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Abstract. We prove that any divisor Y of a global analytic set X ⊂ Rn has a generic equation,
that is, there is an analytic function vanishing on Y with multiplicity one along each irreducible
component of Y . We also prove that there are functions with arbitrary multiplicities along Y . The
main result states that if X is pure dimensional, Y is locally principal, X \ Y is not connected and
Y represents the zero class in H∞

q−1(X,Z2) then the divisor Y is globally principal.
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Introduction

In this paper we prove that any divisor Y of a global analytic set X ⊂ Rn has a generic
equation, that is, there is an analytic function vanishing on Y with multiplicity one along
each irreducible component of Y (we refer to Section 2 below for the definition of divisor).
Furthermore, it is proved that there are functions with arbitrary multiplicities along Y . Un-
fortunately we cannot infer, in general, that Y is the zero set of this equation. Thus, one
can ask under what conditions there is a global analytic function g such that Y = div(g),
in other words g generates the ideal IY . We find, at least when the space X is of pure di-
mension, three conditions. The first one is an obvious local condition: the divisor must be
locally principal. It is easy to find examples where it is not locally principal, even when
the divisor has codimension 1 at every point. The second condition is a topological con-
dition: a principal divisor Y always has null fundamental class in the group H∞q−1(X,Z2).
Also a third topological condition is required, thatX \Y is not connected. This is because
a generator of IY cannot have constant sign, for instance at the points y ∈ Y which are
regular for both X and Y .

We are able to prove that these conditions are sufficient for Y to be principal when X
is pure dimensional, for instance when X is a coherent analytic set.

We endow X with its “best” coherent structure; by Cartan’s Theorem B we have an
isomorphism between the groups H 1(X,O∗) and H 1(X,Z/2), so the conditions above
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imply that the line bundle defined by the local generators of IY is trivial in a neighbour-
hood of the set Xmax = {x ∈ X | dimXx = dimX = q}, which, in turn, enables us to
find a global generator on the same neighbourhood (see Theorem 3.4 below). As far as
we know, this result was known only for analytic manifolds.

Using the principality conditions above and the notion of multiplicities along a divisor
of analytic functions, which we will discuss in Section 1, for a coherent analytic set we
prove an equivalent condition for an ideal of the type∏

i

p
ai
i

to be principal, where pi is a prime ideal in O(X), namely that the associated divisor
Y =

∑
aiYi , where Yi is the zero set of pi, has vanishing fundamental class [Y ] = 0 ∈

H∞q−i(X,Z/2), its support disconnects X and for all i the ideal sheaf piOX is locally
principal.

These results can be seen as an improvement of the solution of Cousin’s Second Prob-
lem (see, for example, Chapter VIII of [GR65]) in the case of an analytic manifoldX such
that H 2(X,Z) = 0, since here we only assume that X is pure dimensional.

The paper is organized as follows: in the first section we give some definitions and
preliminary results on multiplicities. Section 2 is devoted to the problem of finding a
generic equation of a divisor and a positive equation with arbitrary given multiplicities.
Finally, in Section 3 we prove (for a pure dimensional space X) that the three conditions
above imply Y = div(g).

1. Multiplicities

Let X ⊂ Rn be a global analytic set, i.e. the zero set of finitely many analytic func-
tions in ORn(Rn) = On(Rn). Recall that a global analytic set admits coherent structures
and admits complexifications, i.e. there exists a coherent ideal sheaf F ⊂ On such that
X = Supp On/F and there exists a complex analytic space X̃ in a suitable complex Stein
neighbourhood of Rn in Cn such that X̃ ∩ Rn = X; moreover these three properties (to
be global, to have a coherent structure and to be the real part of a complex analytic set)
are equivalent (see Prop. 15 in [Car57] and [Tog67]).

One can prove that among the sheaves defining these coherent structures there is a
largest one, which we will denote by IX; also among these complex analytic sets there is a
smallest one, that we still denote X̃. Moreover, for any real point x, IX̃,x = IX,x⊗RC, i.e.
they define on X the same structure, the so called well-reduced structure (cf. [ABT75],
[Gal76]). It can also be verified that IX is precisely the sheaf generated by the ideal
of analytic functions vanishing on X, namely IX,x = I (X)On,x where I (X) = {f ∈
On(Rn) | f = 0 on X} (cf. [BP04]).

We will call OX = On/IX the sheaf of analytic functions on X. The ring of global
sections of this sheaf is O(X) = On(Rn)/I (X) and the ring M(X) of meromorphic
functions on X will be defined as the total ring of fractions of O(X).
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Note that the ideal I (X) may be prime even if X is not irreducible as analytic space.
A classical example is

X = {x2
− (z2

− 1)y2
= 0} ⊂ R3.

The polynomial p = x2
− (z2

− 1)y2 is irreducible as analytic function and generates
I (X). Nevertheless, X is the union of two analytic subspaces X1 and X2 that are not
global, each one isomorphic to a Whitney umbrella.

So, from now on we shall call a global analytic set X irreducible if it does not admit
proper global analytic subsets of the same dimension, that is, if I (X) is a prime ideal in
On(Rn).

Remark 1.1. The ideal sheaf IX is not in general a sheaf of real ideals. More precisely
R
√

IX,x 6= IX,x if and only if there are some couples of complex conjugate components
Zx, Zx ⊂ X̃x that intersectX in the same real component Zx ∩Zx of dimension less than
dimX; for instance this is the case when dimXx < dimX = q. The ideal sheaf R

√
IX,

which is not coherent in general, is the ideal of all analytic germs vanishing at X. Take
now g ∈ OX,x with g ∈ On,x and g /∈ IX,x ; then either g ∈ R

√
IX,x , or g /∈ R

√
IX,x . In the

first case g vanishes on the set germ Xx ; in the second one we may consider the sign of g
on Xx and the set germs {g ≥ 0}, {g ≤ 0} are defined as well as the set {g = 0} ⊂ Xx .
This is because the sign of g in a neighbourhood of x in X is the same as the sign of
g (mod R

√
IX,x) in the same neighbourhood, and the quotient map On,x → On,x/

R
√

IX,x

factorizes through OX,x . In particular OX,x and On,x/
R
√

IX,x have the same group of
unities.

Now, let Y ⊂ X be an irreducible global analytic subset of codimension 1. We define
the coherent sheaf of ideals IY = I (Y )OX, where I (Y ) = {f ∈ O(X) | f = 0 on Y }.

Suppose that at some point x ∈ Y the ideal IY,x is principal, say IY,x = gOX,x for
some g ∈ OX,x . Then the germ of any f ∈ O(X) at x can be written as fx = grv for
some nonnegative integer r and some v /∈ IY,x .

Note that r does not depend on the generator g. Indeed, suppose fx = hsw for another
generator h and, say, s ≤ r . Then there is a unit u such that h = ug, hence wusgs = vgr ,
so vgr−s = wus /∈ IY,x . This implies s = r .

Also, since IY,x is coherent the relation f = ugr holds in a neighbourhood of x, and
g generates IY,y for y close to x outside the zero set of u. In particular the integer r is the
same for x and y.

The integer r will be called the multiplicity of f along Y at the point x and will be
denoted as mY,x(f ). The multiplicity of a meromorphic function f = f1/f2 ∈ M(X)

where f1, f2 ∈ O(X) (and f2 is not a zero divisor of O(X)) is defined as mY,x(f ) =
mY,x(f1)−mY,x(f2). It is straightforward to check that

VY,x := {f ∈M(X) | mY,x(f ) ≥ 0} ⊃ O(X)

is a discrete valuation ring.
Next, we want to prove that given Y as above we can find a uniformizer h ∈ O(X)

of mY generating IY,x for almost all points x ∈ Y . We recall that a global analytic subset
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W ⊂ X always admits a positive equation, that is, a nonnegative function g ∈ O(X)

whose zero set is Z(g) = W . One can take, for instance, g = f 2
1 + · · · + f

2
q , where

f1, . . . , fq ∈ O(X) are such that W = {f1 = 0, . . . , fq = 0}. Note that any such
equation has multiplicity greater than 1 over Y . In particular mY,x , and consequently also
VY,x , do not depend on the point x ∈ Y provided IY,x is principal.

Lemma 1.2. Let Y ⊂ X be an irreducible global analytic subset of codimension 1 such
that IY,p is principal for some p ∈ Y . Then there is a uniformizer h ∈ O(X) of mY such
that hxOX,x = IY,x for all x ∈ Y off a real analytic set of codimension 1 in Y . Moreover,
given any global analytic subset Y ′ ⊂ X such that Y 6⊂ Y ′ the uniformizer h can be
chosen so that Z(h) ∩ Y ′ has no components of codimension 1 in X.

Proof. Assume IY,p = gOX,x . By Cartan’s Theorem A there are a finite number of global
analytic functions onX which generate the ideal IY,p. At least one of these functions, call
it f , has multiplicity 1 at p along Y .

Let X̃, Ỹ ⊂ � ⊂ Cn, where � is a Stein open neighbourhood of Rn in Cn, be
complexifications of X and Y , respectively. Up to shrinking �, the function f ∈ O(X)

can be extended to a global analytic function on X̃, which will still be called f . The
ideal IỸ ,p = I (Ỹ )OX̃,p is also principal generated by the same g, and fp = vpg, where
vp ∈ OX̃,p \ IỸ ,p. Then, in a small complex neighbourhood U of p where v is defined,
fx generates IỸ ,x for all x ∈ Ỹ ∩ U \ {v = 0}. This last set is not empty, because Ỹ is
pure dimensional; so, the set of points at which fx is a generator of IY,x is not empty.

Consider the coherent sheaf of ideals J defined by Jx = (fxOX̃,x : IỸ ,x), where
x ∈ �, that is, hx ∈ Jx if and only if hxIỸ ,x ⊂ fxOX̃,x . Thus Jx = OX̃,x if and only if
fx generates IỸ ,x . Therefore, the support

supp(OX̃/J) = {x ∈ X̃ | fx does not generate IỸ ,x}

is a closed analytic set W̃ which does not contain Ỹ . As Ỹ is irreducible, Ỹ ∩ W̃ has
codimension at least 1 in Ỹ . Hence, fx generates IỸ ,x for all x ∈ Ỹ \ W̃ . Then also fx
generates IY,x for all x ∈ Y \W , where W = W̃ ∩ Rn.

Note thatW∩Y is a subset of codimension at least 1 in Y . For suppose thatW ⊃ Ymax,
where Ymax denotes the part of maximal dimension of Y . Then W ⊃ Y and so W̃ ⊃ Y .
But as Ỹ is the complexification of Y , this in turn would imply W̃ ⊃ Ỹ , which is a
contradiction.

Now, let Y ′ be any analytic set not containing Y . Take positive equations fY , fY ′ ∈
O(X) of Y and Y ′, respectively. Then f = fY ′f + fY has the required properties. ut

Thus we can just writemY and VY for the multiplicity along Y and its valuation ring. The
next proposition gives another characterization of VY .

Proposition 1.3. Let Y ⊂ X be an irreducible global analytic subset of codimension 1
such that Y ∩ RegX 6= ∅. Then VY = O(X)I (Y ). In particular, mY is a real valuation.

Proof. First of all, it is easy to check that VY ⊃ O(X)I (Y ).
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To prove the other inclusion, take some point x ∈ RegY ∩RegX, which exists, since
otherwise RegY ⊂ SingX and then Y ⊂ SingX. Let mx ⊂ O(X) be the ideal of analytic
functions on X vanishing at x. As mx ⊃ I (Y ), we have O(X)I (Y ) = (O(X)mx )I (Y ).
The ring O(X)mx is regular (cf. [ABR96, Proposition VIII.4.4]), so its localization at
I (Y )O(X)mx , which is a prime ideal of height one, is a discrete valuation ring. Hence,
O(X)I (Y ) ⊃ VY .

Finally, note that the residue field of O(X)I (Y ) is the field of meromorphic functions
on Y , which is a real field. ut

2. Divisors

Let X be a global analytic set in Rn as before. Set q = dim X.

Definition 2.1. Let {Yi}i∈J be a locally finite family of global irreducible analytic subsets
of X, with for every i, dimYi = q− 1 and Yi ∩RegX 6= ∅. A divisor in X is the (formal)
sum ∑

i∈J

niYi

where ni ∈ Z. The divisor is called reduced if ni = 1 for all i and positive when ni > 0.
The support of a divisor is the global analytic set Y =

⋃
i Yi . It is a global analytic

subset of X, because the family {Yi}i∈J is locally finite. The Yi in the family are called
components of the divisor.

Finally, we say that two divisors Y, Y ′ are coprime if their supports do not share any
irreducible component.

The set D of divisors has a natural structure of abelian group.
The multiplicitiesmYi along the components of a divisor are well defined. We shall say

that Y =
∑
i∈J niYi is the divisor of an analytic function g and we shall write Y = div(g)

if mYi (g) = ni and the zero set of g is the support of Y . In this case we shall call Y
principal.

Let Y be (the support of) a divisor. Now by classical results on triangulations (cf.
[Łoj64]), we may find a locally finite triangulation of the couple (X, Y ); this means that
we have a simplicial complexK , together with a subcomplexKY , and a homeomorphism
f : K → X such that f (KY ) = Y and for each simplex σ of K , the restriction f |σ̊
is an analytic isomorphism. So, for any j , we have isomorphisms f∗ : H∞j (K,Z2) →

H∞j (X,Z2).
Here H∞j (X,Z2) is the homology group based on infinite chains; for the definition

and generalities on the groups H∞j (X,Z2) we refer to [Mas78].
Also, by the construction above, each component Yi of the divisor defines in a natural

way an element [Yi] in the group H∞q−1(X,Z2); note that a real analytic set carries a
fundamental class (cf. [BH61]). Since any two such triangulations are PL-equivalent by
Hauptvermutung (cf. [SY84]), this fact allows one to define a group homomorphism

D→ H∞q−1(X,Z2)

sending the divisor Y to the class
∑
i ni[Yi].
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From now on we shall use the same symbol for both a divisor and its support when
there is no risk of confusion.

We shall find for any reduced divisor Y of X what we will call a generic equation,
that is, we shall find an analytic function h vanishing on Y with multiplicity 1 along each
component Yi of Y .

Theorem 2.2 (Generic equation). Let Y =
∑
Yi be a reduced divisor of X. Then there

exists h ∈ O(X) such thatmYi (h) = 1 for all i ∈ I . In particular, h changes sign at every
point of maximal dimension of Y and it is a local generator of IY,x for all x ∈ Y off an
analytic set of codimension 1 in Y .

Moreover, given any global analytic subset W ⊂ X not containing any component
of Y the function h can be so chosen that Z(h) ∩W has codimension at least 2 in X.

Proof. For each x ∈ X we write Jx for the finite set of indices i ∈ J such that x ∈ Yi .
Then we define the coherent sheaf J of ideals by

Jx =
(∏
i∈Jx

hi,x,
∏
i∈Jx

gYi ,x

)
,

where each hi is a uniformizer ofmYi not vanishing on Yj , for j 6= i (cf. Lemma 1.2) and
gYi is a positive equation of Yi . Since for every x, Jx is generated by two functions, the
sheaf J is globally generated by finitely many global sections f1, . . . , fr (cf. [Coe67]).
Note that for each Yi at least one fj has multiplicity one along Yi .

Set I0 = ∅ and define Ij = {i ∈ I |mYi (fj ) = 1} \
⋃j−1
t=0 It . We define the functions

f ′j = fj + ej , j = 1, . . . , r , where ej is a positive equation of
⋃
i∈Ij

Yi .
Note that Z(f ′j ) =

⋃
i∈Ij

Yi and mYi (f
′

j ) = 1 for i ∈ Ij . Moreover for each Yi there
is exactly one f ′j vanishing on Yi . So f = f ′1 . . . f

′
r has multiplicity one along each Yi .

Finally, as in the proof of Lemma 1.2, if gY , gW ∈ O(X) are positive equations of
Y and W , respectively, then the zero set of f = gWf + gY intersects W along a set of
codimension at least 2. ut

This theorem says, in particular, that the zero set of h can be written as Y ∪ Y ′ for some
analytic set Y ′. In general we can say little about the set Y ′ of “extra” zeroes of the
function h, except that, if it is a divisor, it is coprime with Y and can be chosen coprime
with any divisor W fixed in advance.

Thus, two questions arise. Is it possible to find a generic equation of Y being a local
generator of IY,x at every x ∈ Y ? And, what can be said about Y ′? In the next section we
will answer these questions under some additional hypotheses on the sheaf IY and on the
space X.

If Y is a divisor, then a positive equation of Y has even multiplicity along each com-
ponent Yi of Y . In the next theorem we show that given any sequence {mi = 2ni}i∈I of
even positive integers we can find a positive equation of Y with multiplicity precisely mi
along each Yi .

Theorem 2.3 (Positive equation). Let Y =
∑

2niYi be a positive even divisor. Then
there is a positive analytic function h such that Y = div(h).
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Proof. With the same notations of the previous theorem we define the coherent sheaf

Jx =
(∏
i∈Jx

h
ni
i,x,

∏
i∈Jx

g
ni
Yi ,x

)
.

Again by [Coe67] this sheaf is generated by a finite number of global sections f1, . . . , fr .
Let h = f 2

1 + · · · + f
2
r . It is straightforward to see that h is a positive equation of

Y =
⋃
Yi .

Now, for a given Yi take some point x ∈ Yi \
⋃
j 6=i Yj such that hi,x generates IYi ,x .

Then hnii,x generates Jx , so (hnii,x) = Jx = (f1,x, . . . , fr,x). Thus, mYi (f`) ≥ ni for
all ` = 1, . . . , r and mYi (fk) = ni for some k. As mYi is a real valuation, we have
mYi (h) = 2 min`{mYi (f`)} = 2ni . ut

As a corollary of the last two theorems, we prove that for any divisor Y =
∑
i niYi there

is a meromorphic function f such that mYi (f ) = ni for each i ∈ I . But note again that,
unless all multiplicities are even, the set of points where f is zero or not analytic can be
strictly larger than suppY .

Corollary 2.4. Let Y =
∑
miYi be a divisor inX where {mi} is any sequence of integers.

Then there is f ∈M(X) such that mYi (f ) = mi for all i ∈ I .

Proof. Write mi = 2ni or mi = 2ni + 1 according to the parity of mi . By the theorem
above, there is a sum of squares h− ∈ O(X) such that mYi (h−) = 2|ni | for all i ∈ I such
that ni < 0 with Z(h−) =

⋃
ni<0 Yi . Similarly there is a sum of squares h+ ∈ O(X) such

that mYi (h+) = 2ni for all i ∈ I such that ni > 0. Take g ∈ O(X) such that mYi (g) = 1
when mi is odd and not vanishing on any Yi such that mi is even.

Then f = h+g/h− has the required multiplicities. To check this just note that
mYi (f ) = mYi (h+)+mYi (g)−mYi (h−). ut

A similar result has been proved in [ADR03] in the case of a real normal analytic sur-
face X.

3. Locally principal divisors

Let X be again a global analytic set in Rn, of dimension q, well-reduced.
Let Y ⊂ X be a reduced divisor; we are interested in the following question. Under

what hypotheses is the ideal I (Y ) a principal ideal in O(X), that is, there is g ∈ O(X)

such that Y = div(g)? Note that if a global function g generates I (Y ), then X \ Y has at
least two connected components and the set {y ∈ Y | dimy Y = dimy X − 1} bounds one
of the regions where g has a given sign. So, in order to have Y = div(g), the divisor Y
must disconnect X and the class [Y ] must vanish in the group H∞q−1(X,Z2). However
these conditions are not sufficient, as the following example shows.

Example 3.1. Consider the set

X = {(x, y, z) ∈ R3
| z2
= x4

+ y4
}
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and put Y = {p ∈ X | x = 0, z ≥ 0}. Then Y is a parabola and [Y ] = 0 in H∞q−1(X,Z
2).

This is clear since Y is the boundary of the open set {x > 0, z > 0}∩X. However the ideal
I (Y )OX,0 is not principal; to see this one can apply [Mum88, Prop. 2, p. 384], or check it
directly. If it were principal, X \ Y would split into two principal open semianalytic sets,
which is not the case, as proved in [Per01].

The previous example shows that another necessary condition for Y to be principal is
that the ideal sheaf I (Y )OX is locally principal, that is, for any point x ∈ X there is a
function germ f ∈ IY,x that generates the stalk IY,y for any y in a neighbourhood of x.
So, from now on we will assume this condition. In case X is not singular this condition
follows from [Y ] = 0 as proved in [AB94]. In fact, it is shown there that in the nonsingular
situation the condition [Y ] = 0 directly implies that I (Y )OX is principal.

In order to generalise this result to the singular case we shall use some classical exact
sequences of coherent sheaves and the vanishing of the cohomology with coefficients in
a coherent sheaf.

As a first step we shall improve Theorem 2.2, in the sense that we will find a function
h vanishing with multiplicity one not only along Y but along its whole zero set.

This result is proved in [BP04] for X nonsingular.

Proposition 3.2. LetX ⊂ Rn be a global analytic set and let Y ⊂ X be a reduced divisor
such that IY is locally principal. Then there are an open neighbourhood U of X in Rn
and global analytic hypersurfaces W , W ′ of U such that I (W ∪W ′) is generated by an
analytic function h ∈ On(U), W ∩ X = Y and W ′ is an analytic manifold transversal to
X and Y . Hence, if we set Y ′ = W ′ ∩ X then the ideal I (Y ∪ Y ′) ⊂ O(X) is generated
by h|X, and in particular h generates the stalk IY,x at any point x ∈ Y \ Y ′.

Proof. Since IY is locally principal, for any x there is a germ fx ∈ OX,x that generates
IY,y for any y in an open neighbourhood Ux of x. So, refining the open covering {Ux}x∈X,
we can find a countable open covering {Ui} of X and analytic functions fi on Ui such
that fiOX,x = IY,x for any x ∈ Ui ; hence, fi/fj is invertible on Ui ∩Uj . These functions
define an analytic cocycle in H 1(X,O∗), that is, an analytic line bundle F on X. The
collection {fi} defines a section of F vanishing exactly on Y .

We may find open sets Vi ⊂ Rn such that Vi ∩X = Ui . Since OX is a coherent sheaf,
each fi extends to an analytic function Fi on the open set Vi of Rn.

Moreover, fi/fj being invertible, after shrinking the Vi’s we may assume that Fi/Fj
is invertible on Vi ∩ Vj . So, V =

⋃
i Vi is an open neighbourhood of X in Rn and the

functions Fi/Fj : Vi ∩Vj → O∗ define an analytic line bundle G on V , extending F . The
collection {Fi} defines an analytic section of G whose zero set W cuts X along Y .

We may find an analytic section G = {Gi} of G transversal to the zero section (cf.
[Tog80]), hence its zero set is an analytic manifold W ′ in V . We want to prove that
I (W ∪W ′) is principal in On(V ). Arguing as in [BP04], consider the line bundle defined
by FiGi whose cocycle is F 2

i F
−2
j . We have to prove that this cocycle (and hence the line

bundle) is trivial, i.e., FiGi/(FjGj ) = λ−1
j λi , where λi ∈ O∗n(Vi); if so, {FiGiλi} glue

together and give a generator h for I (W ∪W ′). Define Y ′ = W ′ ∩X; then h|X generates
I (Y ∪ Y ′).
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Consider the exponential map and the associated usual exact sequence of coherent
sheaves

0→ OX → O∗X → O∗X/O
+

X = Z2 → 0.

Since H i(X,OX) = 0 for i > 0, it induces an isomorphism between H 1(X,Z2) and
H 1(X,O∗X). Under this isomorphism the image of a line bundle is the cocycle of the
signs of its transition functions.

In our case FiGi/(FjGj ) = F 2
i /F

2
j , so the line bundle is trivial and the proof is

complete. ut

Remark 3.3. It is easy to check that if {Yi}i∈I is a locally finite family of locally principal
divisors then

⋃
Yi is also a locally principal divisor. On the other hand, we can have a

locally principal divisor with some components which are not locally principal.
For example, take X ⊂ R3 to be the cone of equation z2

= x2
+ y2 and consider the

divisor Y = {x = 0} ∩ X which is locally principal with generator g = x. The divisor Y
splits into two straight lines Y1 and Y2 neither of which is locally principal.

We are ready to prove our main result.

Theorem 3.4. Let X be a global analytic set in Rn and q = dimX. Assume that the
ideal I (X) ⊂ O(Rn) is prime. Let Y ⊂ X be a reduced divisor such that its ideal sheaf
IY = I (Y )OX is locally principal; assume that [Y ] = 0 in H∞q−1(X,Z2) and that X \ Y
is not connected. Then, there is an open neighbourhood U of the set Xmax = {x ∈ X |

dimxX = q} and g ∈ OX(U) such that IY,x = gOX,x for any x ∈ U ; in particular, if X
has pure dimension q, then Y = div(g).

Proof. Arguing as in 3.2 we have to prove that there exists U as stated such that the line
bundle F defined by Y is trivial when restricted to U ; to do this it is enough to find local
generators {fi} of IY on a countable open covering {Ui} of a neighbourhood ofXmax such
that fi |Ui∩Uj and fj |Ui∩Uj have the same sign.

Take a locally finite triangulation f : K → X of the couple (X, Y ); here K is a
simplicial complex, and there is a subcomplex KY such that f (KY ) = Y . In particular,
for any j , we have isomorphisms f∗ : H∞j (K,Z2)→ H∞j (X,Z2).

The fact that [Y ] = 0 means that the union of all q − 1 simplexes in KY bounds some
subcomplex H of K . The boundary of the region f (H) ⊂ X is the set Ymax of points in
Y where Y has dimension q − 1.

So, for each j such that Uj ∩Xmax 6= ∅, we may choose local generators gj ∈ OX(Uj )

in such a way that gj generates IY on Uj and it is positive on f (H) ∩ Uj \ Y , while if
f (H) ∩ Uj = ∅, we choose gj such that gj ≥ 0 when Uj lies in the same connected
component of X \ Y as some component of f (H) and gj ≤ 0 otherwise.

Hence gi/gj > 0 on Ui ∩ Uj , and F is trivial when restricted to U . This means that
we can find analytic functions {λi} ∈ O∗(Ui) such that gi/gj = λj/λi . So, the sections
giλi : Ui → OX satisfy giλi |Ui∩Uj = gjλj |Ui∩Uj , that is, they define an analytic function
g on U =

⋃
Ui ; by construction, gx generates IY,x for any x ∈ U . ut

Corollary 3.5. Under the hypothesis of Theorem 3.4 if X is of pure dimension then Y is
principal. In particular, when X is coherent, we have Y = div(g) for some g ∈ O(X).
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Remark 3.6. Note that when X is a manifold, the condition [Y ] = 0 implies that Y
divides X into two or more connected components and it is the boundary of some of
them. Nevertheless this is not true in general, not even in the case of a coherent singular
space X: as an example one can consider X to be a real 2-dimensional torus with one
meridian collapsed to a point. One can easily write an analytic function on R3 with such
a zero set. Take Y to be any other meridian. Then [Y ] = 0, since it is homotopic to
one point, and of course Y is locally principal, but it cannot be principal because its
complement is connected.

As a consequence of Theorem 3.4 we have the following analogue of a result by
Shiota ([Shi81]) that may be found in [BCR87, 12.4.1].

Corollary 3.7. Let X be a global coherent analytic set in Rn and assume that the ideal
I (X) ⊂ O(Rn) is prime. Let pi , i ∈ N, be prime real ideals in O(X) of height 1. Denote
by Yi the associated divisor, i.e. the zero set of pi , and assume that the family {Yi}i is
locally finite and that for any i the ideal sheaf piOX is locally principal. Then the ideal∏

i

p
ai
i

is principal if and only if the cycle
∑
i ai[Yi] is zero in H∞q−1(X,Z2) and X \

⋃
ai odd

Yi
is not connected.

Proof. Since the family {Yi}i of irreducible divisors is locally finite, the ideal sheaf∏
i p
ai
i OX is also locally principal. Put ai = 2ki or ai = 2ki + 1 according to the parity

of ai . Split the class
∑
i ai[Yi] as∑

i

2ki[Yi]+
∑

ai=2ki+1

[Yi].

Note that the ideal sheaf J =
∏
i p

2ki
i OX is principal. In fact it is locally generated by a

square, hence, arguing as in the proof of Theorem 3.4, its associated line bundle is trivial,
which in turn implies that we can find a global section g of J such that gx generates its
stalk at any point x ∈ X. Also, Y =

∑
ai=2ki+1 Yi satisfies the hypothesis of Theorem 3.4,

so its ideal is principal, say generated by f . So, fg generates
∏
i p
ai
i as desired.

The converse is clear. ut
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