from (58) and Lemma 6.2. ut

Let us now describe the behavior of H(r) as r → 0+.

Lemma 6.4. Under the same assumptions as in Lemma 5.4 and lettingγ := limr→0+ N (r)
be as in Lemma 5.5, the limit

lim
r→0+

r−2γH(r)

exists and is finite.
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Proof. In view of (58) it is sufficient to prove that the limit exists. By (41), (52), and
Lemma 5.5 we have

d

dr

H(r)

r2γ = −2γ r−2γ−1H(r)+ r−2γH ′(r) = 2r−2γ−1(D(r)− γH(r))

= 2r−2γ−1H(r)

∫ r

0
N ′(s) ds.

Denote by M1(r) and M2(r) respectively the first and the second term on the right hand
side of (51). After integration over (r, r̃), we obtain

H(r̃)

r̃2γ −
H(r)

r2γ =

∫ r̃

r

2s−2γ−1H(s)

(∫ s

0
M1(t) dt

)
ds

+

∫ r̃

r

2s−2γ−1H(s)

(∫ s

0
M2(t) dt

)
ds. (75)

By Schwarz’s inequality we have M1(t) ≥ 0 and hence the limit

lim
r→0+

∫ r̃

r

2s−2γ−1H(s)

(∫ s

0
M1(t) dt

)
ds

exists. On the other hand, by (55) and (58) we deduce that |M2(r)| = O(r−1+ε) and
H(r) = O(r2γ ) as r → 0+. Therefore, if r̃ is sufficiently small, for some const > 0 we
have ∣∣∣∣s−2γ−1H(s)

(∫ s

0
M2(t) dt

)∣∣∣∣ ≤ const
ε

s−1+ε

for all r ∈ (0, r̃), which proves that s−2γ−1H(s)(
∫ s

0 M2(t) dt) ∈ L1(0, r̃). We may
conclude that both terms on the right hand side of (75) admit a limit as r → 0+, thus
completing the proof of the lemma. ut

The limit limr→0+ r
−2γH(r) is indeed strictly positive, as we prove in the following

lemma.

Lemma 6.5. Under the same assumptions as in Lemma 5.4 and lettingγ := limr→0+ N (r)
be as in Lemma 5.5, we have

lim
r→0+

r−2γH(r) > 0.

Proof. Let us fix R > 0 such that BR ⊂ �. For any k ∈ N \ {0}, let ψk be an L2-
normalized eigenfunction of the operator LA,a on the sphere associated to the k-th eigen-
value µk(A, a), i.e. satisfying{

LA,aψk(θ) = µk(A, a)ψk(θ) in SN−1,∫
SN−1 |ψk(θ)|

2 dS(θ) = 1.
(76)
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We can choose the functions ψk in such a way that they form an orthonormal basis of
L2(SN−1,C), hence u and hu can be expanded as

u(x) = u(λθ) =

∞∑
k=1

ϕk(λ)ψk(θ), h(x)u(x) = h(λθ)u(λθ) =

∞∑
k=1

ζk(λ)ψk(θ), (77)

where λ = |x| ∈ (0, R], θ = x/|x| ∈ SN−1, and

ϕk(λ) =

∫
SN−1

u(λθ)ψk(θ) dS(θ), ζk(λ) =

∫
SN−1

h(λθ)u(λθ)ψk(θ) dS(θ). (78)

Equations (2) and (76) imply that, for every k,

−ϕ′′k (λ)−
N − 1
λ

ϕ′k(λ)+
µk(A, a)
λ2 ϕk(λ) = ζk(λ) in (0, R).

A direct calculation shows that, for some ck1, c
k
2 ∈ R,

ϕk(λ) = λ
σ+k

(
ck1+

∫ R

λ

s−σ
+

k +1

σ+k − σ
−

k

ζk(s) ds

)
+λσ

−

k

(
ck2+

∫ R

λ

s−σ
−

k +1

σ−k − σ
+

k

ζk(s) ds

)
, (79)

where

σ+k = −
N − 2

2
+

√(
N − 2

2

)2

+ µk(A, a),

σ−k = −
N − 2

2
−

√(
N − 2

2

)2

+ µk(A, a).

In view of Lemma 6.1, there exist j0, m ∈ N, j0, m ≥ 1, such thatm is the multiplicity of
the eigenvalue µj0(A, a) = µj0+1(A, a) = · · · = µj0+m−1(A, a) and

γ = lim
r→0+

N (r) = σ+i , i = j0, . . . , j0 +m− 1. (80)

The Parseval identity yields

H(λ) =

∫
SN−1
|u(λθ)|2 dS(θ) =

∞∑
k=1

|ϕk(λ)|
2 for all 0 < λ ≤ R. (81)

Assume for contradiction that limλ→0+ λ
−2γH(λ) = 0 and fix i ∈ {j0, . . . , j0 +m− 1}.

Then (80) and (81) imply that

lim
λ→0+

λ−σ
+

i ϕi(λ) = 0. (82)

From (6) and Corollary 6.3, we obtain

ζi(λ) = O(λ
−2+ε+σ+i ) as λ→ 0+, (83)
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and consequently the functions

s 7→
s−σ

+

i +1

σ+i − σ
−

i

ζi(s) and s 7→
s−σ

−

i +1

σ−i − σ
+

i

ζi(s)

belong to L1((0, R),C). Hence

λσ
+

i

(
ci1 +

∫ R

λ

s−σ
+

i +1

σ+i − σ
−

i

ζi(s) ds

)
= o(λσ

−

i ) as λ→ 0+,

and thus, since u/|x| ∈ L2(BR,C) and |x|σ
−

i /|x| 6∈ L2(BR,C), we conclude that

ci2 = −

∫ R

0

s−σ
−

i +1

σ−i − σ
+

i

ζi(s) ds.

Using (83), we then deduce that

λσ
−

i

(
ci2+

∫ R

λ

s−σ
−

i +1

σ−i − σ
+

i

ζi(s) ds

)
= λσ

−

i

(∫ λ

0

s−σ
−

i +1

σ+i − σ
−

i

ζi(s) ds

)
= O(λσ

+

i +ε) (84)

as λ→ 0+. From (79), (82), and (84), we obtain

ci1 +

∫ R

0

s−σ
+

i +1

σ+i − σ
−

i

ζi(s) ds = 0,

thus implying, together with (83),

λσ
+

i

(
ci1 +

∫ R

λ

s−σ
+

i +1

σ+i − σ
−

i

ζi(s) ds

)
= λσ

+

i

∫ λ

0

s−σ
+

i +1

σ−i − σ
+

i

ζi(s) ds = O(λ
σ+i +ε) (85)

as λ→ 0+. Collecting (79), (84), and (85), we conclude that

ϕi(λ) = O(λ
σ+i +ε) as λ→ 0+ for every i ∈ {j0, . . . , j0 +m− 1},

namely, setting uλ(θ) = u(λθ),

(uλ, ψ)L2(SN−1,C) = O(λ
γ+ε) as λ→ 0+

for every ψ ∈ A0, where A0 is the eigenspace of LA,a associated to the eigenvalue
µj0(A, a) = µj0+1(A, a) = · · · = µj0+m−1(A, a). Let wλ(θ) = (H(λ))−1/2u(λθ). From
(59), there exists C(ε) > 0 such that

√
H(λ) ≥ C(ε)λγ+ε/2 for λ small, and therefore

(wλ, ψ)L2(SN−1,C) = O(λ
ε/2) = o(1) as λ→ 0+ (86)

for every ψ ∈ A0. From Lemma 6.1, for every sequence λn → 0+, there exist a subse-
quence {λnj }j∈N and an eigenfunction ψ̃ ∈ A0 such that∫

SN−1
|ψ̃(θ)|2 dS = 1 and w

λnj → ψ̃ in L2(SN−1,C). (87)
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From (86) and (87), we infer that

0 = lim
j→+∞

(w
λnj , ψ̃)L2(SN−1,C) = ‖ψ̃‖

2
L2(SN−1,C) = 1,

thus reaching a contradiction. ut

The analysis carried out in this section leads to a complete description of the behavior of
solutions to (2) near the singularity and hence to the proof of Theorem 1.3.

Proof of Theorem 1.3. Identity (9) follows from part (i) of Lemma 6.1, thus there exists
k0 ∈ N, k0 ≥ 1, such that

lim
r→0+

Nu,h(r) = −
N − 2

2
+

√(
N − 2

2

)2

+ µk0(A, a) =: γ.

Let us denote by m the multiplicity of µk0(A, a), so that, for some j0 ∈ N, j0 ≥ 1,
j0 ≤ k0 ≤ j0 + m − 1, µj0(A, a) = µj0+1(A, a) = · · · = µj0+m−1(A, a) and let
{ψi : j0 ≤ i ≤ j0 + m − 1} be an L2(SN−1,C)-orthonormal basis for the eigenspace
of LA,a associated to µk0(A, a). Let {λn}n∈N ⊂ (0,+∞) be such that limn→+∞ λn = 0.
Then, from Lemmas 6.1(ii), 6.4, and 6.5, there exist a subsequence {λnk }k∈N and m real
numbers βj0 , . . . , βj0+m−1 ∈ R such that (βj0 , . . . , βj0+m−1) 6= (0, . . . , 0) and

λ
−γ
nk u(λnkθ)→

j0+m−1∑
i=j0

βiψi(θ) in C1,τ (SN−1,C) as k→+∞ (88)

and

λ
1−γ
nk ∇u(λnkθ)→

j0+m−1∑
i=j0

βi(γψi(θ)θ +∇SN−1ψi(θ))

in C0,τ (SN−1,CN ) as k→+∞, (89)

for any τ ∈ (0, 1). We now prove that the βi’s depend neither on the sequence {λn}n∈N
nor on its subsequence {λnk }k∈N.

Let us fix R > 0 such that BR ⊂ �. Defining ϕi and ζi as in (78) and expanding u as
in (77), from (88) it follows that, for any i = j0, . . . , j0 +m− 1,

λ
−γ
nk ϕi(λnk ) =

∫
SN−1

u(λnkθ)

λ
γ
nk

ψi(θ) dS(θ)

→

j0+m−1∑
j=j0

βj

∫
SN−1

ψj (θ)ψi(θ) dS(θ) = βi (90)
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as k→+∞. As deduced in the proof of Lemma 6.5, for any i = j0, . . . , j0+m− 1 and
λ ∈ (0, R] we have

ϕi(λ) = λ
σ+i

(
ci1 +

∫ R

λ

s−σ
+

i +1

σ+i − σ
−

i

ζi(s) ds

)
+ λσ

−

i

(∫ λ

0

s−σ
−

i +1

σ+i − σ
−

i

ζi(s) ds

)

= λσ
+

i

(
ci1 +

∫ R

λ

s−σ
+

i +1

σ+i − σ
−

i

ζi(s) ds

)
+O(λσ

+

i +ε) as λ→ 0+, (91)

for some ci1 ∈ R, where

σ+i = γ = −
N − 2

2
+

√(
N − 2

2

)2

+ µk0(A, a),

σ−i = −
N − 2

2
−

√(
N − 2

2

)2

+ µk0(A, a).

Choosing λ = R in the first line of (91), we obtain

ci1 = R
−σ+i ϕi(R)− R

σ−i −σ
+

i

∫ R

0

s−σ
−

i +1

σ+i − σ
−

i

ζi(s) ds.

Hence (91) yields

λ−γ ϕi(λ)→ R−σ
+

i ϕi(R)− R
σ−i −σ

+

i

∫ R

0

s−σ
−

i +1

σ+i − σ
−

i

ζi(s) ds +

∫ R

0

s−σ
+

i +1

σ+i − σ
−

i

ζi(s) ds

as λ→ 0+, and therefore, from (90) we deduce that

βi = R
−γ

∫
SN−1

u(Rθ)ψi(θ) dS(θ)

− R−2γ−N+2
∫ R

0

sγ+N−1

2γ +N − 2

(∫
SN−1

h(sη)u(sη)ψi(η) dS(η)

)
ds

+

∫ R

0

s1−γ

2γ +N − 2

(∫
SN−1

h(sη)u(sη)ψi(η) dS(η)

)
ds.

In particular the βi’s depend neither on the sequence {λn}n∈N nor on its subsequence
{λnk }k∈N, thus implying that the convergences in (88) and (89) actually hold as λ→ 0+

and proving the theorem. ut

Proof of Corollary 1.4. Statement (i) follows directly from (10). Statement (iii) is an
immediate consequence of (10) and (11). To prove (ii), we notice that classical elliptic
regularity theory yields Hölder continuity away from 0, so it remains to prove that u is
Hölder continuous in every Br ⊂ �. Assume towards a contradiction that there exist
sequences {xn}n∈N, {yn}n∈N ⊂ Br such that

lim
n→+∞

|u(xn)− u(yn)|

|xn − yn|γ
= +∞. (92)
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Hölder continuity away from 0 implies that either |xn| → 0 or |yn| → 0 along a subse-
quence. We can assume, without loss of generality, that |yn| → 0 and |xn| ≥ |yn|. Two
cases can occur.

Case 1: there exists a positive constant c > 1 such that |xn|/|yn| ≤ c. Then |xn| → 0
and, letting λn = 2c|xn| and observing that xn/λn, yn/λn ∈ B1/(2c) \B1/(2c2) b B1 \ {0},
from Lemmas 6.1(ii), 6.4 and 6.5 it follows that

lim
n→+∞

∣∣λ−γn u
(
λn

xn
λn

)
− (2c)−γψ

(
xn
|xn|

)
− λ
−γ
n u

(
λn

yn
λn

)
+
|yn|

γ

λ
γ
n
ψ
( yn
|yn|

)∣∣∣∣ xn
λn
−

yn
λn

∣∣γ = 0

for some eigenfunction ψ of LA,a . Since the function |x|γψ(x/|x|) is Hölder continuous
away from 0, from above we conclude that

|u(xn)− u(yn)|

|xn − yn|γ
=

∣∣λ−γn u
(
λn

xn
λn

)
− λ
−γ
n u

(
λn

yn
λn

)∣∣∣∣ xn
λn
−

yn
λn

∣∣γ
is bounded uniformly in n, thus giving rise to a contradiction.

Case 2: There exist subsequences {xnk }k∈N and {ynk }k∈N such that |xnk |/|ynk | → +∞.
In particular |ynk | = o(|xnk |) as k → +∞. From (92) we deduce that |xnk | → 0 as
k→+∞ and by Corollary 6.3,

|u(xnk )− u(ynk )|

|xnk − ynk |
γ
= |xnk |

−γ |u(xnk )− u(ynk )|∣∣ xnk
|xnk |
−

ynk
|xnk |

∣∣γ ≤ const|xnk |
−γ |xnk |

γ
+ |ynk |

γ∣∣ xnk
|xnk |
−

ynk
|xnk |

∣∣γ ≤ const,

in contradiction with (92). ut

Invariance under Kelvin’s transform allows rewriting equations in exterior domains as
equations in bounded neighborhoods of 0, thus reducing the problem of asymptotics at
infinity to the problem of asymptotics at 0. Hence we can deduce Theorem 1.5 from
Theorem 1.3.

Proof of Theorem 1.5. Let u be a weak solution of (2) where � is an exterior domain as
in the statement of the theorem. Let v be the Kelvin transform of u, i.e.

v(x) = |x|2−Nu(x/|x|2), x ∈ �̃ =
{
x ∈ RN : x/|x|2 ∈ �

}
. (93)

If we put y = x/|x|2, then

1u(x) = |y|N+21v(y) for all y ∈ �̃, (94)

and

a(x/|x|)− |A(x/|x|)|2 + i divSN−1 A(x/|x|)
|x|2

u(x)

= |y|N+2 a(y/|y|)− |A(y/|y|)|
2
+ i divSN−1 A(y/|y|)

|y|2
v(y) for all y ∈ �̃. (95)
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Moreover, by the transversality assumption (A.3) we also have

A(x/|x|)
|x|

· ∇u(x) = |y|N+2 A(y/|y|)
|y|

· ∇v(y) for all y ∈ �̃. (96)

Therefore, by (93)–(96) we obtain

LA,av(y) = |y|
−4h(y/|y|2)v(y) in �̃ \ {0}. (97)

From a direct computation we infer that ∇v ∈ L2(�̃,CN ), v/|x| ∈ L2(�̃,C), and hence
v ∈ H 1

∗ (�̃,C). This is sufficient for proving that v is an H 1
∗ -weak solution of equation

(97) in �̃.
On the other hand, by (14),∣∣|y|−4h(y/|y|2)

∣∣ = O(|y|−2+ε) as |y| → 0+,

and hence v satisfies all the assumptions of Theorem 1.3. Then (16) and the asymptotic
estimate for u follow from Theorem 1.3, (93), and the fact that

Nv,|y|−4h(y/|y|2)(r) = Ñu,h(1/r)−N + 2 (98)

with Ñu,h as in (15). To prove the estimate on the gradient one may proceed as follows.
Let γ̃ be as in the statement of the theorem and let γ = limr→0+ Nv,|y|−4h(y/|y|2)(r). From
(98) it follows that γ = γ̃ −N + 2, hence by (93) we have

λ1−γ
∇v(λθ) = (2−N)λ−γ̃ u(θ/λ)θ + λ−γ̃−1

∇u(θ/λ)− 2λ−γ̃−1(∇u(θ/λ) · θ)θ (99)

for any λ such that Bλ ⊂ �̃ and for any θ ∈ SN−1. Applying Theorem 1.3 to the func-
tion v, from the previous identity we infer

(2−N)λ−γ̃ u(θ/λ)− λ−γ̃−1(∇u(θ/λ) · θ)→ γ

j0+m−1∑
i=j0

β̃iψi(θ)

in C0,τ (SN−1,C) for any τ ∈ (0, 1) as λ → 0+. From the first part of the theorem we
also have

λ−γ̃ u(θ/λ)→

j0+m−1∑
i=j0

β̃iψi(θ), (100)

from which we obtain

λ−γ̃−1(∇u(θ/λ) · θ)→−γ̃

j0+m−1∑
i=j0

β̃iψi(θ) (101)

in C0,τ (SN−1,C) for any τ ∈ (0, 1) as λ→ 0+. Letting λ→ 0+ in (99), applying again
Theorem 1.3 to v and using (100)–(101) we deduce that

λ−γ̃−1
∇u(θ/λ)→

j0+m−1∑
i=j0

β̃i(−γ̃ ψi(θ)θ +∇SN−1ψi(θ))

in C0,τ (SN−1,CN ) for any τ ∈ (0, 1) as λ→ 0+. By replacing λ with 1/λ we obtain the
desired estimate. ut



Schrödinger equations with singular electromagnetic potentials 157

7. An example: Aharonov–Bohm magnetic potentials in dimension 2

In this section we discuss an application of Theorem 1.3 to Schrödinger equations with
Aharonov–Bohm vector potentials (1), i.e. we letN=2, A(cos t, sin t)=α(− sin t, cos t),
a(cos t, sin t) = a0 for some a0 ∈ R, and consider the corresponding equation(

−i∇ + α

(
−
x2

|x|2
,
x1

|x|2

))2

u−
a0

|x|2
u = hu,

with x = (x1, x2) in a bounded domain of R2 containing 0, and h satisfying (6). In this
case, an explicit calculation yields

{µk(A, a) : k ∈ N \ {0}} = {(α − j)2 − a0 : j ∈ Z},

hence, in particular,
µ1(A, a) = (dist(α,Z))2 − a0.

If dist(α,Z) 6= 1/2, then all eigenvalues are simple and the eigenspace associated to the
eigenvalue (α−j)2−a0 is generated by ψ(cos t, sin t) = e−ij t . If dist(α,Z) = 1/2, then
all eigenvalues have multiplicity 2. Theorem 1.3 hence yields:

(i) if a0 < (dist(α,Z))2 and dist(α,Z) 6= 1/2, then there exist j0 ∈ Z and β ∈ C such
that

λ−
√
(α−j0)2−a0u(λ cos t, λ sin t)→ βe−ij0t as λ→ 0+,

in C1,τ (0, 2π,C) for all τ ∈ (0, 1);
(ii) if a0 < (dist(α,Z))2 and dist(α,Z) = 1/2, then there exist j0 ∈ Z and β1, β2 ∈ C

such that 2α − j0 ∈ Z and

λ−
√
(α−j0)2−a0u(λ cos t, λ sin t)→ β1e

−ij0t + β2e
−i(2α−j0)t as λ→ 0+,

in C1,τ (0, 2π,C) for all τ ∈ (0, 1).

The constants β, β1, β2 can be computed as in (12). Furthermore, in view of Corollary
1.4, if (dist(α,Z))2 < 1 + a0 then u ∈ C

0,γ
loc (�,C) with γ =

√
(dist(α,Z))2 − a0,

whereas u is locally Lipschitz continuous in � if (dist(α,Z))2 ≥ 1+ a0.

8. Magnetic Hardy–Sobolev type inequalities

This section is devoted to the proof of a weighted electromagnetic Hardy–Sobolev in-
equality in dimension N ≥ 3. We start by observing that, from Lemma 2.2 and the clas-
sical Sobolev inequality, the following electromagnetic Hardy–Sobolev inequality holds.

Proposition 8.1. Let N ≥ 3 and let a,A satisfy (A.2)–(A.4). Then

S(A, a) := inf
u∈D1,2(RN ,C)\{0}

QA,a(u)

(
∫
RN |u(x)|

2∗ dx)2/2
∗ > 0.

Proof. This follows from Lemma 2.2, Lemma 2.3(i), and Sobolev’s inequality. ut
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We assume N ≥ 3 and (A.5) so that the number

σ = σ(a,N) := −
N − 2

2
+

√(
N − 2

2

)2

+ µ1(0, a) (102)

is well defined. Let φ ∈ H 1(SN−1,R) with ‖φ‖L2(SN−1,R) = 1 be the first positive
eigenfunction of the eigenvalue problem

−1SN−1φ(θ)− a(θ)φ(θ) = µ1(0, a)φ(θ) in SN−1.

We recall from [12, Lemma 2.1] that µ1(0, a) is simple and minSN−1 φ > 0. Let

w(x) = |x|σφ(x/|x|) for all x ∈ RN \ {0} (103)

and introduce the weighted spaceD1,2
w (RN ,C) as the closure of C∞c (RN ,C)with respect

to the norm

‖v‖D1,2
w (RN ,C) :=

(∫
RN
w2(x)

∣∣∇v(x)∣∣2 dx)1/2

.

By the Caffarelli–Kohn–Nirenberg inequality (see [5] and [6]), v ∈ D1,2
w (RN ,C) if and

only if wv ∈ D1,2(RN ,C) and there exists Cw > 0 such that

Cw
∫

RN
w2(x)

|v(x)|2

|x|2
dx ≤

∫
RN
w2(x)|∇v(x)|2 dx

for every v ∈ D1,2
w (RN ,C).

Proposition 8.2. Let N ≥ 3, let a,A satisfy (A.2), (A.3), and (A.5), and let w be the
function defined in (103). Then∫

RN
w2(x)

∣∣∣∣∇v(x)+ iA(x/|x|)|x|
v(x)

∣∣∣∣2 dx ≥ S(A, a)(∫RN
w2∗(x)|v(x)|2

∗

dx

)2/2∗

(104)
for all v ∈ D1,2

w (RN ,C).

Proof. First of all, one can check by explicit computation that w solves the equation

−1w(x)−
a(x/|x|)

|x|2
w(x) = 0 in RN \ {0}. (105)

Let v ∈ C∞c (RN \ {0},C) ⊂ D1,2
w (RN ,C) so that the function u(x) := w(x)v(x) is in

C∞c (RN \ {0},C) ⊂ D1,2(RN ,C). By (105) and integration by parts we have∫
RN
∇w(x)∇(w(x)|v(x)|2) dx −

∫
RN

a(x/|x|)

|x|2
w2(x)|v(x)|2 dx = 0. (106)

By a direct computation we infer

∇w∇(w|v|2) = |∇w|2|v|2 + w∇w(v∇v + v∇v) (107)
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and ∣∣∣∣∇u+ iA(x/|x|)|x|
u

∣∣∣∣2 = |∇w|2|v|2 + w∇w(v∇v + v∇v)+ w2
|∇v|2

− 2=
(

A(x/|x|)
|x|

w2v∇v

)
+
|A(x/|x|)|2

|x|2
w2
|v|2. (108)

From (106)–(108), we obtain∫
RN

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx − ∫RN

a(x/|x|)

|x|2
|u(x)|2 dx

=

∫
RN
w2(x)|∇v(x)|2 dx −

∫
RN

2=
(

A(x/|x|)
|x|

w2(x)v(x)∇v(x)

)
dx

+

∫
RN

|A(x/|x|)|2

|x|2
w2(x)|v(x)|2 dx

=

∫
RN
w2(x)

∣∣∣∣∇v(x)+ iA(x/|x|)|x|
v(x)

∣∣∣∣2 dx.
By the above identity and Proposition 8.1, we obtain (104) for any v ∈ C∞c (RN \ {0},C).
By a density argument (see [6, Lemma 2.1]), we deduce that inequality (104) holds for
any v ∈ D1,2

w (RN ,C). ut

9. A Brezis–Kato type lemma for N ≥ 3

This section is devoted to the proof of a Brezis–Kato type result in dimension N ≥ 3.
Let w be the function defined in (103). We define the weighted space H 1

w(�,C) as the
closure of H 1(�,C) ∩ C∞(�,C) with respect to the norm

‖v‖H 1
w(�,C) :=

(∫
�

w2(x)
[
|∇v(x)|2 + |v(x)|2

]
dx

)1/2

, (109)

and the space D1,2
w (�,C) as the closure of C∞c (�,C) with respect to

‖v‖D1,2
w (�,C) :=

(∫
�

w2(x)|∇v(x)|2 dx

)1/2

.

It is easy to verify that v ∈ H 1
w(�,C) if and only if wv ∈ H 1(�,C). For N ≥ 3 and any

q ≥ 1, we also denote as Lq(w2∗ , �,C) the weighted Lq -space endowed with the norm

‖v‖Lq (w2∗ ,�,C) :=
(∫

�

w2∗(x)|v(x)|q dx

)1/q

,

where 2∗ = 2N/(N − 2) is the critical Sobolev exponent. We say that a function
V ∈ L1

loc(� \ {0},C) is form-bounded with respect to the weight w if

sup
u∈H 1

w(�,C)\{0}

∫
�
w2∗(x)|V (x)| |u(x)|2 dx

‖u‖2
H 1
w(�,C)

< +∞.
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Lemma 9.1. Let � ⊂ RN , N ≥ 3, be a bounded open set containing 0, let (A.2), (A.3),
and (A.5) hold, and let v ∈ H 1

w(�,C) ∩ Lq(w2∗ , �,C), q > 2, be a weak solution to

− div(w2(x)∇v(x))−
2i A(x/|x|)
φ(x/|x|)

∇SN−1φ
(
x
|x|

)
− |A

(
x
|x|

)
|
2
+ i divSN−1 A

(
x
|x|

)
|x|2

w2(x)v(x)

− 2iw2(x)
A(x/|x|)
|x|

· ∇v(x) = w2∗(x)V (x)v(x) in �, (110)

where V is form-bounded with respect to the weightw and (<(V ))+ ∈ Ls(w2∗ , �,C) for
some s > N/2. Then, for any �′ b � such that 0 ∈ �′, we have v ∈ L2∗q/2(w2∗ , �′,C)
and

‖v‖L2∗q/2(w2∗ ,�′,C)

≤ S(A, a)−1/q
‖v‖Lq (w2∗ ,�,C)

(
32
C(q)

M2−2∗(C̃(�,�′))σ(2−2∗)

(dist(�′, ∂�))2
+

2`q
C(q)

)1/q

, (111)

where C(q) := min
{ 1

4 ,
4
q+4

}
, M = minSN−1 φ > 0,

C̃(�,�′) =

{
diam� if µ1(0, a) ≤ 0,
dist(0,RN \�′) if µ1(0, a) > 0,

`q =

[
max

{
8

S(A, a)
‖(<(V ))+‖

2s/N
Ls (w2∗ ,�,C),

q + 4
2S(A, a)

‖(<(V ))+‖
2s/N
Ls (w2∗ ,�,C)

}] N
2s−N

.

Proof. Hölder’s inequality and (104) yield, for any u ∈ D1,2
w (�,C),∫

�

w2∗(x)(<(V (x)))+|u(x)|
2 dx

≤ `q

∫
(<(V (x)))+≤`q

w2∗(x)|u(x)|2 dx

+

∫
(<(V (x)))+≥`q

w2∗−2(x)(<(V (x)))+w
2(x)|u(x)|2 dx

≤ `q

∫
�

w2∗(x)|u(x)|2 dx +

(∫
�

w2∗(x)|u(x)|2
∗

dx

)2/2∗

×

(∫
(<(V (x)))+≥`q

w2∗(x)(<(V (x)))
N/2
+ dx

)2/N

≤
1

S(A, a)

(∫
�

w2(x)

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx)
×

(∫
(<(V (x)))+≥`q

w2∗(x)(<(V (x)))
N/2
+ dx

)2/N

+ `q

∫
�

w2∗(x)|u(x)|2 dx.

(112)
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By Hölder’s inequality and by the choice of `q it follows that∫
(<(V (x)))+≥`q

w2∗(x)(<(V (x)))
N/2
+ dx

≤

(∫
�

w2∗(x)(<(V (x)))s+ dx

) N
2s
(∫

(<(V (x)))+≥`q

w2∗(x) dx

) 2s−N
2s

≤

(∫
�

w2∗(x)(<(V (x)))s+ dx

) N
2s
(∫

(<(V (x)))+≥`q

(
(<(V (x)))+

`q

)s
w2∗(x) dx

) 2s−N
2s

≤ ‖(<(V ))+‖
s

Ls (w2∗ ,�,C)`
−s+N/2
q ≤ min

{
S(A, a)

8
,

2S(A, a)
q + 4

}N/2
, (113)

and hence from (112) we find that for any u ∈ D1,2
w (�,C),

∫
�

w2∗(x)(<(V (x)))+|u(x)|
2 dx ≤ `q

∫
�

w2∗(x)|u(x)|2 dx

+min
{

1
8
,

2
q + 4

}(∫
�

w2(x)

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣2 dx). (114)

Let η ∈ C∞c (�,R) be a nonnegative cut-off function such that

supp(η) b �, η ≡ 1 on �′, |∇η(x)| ≤
2

dist(�′, ∂�)
.

Set vn := min(n, |v|) ∈ H 1
w(�,C). Let us test (110) with η2(vn)q−2v̄ ∈ D1,2

w (�,C) and
take the real part. Observing that <(v̄∇v) = |v|∇|v| and using the elementary inequality
2ab ≤ 1

2a
2
+ 2b2 and the diamagnetic inequality (see Lemma A.1), we thus obtain

(q − 2)
∫
�

w2(x)η2(x)(vn(x))q−2χ
{y∈� : |v(y)|<n}(x)|∇|v|(x)|

2 dx

+

∫
�

w2(x)η2(x)(vn(x))q−2
|∇v(x)|2 dx

+

∫
�

|A(x/|x|)|2

|x|2
w2(x)η2(x)(vn(x))q−2

|v(x)|2 dx

+ 2
∫
�

w2(x)η2(x)(vn(x))q−2 A(x/|x|)
|x|

· =(v̄(x)∇v(x)) dx

=

∫
�

w2∗(x)<(V (x))η2(x)|v(x)|2(vn(x))q−2 dx

− 2
∫
�

w2(x)η(x)(vn(x))q−2
|v(x)|∇|v|(x) · ∇η(x) dx
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≤

∫
�

w2∗(x)<(V (x))η2(x)|v(x)|2(vn(x))q−2 dx

+ 2
∫
�

w2(x)|∇η(x)|2(vn(x))q−2
|v(x)|2 dx

+
1
2

∫
�

w2(x)η2(x)(vn(x))q−2
∣∣∣∣∇v(x)+ iA(x/|x|)|x|

v(x)

∣∣∣∣2 dx
and hence

(q − 2)
∫
�

w2(x)η2(x)(vn(x))q−2χ
{y∈� : |v(y)|<n}(x)|∇|v|(x)|

2 dx

+
1
2

∫
�

w2(x)η2(x)(vn(x))q−2
∣∣∣∣∇v(x)+ iA(x/|x|)|x|

v(x)

∣∣∣∣2 dx
≤

∫
�

w2∗(x)<(V (x))η2(x)|v(x)|2(vn(x))q−2 dx

+ 2
∫
�

w2(x)|∇η(x)|2(vn(x))q−2
|v(x)|2 dx. (115)

Furthermore, by the diamagnetic inequality (see Lemma A.1) we have

∣∣∣∣∇((vn)q/2−1vη
)
+ i

A(x/|x|)
|x|

(vn)q/2−1vη

∣∣∣∣2
= |∇((vn)q/2−1vη)|2 + 2

A(x/|x|)
|x|

· η2(vn)q−2
=(v̄∇v)+

|A(x/|x|)|2

|x|2
(vn)q−2η2

|v|2

≤
(q + 4)(q − 2)

4
(vn)q−2η2

|∇vn|2 + 2(vn)q−2η2
∣∣∣∣∇v + iA(x/|x|)|x|

v

∣∣∣∣2
+
q + 2

2
(vn)q−2

|v|2|∇η|2. (116)

Letting C(q) := min
{ 1

4 ,
4
q+4

}
, from (115) and (116) we obtain

C(q)

∫
�

w2(x)

∣∣∣∣∇((vn)q/2−1vη)(x)+ i
A(x/|x|)
|x|

(vn(x))q/2−1v(x)η(x)

∣∣∣∣2 dx
≤

∫
�

w2∗(x)<(V (x))η2(x)|v(x)|2(vn(x))q−2 dx

+ 2
∫
�

w2(x)(vn(x))q−2
|v(x)|2|∇η(x)|2 dx

+ C(q)
q + 2

2

∫
�

w2(x)(vn(x))q−2
|v(x)|2|∇η(x)|2 dx. (117)
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Estimate (114) applied to η(vn)q/2−1v gives∫
�

w2∗(x)(<(V (x)))+|η(x)(v
n(x))q/2−1v(x)|2 dx

≤ `q

∫
�

w2∗(x)|η(x)(vn(x))q/2−1v(x)|2 dx +min
{

1
8
,

2
q + 4

}
×

(∫
�

w2(x)

∣∣∣∣∇(η(vn)q/2−1v)(x)+ i
A(x/|x|)
|x|

η(x)(vn(x))q/2−1v(x)

∣∣∣∣2 dx). (118)

Using (118) to estimate the term with V in (117), (104) yields

(∫
�

w2∗(x)|vn(x)|(q/2−1)2∗
|v(x)|2

∗

η2∗(x) dx

)2/2∗

≤
2`q

C(q)S(A, a)

∫
�

w2∗(x)η2(x)|vn(x)|q−2
|v(x)|2 dx

+
4+ C(q)(q + 2)
C(q)S(A, a)

∫
�

w2(x)|vn(x)|q−2
|v(x)|2|∇η(x)|2 dx

≤
2`q

C(q)S(A, a)

∫
�

w2∗(x)η2(x)|vn(x)|q−2
|v(x)|2 dx

+
8

C(q)S(A, a)

∫
�

w2(x)|vn(x)|q−2
|v(x)|2|∇η(x)|2 dx.

Letting n→∞ in the above inequality, (111) follows. ut

Remark 9.2. It is possible to extend the result of Lemma 9.1 also to the case

(<(V ))+ ∈ L
N/2(w2∗ , �,C)

and obtain estimate (111). Indeed, by the previous summability assumption on (<(V ))+,
it is possible to find `q such that

∫
(<(V (x)))+≥`q

w2∗(x)(<(V (x)))
N/2
+ dx ≤ min

{
S(A, a)

8
,

2S(A, a)
q + 4

}N/2
.

But we have no control on the constant `q in terms of q as in Lemma 9.1 since it is not
possible to apply Hölder’s inequality in (113) when s = N/2. The rest of the proof in the
case s = N/2 coincides with the proof of Lemma 9.1.

The previous lemma allows starting a Brezis–Kato type iteration.

Theorem 9.3. Let � ⊂ RN , N ≥ 3, be a bounded open set containing 0, and let (A.2),
(A.3), and (A.5) hold.
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(i) If V is form-bounded with respect to the weight w and (<(V ))+ ∈ Ls(w2∗ , �,C)
for some s > N/2, then, for any �′ b �, there exists a positive constant

C∞ = C∞
(
N,A, a, ‖(<(V ))+‖Ls (w2∗ ,�,C), dist(�′, ∂�), C̃(�,�′)

)
,

depending only on the indicated quantities, such that for anyH 1(�,C)-weak solution
u to

LA,au(x) = w
2∗−2(x)V (x)u(x) in �, (119)

we have |x|−σu ∈ L∞(�′,C) and∥∥|x|−σu∥∥
L∞(�′,C) ≤ C∞‖u‖L2∗ (�,C).

(ii) If V is form-bounded with respect to the weight w and (<(V ))+ ∈ LN/2(w2∗ , �,C),
then, for any �′ b � and for any s ≥ 1, there exists a positive constant

Cs = Cs
(
N,A, a, ‖(<(V ))+‖LN/2(w2∗ ,�,C), s, dist(�′, ∂�), C̃(�,�′)

)
,

depending only on the indicated quantities, such that for anyH 1(�,C)-weak solution
u to (119) in � we have |x|−σu ∈ Ls(w2∗ , �′,C) and∥∥|x|−σu∥∥

Ls (w2∗ ,�′,C) ≤ Cs‖u‖L2∗ (�,C).

Proof. (i) Let u be an H 1(�,C)-weak solution to (119). It is easy to verify that the
function v := w−1u belongs to H 1

w(�,C) and is a weak solution to (110). Let R > 0 be
such that

�′ b �′ + B(0, 2R) b �.

Using Lemma 9.1 in �1 := �′ + B(0, R(2 − r1)) b �′ + B(0, 2R), r1 = 1, with
q = q1 = 2∗, we infer that v ∈ L(2

∗)2/2(w2∗ , �1,C) and

‖v‖
L(2
∗)2/2(w2∗ ,�1,C)

≤ S(A, a)−1/q1‖v‖L2∗ (w2∗ ,�,C)

(
32

C(q1)

M2−2∗(C̃(�,�′))σ(2−2∗)

(Rr1)2
+

2`q1

C(q1)

)1/q1

.

Using again Lemma 9.1 in �2 := �′ + B(0, R(2 − r1 − r2)) b �1, r2 = 1/4, with
q = q2 = (2∗)2/2, we infer that v ∈ L(2

∗)3/4(w2∗ , �2,C) and

‖v‖
L(2
∗)3/4(w2∗ ,�2,C)

≤ S(A, a)−1/q2

(
32

C(q2)

M2−2∗(C̃(�,�′))σ(2−2∗)

(Rr2)2
+

2`q2

C(q2)

)1/q2

‖v‖Lq2 (w2∗ ,�1,C)

≤ S(A, a)−(1/q1+1/q2)

(
32

C(q1)

M2−2∗(C̃(�,�′))σ(2−2∗)

(Rr1)2
+

2`q1

C(q1)

)1/q1

×

(
32

C(q2)

M2−2∗(C̃(�,�′))σ(2−2∗)

(Rr2)2
+

2`q2

C(q2)

)1/q2

‖v‖L2∗ (w2∗ ,�,C).
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Setting, for any n ∈ N, n ≥ 1,

qn = 2
(

2∗

2

)n
, �n := �′ + B

(
0, R

(
2−

n∑
k=1

rk

))
, and rn =

1
n2 ,

and using iteratively Lemma 9.1, we deduce that, for any n ≥ 1,

‖v‖Lqn+1 (w2∗ ,�′,C) ≤ ‖v‖Lqn+1 (w2∗ ,�n,C) ≤ ‖v‖L2∗ (w2∗ ,�,C)(S(A, a))
−
∑n
k=1 1/qk

×

n∏
k=1

(
32

C(qk)

M2−2∗(C̃(�,�′))σ(2−2∗)

(Rrk)2
+

2`qk
C(qk)

)1/qk
. (120)

We notice that
n∏
k=1

(
32

C(qk)

M2−2∗(C̃(�,�′))σ(2−2∗)

(Rrk)2
+

2`qk
C(qk)

)1/qk
= exp

[ n∑
k=1

bk

]
where

bk =
1
qk

log
(

32
C(qk)

M2−2∗(C̃(�,�′))σ(2−2∗)

(Rrk)2
+

2`qk
C(qk)

)
,

and, for some constantC = C(N,A, a, ‖(<(V ))+‖Ls (w2∗ ,�,C), dist(�′, ∂�), C̃(�,�′)),

bk ∼
1
2

(
2
2∗

)k
log
[
C

(
2
(

2∗

2

)k) 2s
2s−N

]
as k→+∞.

Hence
∑
∞

n=1 bn converges to some positive sum depending only on N , A, a,
‖(<(V ))+‖Ls (w2∗ ,�,C), dist(�′, ∂�), C̃(�,�′), hence

lim
n→+∞

(S(A, a))−
∑n
k=1 1/qk

n∏
k=1

(
32

C(qk)

M2−2∗(C̃(�,�′))σ(2−2∗)

(Rrk)2
+

2`qk
C(qk)

)1/qk

is finite and depends only on the same quantities. Hence, from (120), we deduce that there
exists a positive constant C (depending only on the same quantities) such that

‖v‖Lqn+1 (w2∗ ,�′,C) ≤ C‖v‖L2∗ (w2∗ ,�,C) for all n ∈ N.

Letting n → +∞ we deduce that |v| is essentially bounded in �′ with respect to the
measure w2∗ dx and

‖v‖L∞(w2∗ ,�′,C) ≤ C‖v‖L2∗ (w2∗ ,�,C) = C‖u‖L2∗ (�,C),

where ‖v‖L∞(w2∗ ,�′,C) denotes the essential supremum of v with respect to the measure
w2∗ dx. Since w2∗ dx is absolutely continuous with respect to the Lebesgue measure and
vice versa, we have ‖v‖L∞(w2∗ ,�′,C) = ‖v‖L∞(�′,C), hence v ∈ L∞(�′,C) and

‖v‖L∞(�′,C) ≤ C‖u‖L2∗ (�,C),
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thus completing the proof of part (i). We recall that for any x ∈ � \ {0} we have

|x|−σu(x) = w−1(x)φ(x/|x|)u(x) = φ(x/|x|)v(x) ≤ (max
SN−1

φ)v(x).

(ii) Since u ∈ H 1(�,C) is a weak solution to (119), the function v := w−1u is
an H 1

w(�,C)-weak solution of (110). Using Remark 9.2 and the iterative scheme used
to prove part (i), for any 1 ≤ s < ∞, after a finite number of iterations we arrive at
v ∈ Ls(w2∗ , �′,C) and

‖v‖Ls (w2∗ ,�′,C) ≤ Cs‖v‖L2∗ (w2∗ ,�,C).

This completes the proof. ut

Applying Theorem 9.3 to the nonlinear equation (3), we can obtain a pointwise estimate
for solutions to (3).

Theorem 9.4. Let � ⊂ RN , N ≥ 3, be a bounded open set containing 0, and let (A.2),
(A.3), and (A.5) hold. Let u be an H 1(�,C)-weak solution of (3) with f (x, u) satisfy-
ing (7). Then for any �′ b � there exists a positive constant

C̃∞ = C̃∞
(
N,A, a, Cf , dist(�′, ∂�), C̃(�,�′)

)
,

depending only on the indicated quantities, such that |x|−σu ∈ L∞(�′,C) and∥∥|x|−σu∥∥
L∞(�′,C) ≤ C̃∞‖u‖L2∗ (�,C). (121)

Proof. If we put

V (x) :=

w2−2∗ f (x, u(x))

u(x)
if u(x) 6= 0,

0 if u(x) = 0,

then, by (7) and the Sobolev imbedding H 1(�,C) ⊂ L2∗(�,C), we conclude that
V ∈ LN/2(w2∗ , �,C) and u weakly solves

LA,au(x) = w
2∗−2V (x)u(x) in �.

From Theorem 9.3(ii), it follows that |x|−σu ∈ Ls(w2∗ , �′,C) for any �′ b � and any
s ≥ 1. Fix now s0 = N/2+ ε0 with 0 < ε0 < N(N − 2)/(4|σ |). By (7) we easily deduce
that V ∈ Ls0(w2∗ , �′,C). The assertion now follows from Theorem 9.3(i). ut

The a priori estimate of solutions to the nonlinear problem obtained above allows deduc-
ing Theorem 1.6 from Theorem 1.3.

Proof of Theorem 1.6 for N ≥ 3. Note that all the assumptions of Theorem 9.4 are
satisfied and hence

|u(x)| = O(|x|σ ) as |x| → 0, (122)

where σ > −(N − 2)/2 is defined by (102). Therefore, by (7) and (122),∣∣∣∣f (x, u)u

∣∣∣∣ ≤ const
(

1+ |x|−2+ 4
N−2

√
(N−2

2 )2+µ1(0,a)
)
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for some constant const > 0. Hence, the function

h(x) :=
{
f (x, u(x))/u(x) if u(x) 6= 0,
0 if u(x) = 0,

satisfies h(x) = O(|x|−2+ε) as |x| → 0+ for some ε > 0. On the other hand, by Remark
1.2 we also have u ∈ L∞loc(� \ {0}) and in turn by (7), h ∈ L∞loc(� \ {0}). This shows that
all the assumptions of Theorem 1.3 are satisfied and the assertion of Theorem 1.6 follows
in the case N ≥ 3. The proof for N = 2 is postponed to Section 10. ut

Proof of Theorem 1.7 for N ≥ 3. This follows from Theorems 1.5 and 1.6 by the use of
the Kelvin transform. ut

Since the proof of the pointwise a priori estimate (121) (and then of Theorems 1.6 and
1.7) in dimension N = 2 starts from a different inequality than (104) and requires a
somewhat different notation, we devote the next section to a sketched description of the
modifications to be made in the above argument to treat the case N = 2.

10. A Brezis–Kato type lemma in dimension N = 2

Similarly to Section 9, for N = 2 we define the spaces D1,2
∗ (�,C) and D1,2

∗,w(�,C) as
the completion of C∞c (� \ {0},C) respectively with the norms

‖u‖D1,2
∗ (�,C) :=

(∫
�

(
|∇u(x)|2 +

|u(x)|2

|x|2

)
dx

)1/2

and

‖v‖D1,2
∗,w(�,C) :=

(∫
�

w2
(
|∇u(x)|2 +

|u(x)|2

|x|2

)
dx

)1/2

where � ⊂ R2 is a bounded domain containing the origin and w is defined by (103).
We observe that the space D1,2

∗ (�,C) is smaller than H 1
0 (�,C). Moreover, it is easy to

verify that v ∈ D1,2
∗,w(�,C) if and only if wv ∈ D1,2

∗ (�,C). Similarly, we define the
space H 1

∗,w(�,C) as the completion of

{v ∈ H 1(�,C) ∩ C∞(�,C) : v vanishes in a neighborhood of 0}

with respect to the norm

‖v‖H 1
∗,w(�,C) :=

(∫
�

w2
[
|∇v(x)|2 +

|v(x)|2

|x|2
+ |v(x)|2

]
dx

)1/2

.

The following weighted Poincaré–Sobolev inequality holds.
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Proposition 10.1. Let N = 2 and let a,A satisfy (A.2), (A.3), and (A.5). Then, for any
1 ≤ p <∞,

S(A, a, p,�) = inf
u∈D1,2

∗ (�,C)\{0}

∫
�

[∣∣(∇ + i A(x/|x|)
|x|

)
u(x)

∣∣2 − a(x/|x|)

|x|2
|u(x)|2

]
dx(∫

�
|u(x)|p dx

)2/p > 0.

(123)
Moreover∫

�

w2
∣∣∣∣∇v(x)+ iA(x/|x|)|x|

v(x)

∣∣∣∣2 dx ≥ S(A, a, p,�)(∫
�

wp|v(x)|p dx

)2/p

(124)

for all v ∈ D1,2
∗,σ (�,C).

Proof. Inequality (123) follows from Lemma 2.2 and the classical Poincaré–Sobolev in-
equality. To obtain the second part of the statement, by density it is sufficient to prove
inequality (124) for functions v ∈ C∞c (� \ {0},C), which one can easily do by following
the same procedure developed in the proof of Proposition 8.2. ut

Remark 10.2. We notice that the constant in (124) depends on the domain �, unlike the
constant appearing in (104) in the case N = 3 and p = 2∗. Moreover S(A, a, p,�) is
decreasing with respect to �, i.e. if �1 ⊂ �2 then S(A, a, p,�1) ≥ S(A, a, p,�2).

We are now ready to prove the following 2-dimensional version of Lemma 9.1.

Lemma 10.3. Let � ⊂ R2 be a bounded open set containing 0, let (A.2), (A.3), and
(A.5) hold, and, for some p, q > 2, let v ∈ H 1

∗,w(�,C) ∩ Lq(wp, �,C) be a weak
solution to

− div(w2(x)∇v(x))

−

2i A(x/|x|)
φ(x/|x|)

∇SN−1φ(x/|x|)− |A(x/|x|)|2 + i divSN−1 A(x/|x|)

|x|2
w2(x)v(x)

− 2iw2(x)
A(x/|x|)
|x|

· ∇v(x) = wp(x)V (x)v(x) in �,

where V is form-bounded with respect to the weight w and (<(V ))+ ∈ Ls(wp, �,C)
for some s > p/(p − 2). Then, for any �′ b � such that 0 ∈ �′, it follows that
v ∈ Lpq/2(wp, �′,C) and

‖v‖Lpq/2(wp,�′,C)

≤ S(A, a, p,�)−1/q
‖v‖Lq (wp,�,C)

(
32
C(q)

M2−p(C̃(�,�′))σ(2−p)

(dist(�′, ∂�))2
+

2`q
C(q)

)1/q

,

where C(q) := min
{ 1

4 ,
4
q+4

}
, C̃(�,�′) = dist(0,RN \�′), M = minSN−1 φ > 0, and

`q =

[
max

{8‖(<(V ))+‖
s(p−2)/p
Ls (wp,�,C)

S(A, a, p,�)
,

q + 4
2S(A, a, p,�)

‖(<(V ))+‖
s(p−2)/p
Ls (wp,�,C)

}] p
s(p−2)−p

.

Proof. Proceed as in the proof of Lemma 9.1, using (124) in place of (104). ut



Schrödinger equations with singular electromagnetic potentials 169

The counterpart in dimension N = 2 of Theorem 9.3 is the following Brezis–Kato type
result.

Theorem 10.4. Let � ⊂ R2 be a bounded open set containing 0, let (A.2), (A.3), and
(A.5) hold, and let p > 2.

(i) If V is form-bounded with respect to the weight w and (<(V ))+ ∈ Ls(wp, �,C) for
some s > p/(p − 2), then for any �′ b � there exists a positive constant

C∞,2 = C∞,2
(
�,p,A, a, ‖(<(V ))+‖Ls (wp,�,C), dist(�′, ∂�), C̃(�,�′)

)
,

depending only on the indicated quantities, such that for anyH 1
∗ (�,C)-weak solution

u to

LA,au(x) = w
p−2V (x)u(x) in �, (125)

we have |x|−σu ∈ L∞(�′,C) and∥∥|x|−σu∥∥
L∞(�′,C) ≤ C∞,2‖u‖Lp(�,C).

(ii) IfV is form-bounded with respect to the weightw and (<(V ))+∈Lp/(p−2)(wp, �,C),
then for any �′ b � and for any 1 ≤ s <∞ there exists a positive constant

Cs,2 = Cs,2(�, p,A, a, ‖(<(V ))+‖Ls (wp,�,C), dist(�′, ∂�), C̃(�,�′)),

depending only on the indicated quantities, such that for anyH 1
∗ (�,C)-weak solution

u to (125) in � we have |x|−σu ∈ Ls(wp, �′,C) and∥∥|x|−σu∥∥
Ls (wp,�′,C) ≤ Cs,2‖u‖Lp(�,C).

Proof. This theorem can be proved by iterating the estimate proved in Lemma 10.3 and
following the same scheme as in the proof of Theorem 9.3. We notice that the constants
S(A, a, p,�i) appearing at each step (at a negative power) can be uniformly controlled
with S(A, a, p,�) in view of Remark 10.2. ut

From the above analysis, Theorems 1.6 and 1.7 in dimension N = 2 follow.

Proof of Theorem 1.6 for N = 2. Arguing as in the proof of Theorem 9.4, from Theorem
10.4 we deduce that |u(x)| = O(|x|σ ) as |x| → 0. In particular, from (7), the function
f (x,u(x))
u(x)

χ
{x : u(x) 6=0} is bounded. The conclusion then follows from Theorem 1.3. ut

Proof of Theorem 1.7 for N = 2. As in dimension N ≥ 3, the conclusion follows from
Theorems 1.5 and 1.6 by the use of the Kelvin transform. ut
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Appendix

We recall the following well known result proved in [22].

Lemma A.1 (Diamagnetic inequality). Let N ≥ 2. If u ∈ D1,2
∗ (RN ,C) then

|∇|u|(x)| ≤

∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣ for a.e. x ∈ RN .

Proof. We only give the idea of the proof. We have

|∇|u|(x)| =

∣∣∣∣<( u(x)

|u(x)|
∇u(x)

)∣∣∣∣
≤

∣∣∣∣<((∇u(x)+ iA(x/|x|)|x|
u(x)

)
u(x)

|u(x)|

)∣∣∣∣ ≤ ∣∣∣∣∇u(x)+ iA(x/|x|)|x|
u(x)

∣∣∣∣ (126)

for a.e. x ∈ RN . ut

An analogous result can be easily shown also for H 1
∗ (�,C)-functions. The following

lemma allows comparing assumptions (A.4) and (A.5).

Lemma A.2. Let N ≥ 2 and assume (A.2) and (A.3) hold. Then µ1(A, a) ≥ µ1(0, a)
with equality holding if and only if curl(A/|x|) = 0 in the distributional sense.

Proof. The fact that µ1(A, a) ≥ µ1(0, a) follows by (21) and the diamagnetic inequality
on the sphere,∣∣∇SN−1 |ψ |(θ)

∣∣ ≤ |∇SN−1ψ(θ)+ iA(θ)ψ(θ)| for a.e. θ ∈ SN−1, (127)

which holds for any function ψ ∈ H 1(SN−1). Indeed, if ψ1 ∈ H
1(SN−1) is a nontrivial

eigenfunction of µ1(A, a) then

µ1(A, a) =
∫
SN−1 |∇SN−1ψ1(θ)+ iA(θ)ψ1(θ)|

2 dS −
∫
SN−1 a(θ)|ψ1(θ)|

2 dS∫
SN−1 |ψ1(θ)|2 dS

≥

∫
SN−1

∣∣∇SN−1 |ψ1|(θ)
∣∣2 dS − ∫SN−1 a(θ)|ψ1(θ)|

2 dS∫
SN−1 |ψ1(θ)|2 dS

≥ µ1(0, a). (128)

We start by assuming that µ1(A, a) = µ1(0, a). Let ψ1 be as in (128) so that by (127) we
infer

|∇SN−1ψ1(θ)+ iA(θ)ψ1(θ)| =
∣∣∇SN−1 |ψ1|(θ)

∣∣ for a.e. θ ∈ SN−1. (129)

Similarly to (126) we have

∣∣∇SN−1 |ψ1|(θ)
∣∣ ≤ ∣∣∣∣<( ψ1(θ)

|ψ1(θ)|
(∇SN−1ψ1(θ)+ iA(θ)ψ1(θ))

)∣∣∣∣
≤ |∇SN−1ψ1(θ)+ iA(θ)ψ1(θ)|, (130)
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which together with (129) gives

=
(
ψ1(θ)(∇SN−1ψ1(θ)+ iA(θ)ψ1(θ))

)
= 0 for a.e. θ ∈ SN−1

and in turn

A(θ) = −=
(
∇SN−1ψ1(θ)

ψ1(θ)

)
for a.e. θ ∈ SN−1.

This implies

A(x/|x|)
|x|

= −=

(
∇(ψ1(x/|x|))

ψ1(x/|x|)

)
for a.e. x ∈ RN .

By direct computation this gives curl(A/|x|) = 0 in the distributional sense.
Suppose now that curl(A/|x|) = 0 in the distributional sense and let us prove that

µ1(A, a) = µ1(0, a). By [20] there exists φ ∈ L1
loc(R

N ) such that ∇φ = A/|x| in the
distributional sense. From (A.3) it follows that φ(x) = φ(x/|x|) and ∇SN−1φ = A. Let
9 be a nontrivial eigenfunction of µ1(0, a) and define the angular function ψ(θ) by

ψ(θ) = e−iφ(θ)9(θ).

Then

µ1(A, a) ≤
∫
SN−1 |∇SN−1ψ(θ)+ iA(θ)ψ(θ)|2 dS −

∫
SN−1 a(θ)|ψ(θ)|

2 dS∫
SN−1 |ψ(θ)|2 dS

=

∫
SN−1 |∇SN−19(θ)|2 dS −

∫
SN−1 a(θ)|9(θ)|

2 dS∫
SN−1 |9(θ)|2 dS

= µ1(0, a).

Since the reverse inequality is always satisfied, the proof is complete. ut

The following Hardy type inequality with boundary terms is due to Wang and Zhu [27].

Lemma A.3 (Wang and Zhu). For every r > 0 and u ∈ H 1(Br ,C),∫
Br

|∇u(x)|2 dx +
N − 2

2r

∫
∂Br

|u(x)|2 dS ≥

(
N − 2

2

)2 ∫
Br

|u(x)|2

|x|2
dx. (131)

Proof. See [27, Theorem 1.1]. ut

The following lemma establishes the relation between the classical H 1-space on the
sphere and its magnetic counterpart.

Lemma A.4. If N ≥ 2 and A ∈ L∞(SN−1,RN ), then the space H 1
A(S

N−1) defined in
(19)–(20) coincides with the Sobolev space

H 1(SN−1,C) := {ψ ∈ L2(SN−1,C) : ∇SN−1ψ ∈ L
2(SN−1,CN )}.

Moreover the norms ‖ · ‖H 1
A(SN−1) and

‖ · ‖H 1(SN−1,C) := (‖∇SN−1 · ‖
2
L2(SN−1,CN ) + ‖ · ‖

2
L2(SN−1,C))

1/2

are equivalent.

Proof. This follows easily from the boundedness of the function θ 7→ |A(θ)|. ut
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We finally describe the spectrum of the angular operator LA,a .

Lemma A.5. Let a ∈ L∞(SN−1,R) and A ∈ C1(SN−1,RN ). Then the spectrum of
the operator LA,a on SN−1 consists of a diverging sequence of real eigenvalues with
finite multiplicity µ1(A, a) ≤ µ2(A, a) ≤ · · · , the first of which admits the variational
characterization (21).

Proof. For λ = 1 + ‖a‖L∞(SN−1,R), the operator T : L2(SN−1,C) → L2(SN−1,C)
defined as

Tf = u if and only if (−i∇SN−1 + A)2u− au+ λu = f

is well defined, symmetric, and compact. The lemma then follows from classical spectral
theory. ut
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Note added in proof. After the present paper was accepted for publication, Prof. F. Pacard
brought to our attention that related asymptotic expansions were obtained in previous works such
as [R. Mazzeo, Elliptic theory of differential edge operators. I, Comm. Partial Differential Equa-
tions 16, 1615–1664 (1991)] and [R. Mazzeo, Regularity for the singular Yamabe problem, Indiana
Univ. Math. J. 40, 1277–1299 (1991)] for elliptic equations on manifolds with conical singularities
by Mellin transform methods. The common aspects and differences between our results and the
results of the aforementioned papers are discussed in the addendum [V. Felli, A. Ferrero, S. Ter-
racini, Addendum to “Asymptotic behavior of solutions to Schrödinger equations near an isolated
singularity of the electromagnetic potential”, http://arxiv.org/abs/1007.4434], where some variants
and improvements are obtained under weaker assumptions on the perturbing potential h. In the
addendum, it is also pointed out that a great advantage of the monotonicity approach lies in its
applicability to semilinear problems, for which it allows one to directly prove (without passing
through Brezis–Kato iteration) sharper a priori pointwise bounds and asymptotics.
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[4] Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials.
J. Math. Pures Appl. (9) 58, 137–151 (1979) Zbl 0408.35025 MR 0539217

[5] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights.
Compos. Math. 53, 259–275 (1984) Zbl 0563.46024 MR 0768824

http://arxiv.org/abs/1007.4434
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0529.49021&format=complete
http://www.ams.org/mathscinet-getitem?mr=0684900
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1051.35082&format=complete
http://www.ams.org/mathscinet-getitem?mr=2022133
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1048.35141&format=complete
http://www.ams.org/mathscinet-getitem?mr=1981894
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0408.35025&format=complete
http://www.ams.org/mathscinet-getitem?mr=0539217
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0563.46024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0768824


Schrödinger equations with singular electromagnetic potentials 173

[6] Catrina, F., Wang, Z.-Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants,
existence (and nonexistence), and symmetry of extremal functions. Comm. Pure Appl. Math.
54, 229–258 (2001) Zbl 1072.35506 MR 1794994

[7] Chabrowski, J., Szulkin, A.: On the Schrödinger equation involving a critical Sobolev expo-
nent and magnetic field. Topol. Methods Nonlinear Anal. 25, 3–21 (2005) Zbl 1176.35022
MR 2133390

[8] Cingolani, S.: Semiclassical stationary states of nonlinear Schrödinger equations with an
external magnetic field. J. Differential Equations 188, 52–79 (2003) Zbl 1062.81056
MR 1954508

[9] Cingolani, S., Secchi, S.: Semiclassical limit for nonlinear Schrödinger equations with elec-
tromagnetic fields. J. Math. Anal. Appl. 275, 108–130 (2002) Zbl 1014.35087 MR 1941775

[10] Esteban, M. J., Lions, P.-L.: Stationary solutions of nonlinear Schrödinger equations with
an external magnetic field. In: Partial Differential Equations and the Calculus of Variations,
Vol. I, Progr. Nonlinear Differential Equations Appl. 1, Birkhäuser Boston, Boston, MA,
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