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Abstract. We describe a new link between Perelman’s monotonicity formula for the reduced vol-
ume and ideas from optimal transport theory.

1. Introduction

In this note, we describe an interpolation inequality in the setting of Ricci flow and L-
distance. This inequality is motivated by the following classical inequality due to Prékopa
and Leindler:

Theorem 1 (Prékopa [9]; Leindler [5]). Fix a real number 0 < λ < 1. Moreover, let
u1, u2, v : Rn→ R be nonnegative measurable functions satisfying

v((1− λ)x + λy) ≥ u1(x)
1−λu2(y)

λ

for all points x, y ∈ Rn. Then∫
Rn
v ≥

(∫
Rn
u1

)1−λ(∫
Rn
u2

)λ
.

Cordero-Erausquin, McCann, and Schmuckenschläger [2], [3] have generalized this in-
equality to Riemannian manifolds. The proof employs techniques from optimal transport
theory.

Our goal in this paper is to replace the Riemannian distance by Perelman’s L-distance
(cf. [8]). The theory of L-optimal transport was developed in recent work of Topping
[11] (see also [6], [7]). Among other things, Topping proved an important monotonicity
formula for the L-Wasserstein distance on the space of probability measures. Lott [6]
established a convexity property for the entropy along L-Wasserstein geodesics.

To fix notation, let M be a compact manifold of dimension n, and let g(t), t ∈ [0, T ],
be a one-parameter family of metrics on M . We assume that the metrics g(t) evolve by
backward Ricci flow, i.e.

∂

∂t
g(t) = 2 Ricg(t) .
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This evolution equation was introduced in a seminal paper by R. Hamilton [4]. For an
introduction to Ricci flow, see e.g. [1] or [10]. Following Perelman [8], we define the
L-length of a path γ : [τ1, τ2]→ M by

L(γ ) =
∫ τ2

τ1

√
t(Rg(t)(γ (t))+ |γ

′(t)|2g(t)) dt,

where Rg(t) denotes the scalar curvature of the metric g(t). Moreover, the L-distance is
defined by

Q(x, τ1; y, τ2) = inf{L(γ ) : γ : [τ1, τ2]→ M, γ (τ1) = x, γ (τ2) = y}.

A path γ : [τ1, τ2] → M is called an L-geodesic if the first variation of L is zero. For
each tangent vector Z ∈ TxM , we define

Lτ1,τ2 expx(Z) = γ (τ2),

where γ : [τ1, τ2]→M is the uniqueL-geodesic satisfying γ (τ1)=x and
√
τ1γ
′(τ1)=Z.

The map Lτ1,τ2 expx : TxM → M is called the L-exponential map.
The following is the main result of this note:

Theorem 2. Fix real numbers τ1, τ2, τ such that 0 < τ1 < τ < τ2 < T . For abbrevia-
tion, we write

1
√
τ
=

1− λ
√
τ1
+

λ
√
τ2
,

where 0 < λ < 1. Let u1, u2, v : M → R be nonnegative measurable functions such that

(
τ

τ 1−λ
1 τλ2

)n/2
v(γ (τ )) ≥ exp

(
−

1− λ
2
√
τ1
Q(γ (τ1), τ1; γ (τ), τ )

)
u1(γ (τ1))

1−λ

· exp
(

λ

2
√
τ2
Q(γ (τ), τ ; γ (τ2), τ2)

)
u2(γ (τ2))

λ

for every minimizing L-geodesic γ : [τ1, τ2]→ M . Then

∫
M

v dvolg(τ) ≥
(∫

M

u1 dvolg(τ1)

)1−λ(∫
M

u2 dvolg(τ2)

)λ
.

By sending τ1 → 0, we recover the monotonicity of Perelman’s reduced volume. This is
discussed in Section 3.
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2. Proof of Theorem 2

In order to prove Theorem 2, we make extensive use of Topping’s notion of L-optimal
transportation (cf. [11]; see also [6]). Without loss of generality, we may assume that∫

M

u1(x) dvolg(τ1) =

∫
M

u2(x) dvolg(τ2) = 1.

We define Borel probability measures ν1 and ν2 by

dν1 = u1 dvolg(τ1) and dν2 = u2 dvolg(τ2).

Topping introduced a notion of reflexive function (see [11, Definition 2.1] for a precise
definition). This notion is analogous to the concept of c-concavity in the classical theory
of optimal transportation. Topping then proved the following existence theorem (cf. [11,
Section 2]; see also [12, Theorem 10.28]):

Proposition 3 (P. Topping [11]). We can find a reflexive function ϕ : M → R, a Borel
set K ⊂ M , and a Borel map F : M → M with the following properties:

(i) ν2 = F#ν1.
(ii) The set M \K has measure zero.

(iii) The function ϕ is differentiable at each point x ∈ K .
(iv) If x ∈ K and y = F(x), then the function Q(·, τ1; y, τ2) − ϕ attains its global

minimum at the point x. In particular, the functionQ(·, τ1; y, τ2)−ϕ is differentiable
at x, and its gradient is equal to zero.

For each t ∈ [τ1, τ2], we define a Borel map Ft : M → M by

Ft (x) = Lτ1,t expx

(
−

1
2
∇ϕ(x)

)
for x ∈ K . The following result is a consequence of property (iv) in Proposition 3 (cf.
[11, Lemma 2.4]).

Proposition 4. We have Fτ1(x) = x and Fτ2(x) = F(x) for all x ∈ K . Moreover, for
each point x ∈ K , the path t 7→ Ft (x) has minimal L-length among all paths joining
(x, τ1) and (F (x), τ2).

Since ϕ is reflexive, the function ϕ is semiconcave (cf. [11, Lemma 2.10]). By Theorem
14.1 in [12], we can find a Borel set K̃ ⊂ K with the following properties:

• The set M \ K̃ has measure zero.
• For each point x ∈ K̃ , the function ϕ admits a Taylor expansion of order two around x.
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For each point x ∈ K̃ , we denote by ∇ϕ(x) and (Hessϕ)x the gradient and Hessian of
the function ϕ with respect to the metric g(τ1). Theorem 14.1 in [12] guarantees that
(Hessϕ)x is symmetric.

We next describe the volume distortion coefficients associated with the map Ft . To
that end, we fix a point x ∈ K̃ and a time t ∈ (τ1, τ2]. The linearization of the L-
exponential map Lτ1,t expx gives a linear transformation

D(Lτ1,t expx)− 1
2∇ϕ(x)

: (TxM,g(τ1))→ (TFt (x)M,g(t)).

Moreover, the Hessian of the function Q(·, τ1;Ft (x), t)− ϕ at the point x defines a sym-
metric linear transformation from the tangent space (TxM,g(τ1)) into itself.

Let us denote by 9x,t : (TxM,g(τ1)) → (TFt (x)M,g(t)) the composition of these
two linear transformations; that is,

9x,t =
1
2
D(Lτ1,t expx)− 1

2∇ϕ(x)
◦ [Hess(Q(·, τ1;Ft (x), t)− ϕ)]x

(cf. [11, Lemma 2.13]). We note that9x,t can be characterized in terms ofL-Jacobi fields;
see [11, Lemma 2.18] for details. Finally, we define the volume distortion coefficients by

J (x, t) = det9x,t

for each point x ∈ K̃ and each t ∈ (τ1, τ2].

Proposition 5. For each point x ∈ K̃ , we have

τ−n/2 exp
(
−

1− λ
2
√
τ1
Q(x, τ1;Fτ (x), τ )

)
J (x, τ )

≥ τ
−n(1−λ)/2
1 τ

−nλ/2
2 exp

(
−

λ

2
√
τ2
Q(Fτ (x), τ ;F(x), τ2)

)
J (x, τ2)

λ.

Proof. Fix a point x ∈ K̃ , and let {e1, . . . , en} be a basis of TxM which is orthonormal
with respect to the metric g(τ1). We next consider the path

γ : [τ1, τ2]→ M, t 7→ Ft (x).

By Lemma 4, the path γ has minimal L-length among all paths joining (x, τ1) to
(F (x), τ2).

Let {E1(t), . . . , En(t)} be vector fields along γ such that Ei(τ1) = ei and

〈DtEi(t), Ej (t)〉g(t) + Ricg(t)(Ei(t), Ej (t)) = 0

for all t ∈ [τ1, τ2]. For each t ∈ [τ1, τ2], the vectors {E1(t), . . . , En(t)} are orthonormal
with respect to the metric g(t).

Let {Y1(t), . . . , Yn(t)} be L-Jacobi fields along γ satisfying the initial conditions

Yj (τ1) = ej and 〈ei,DtYj (τ1)〉g(τ1) = −
1

2
√
τ1
(Hessϕ)x(ei, ej ).
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For each t ∈ [τ1, τ2], we define an n× n matrix A(t) by

aij (t) = 〈Ei(t), Yj (t)〉g(t).

It follows from the initial conditions for Yj that aij (τ1) = δij and

a′ij (τ1) = Ricg(τ1)(ei, ej )−
1

2
√
τ1
(Hessϕ)x(ei, ej ).

In particular, the matrixA′(τ1)A(τ1)
−1 is symmetric. Moreover, it was shown by Topping

[11] that

A′′(t)+
1
2t
A′(t) = M(t)A(t)

for all t ∈ [τ1, τ2]. Here, M(t) is a symmetric n× n matrix, whose trace is given by

2tr(M(t)) =
∂

∂t
Rg(t)(γ (t))+ 2〈∇Rg(t)(γ (t)), γ ′(t)〉g(t)

− 2Ricg(t)(γ ′(t), γ ′(t))+
1
t
Rg(t)(γ (t)). (1)

Arguing as in the proof of Lemma 3.1 in [11], we obtain

t−3/2 d

dt

[
t3/2

d

dt
log detA(t)

]
=
d2

dt2
log detA(t)+

3
2t
d

dt
log detA(t)

= tr(A′′(t)A(t)−1)− tr(A′(t)A(t)−1A′(t)A(t)−1)+
3
2t

tr(A′(t)A(t)−1)

= tr(M(t))− tr(A′(t)A(t)−1A′(t)A(t)−1)+
1
t

tr(A′(t)A(t)−1)

= tr(M(t))− tr
[(
A′(t)A(t)−1

−
1
2t
I

)2]
+

n

4t2
.

Note that the matrix A′(τ1)A(τ1)
−1 is symmetric. Moreover, the matrix M(t) is sym-

metric for each t ∈ [τ1, τ2]. Consequently, the matrix A′(t)A(t)−1 is symmetric for all
t ∈ [τ1, τ2]. Hence, we obtain

t−3/2 d

dt

[
t3/2

d

dt
log detA(t)

]
≤ tr(M(t))+

n

4t2
(2)

for all t ∈ [τ1, τ2]. On the other hand, we have

d

dt
Q(x, τ1;Ft (x), t) =

√
t(Rg(t)(γ (t))+ |γ

′(t)|2g(t))
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by definition of the L-distance. This implies

t−3/2 d

dt

[
t3/2

d

dt
(t−1/2Q(x, τ1;Ft (x), t))

]
= t−1 d

dt

[
t1/2

d

dt
Q(x, τ1;Ft (x), t)

]
= t−1 d

dt
[t (Rg(t)(γ (t))+ |γ ′(t)|2g(t))]

=
∂

∂t
Rg(t)(γ (t))+ 2〈∇Rg(t)(γ (t)), γ ′(t)〉g(t) − 2Ricg(t)(γ ′(t), γ ′(t))+

1
t
Rg(t)(γ (t))

(cf. [8, equation (7.3)]). Using (1), we obtain

t−3/2 d

dt

[
t3/2

d

dt
(t−1/2Q(x, τ1;Ft (x), t))

]
= 2tr(M(t)). (3)

Putting these facts together, we conclude that

t−3/2 d

dt

[
t3/2

d

dt

(
n

2
log t +

1
2
t−1/2Q(x, τ1;Ft (x), t)− log detA(t)

)]
≥ 0.

Hence, if we write

n

2
log t +

1
2
t−1/2Q(x, τ1;Ft (x), t)− log detA(t) = h(t−1/2),

then the function h is convex. Using the relation τ−1/2
= (1 − λ)τ−1/2

1 + λτ
−1/2
2 , we

obtain
h(τ−1/2) ≤ (1− λ)h(τ−1/2

1 )+ λh(τ
−1/2
2 ),

hence

τ−n/2 exp
(
−

1
2
√
τ
Q(x, τ1;Fτ (x), τ )

)
detA(τ)

≥ τ
−n(1−λ)/2
1 τ

−nλ/2
2 exp

(
−

λ

2
√
τ2
Q(x, τ1;F(x), τ2)

)
(detA(τ2))

λ.

Moreover, we have

Q(x, τ1;F(x), τ2) = Q(x, τ1;Fτ (x), τ )+Q(Fτ (x), τ ;F(x), τ2)

since γ is a minimizing L-geodesic. Hence, we obtain

τ−n/2 exp
(
−

1− λ
2
√
τ1
Q(x, τ1;Fτ (x), τ )

)
detA(τ)

≥ τ
−n(1−λ)/2
1 τ

−nλ/2
2 exp

(
−

λ

2
√
τ2
Q(Fτ (x), τ ;F(x), τ2)

)
(detA(τ2))

λ.

On the other hand, it follows from Lemma 2.18 in [11] that 9x,t (ej ) = Yj (t) for all
t ∈ (τ1, τ2]. From this, we deduce that 〈Ei(t), 9x,t (ej )〉g(t) = aij (t), hence J (x, t) =
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detA(t) for all t ∈ (τ1, τ2]. Putting these facts together, the assertion follows. This com-
pletes the proof of Proposition 5.

We next consider the interpolant measure ν = (Fτ )#ν1. It follows from work of Top-
ping that ν is absolutely continuous with respect to the volume measure (cf. [11, Lemma
2.17]). Hence, we may write dν = u dvolg(τ) for some Borel measurable function u.
Using Proposition 5, we obtain a lower bound for the density u.

Proposition 6. There exists a Borel set K̂ ⊂ K̃ such that M \ K̂ has measure zero and(
τ

τ 1−λ
1 τλ2

)n/2
u(Fτ (x)) ≤ exp

(
−

1− λ
2
√
τ1
Q(x, τ1;Fτ (x), τ )

)
u1(x)

1−λ

· exp
(

λ

2
√
τ2
Q(Fτ (x), τ ;F(x), τ2)

)
u2(F (x))

λ

for all x ∈ K̂ .

Proof. It follows from Theorem 2.14 in [11] that

u1(x) = u2(F (x))J (x, τ2) > 0

for almost all x ∈ K̃ . Applying the analogous reasoning to the interpolant measure ν
yields

u1(x) = u(Fτ (x))J (x, τ ) > 0

for almost all x ∈ K̃ . Using Proposition 5, we obtain

τ−n/2 exp
(
−

1− λ
2
√
τ1
Q(x, τ1;Fτ (x), τ )

)
u1(x)

u(Fτ (x))

≥ τ
−n(1−λ)/2
1 τ

−nλ/2
2 exp

(
−

λ

2
√
τ2
Q(Fτ (x), τ ;F(x), τ2)

)(
u1(x)

u2(F (x))

)λ
for almost all x ∈ K̃ . Rearranging terms, the assertion follows.

Corollary 7. We have ∫
M

v dvolg(τ) ≥ 1.

Proof. Fix a point x ∈ K̂ . By Lemma 4, the path t 7→ Ft (x) is a minimizing L-geodesic.
Therefore, we have(

τ

τ 1−λ
1 τλ2

)n/2
v(Fτ (x)) ≥ exp

(
−

1− λ
2
√
τ1
Q(x, τ1;Fτ (x), τ )

)
u1(x)

1−λ

· exp
(

λ

2
√
τ2
Q(Fτ (x), τ ;F(x), τ2)

)
u2(F (x))

λ.



256 Simon Brendle

Using Proposition 6, we conclude that

v(Fτ (x)) ≥ u(Fτ (x))

for all x ∈ K̂ . This implies∫
M

v dvolg(τ) ≥
∫
Fτ (K̂)

v dvolg(τ) ≥
∫
Fτ (K̂)

u dvolg(τ) = ν(Fτ (K̂)).

Moreover, we have

ν(Fτ (K̂)) = ν1[F−1
τ (Fτ (K̂))] ≥ ν1(K̂) = 1

by definition of ν. Putting these facts together, the assertion follows.

3. Relation to Perelman’s reduced volume

In this final section, we discuss how Theorem 2 is related to the monotonicity of Perel-
man’s reduced volume. The strategy is to fix τ and τ2, and pass to the limit as τ1 → 0.

Let us fix a point p ∈ M and real numbers 0 < τ < τ2 < T . We define a function v
by

v = τ−n/2 exp
(
−

1
2
√
τ
Q(p, 0; ·, τ )

)
.

For τ1 > 0 sufficiently small, we denote by B(p,
√
τ1) the geodesic ball of radius

√
τ1

in the metric g(0). We can find a positive constant N such that Q(p, 0; x, τ1) ≤ N
√
τ1

and Q(x, τ1;p, 2τ1) ≤ N
√
τ1 for all points x ∈ B(p,

√
τ1). Note that the constant N is

independent of τ1.
As above, we write

1
√
τ
=

1− λ
√
τ1
+

λ
√
τ2
,

where 0 < λ < 1. We now specify the functions u1 and u2. We define

u1 = τ
−n/2
1 exp

(
−
N
√
τ1

2(1− λ)

(
1
√
τ
+

λ
√
τ2

))
1B(p,

√
τ1),

u2 = τ
−n/2
2 exp

(
−

1
2
√
τ2
Q(p, 2τ1; ·, τ2)

)
.

In the next step, we verify that u1, u2, v satisfy the assumptions of Theorem 2.

Proposition 8. We have(
τ

τ 1−λ
1 τλ2

)n/2
v(γ (τ )) ≥ exp

(
−

1− λ
2
√
τ1
Q(γ (τ1), τ1; γ (τ), τ )

)
u1(γ (τ1))

1−λ

· exp
(

λ

2
√
τ2
Q(γ (τ), τ ; γ (τ2), τ2)

)
u2(γ (τ2))

λ

for every minimizing L-geodesic γ : [τ1, τ2]→ M .
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Proof. If γ (0) /∈ B(p,
√
τ1), then u1(γ (0)) = 0 and the assertion is trivial. Hence, it

suffices to consider the case γ (0) ∈ B(p,
√
τ1). In this case, we have

Q(p, 0; γ (τ), τ ) ≤ Q(γ (τ1), τ1; γ (τ), τ )+Q(p, 0; γ (τ1), τ1)

≤ Q(γ (τ1), τ1; γ (τ), τ )+N
√
τ1

and

Q(p, 2τ1; γ (τ2), τ2) ≥ Q(γ (τ1), τ1; γ (τ2), τ2)−Q(γ (τ1), τ1;p, 2τ1)

≥ Q(γ (τ1), τ1; γ (τ2), τ2)−N
√
τ1.

This implies

v(γ (τ ), τ ) ≥ τ−n/2 exp
(
−
N
√
τ1

2
√
τ

)
exp

(
−

1
2
√
τ
Q(γ (τ1), τ1; γ (τ), τ )

)
and

u2(γ (τ2)) ≤ τ
−n/2
2 exp

(
N
√
τ1

2
√
τ2

)
exp

(
−

1
2
√
τ2
Q(γ (τ1), τ1; γ (τ2), τ2)

)
.

Moreover, we have

Q(γ (τ1), τ1; γ (τ2), τ2) = Q(γ (τ1), τ1; γ (τ), τ )+Q(γ (τ), τ ; γ (τ2), τ2)

since γ has minimal L-length. Putting these facts together, we obtain

v(γ (τ )) ≥

(
τλ2
τ

)n/2
exp

(
−
N
√
τ1

2

(
1
√
τ
+

λ
√
τ2

))
· exp

(
−

1− λ
2
√
τ1
Q(γ (τ1), τ1; γ (τ), τ )

)
· exp

(
λ

2
√
τ2
Q(γ (τ), τ ; γ (τ2), τ2)

)
u2(γ (τ2))

λ.

From this, the assertion follows.

Let Ṽ (τ ) denote the reduced volume at time τ . Using Theorem 2, we obtain

Ṽ (τ ) =

∫
M

v dvolg(τ) ≥
(∫

M

u1 dvolg(τ1)

)1−λ(∫
M

u2 dvolg(τ2)

)λ
.

We now fix τ and τ2, and pass to the limit as τ1 → 0. Clearly,

1− λ =
√
τ1

(
1
√
τ
−

1
√
τ2

)
+O(τ1).

This implies

−
N
√
τ1

2(1− λ)

(
1
√
τ
+

λ
√
τ2

)
→−

N

2

(
1
√
τ
−

1
√
τ2

)−1( 1
√
τ
+

1
√
τ2

)
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as τ1 → 0. Hence, the integral
∫
M
u1 dvolg(τ1) converges to a positive real number as

τ1 → 0. Since 1− λ→ 0, we conclude that(∫
M

u1 dvolg(τ1)

)1−λ

→ 1 as τ1 → 0.

Moreover, we have (∫
M

u2 dvolg(τ2)

)λ
→ Ṽ (τ2) as τ1 → 0.

Putting these facts together, we obtain

Ṽ (τ ) =

∫
M

v dvolg(τ) ≥ Ṽ (τ2).

Thus, Theorem 2 implies the monotonicity of the reduced volume.
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