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Abstract. Let X1 and X2 be two compact strongly pseudoconvex CR manifolds of dimension
2n − 1 ≥ 5 which bound complex varieties V1 and V2 with only isolated normal singularities in
CN1 and CN2 respectively. Let S1 and S2 be the singular sets of V1 and V2 respectively and assume
S2 is non-empty. If 2n − N2 − 1 ≥ 1 and the cardinality of S1 is less than twice that of S2, then
we prove that any non-constant CR morphism from X1 to X2 is necessarily a CR biholomorphism.
On the other hand, let X be a compact strongly pseudoconvex CR manifold of dimension 3 which
bounds a complex variety V with only isolated normal non-quotient singularities. Assume that the
singular set of V is non-empty. Then we prove that any non-constant CR morphism from X to X is
necessarily a CR biholomorphism.

Keywords. Strongly pseudoconvex CR manifold, rigidity of CR morphism, geometric genus of
compact embeddable CR manifold

1. Introduction

CR manifolds are abstract models of boundaries of complex manifolds. Strongly pseudo-
convex CR manifolds have rich geometric and analytic structures. The harmonic theory
for the ∂b complex on compact strongly pseudoconvex CR manifolds was developed by
Kohn [Ko]. Using this theory, Boutet de Monvel [BM] proved that if X is a compact
strongly pseudoconvex CR manifold of dimension 2n − 1, n ≥ 3, then there exist C∞

functions f1, . . . , fN on X such that each ∂bfj = 0 and f = (f1, . . . , fN ) defines an
embedding of X in CN . Thus, any compact strongly pseudoconvex CR manifold of di-
mension ≥ 5 can be CR embedded in some complex Euclidean space. On the other hand,
3-dimensional strongly pseudoconvex compact orientable CR-manifolds are not neces-
sarily embeddable. Throughout this paper, our strongly pseudoconvex CR manifolds are
always assumed to be compact orientable and embeddable. By the classical theorem of
Harvey and Lawson [Ha-La1], [Ha-La2], a strongly pseudoconvex complex embeddable
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CR manifold can be embedded in some CN and bounds a Stein variety with at most
isolated normal singularities.

In the remarkable paper [Pi], Pinchuk considered proper holomorphic maps of
strongly pseudoconvex domains in Cn that are smooth up to the boundary. (It was shown
later in [Be-Ca] and [Di-Fo] that the smoothness assumption is satisfied automatically.)
Pinchuk proved that such maps are locally biholomorphic. Moreover, he showed that a
proper holomorphic self-map of a strongly pseudoconvex domain is biholomorphic. Since
CR maps between strongly pseudoconvex boundaries extend to holomorphic maps of the
corresponding domains, Pinchuk’s results may be interpreted as rigidity statements about
CR maps of strongly pseudoconvex compact hypersurfaces in Cn.

In the present paper, we investigate rigidity properties of CR maps of general embed-
dable strongly pseudoconvex compact CR manifolds. Our starting point is the following
result.

Proposition 1.1. Let X1 and X2 be two compact strongly pseudoconvex CR manifolds of
dimension 2n− 1 ≥ 3 which bound complex varieties V1 and V2 in CN1 and CN2 respec-
tively. Suppose the singular set Si of Vi , i = 1, 2, is either an empty set or a set consisting
of only isolated normal singularities. If 8 : X1 → X2 is a non-constant CR morphism,
then 8 is surjective and 8 can be extended to a proper surjective holomorphic map from
V1 to V2 such that 8(S1) ⊆ S2, 8−1(X2) = X1 and 8 : V1 −8

−1(S2)→ V2 − S2 is a
covering map. Moreover, if S2 does not have quotient singularity, then 8−1(S2) = S1.

As a corollary of Proposition 1.1, we have the following super-rigidity results for CR
morphisms between strongly pseudoconvex manifolds.

Corollary 1.1. Let X1 be a compact strongly pseudoconvex CR manifold of dimension
2n−1 ≥ 3 which bounds a complex variety V1 in CN1 with isolated normal singularities.
Let X2 be a compact strongly pseudoconvex CR manifold of dimension 2n − 1 which
bounds a complex submanifold V2 in CN2 . Then there is no non-constant CR morphism
from X1 to X2.

For any compact strongly pseudoconvex embeddable CR manifold X, one can define a
notion of geometric genus pg(X) which is a non-negative integer and is invariant under
CR biholomorphism (see Definition 2.4, Proposition 2.2 and Remark 2.1 below).

Proposition 1.2. Let X1 be a compact strongly pseudoconvex CR manifold of dimension
2n − 1 ≥ 3 which bounds a complex submanifold V1 in CN1 . Let X2 be a compact
strongly pseudoconvex CR manifold of dimension 2n− 1 with either (i) geometric genus
pg(X2) > 0 or (ii) pg(X2) = 0 and X2 bounds a complex variety V2 in CN2 with a
non-quotient singularity. Then there is no non-constant CR morphism from X1 to X2.

Remark 1.1. Proposition 1.2 is false if pg(X2) = 0 and V2 has only quotient singulari-
ties in the interior, as we can see from the following example.

Example 1.1. Let B = {(x, y) ∈ C2 : |x|2 + |y|2 < 1} and S = ∂B. In the notation
of Proposition 1.2, let X1 = S be the standard sphere and V1 = B. Let σ : B → B
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be the map given by σ(x, y) = (−x,−y). Let V2 be the quotient of V1 by the cyclic
group of order 2 generated by σ . Then V2 is a strongly pseudoconvex variety with A1
singularity {(z1, z2, z3) ∈ C3 : z1z2 = z

2
3}. The quotient map 8 : V1 → V2 is given by

(z1, z2, z3) = (x2, y2, xy). Clearly 8 sends X1 surjectively onto X2 = ∂V2 and 8 is a
non-constant CR morphism.

Proposition 1.3. Let X1 and X2 be two compact strongly pseudoconvex embeddable CR
manifolds of dimension 2n − 1 ≥ 3. If there is a non-constant CR morphism from X1 to
X2, then pg(X1) ≥ pg(X2).

Corollary 1.2. Let X1, X2 be two compact strongly pseudoconvex embeddable CR man-
ifolds of dimension 2n − 1 ≥ 3. If pg(X1) < pg(X2), then there is no non-constant CR
morphism from X1 to X2.

The following theorem says that if the codimension of X2 is small and dimX2 ≥ 5, then
there is no non-constant CR morphism from X1 to X2 except CR biholomorphic maps.
This rigidity phenomenon does not require any curvature assumption on X1 or X2.

Theorem 1.1. Let X1 and X2 be two compact strongly pseudoconvex CR manifolds of
dimension 2n−1 ≥ 5 which bound complex varieties V1 and V2 with only isolated normal
singularities in CN1 and CN2 respectively. Let S1 and S2 be the singular sets of V1 and V2
respectively and suppose S2 is non-empty. If 2n−N2− 1 ≥ 1 and |S1| ≤ 2|S2| − 1, then
every non-constant CR morphism from X1 to X2 is necessarily a CR biholomorphism.

LetX be a compact strongly pseudoconvex CR manifold of dimension 2n−1 embeddable
in CN . We would like to know whether a non-constant CR morphism from X to X is
necessarily a CR biholomorphism. If dimX ≥ 5, then Theorem 1.1 above gives us an
affirmative answer so long as 2n−N−1 ≥ 1. If dimX = 3, the situation is more complex.
In Theorem 1.2, a stronger result is proved without the assumption on the codimension
of X in CN .

Theorem 1.2. Let X be a compact strongly pseudoconvex CR manifold of dimension 3
in CN which bounds a complex variety V with only isolated normal non-quotient sin-
gularities. Assume that the singular set of V is non-empty. Then every non-constant CR
morphism from X to X is necessarily a CR biholomorphism.

In the course of proving Theorem 1.2, we have proved the following theorem, which is of
independent interest.

Theorem 1.3. Let V be a 2-dimensional Stein space with only isolated normal singular-
ities. Let 8 : V → V be a holomorphic map from V to V such that 8−1(S) = S, where S
is the non-empty singular set of V. If 8 : V − S → V − S is a covering map, then 8 is a
biholomorphism.

The proof of Theorem 1.2 does not work if pg(X) = 0 and V contains a quotient sin-
gularity. For such rational compact CR manifolds, Theorem 1.2 may still be true, and we
make the following rigidity conjecture.
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Conjecture 1.1. Let X be a compact strongly pseudoconvex embeddable CR manifold of
dimension at least 3. Then every non-constant CR morphism from X to itself must be a
CR biholomorphism.

The following example shows that strong pseudoconvexity plays an important role in the
above theory.

Example 1.2. Let X1 = {(x, y, z) ∈ C3 : xy = z2, a|x|4 + |y|4 + |z|4 = ε0} and
X2 = {(x, y, z) ∈ C3 : xy = z2, a|x|2 + |y|2 + |z|2 = ε0} where a is a positive real
number. Let ψ : X1 → X2 be given by ψ(x, y, z) = (x2, y2, z2). Then ψ is a surjective
CR morphism fromX1 toX2, butψ is not a CR biholomorphism. Note thatX2 is strongly
pseudoconvex, but X1 is only weakly pseudoconvex.

As another evidence to support our Conjecture 1.1, we have the following result which
follows from Pinchuk’s argument in [Pi].

Proposition 1.4. Let X be a compact strongly pseudoconvex CR manifold of dimension
2n − 1 ≥ 3. If X bounds a complex submanifold V in CN , then every non-constant CR
morphism from X to X is a CR biholomorphism.

In Section 2, we shall recall some basic notions of CR manifolds. Propositions 1.1 to 1.4
and Theorems 1.1 to 1.3 are proved in Section 3.

2. Preliminaries on CR manifolds

Definition 2.1. Let X be a connected orientable manifold of real dimension 2n − 1.
A CR structure on X is an (n − 1)-dimensional subbundle S of the complexified tan-
gent bundle CTX such that

(1) S ∩ S = {0}.
(2) If L,L′ are local sections of S, then so is [L,L′].

A manifold with a CR structure is called a CR manifold. There is a unique subbundle
H of the tangent bundle T (X) such that CH = S ⊕ S.

Furthermore, there is a unique homomorphism J : H → H such that J 2
= −1 and

S = {v− iJ v : v ∈ H}. The pair (H, J ) is called the real expression of the CR structure.

Definition 2.2. Let L1, . . . , Ln−1 be a local frame of S. Then L1, . . . , Ln−1 is a local
frame of S and one may choose a local section N of TX which is purely imaginary, such
that L1, . . . , Ln−1, L1, . . . , Ln−1, N is a local frame of CTX. The matrix (cij ) defined
by

[Li, Lj ] =
∑

akijLk +
∑

bkijLk +
√
−1cijN

is Hermitian and is called the Levi form of X.

Proposition 2.1. The number of non-zero eigenvalues and the absolute value of the signa-
ture of the Levi form (cij ) at each point are independent of the choice ofL1, . . . , Ln−1, N .

Definition 2.3. The CR manifold X is called strongly pseudoconvex if the Levi form is
definite at each point of X.
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Theorem 2.1 (Boutet de Monvel [BM]). If X is a compact strongly pseudoconvex CR
manifold of dimension 2n− 1 and n ≥ 3, then X is CR embeddable in CN .

Although there are non-embeddable compact 3-dimensional CR manifolds, in this paper
all CR manifolds are assumed to be embeddable in complex Euclidean space.

Theorem 2.2 (Harvey–Lawson [Ha-La1], [Ha-La2]). For any compact connected em-
beddable strongly pseudoconvex CR manifold X, there is a unique complex variety V
in CN for some N such that the boundary of V is X and V has only normal isolated
singularities.

Definition 2.4. Let X be a compact connected strongly pseudoconvex embeddable CR
manifold of real dimension 2n − 1. Let V be the normal subvariety in CN such that the
boundary of V is X. Let π : M → V be a resolution of singularities of V . The geometric
genus of X denoted by pg(X) is defined to be dimH n−1(M,O).

Proposition 2.2 ([Ya-Yu]). Let X be a connected compact strongly pseudoconvex CR
manifold of real dimension 2n − 1 and n ≥ 2. Suppose that X bounds a normal variety
V ⊆ CN with isolated singularities Y = {q1, . . . , qm}. Let π : M → V be a resolution
of singularities of V . Then the geometric genus pg(X) := dimH n−1(M,O) is a CR
invariant of X. In fact, let U be any strongly pseudoconvex neighborhood of Y . Then

pg(X) = dimH 0(U − Y,�n)/L2(U − Y,�n)

where�n is the sheaf of germs of holomorphic n-forms and L2(U−Y,�n) is the space of
holomorphic n-forms ω onU−Y which areL2-integrable for some smaller neighborhood
U ′ ⊂⊂ U of Y , i.e.,

∫
U ′−Y

ω ∧ ω <∞.

Definition 2.5. Let (V , q) be a complex analytic variety with isolated normal singularity
at q of dimension n. The geometric genus pg(V , q) of the singularity (V , q) is defined
to be dimH 0(U − {q}, �n)

/
L2(U − {q}, �n) where U is any strongly pseudoconvex

neighborhood of q.

Remark 2.1. (a) Let π : (M.A)→ (V , q) be a resolution of singularity. By a theorem
of [Ya1], H n−1(M,O) = dimH 0(V − {q}, �n)

/
L2(V − {q}, �n). It follows easily

that pg(V , q) is independent of U in the above definition.
(b) With the notation of Proposition 2.2, we have pg(X) =

∑m
i=1 pg(V , qi).

3. Proofs of Theorems 1.1 to 1.3 and Propositions 1.1 to 1.4

Proof of Proposition 1.1. Let φ1, . . . , φN2 be the component functions of 8. Then φi
as CR holomorphic function on X1 can be extended onto a one-sided neighborhood of
X1 in V1. By Andreotti and Grauert ([An-Gr, Théorème 15]), φi can be holomorphically
extended onto V1−S1 where S1 is the singular set of V1. Since S1 is either an empty set or
a set consisting of only isolated normal singularities, φi can be holomorphically extended
onto V1.
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We claim that 8(V1) ⊆ V2. To see this, let f1, . . . , fk be the defining equations
of V2, i.e. V2 = {y ∈ CN2 : f1(y) = · · · = fk(y) = 0}. Clearly 8∗(fi) = fi ◦ 8 is
a holomorphic function on V1 which vanishes on X1 for 1 ≤ i ≤ k. Since X1 is of real
codimension one in V1, 8∗(fi) is identically zero on V1 for 1 ≤ i ≤ k. This implies
that 8(V1) ⊆ V2. By the maximum principle, 8(X1) ∩8(V1 −X1) = ∅. It follows that
8−1(X2) = X1 and 8 is a proper map from V1 to V2. By the proper mapping theorem,
8(V1) is a complex variety.

We claim that dim8(V1) = n. If dim8(V1) < n, then for some q in 8(V1), 8−1(q)

is a compact variety of dimension at least one sitting inside V1. This gives a contradiction
since V1 is Stein. As 8(V1) ⊆ V2 and dim8(V1) = n = dimV2, we have 8(V1) = V2.
It follows that 8(X1) = X2. A local computation of J. E. Fornæss ([Fo, Proposition 12])
would apply to show that 8 is a local biholomorphism near X1. (This was observed
independently by Pinchuk [Pi].) In particular, 8 : V1 −8

−1(S2 ∪8(S1))→ V2 − (S2 ∪

8(S1)) is locally biholomorphic and hence is a finite covering.
Let p ∈ S1 and q = 8(p). We claim q ∈ S2. Suppose on the contrary that q is a

smooth point in V2; then 8 maps a neighborhood U1 of p to a neighborhood U2 of q as a
branch covering. Since p is a normal singularity, the punctured neighborhood U1 − p of
p is connected. On the other hand, the punctured neighborhood U2 − {q} of q is simply
connected because q is a smooth point. We conclude that 8|U1 : U1 → U2 is one-to-one
and onto. By the Hartogs extension theorem, the inverse map 8−1

|U2−{q} : U2 − {q} →

U1 − {p} can be holomorphically extended onto U2. It follows that 8|U1 : U1 → U2
is a biholomorphic map. This leads to a contradiction. Therefore 8(S1) ⊆ S2 and 8 :
V1 −8

−1(S2)→ V2 − S2 is a covering map.
Now assume that S2 does not have a quotient singularity. Let q be any point in S2.

We need to show that 8−1(q) ⊆ S1. If 8−1(q) is not contained in S1, then there exists a
smooth point q ′ of V1 in 8−1(q). Recall that 8−1(q) is a finite set. We can find an open
neighborhood U of q ′ which is biholomorphic to a domain in Cn such that 8|U from U

to the germ of (V2, q) is a branch covering with ramification locus {q ′}. By Theorem 1
of [Pr], we conclude that (V2, q) is a quotient singularity. This is a contradiction. ut

Proof of Corollary 1.1. It follows immediately from the proof of Proposition 1.1. ut

Proof of Proposition 1.2. By Proposition 1.1, if there exists a non-constant CR morphism
φ : X1 → X2, then 8 can be extended as a ramified covering map from V1 to V2 with
ramification locus S2. Since V1 is smooth, by the proof of Proposition 1.1, S2 consists of
only quotient singularities and hence the geometric genus of these singularities is zero. It
follows that pg(X2) = 0 in view of Remark 2.1(b). This leads to a contradiction. ut

Proof of Proposition 1.3. Let Vi be a normal variety in CNi with only isolated singu-
larities such that ∂Vi = Xi , i = 1, 2. Let S1 and S2 be the singular set of V1 and V2
respectively. Let 8 : X1 → X2 be a non-constant CR morphism. In view of Proposition
1.1, 8 can be extended to a proper surjective holomorphic map from V1 to V2 such that
8(S1) = S2, and8 : V1−8

−1(S2)→ V2−S2 is a covering map. There is a natural map

8∗ :
0(V2 − S2, �

n)

L2(V2 − S2, �n)
→

0(V1 −8
−1(S2),�

n)

L2(V1 −8−1(S2),�n)
.
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Since8 : V1−8
−1(S2)→ V2−S2 is a finite covering map, a form ω ∈ 0(V2−S2, �

n)

is L2-integrable if and only if 8∗(ω) is L2-integrable. Thus 8∗ is injective. Observe
that 8−1(S2) − S1 is a discrete subset in the smooth part of V1. By Hartogs’ theorem,
0(V1−8

−1(S2),�
n) = 0(V1−S1, �

n) and L2(V1−8
−1(S2),�

n) = L2(V1−S1, �
n).

It follows that pg(X2) ≤ pg(X1). ut

Proof of Theorem 1.1. Let 8 : X1 → X2 be a non-constant CR morphism. Proposition
1.1 says that 8 can be extended to a proper surjective holomorphic map from V1 to V2
such that 8(S1) ⊆ S2 and 8 : V1 −8

−1(S2)→ V2 − S2 is a covering map of degree d .
For any q ∈ S2, we know that the punctured neighborhood of q in V2 is (2n − N2 − 1)-
connected in view of a theorem of Hamm [Ha]. Since 2n − N2 − 1 ≥ 1 by assumption,
the punctured neighborhood of q is simply connected.

We claim that 8−1(q) ⊆ S1. If 8−1(q) is not contained in S1, then there exists a
smooth point q ′ of V1 in 8−1(q). Recall that 8−1(q) is a finite set. We can find an open
neighborhood U of q ′ which is biholomorphic to a domain in Cn such that8|U from U to
the germ of (V2, q) is a branch covering with ramification locus {q ′}. Since the punctured
neighborhood of q in V2 is simply connected, this implies8|U is injective and hence8|U
is a biholomorphism. This leads to a contradiction because q is a singular point.

We have shown that 8−1(q) = {q ′1, . . . , q
′

d} ⊆ S1. Since |S1| ≤ 2|S2| − 1, by the
pigeon-hole principle, there exists q ∈ S2 such that 8−1(q) = {q ′1}. Since the punctured
neighborhood of q is simply connected, we conclude that the degree of the covering map
8 : V1 − S1 → V2 − S2 is one. ut

Proof of Theorem 1.2. Let 8 : X → X be a non-constant CR morphism. In view of
Proposition 1.1 and the fact that the singular set S = {q1, . . . , qm} of V does not contain
any quotient singularity, 8 can be extended to a proper holomorphic map from V to V
such that 8−1(S) = S and 8 : V − S → V − S is a covering map of degree d. Let
π : M → V be the minimal good resolution of V such that the exceptional sets E1 =

π−1(q1) =
⋃`1
i=1A

1
i , . . . , Em = π−1(qm) =

⋃`m
i=1A

m
i are normal crossing divisors.

Consider the fiber product V ×
V
M of the maps 8 : V → V and π : M → V . Let

τ : M̃ → V ×
V
M be the normalization map. Then we have the following commutative

diagram where π1 and π2 are natural projections:

M̃

π̃

��/
//

//
//

//
//

//
//

//
//

//
//

τ

��>
>>

>>
>>

>>
>>

>

8̃

''NNNNNNNNNNNNNNNNNNNNNN

V ×
V
M π2 //

π1

��

M

π

��
V

8 // V
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Notice that π1 : V×
V
M → V is a biholomorphism outside π−1

1 (S), and π2 : V×
V
M → M

is a covering map outside
⋃m
i=1 Ei . Thus 8̃ := π2 ◦ τ : M̃ → M is a d-fold branch

covering. For each Aji ⊆ Ej , and any point qji ∈ A
j
i which is smooth in

⋃m
i=1 Ei , we

choose a germ of a curve 0ji at the point qji which intersects
⋃m
i=1 Ei only at qji and the

intersection of Aji and 0ji is transversal at qji . Let 0 =
⋃
{0
j
i : 1 ≤ j ≤ m, 1 ≤ i ≤ j̀ }.

Notice that π̃ := π1 ◦ τ is a finite proper map which is a biholomorphism outside Ẽ :=
π̃−1(S) = 8̃−1(E) where E = E1 ∪ · · · ∪ Em. Observe that Ẽ has exactly m connected
components, Ẽ = Ẽ1 ∪ · · · ∪ Ẽm. Clearly 8̃∗(Ẽ) =

∑
i,j d

j
i A

j
i where dji ≤ d .

By the projection formula (cf. p. 34 of [Fu], or p. 426 of [Har])

m∑
j=1

j̀∑
i=1

d
j
i = 0 · 8̃∗(Ẽ) = 8̃

∗(0) · Ẽ ≥ (`1 + · · · + `m)d.

The last inequality comes from the fact that 8∗(0ji ) has d distinct branches because
8 : V − S → V − S is a d-fold covering map. Since dji ≤ d , we conclude that dji = d
for all i, j . It follows that the branch locus of 8̃ is contained in the singular locus of⋃m
i=1 Ei , which is of dimension zero. As M̃ is normal and M is smooth, 8̃ : M̃ → M is

a covering map by purity of branch locus. Hence M̃ is smooth and π̃ : M̃ → V is also
a resolution of singularity. Thus if 8(qi) = qj , then (V , qi) and (V , qj ) are isomorphic
as germs of singularities. This is because each resolution of (V , qj ) is a resolution of
(V , qi). Observe that π−1

1 (S) as a reduced analytic set is isomorphic to π−1(S) via π2.
The number of irreducible components of π̃−1(S) is at least the same those of π−1(S).

Let A1 be an irreducible component of E and Ã1 be an irreducible component of
8̃−1(A1). Then 8̃|Ã1

: Ã1 → A1 is a covering map. Suppose that the degree of 8̃
∣∣
Ã1

is d1. Observe that by the projection formula we have

Ã1 · Ã1 = (8̃
∣∣∗
Ã1
A1)(8̃

∣∣∗
Ã1
A1) = A1 · (8̃

∣∣
Ã1∗
8̃
∣∣∗
A1
A1) = A1 · 8̃

∣∣
Ã1∗
Ã1 = A1 · (d1A1)

= d1(A1 · A1). (3.1)

Suppose that M is actually a minimal resolution of V , i.e. there is no rational curve
with self-intersection number −1. By the Riemann–Hurwitz formula (see p. 218 of
[Gr-Ha]), g(Ã1) > 0 if g(A1) > 0. In view of (3.1), M̃ has no rational curve with
self-intersection number −1. Thus M̃ is also a minimal resolution of V . It follows from
the uniqueness of minimal resolution that the degree of 8 is one.

If M is not a minimal resolution of V , then there exists a rational curve A1 with self-
intersection number −1. Let Ã1 be an irreducible component of 8̃−1(A1). Then Ã1 is
smooth and 8̃|Ã1

: Ã1 → A1 is a covering map. Let d1 be the degree of 8̃|Ã1
. Then

χ
T
(Ã1) = d1χT (A1), where χ

T
is the topological Euler characteristic. Since the only

curves with positive topological Euler characteristic are rational curves and their topologi-
cal Euler characteristic must be 2, it follows that Ã1 is a rational curve and d1 = 1. In view
of (3.1), Ã1 ·Ã1 = −1. Because 8̃ is a d-fold covering, 8̃−1(A1) has exactly d connected
components Ã11, Ã12, . . . , Ã1d , which are all rational curves with self-intersection −1.
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By blowing down Ã11, Ã12, . . . , Ã1d in M̃ and A1 in M , we obtain M̃1 and M1 respec-
tively. The map 8̃1 : M̃1 → M1 induced by 8̃ is still a d-fold covering. After a finite
number of steps, we get Mk and M̃k where M̃k is the minimal resolution of V . Since
the map 8̃k : M̃k → Mk is still a d-fold covering, by our previous argument above, we
conclude that d = 1. ut

Proof of Proposition 1.4. Let 8 : X → X be a non-constant CR morphism. By Propo-
sition 1.1, 8 can be extended to a holomorphic covering map from V to V . Now we fol-
low Pinchuk’s argument in [Pi]. 8 induces a homomorphism of the fundamental groups
8∗ : π1(V )→ π1(V ). It is clear that 8 is biholomorphic if and only if 8∗ is an isomor-
phism. Clearly 8∗ is a monomorphism. We shall examine the iteration 8k = 8 ◦8k−1.
By the Montel Theorem, there exists a subsequence 8ki (i = 1, 2, . . .) which converges
to 9 : V → V uniformly on compact sets. Since V is a complex manifold with smooth
boundary, its fundamental group has a finite number of generators ω1, . . . , ω`. On each
curve ω`, 8ki converges to 9 uniformly. Therefore for p sufficiently large, we have
8
kp
∗ = 9∗. Hence 9∗ is a monomorphism. Now observe that

9∗ = 8
kp+1
∗ = 8

kp
∗ ◦8

kp+1−kp
∗ = 9∗ ◦8

kp+1−kp
∗ .

We conclude that 8
kp+1−kp
∗ and consequently 8∗ is an epimorphism. ut
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