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Abstract. We prove that any divisor Y of a global analytic set X C R” has a generic equation,
that is, there is an analytic function vanishing on Y with multiplicity one along each irreducible
component of Y. We also prove that there are functions with arbitrary multiplicities along Y. The
main result states that if X is pure dimensional, Y is locally principal, X \ Y is not connected and
Y represents the zero class in H(‘;‘il (X, Zy) then the divisor Y is globally principal.
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Introduction

In this paper we prove that any divisor ¥ of a global analytic set X C R” has a generic
equation, that is, there is an analytic function vanishing on Y with multiplicity one along
each irreducible component of Y (we refer to Section 2 below for the definition of divisor).
Furthermore, it is proved that there are functions with arbitrary multiplicities along Y. Un-
fortunately we cannot infer, in general, that Y is the zero set of this equation. Thus, one
can ask under what conditions there is a global analytic function g such that ¥ = div(g),
in other words g generates the ideal Jy. We find, at least when the space X is of pure di-
mension, three conditions. The first one is an obvious local condition: the divisor must be
locally principal. 1t is easy to find examples where it is not locally principal, even when
the divisor has codimension 1 at every point. The second condition is a topological con-
dition: a principal divisor Y always has null fundamental class in the group Hzo_ (X, Z).
Also a third topological condition is required, that X \ Y is not connected. This is because
a generator of Jy cannot have constant sign, for instance at the points y € Y which are
regular for both X and Y.

We are able to prove that these conditions are sufficient for Y to be principal when X
is pure dimensional, for instance when X is a coherent analytic set.

We endow X with its “best” coherent structure; by Cartan’s Theorem B we have an
isomorphism between the groups H 1(X,0* and H'(X, Z/2), so the conditions above
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imply that the line bundle defined by the local generators of Jy is trivial in a neighbour-
hood of the set Xmax = {x € X | dim X, = dim X = ¢}, which, in turn, enables us to
find a global generator on the same neighbourhood (see Theorem [3.4] below). As far as
we know, this result was known only for analytic manifolds.

Using the principality conditions above and the notion of multiplicities along a divisor
of analytic functions, which we will discuss in Section 1, for a coherent analytic set we
prove an equivalent condition for an ideal of the type

[Tvf
i

to be principal, where p; is a prime ideal in O(X), namely that the associated divisor
Y = Y a;Y;, where Y; is the zero set of pj, has vanishing fundamental class [Y] = 0 €
Hf;o_,.(X ,Z]2), its support disconnects X and for all i the ideal sheaf p;Ox is locally
principal.

These results can be seen as an improvement of the solution of Cousin’s Second Prob-
lem (see, for example, Chapter VIII of [GR63]) in the case of an analytic manifold X such
that H 2(X , Z) = 0, since here we only assume that X is pure dimensional.

The paper is organized as follows: in the first section we give some definitions and
preliminary results on multiplicities. Section 2 is devoted to the problem of finding a
generic equation of a divisor and a positive equation with arbitrary given multiplicities.
Finally, in Section 3 we prove (for a pure dimensional space X) that the three conditions
above imply Y = div(g).

1. Multiplicities

Let X C R”" be a global analytic set, i.e. the zero set of finitely many analytic func-
tions in Orn (R") = O, (R"). Recall that a global analytic set admits coherent structures
and admits complexifications, i.e. there exists a coherent i(’iveal sheaf F C O, such that
X = Supp O, /T and there exists a complex analytic space X in a suitable complex Stein
neighbourhood of R” in C” such that X NR" = X; moreover these three properties (to
be global, to have a coherent structure and to be the real part of a complex analytic set)
are equivalent (see Prop. 15 in [Car57] and [Tog67]]).

One can prove that among the sheaves defining these coherent structures there is a
largest one, which we will denote by Jx; also among these complex analytic sets there is a
smallest one, that we still denote X. Moreover, for any real point x, Iz . = Jx x ®rC, i.e.
they define on X the same structure, the so called well-reduced structure (cf. [ABT735]],
[Gal76l]). It can also be verified that Jx is precisely the sheaf generated by the ideal
of analytic functions vanishing on X, namely Jx , = 1(X)O,  where I(X) = {f €
0,(R") | f = 0on X} (cf. [BPO4]).

We will call Ox = O, /JIx the sheaf of analytic functions on X. The ring of global
sections of this sheaf is O(X) = 0,(R")/I(X) and the ring M(X) of meromorphic
functions on X will be defined as the total ring of fractions of O(X).
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Note that the ideal 7 (X) may be prime even if X is not irreducible as analytic space.
A classical example is

X={x2=—@-1)y?=0}cR.

The polynomial p = x> — (z2 — 1)y is irreducible as analytic function and generates
I(X). Nevertheless, X is the union of two analytic subspaces X1 and X, that are not
global, each one isomorphic to a Whitney umbrella.

So, from now on we shall call a global analytic set X irreducible if it does not admit
proper global analytic subsets of the same dimension, that is, if /(X) is a prime ideal in
0, (R™").

Remark 1.1. The ideal sheaf Jx is not in general a sheaf of real ideals. More precisely
YIx x # Jx . if and only if there are some couples of complex conjugate components
Ze, Zy C X + that intersect X in the same real component Z, N Z, of dimension less than
dim X; for instance this is the case when dim X, < dim X = ¢. The ideal sheaf fx,
which is not coherent in general, is the ideal of all analytic germs vanishing at X. Take
now g € Ox x withg € O,y and g ¢ Jx ; theneither g € ¥Jx ,,org ¢ &Jx ;. Inthe
first case g vanishes on the set germ X ; in the second one we may consider the sign of g
on X, and the set germs {g > 0}, {g < 0} are defined as well as the set {g = 0} C X,.
This is because the sign of g in a neighbourhood of x in X is the same as the sign of
g (mod &Jx ) in the same neighbourhood, and the quotient map O, x — O,/ &Jx x
factorizes through Oy .. In particular Ox , and O, ./ ¥Jx , have the same group of
unities.

Now, let Y C X be an irreducible global analytic subset of codimension 1. We define
the coherent sheaf of ideals Jy = I (Y)Ox, where I(Y) ={f € O(X) | f =0on Y}.

Suppose that at some point x € Y the ideal Jy,, is principal, say Jy , = gOx, for
some g € Ox .. Then the germ of any f € O(X) at x can be written as fy = g’"v for
some nonnegative integer r and some v ¢ Jy .

Note that r does not depend on the generator g. Indeed, suppose f, = h*w for another
generator /& and, say, s < r. Then there is a unit u such that 7 = ug, hence wu®g* = vg”,
sovg" ™ = wu’® ¢ Jy . This implies s = r.

Also, since Jy x is coherent the relation f = ug” holds in a neighbourhood of x, and
g generates Jy,, for y close to x outside the zero set of u. In particular the integer r is the
same for x and y.

The integer r will be called the multiplicity of f along Y at the point x and will be
denoted as my (f). The multiplicity of a meromorphic function f = f1/f, € M(X)
where f1, f2 € O(X) (and f3 is not a zero divisor of O(X)) is defined as my . (f) =
my x(f1) — my x(f2). It is straightforward to check that

Vyx = {f € M(X) | myx(f) =0} D O(X)

is a discrete valuation ring.
Next, we want to prove that given Y as above we can find a uniformizer h € O(X)
of my generating Jy , for almost all points x € Y. We recall that a global analytic subset
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W C X always admits a positive equation, that is, a nonnegative function g € O(X)
whose zero set is Z(g) = W. One can take, for instance, g = f12 + -+ fqz, where
fi...  fg € O(X) are such that W = {f = 0,..., f, = 0}. Note that any such
equation has multiplicity greater than 1 over Y. In particular my , and consequently also
Vy.x, do not depend on the point x € Y provided Jy  is principal.

Lemma 1.2. Let Y C X be an irreducible global analytic subset of codimension 1 such
that Jy,, is principal for some p € Y. Then there is a uniformizer h € O(X) of my such
that hyOx x = Jy  for all x € Y off a real analytic set of codimension 1 in Y. Moreover,
given any global analytic subset Y' C X such that Y ¢ Y’ the uniformizer h can be
chosen so that Z(h) N'Y' has no components of codimension 1 in X.

Proof. Assume Jy , = gOx ,. By Cartan’s Theorem A there are a finite number of global
analytic functions on X which generate the ideal Jy, ,. At least one of these functions, call
it f, has multiplicity 1 at p along Y.

Let X,Y ¢ Q C C" where Q2 is a Stein open neighbourhood of R" in C", be
complexifications of X and Y, respectively. Up to shrinking €2, the function f € O(X)
can be extended to a global analytic function on X, which will still be called f. The
ideal J , = I(Y)Og , is also principal generated by the same g, and f), = v),g, where
vy € O3, » \ Iy, » Then, in a small complex neighbourhood U of p where v is defined,
fx generates Jy | for all x € Yynu \ {v = 0}. This last set is not empty, because Y is
pure dimensional; so, the set of points at which f is a generator of Jy x is not empty.

Consider the coherent sheaf of ideals J defined by J, = (f,0 Ko Jy’x), where
x € Q, thatis, h, € J, if and only if hyJy . C fxOx . Thus dx = O%., if and only if
fx generates Jy . Therefore, the support

supp(O5/d) = {x € X | fx does not generate Jy  }

is a closed analytic set W which does not contain Y. As ¥ is irreducible, Y N W has
codimension at least 1 in Y. Hence, f, generates J;’ , forall x € Y \ W. Then also fx
generates Jy , forallx € Y \ W, where W = W NR".

Note that WNY is a subset of codimension at least 1 in Y. For suppose that W O ¥max,
where Ymax denotes the part of maximal dimension of Y. Then W > Y and so W DY.
But as ¥ is the complexification of Y, this in turn would imply W O Y, which is a
contradiction.

Now, let Y’ be any analytic set not containing Y. Take positive equations fy, fy €
O(X) of Y and Y’, respectively. Then f = fy/ f + fy has the required properties. O

Thus we can just write my and Vy for the multiplicity along Y and its valuation ring. The
next proposition gives another characterization of Vy.

Proposition 1.3. Let Y C X be an irreducible global analytic subset of codimension 1
such that Y NReg X # (. Then Vy = O(X)(y). In particular, my is a real valuation.

Proof. First of all, it is easy to check that Vy D O(X)(y).
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To prove the other inclusion, take some point x € Reg Y N Reg X, which exists, since
otherwise Reg ¥ C Sing X and then Y C Sing X. Let m, C O(X) be the ideal of analytic
functions on X vanishing at x. As m, D I(Y), we have O(X) ;) = (O(X)m,) 1)
The ring O(X)m, is regular (cf. [ABR96| Proposition VIIL.4.4]), so its localization at
1 (Y)O(X)m,, which is a prime ideal of height one, is a discrete valuation ring. Hence,
O(X)](Y) D Vy.

Finally, note that the residue field of O(X);(y) is the field of meromorphic functions
on Y, which is a real field. O

2. Divisors

Let X be a global analytic set in R" as before. Set g = dim X.

Definition 2.1. Let {Y;};cs be alocally finite family of global irreducible analytic subsets
of X, with foreveryi,dimY; = g — 1 and Y; N"Reg X # 0. A divisor in X is the (formal)

sum

Z n;Y;

ieJ
where n; € Z. The divisor is called reduced if n; = 1 for all i and positive when n; > 0.
The support of a divisor is the global analytic set ¥ = |J; ¥;. It is a global analytic
subset of X, because the family {Y;};cs is locally finite. The Y; in the family are called
components of the divisor.

Finally, we say that two divisors Y, Y’ are coprime if their supports do not share any

irreducible component.

The set D of divisors has a natural structure of abelian group.

The multiplicities my, along the components of a divisor are well defined. We shall say
that Y = ), _; n;Y; is the divisor of an analytic function g and we shall write Y = div(g)
if my,(g) = n; and the zero set of g is the support of Y. In this case we shall call ¥
principal.

Let Y be (the support of) a divisor. Now by classical results on triangulations (cf.
[E0j64]), we may find a locally finite triangulation of the couple (X, Y); this means that
we have a simplicial complex K, together with a subcomplex Ky, and a homeomorphism
f : K — X such that f(Ky) = Y and for each simplex o of K, the restriction f|s
is an analytic isomorphism. So, for any j, we have isomorphisms f; : H}’O(K ,Ly) —
H;?O(X , ).

Here H}X’ (X, Zy) is the homology group based on infinite chains; for the definition
and generalities on the groups Hj°° (X, Z,) we refer to [Mas7§]].

Also, by the construction above, each component Y; of the divisor defines in a natural
way an element [Y;] in the group Hf;o_l(X , Z»); note that a real analytic set carries a
fundamental class (cf. [BH61]]). Since any two such triangulations are PL-equivalent by
Hauptvermutung (cf. [SY84]), this fact allows one to define a group homomorphism

D — H;”il(X, Zs)
sending the divisor Y to the class ) _; n;[Y;].
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From now on we shall use the same symbol for both a divisor and its support when
there is no risk of confusion.

We shall find for any reduced divisor Y of X what we will call a generic equation,
that is, we shall find an analytic function 4 vanishing on Y with multiplicity 1 along each
component Y; of Y.

Theorem 2.2 (Generic equation). Let Y = Y Y; be a reduced divisor of X. Then there
exists h € O(X) suchthat my,(h) =1 foralli € I. In particular, h changes sign at every
point of maximal dimension of Y and it is a local generator of Jy x for all x € Y off an
analytic set of codimension 1 in Y.

Moreover, given any global analytic subset W C X not containing any component
of Y the function h can be so chosen that Z(h) N W has codimension at least 2 in X.

Proof. For each x € X we write J, for the finite set of indices i € J such that x € ¥;.
Then we define the coherent sheaf J of ideals by

Ix = (l_[ hi x, H gy,v,x),

iedy iely

where each £; is a uniformizer of my, not vanishing on Y}, for j # i (cf. Lemma[l.Z) and
8y, is a positive equation of Y;. Since for every x, Jy is generated by two functions, the
sheaf J is globally generated by finitely many global sections fi, ..., f- (cf. [Coe67]).
Note that for each Y; at least one f; has multiplicity one along Y;.

Set Iy = ¥ and define I; = {i € I |my,(fj) =1} \ Ut/:_ol I;. We define the functions
fi=1Jj+ej.j=1.....r, where ¢; is a positive equation of { J;¢;, Yi.

Note that Z(fj’) = Uielj_ Y; and in(fj/) = 1 fori € I;. Moreover for each Y; there
is exactly one fj/ vanishing on ¥;. So f = f{... f/ has multiplicity one along each ¥;.

Finally, as in the proof of Lemma 1.2, if gy, gw € O(X) are positive equations of
Y and W, respectively, then the zero set of f = gw f + gy intersects W along a set of
codimension at least 2. O

This theorem says, in particular, that the zero set of 4 can be written as Y U Y’ for some
analytic set Y’. In general we can say little about the set Y’ of “extra” zeroes of the
function A, except that, if it is a divisor, it is coprime with ¥ and can be chosen coprime
with any divisor W fixed in advance.

Thus, two questions arise. Is it possible to find a generic equation of Y being a local
generator of Jy , at every x € Y? And, what can be said about Y’? In the next section we
will answer these questions under some additional hypotheses on the sheaf Jy and on the
space X.

If Y is a divisor, then a positive equation of ¥ has even multiplicity along each com-
ponent Y; of Y. In the next theorem we show that given any sequence {m; = 2n;};c; of
even positive integers we can find a positive equation of ¥ with multiplicity precisely m;
along each Y;.

Theorem 2.3 (Positive equation). Let Y = ) 2n;Y; be a positive even divisor. Then
there is a positive analytic function h such that Y = div(h).
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Proof. With the same notations of the previous theorem we define the coherent sheaf

g =TT TT &)

iely iedy

Again by [Coe67] this sheaf is generated by a finite number of global sections f1, ..., fr.
Let h = fl2 + -+ frz. It is straightforward to see that % is a positive equation of
Y=UY.

Now, for a given Y¥; take some pointx € ¥; \ ;i ¥j such that h; , generates Jy, x.
Then h?’x generates J,, so (h;l’x) = Jdx = (fix,---» frx). Thus, my,(f¢) > n; for
all ¢ = 1,...,r and my, (fx) = n; for some k. As my, is a real valuation, we have
my; (h) = 2ming{my,.(fg)} = 2n;. [m}

As a corollary of the last two theorems, we prove that for any divisor Y = )", n;Y; there
is a meromorphic function f such that my,(f) = n; for each i € I. But note again that,
unless all multiplicities are even, the set of points where f is zero or not analytic can be
strictly larger than supp Y.

Corollary 2.4. LetY =Y m;Y; be adivisor in X where {m;} is any sequence of integers.
Then there is f € M(X) such that my,(f) = m; foralli € I.

Proof. Write m; = 2n; or m; = 2n; + 1 according to the parity of m;. By the theorem
above, there is a sum of squares h_ € O(X) such that my, (h_) = 2|n;| for all i € I such
thatn; < Owith Z(h_) = Un,-<0 Y;. Similarly there is a sum of squares 24 € O(X) such
that my, (h4) = 2n; for alli € I such that n; > 0. Take g € O(X) such that my,(g) =1
when m; is odd and not vanishing on any Y; such that m; is even.

Then f = hig/h_ has the required multiplicities. To check this just note that
my, (f) = my, (h4) + my, (g) — my, (h_). o

A similar result has been proved in [ADRO3] in the case of a real normal analytic sur-
face X.

3. Locally principal divisors

Let X be again a global analytic set in R”, of dimension ¢, well-reduced.

Let Y C X be a reduced divisor; we are interested in the following question. Under
what hypotheses is the ideal /(Y a principal ideal in O(X), that is, there is g € O(X)
such that ¥ = div(g)? Note that if a global function g generates /(Y), then X \ Y has at
least two connected components and the set {y € Y | dimy ¥ = dimy, X — 1} bounds one
of the regions where g has a given sign. So, in order to have Y = div(g), the divisor Y
must disconnect X and the class [Y] must vanish in the group H;”il(X , Z»). However
these conditions are not sufficient, as the following example shows.

Example 3.1. Consider the set

X={(x,y,2) eR| 22 =x*+y4
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andputY ={p € X | x =0,z > 0}. Then Y is a parabola and [Y] = 0 in H;"’_l(X, 73).
This is clear since Y is the boundary of the open set {x > 0, z > 0} X. However the ideal
1(Y)Ox o is not principal; to see this one can apply [Mum88|, Prop. 2, p. 384], or check it
directly. If it were principal, X \ Y would split into two principal open semianalytic sets,
which is not the case, as proved in [PerO1]].

The previous example shows that another necessary condition for Y to be principal is
that the ideal sheaf I (Y)Oy is locally principal, that is, for any point x € X there is a
function germ f € Jy . that generates the stalk Jy, , for any y in a neighbourhood of x.
So, from now on we will assume this condition. In case X is not singular this condition
follows from [Y] = 0 as proved in [AB94]]. In fact, it is shown there that in the nonsingular
situation the condition [Y] = 0 directly implies that / (Y)Ox is principal.

In order to generalise this result to the singular case we shall use some classical exact
sequences of coherent sheaves and the vanishing of the cohomology with coefficients in
a coherent sheaf.

As a first step we shall improve Theorem 2.2, in the sense that we will find a function
h vanishing with multiplicity one not only along Y but along its whole zero set.

This result is proved in [BP04] for X nonsingular.

Proposition 3.2. Let X C R" be a global analytic set and let Y C X be a reduced divisor
such that Jy is locally principal. Then there are an open neighbourhood U of X in R"
and global analytic hypersurfaces W, W' of U such that I (W U W') is generated by an
analytic function h € 0,(U), WN X =Y and W’ is an analytic manifold transversal to
X and Y. Hence, if we set Y = W' N X then the ideal I(Y UY'") C O(X) is generated
by h|x, and in particular h generates the stalk Jy . at any point x € Y \'Y'.

Proof. Since Jy is locally principal, for any x there is a germ fy € Ox , that generates
Jy,y for any y in an open neighbourhood U, of x. So, refining the open covering {Uy }rex,
we can find a countable open covering {U;} of X and analytic functions f; on U; such
that f;Ox = Jy,, for any x € U;; hence, f;/f; is invertible on U; N U;. These functions
define an analytic cocycle in H l(X , 0%), that is, an analytic line bundle F on X. The
collection { f;} defines a section of F vanishing exactly on Y.

We may find open sets V; C R” such that V; N X = U;. Since Oy is a coherent sheaf,
each f; extends to an analytic function F; on the open set V; of R”.

Moreover, f;/f; being invertible, after shrinking the V;’s we may assume that F; / F;
is invertible on V; N V;. So, V = | J; V; is an open neighbourhood of X in R" and the
functions F;/F; : ViNV; — O* define an analytic line bundle G on V, extending F. The
collection {F;} defines an analytic section of G whose zero set W cuts X along Y.

We may find an analytic section G = {G;} of G transversal to the zero section (cf.
[Tog80]), hence its zero set is an analytic manifold W’ in V. We want to prove that
I(W U W) is principal in O, (V). Arguing as in [BP04], consider the line bundle defined
by F; G; whose cocycle is Fisz_z. We have to prove that this cocycle (and hence the line

bundle) is trivial, i.e., F;G;/(F;Gj) = k;lki, where A; € O (Vy); if so, {F;G;A;} glue
together and give a generator i for I (W U W’). Define Y/ = W' N X; then h|x generates
(Y UY).
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Consider the exponential map and the associated usual exact sequence of coherent
sheaves
0— Ox — O% — 0%/0F =7, — 0.

Since H (X, Ox) = 0 for i > 0, it induces an isomorphism between H!(X, Z;) and
H'(X, 0%). Under this isomorphism the image of a line bundle is the cocycle of the
signs of its transition functions.

In our case F;G;/(F;G;j) = Fl.2 / sz, so the line bundle is trivial and the proof is
complete. O

Remark 3.3. Itis easy to check that if {Y;};<7 is a locally finite family of locally principal
divisors then | ¥; is also a locally principal divisor. On the other hand, we can have a
locally principal divisor with some components which are not locally principal.

For example, take X C R3 to be the cone of equation z2 = x> + y? and consider the
divisor Y = {x = 0} N X which is locally principal with generator g = x. The divisor ¥
splits into two straight lines Y and Y5 neither of which is locally principal.

We are ready to prove our main result.

Theorem 3.4. Let X be a global analytic set in R" and g = dim X. Assume that the
ideal 1(X) C O(R™) is prime. Let Y C X be a reduced divisor such that its ideal sheaf
Jy = I1(Y)Oy is locally principal; assume that [Y] = 0 in Hgo_l (X, Zy) and that X \'Y
is not connected. Then, there is an open neighbourhood U of the set Xmax = {x € X |
dim, X = g} and g € Ox(U) such that Jy x = gOx x for any x € U; in particular, if X
has pure dimension q, then Y = div(g).

Proof. Arguing as in[3.2] we have to prove that there exists U as stated such that the line
bundle F defined by Y is trivial when restricted to U; to do this it is enough to find local
generators { f; } of Jy on a countable open covering {U;} of a neighbourhood of Xp,ax such
that filU,-ﬁUj and ijU,nt have the same sign.

Take a locally finite triangulation f : K — X of the couple (X, Y); here K is a
simplicial complex, and there is a subcomplex Ky such that f(Ky) = Y. In particular,
for any j, we have isomorphisms f : H}?O(K, Zo) — H}X’(X, 7).

The fact that [Y] = 0 means that the union of all ¢ — 1 simplexes in Ky bounds some
subcomplex H of K. The boundary of the region f(H) C X is the set Ynax of points in
Y where Y has dimension g — 1.

So, for each j such that U; N Xmax # @, we may choose local generators g; € Ox (U;)
in such a way that g; generates Jy on U; and it is positive on f(H) N U; \ Y, while if
f(H) N U; = @, we choose g; such that g; > 0 when U; lies in the same connected
component of X \ Y as some component of f(H) and g; < 0 otherwise.

Hence g;/gj > 0 on U; N Uy, and F is trivial when restricted to U. This means that
we can find analytic functions {;} € O*(U;) such that 8i/g = Aj/Ai. So, the sections
gihi 1 Up — Oy satisfy gi)w'|U,-mU,- = gj)»j|U,.mU_/., that is, they define an analytic function
gon U = |J U;; by construction, g, generates Jy , for any x € U. m]

Corollary 3.5. Under the hypothesis of Theorem if X is of pure dimension then Y is
principal. In particular, when X is coherent, we have Y = div(g) for some g € O(X).
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Remark 3.6. Note that when X is a manifold, the condition [Y] = 0O implies that Y
divides X into two or more connected components and it is the boundary of some of
them. Nevertheless this is not true in general, not even in the case of a coherent singular
space X: as an example one can consider X to be a real 2-dimensional torus with one
meridian collapsed to a point. One can easily write an analytic function on R3 with such
a zero set. Take Y to be any other meridian. Then [Y] = 0, since it is homotopic to
one point, and of course Y is locally principal, but it cannot be principal because its
complement is connected.

As a consequence of Theorem [3.4] we have the following analogue of a result by
Shiota ([Shi81]) that may be found in [BCR87, 12.4.1].

Corollary 3.7. Let X be a global coherent analytic set in R" and assume that the ideal
I(X) C OR") is prime. Let p;, i € N, be prime real ideals in O(X) of height 1. Denote
by Y; the associated divisor, i.e. the zero set of p;, and assume that the family {Y;}; is
locally finite and that for any i the ideal sheaf p;Ox is locally principal. Then the ideal

[Tv

is principal if and only if the cycle ) ; a;[Y;] is zero in Hg‘il(X, Zn) and X \ Uy, paa Yi
is not connected.

Proof. Since the family {Y;}; of irreducible divisors is locally finite, the ideal sheaf
I p?"O x is also locally principal. Put @; = 2k; or a; = 2k; 4+ 1 according to the parity
of a;. Split the class ) _; a;[Y;] as

D2kl Y il

a;i=2k;+1

Note that the ideal sheaf J = []; pizk[ Oy is principal. In fact it is locally generated by a
square, hence, arguing as in the proof of Theorem 3.4] its associated line bundle is trivial,
which in turn implies that we can find a global section g of J such that g, generates its
stalk at any pointx € X. Also, Y = ) a;=2k;+1 Yi satisfies the hypothesis of Theorem ,
so its ideal is principal, say generated by f. So, fg generates [[; p;” as desired.

The converse is clear. O
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