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Abstract. We describe a new link between Perelman’s monotonicity formula for the reduced vol-
ume and ideas from optimal transport theory.

1. Introduction

In this note, we describe an interpolation inequality in the setting of Ricci flow and £-
distance. This inequality is motivated by the following classical inequality due to Prékopa
and Leindler:

Theorem 1 (Prékopa [9]; Leindler [Sl]). Fix a real number 0 < A < 1. Moreover, let
uy, uz, v: R" — R be nonnegative measurable functions satisfying

v((1 = )x +Ay) = u1(0) P ua(y)*

for all points x, y € R". Then

for= (L) (o)

Cordero-Erausquin, McCann, and Schmuckenschldger [2]], [3] have generalized this in-
equality to Riemannian manifolds. The proof employs techniques from optimal transport
theory.

Our goal in this paper is to replace the Riemannian distance by Perelman’s £-distance
(cf. [8l). The theory of L-optimal transport was developed in recent work of Topping
[L1] (see also [6]], [[7]). Among other things, Topping proved an important monotonicity
formula for the £-Wasserstein distance on the space of probability measures. Lott [6]
established a convexity property for the entropy along £-Wasserstein geodesics.

To fix notation, let M be a compact manifold of dimension n, and let g(¢), t € [0, T'],
be a one-parameter family of metrics on M. We assume that the metrics g(¢) evolve by
backward Ricci flow, i.e.

0 .
Eg(t) = ZRICg(,) .

S. Brendle: Department of Mathematics, Stanford University, Stanford, CA 94305, USA;
e-mail: brendle @math.stanford.edu



250 Simon Brendle

This evolution equation was introduced in a seminal paper by R. Hamilton [4]. For an
introduction to Ricci flow, see e.g. [1] or [10]. Following Perelman [8]], we define the
L-length of apath y : [t], 2] > M by

o
L) = / ViR (r 0) + Iy 02 dt,
71

where Rg(;) denotes the scalar curvature of the metric g(¢). Moreover, the £L-distance is
defined by

O, 115y, ) =inf{L(y) 1y 1 [t1, 2] > M, y(r1) =x, y(r2) = y}.

A path y : [t], o] — M is called an L-geodesic if the first variation of L is zero. For
each tangent vector Z € Ty M, we define

Loy, expy(2) = v (),

where y : [1, T2] — M is the unique £-geodesic satisfying y (t1) =x and \/71y'(11) =Z.
The map L, 1, exp, : TxM — M is called the L-exponential map.
The following is the main result of this note:

Theorem 2. Fix real numbers 11, 12, T such that0 < 11 < 1 < 10 < T. For abbrevia-
tion, we write

1 1-2 n A
NNV RN
where 0 < A < 1. Letuy, up, v: M — R be nonnegative measurable functions such that
() A -
= v(y (7)) = eXP<——Q(V(f1) 15 ¥ (), f))m(y(fl)) -
0 NG

eXP(TQ(J/(T) 7; v (12), fz))uz()/(fz))

for every minimizing L-geodesic y : [t1, 172] — M. Then

1-x A
/ v dVOlg(f) > </ ui dVOlg(f|)> </ uy dVOlg(f2)> .
M M M

By sending 71 — 0, we recover the monotonicity of Perelman’s reduced volume. This is
discussed in Section[3]
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2. Proof of Theorem 2]

In order to prove Theorem [2] we make extensive use of Topping’s notion of £-optimal
transportation (cf. [11]; see also [6]). Without loss of generality, we may assume that

/ u1(x) dvolg(z)) =/ uz(x) dvolg(r,) = 1.
M M

We define Borel probability measures v; and v, by
dvy = uypdvolgry and dvy = up dvolg(y,).

Topping introduced a notion of reflexive function (see [11, Definition 2.1] for a precise
definition). This notion is analogous to the concept of c-concavity in the classical theory
of optimal transportation. Topping then proved the following existence theorem (cf. [L1}
Section 2]; see also [12, Theorem 10.28]):

Proposition 3 (P. Topping [[11]). We can find a reflexive function ¢ : M — R, a Borel
set K C M, and a Borel map F : M — M with the following properties:

1) vy = Fyvy.
(i1) The set M \ K has measure zero.
(iii) The function ¢ is differentiable at each point x € K.
(v) If x € K and y = F(x), then the function Q(-, T1;y, T2) — @ attains its global
minimum at the point x. In particular, the function Q (-, t1; y, T2) — ¢ is differentiable
at x, and its gradient is equal to zero.

For each t € [t1, 2], we define a Borel map F; : M — M by

1
Fi(x) = L, 1 eXp, <—§V¢(X)>

for x € K. The following result is a consequence of property (iv) in Proposition [3] (cf.
[11, Lemma 2.41]).

Proposition 4. We have F;,(x) = x and Fr,(x) = F(x) for all x € K. Moreover, for
each point x € K, the path t + F;(x) has minimal L-length among all paths joining
(x, 71) and (F(x), 2).

Since ¢ is reflexive, the function ¢ is~semic0ncave (cf. [11, Lemma 2.10]). By Theorem
14.1 in [12]], we can find a Borel set K C K with the following properties:

e The set M \ K has measure zero.
e For each point x € K, the function ¢ admits a Taylor expansion of order two around x.
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For each point x € K, we denote by Ve(x) and (Hess ¢), the gradient and Hessian of
the function ¢ with respect to the metric g(ty). Theorem 14.1 in [12]] guarantees that
(Hess @), is symmetric.

We next describe the volume distortion coefficients associated with the map F;. To
that end, we fix a point x € K and a time t € (71, T2]. The linearization of the L-
exponential map L., ; exp, gives a linear transformation

D(Lyy1eXp)_1yye + (TeM, 8(1) = (TRM, g(1)).

Moreover, the Hessian of the function Q (-, t1; F;(x), t) — ¢ at the point x defines a sym-
metric linear transformation from the tangent space (7, M, g(t1)) into itself.

Let us denote by Wy, : (TxM, g(t1)) — (Tr,xyM, g(¢)) the composition of these
two linear transformations; that is,

1
Wit = 5 DLyt €XP,) 1y © (Hess(Q( 715 Fr(x). 1) — )i

(cf. [11, Lemma 2.13]). We note that W, ; can be characterized in terms of £-Jacobi fields;
see [L1, Lemma 2.18] for details. Finally, we define the volume distortion coefficients by

J(x,t) = det Wy ;
for each point x € K and eacht € (11, ,2].

Proposition 5. For each point x € K , we have

T2 exp(—uQ(x, 715 Fr(x), f))J(x, T)

2/
—n(1=1)/2_—nr/2 A
> g TR eXP<—2—ﬁQ(FT(x), T F(x), m)J(x, ),
Proof. Fix a point x € K ,and let {eq, ..., e,} be a basis of T, M which is orthonormal

with respect to the metric g(r1). We next consider the path
y:lt,nl—> M, t+— F(x).

By Lemma 4] the path y has minimal £-length among all paths joining (x, 71) to
(F(x), ©2).
Let{E (), ..., E,(¢)} be vector fields along y such that E;(t1) = ¢; and

(D:Ei(1), Ej(t))g(r) + Ricg)(Ei (1), E;j(t)) =0

for all t € [y, 12]. For each t € [1{, 12], the vectors {E(t), ..., E,(t)} are orthonormal
with respect to the metric g(¢).
Let {Y1(?), ..., Y, (t)} be L-Jacobi fields along y satisfying the initial conditions
1

Yi(r1) =¢; and (e;, D;Y;j(t1))g(r)) = _ﬁ(HeSS‘P)x(Eh ej).
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For each t € [t1, 12], we define an n x n matrix A(¢) by
aij(t) = (Ei@®),Y;®))g-

It follows from the initial conditions for Y; that a;;(71) = §;; and

. 1
al{j (t1) = Ricg(r))(ei, ej) — —=(Hess @) (e;, ¢j).

NG

In particular, the matrix A’(t;)A(t;)~! is symmetric. Moreover, it was shown by Topping
[L1]] that

1
A" () + ZA’(z) = M(@)A(t)
for all t € [11, 12]. Here, M (¢) is a symmetric n X n matrix, whose trace is given by
0
2e(M (1)) = gRg(t)(y(t)) + 2(VRyty (¥ (1)), ¥' (D)) g (1)
. 1
— 2Ricy (1) (¥ (1), ¥/ (1)) + ;Rga)()/(l)). 9]

Arguing as in the proof of Lemma 3.1 in [11]], we obtain

d d
-3/2 3/2
t — 7" —logdet A(¢

dt|: dt s e ()]

d? 3d
= — logdet A(¢ — — logdet A(¢
2 logde ()+2;d;°ge @)

= (A" OAD) ™Y —tr(AOAD) A OAD) Y + %tr(A/(t)A(t)_l)

=tr(M(1)) — (A (OHA@D) A OAD™ + ;tr(A/(t)A(t)_l)

_ _ : 1N,
— w(M(1)) tr|:<A VA0 -5 1) }Jr o

Note that the matrix A’(71)A(z;)~! is symmetric. Moreover, the matrix M (¢) is sym-

metric for each ¢ € [1], 72]. Consequently, the matrix A’ (OA@) s symmetric for all
t € [11, 12]. Hence, we obtain

d d n
—-3/2 3/2
t —|t7/*—logdet A(t) | < tr(M(t — 2
dt[ - logde ()]_r( )+ 73 )

forall ¢+ € [t1, 12]. On the other hand, we have

d
0 T F(0).1) = VIRe(o (r (1) + 1 (Ol
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by definition of the £-distance. This implies

and [,3/2%01/@@, T1; Fi(x), t))}

dt
=t e e Eon —[t<Rg<r><y(r)>+|y O]
0 1
= 5, R (7 (0) + 2V Ry (¥ (1), ' (D)) gty = 2Ricg(ny (v (1), 7' (D) + ~ Ryt (y (1))

(cf. 8, equation (7.3)]). Using , we obtain
3pd3pd ap
1 (O (x, T Fr(x), 1) | = 2r(M(1)). 3)
dt dt
Putting these facts together, we conclude that

d d 1
-3/2 324 172 . —
t T |:t T ( logt + = 2 Ox, 715 Fr(x), 1) logdetA(t)>] >0

Hence, if we write

n 1 —-1/2 —-1/2
510gt+§t Qx, 11; Fr(x),t) —logdet A(t) = h(t ),
then the function % is convex. Using the relation t~1/2 = (1 )L)t1 24 _1/2 , we
obtain
h(x="2) < (1 = 0h(z; %) + 2y P,
hence
/2 exp( 2\/_Q(x 715 Fr (%), 7,')> det A(t)
> g TR €Xp<—7Q(x w: F ), rz>)(detA<r2)>A
Moreover, we have
O(x, 715 F(x), 1) = Q(x, 715 Fr (x), 7) + Q(Fr (x), T; F(x), 72)
since y is a minimizing £-geodesic. Hence, we obtain
T2 exp(——Q(x 715 Fr (%), r)) det A(7)
2/ ’
= g TR eXp<_7 O(F; (x). 7: F(), rz>)(detA<r2)>A

On the other hand, it follows from Lemma 2.18 in [11] that Wy ,(e;) = Y;(¢) for all
t € (11, ©2]. From this, we deduce that (E;(¢), Wy ;(¢j))¢¢) = aij(t), hence J(x,1) =
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det A(¢) for all ¢t € (11, 12]. Putting these facts together, the assertion follows. This com-
pletes the proof of Proposition 3]

We next consider the interpolant measure v = (F;)#v;. It follows from work of Top-
ping that v is absolutely continuous with respect to the volume measure (cf. [11, Lemma
2.17]). Hence, we may write dv = u dvolg(;) for some Borel measurable function u.
Using Proposition 5] we obtain a lower bound for the density u.

Proposition 6. There exists a Borel set K C K such that M \ K has measure zero and

n/2
(ﬁ) u(Fe(x)) < eXP(—;TQ(x 713 Fe(x), r))m(x)l -

exp<7Q(F ), 75 F(x), n))uz(m))A

forall x € K.
Proof. Tt follows from Theorem 2.14 in [11] that
ui(x) = us(F(x)J(x,12) >0

for almost all x € K. Applying the analogous reasoning to the interpolant measure v
yields
ur(x) =u(Fr(x)IJ(x,7) >0

for almost all x € K. Using Proposition |5, we obtain

u(Fr(x))

o y ui(x) A
> o122 o p<_7Q(F (x), T3 F(x), fz))(m)

for almost all x € K. Rearranging terms, the assertion follows.

_ 1—A up(x)
n/2 _ . 7
T exp( —ZﬁQ(x,Tl, Fr(x),1)>

Corollary 7. We have
/ vdvolg) > 1.
M

Proof. Fix apointx € K. By Lemma the path ¢ — F;(x) is a minimizing £-geodesic.
Therefore, we have

n/2
<f—1‘ i@) V(Fr(x)) = exp<—7Q(x w: Fr(x), r))ul(xf -

eXP(TQ(F (x), T3 F(x), fz))uz(F(X))
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Using Proposition[6] we conclude that
v(Fr(x)) = u(Fr(x))
for all x € K. This implies

/ vdvolg(q) zf _vdvolgp z/ R udvolg(,)zv(Ft(Ie)).
M Fr(K) Fr(K)

Moreover, we have
V(Fr(K)) = vi[F7 Y (F(K)] = vi(K) =1

by definition of v. Putting these facts together, the assertion follows.

3. Relation to Perelman’s reduced volume

In this final section, we discuss how Theorem [2]is related to the monotonicity of Perel-
man’s reduced volume. The strategy is to fix T and 1, and pass to the limit as 71 — 0.
Let us fix a point p € M and real numbers 0 < 7 < 12 < T. We define a function v

by
v:r_"/Zexp< \/_Q(p, : ,r)).

For 71 > 0 sufficiently small, we denote by B(p, ,/71) the geodesic ball of radius /71
in the metric g(0). We can find a positive constant N such that Q(p, 0; x, 71) < N /71
and Q(x, 71; p, 271) < N, /71 for all points x € B(p, /71). Note that the constant N is
independent of 17.

As above, we write
1 1— A

N J_ NG

where 0 < A < 1. We now specify the functions u and u,. We define

. N
“en /zeXp( 2(1£)(I+\/_>>13(”ﬂ’

uy = rz_"/ exp(—TQ(p, 27y5 -, Tz))

In the next step, we verify that uy, u2, v satisfy the assumptions of Theorem 2}

Proposition 8. We have

- n/2 -
(W) v(y (1)) = eXP<—7Q(V(I1) 715 7 (1), f))m()/(fl))

eXP(TQ(J/(T) 7; ¥ (12), Tz)>M2(V(Tz))

for every minimizing L-geodesic y : [t1, 12] — M.
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Proof. 1f y(0) ¢ B(p, /T1), then u;(y(0)) = 0 and the assertion is trivial. Hence, it
suffices to consider the case y (0) € B(p, «/71). In this case, we have
Q(p,0;y(7), 7) < Q(y(71), 715 (), T) + Q(p, 0; ¥ (T1), 71)
< QW (m), ;¥ (), ) + Ny

and
0(p,2t1; ¥ (1), 1) = Q(y (1), 115 ¥ (12), 12) — Q¥ (x1), T1; p, 271)
> Q(y(n1), 115 ¥ (12), T2) — N/71.
This implies
N
v(y (1), 1) > r"/zexp(— 2:/;>ex ( J_Q(y(rl) 115 ¥ (1), r))
and

n N
u(y(m)) <, ﬂem(%) eXP(—TQ(V(Tl) 715 ¥ (72), Tz)>

Moreover, we have

Q(y(t), 11 y(12), @) = Q(y(r1), t1: ¥ (1), 1) + Q¥ (1), T: ¥ (12), T2)

since y has minimal £-length. Putting these facts together, we obtain

o= () on( 47 o)

~exp(—7Q(V(T1) 713 Y (7), T))

CXP(TQ(V(T) 7; v (12), T2)>M2(V(T2))

From this, the assertion follows.

Let V (7) denote the reduced volume at time 7. Using Theorem [2, we obtain

1-A A
V() :/ vdvolg) > ([ ui dvolg(m) (/ u dvolg(r2)> .
M M M

We now fix t and 12, and pass to the limit as 71 — 0. Clearly,
1

t-r=va( 7 NG

>+ O(1y).

This implies

0l ) 5w (G )
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as 11 — 0. Hence, the integral [, u dvoly(;,) converges to a positive real number as
71 — 0. Since 1 — A — 0, we conclude that

1-2
</ u dvolg(r])> —1 ast — 0.
M

Moreover, we have

A
(/ us dvolg(rz)> — ‘7(1'2) as Tt — 0.
M

Putting these facts together, we obtain

V(z) :/ vdvolg) > V().
M

Thus, Theorem 2] implies the monotonicity of the reduced volume.
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