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Abstract. Let EMBEDk→d be the following algorithmic problem: Given a finite simplicial com-
plex K of dimension at most k, does there exist a (piecewise linear) embedding of K into Rd?
Known results easily imply the polynomiality of EMBEDk→2 (k = 1, 2; the case k = 1, d = 2 is
graph planarity) and of EMBEDk→2k for all k ≥ 3.

We show that the celebrated result of Novikov on the algorithmic unsolvability of recogniz-
ing the 5-sphere implies that EMBEDd→d and EMBED(d−1)→d are undecidable for each d ≥ 5.
Our main result is the NP-hardness of EMBED2→4 and, more generally, of EMBEDk→d for all
k, d with d ≥ 4 and d ≥ k ≥ (2d − 2)/3. These dimensions fall outside the metastable range
of a theorem of Haefliger and Weber, which characterizes embeddability using the deleted prod-
uct obstruction. Our reductions are based on examples, due to Segal, Spież, Freedman, Krushkal,
Teichner, and Skopenkov, showing that outside the metastable range the deleted product obstruction
is not sufficient to characterize embeddability.

1. Introduction

Does a given (finite) simplicial complex1 K of dimension at most k admit an embedding
into Rd? We consider the computational complexity2 of this question, regarding k and
d as fixed integers. To our surprise, apparently this question has not been explicitly ad-
dressed before (with the exception of k = 1, d = 2 which is graph planarity), as far we
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1 We assume that the reader is somewhat familiar with basic notions of combinatorial topol-
ogy (introductory chapters of books like [Mun84, Hat01, Mat03] should provide a sufficient back-
ground). Terminology and basic facts concerning simplicial complexes will be recalled in Section 2.
Later on, in some of the proofs, we will need other, slightly more advanced topological notions and
results, which would take too much space to define properly. We hope that the main ideas can be
followed even when such things are skipped.

2 For basic definitions from computational complexity, such as polynomial-time algorithm, NP-
hardness, reduction, or 3-SAT the reader can refer to any introductory textbook on algorithms. Very
recent textbooks were written by Arora and Barak [AB09] and by Goldreich [Gol08]. We also
highly recommend Wigderson’s essay [Wig07].
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could find. Besides its intrinsic interest for the theory of computing, an algorithmic view
of a classical subject such as embeddability may lead to new questions and also to a better
understanding of known results. For example, computational complexity can be seen as
a concrete “measuring rod” that allows one to compare the “relative strength” of vari-
ous embeddability criteria, respectively of examples showing the necessity of dimension
restrictions in the criteria. Moreover, hardness results provide concrete evidence that for
a certain range of parameters (outside the so-called metastable range), no simple struc-
tural characterization of embeddability (such as Kuratowski’s forbidden minor criterion
for graph planarity) is to be expected.

For algorithmic embeddability problems, we consider piecewise linear (PL) embed-
dings. Let us remark that there are at least two other natural notions of embeddings of sim-
plicial complexes in Rd : linear embeddings (also called geometric realizations), which
are more restrictive than PL embeddings, and topological embeddings, which give us
more freedom than PL embeddings. We will recall the definitions in Section 2; here we
quickly illustrate the differences with a familiar example: embeddings of 1-dimensional
simplicial complexes, or simple graphs, intoR2. For a topological embedding, the image
of each edge can be an arbitrary (curved) Jordan arc, for a PL embedding it has to be a
polygonal arc (made of finitely many straight line segments), and for a linear embedding,
it must be a single straight line segment. For this particular case (k = 1, d = 2), all
three notions happen to give the same class of embeddable complexes, namely, all pla-
nar graphs (by Fáry’s theorem). For higher dimensions there are significant differences,
though, which we also discuss in Section 2.

Here we are mainly interested in embeddability in the topological sense (as opposed
to linear embeddability, which is a much more geometric problem and one with a very
different flavor), but since it seems problematic to deal with arbitrary topological em-
beddings effectively, we stick to PL embeddings, which can easily be represented in a
computer.

We thus introduce the decision problem EMBEDk→d , whose input is a simplicial
complexK of dimension at most k, and where the output should be YES or NO depending
on whether K admits a PL embedding intoRd .

We assume k ≤ d , since a k-simplex cannot be embedded inRk−1. For d ≥ 2k+1 the
problem becomes trivial, since it is well known that every finite k-dimensional simplicial
complex embeds in R2k+1, even linearly (this result goes back to Menger). In all other
cases, i.e., k ≤ d ≤ 2k, there are both YES and NO instances; for the NO instances one
can use, e.g., examples of k-dimensional complexes not embeddable in R2k due to Van
Kampen [vK32] and Flores [Flo34].

Let us also note that the complexity of this problem is monotone in k by definition,
since an algorithm for EMBEDk→d also solves EMBEDk′→d for all k′ ≤ k.

Tractable cases. It is well known that EMBED1→2 (graph planarity) is linear-time solv-
able [HT74]. Based on planarity algorithms and on a characterization of complexes em-
beddable inR2 due to Halin and Jung [HJ64], it is not hard to come up with a linear-time
decision algorithm for EMBED2→2. Since we do not know of a reference, we outline such
an algorithm in Appendix A. Daniel Král’ (personal communication) has independently
devised a linear-time algorithm that actually produces an embedding.
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There are many problems in computational topology that are easy for low dimensions
(say up to dimension 2 or 3) and become intractable from some dimension on (say 4 or 5);
we mention some of them later. For the embeddability problem, the situation is subtler,
since there are tractable cases in arbitrarily high dimensions, namely, EMBEDk→2k for
every k ≥ 3.

The algorithm is based on ideas of Van Kampen [vK32], which were made precise
by Shapiro [Sha57] and independently by Wu [Wu65]. Since we are not aware of any
treatment in an algorithmic context, and since some of the published descriptions have
a small flaw (a sign error) and others use a somewhat advanced language of algebraic
topology, we give a self-contained elementary presentation of the algorithm (but not a
proof of correctness) in Appendix D.

Hardness. According to a celebrated result of Novikov ([VKF74]; also see, e.g., [Nab95]
for an exposition), the following problem is algorithmically unsolvable: Given a d-dimen-
sional simplicial complex, d ≥ 5, decide whether it is homeomorphic to Sd , the d-
dimensional sphere. By a simple reduction we obtain the following result:

Theorem 1.1. EMBED(d−1)→d (and hence also EMBEDd→d ) is algorithmically unde-
cidable for every d ≥ 5.

This has an interesting consequence, which in some sense strengthens results of Brehm
and Sarkaria [BS92]:

Corollary 1.2. For every computable (recursive) function f : N → N and for every
d ≥ 5 there exist n and a finite (d−1)-dimensional simplicial complexK with n simplices
that PL-embeds in Rd but such that no subdivision of K with at most f (n) simplices
embeds linearly inRd .

Our main result is hardness for cases where d ≥ 4 and k is larger than roughly 2
3d .

Theorem 1.3. EMBEDk→d is NP-hard for every pair (k, d) with d ≥ 4 and d ≥ k ≥
(2d − 2)/3.

We prove a special case of this theorem, the NP-hardness of EMBED2→4, in Section 4;
the proof is somewhat more intuitive than for the general case and it contains most of the
ideas. All the remaining cases are proved in Section 5.

Let us briefly mention where the dimension restriction k ≥ (2d − 2)/3 comes from.
There is a certain necessary condition for embeddability of a simplicial complex into
R
d , called the deleted product obstruction. A celebrated theorem of Haefliger and Weber,

which is a far-reaching generalization of the ideas of Van Kampen mentioned above,
asserts that this condition is also sufficient provided that k ≤ 2

3d − 1 (these k are said
to lie in the metastable range). The condition on k in Theorem 1.3 is exactly that k must
be outside of the metastable range (we refer to Appendix B for a brief discussion and
references).

There are examples showing that the restriction to the metastable range in the Hae-
fliger–Weber theorem is indeed necessary, in the sense that whenever d ≥ 3 and d ≥
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k > (2d − 3)/3, there are k-dimensional complexes that cannot be embedded into Rd

but the deleted product obstruction fails to detect this. We use constructions of this kind,
namely, examples due to Segal and Spież [SS92], Freedman, Krushkal, and Teichner
[FKT94], and Segal, Skopenkov, and Spież [SSS98], as the main ingredient in our proof
of Theorem 1.3.

d =
k = 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P + + + + + + + + + + + +

2 P ? NPh + + + + + + + + + +

3 ? NPh NPh P + + + + + + + +

4 NPh UND NPh NPh P + + + + + +

5 UND UND NPh NPh ? P + + + +

6 UND UND NPh NPh NPh ? P + +

7 UND UND NPh NPh NPh ? ? P

Table 1. The complexity of EMBEDk→d (P= polynomial-time solvable, UND= algorithmically
undecidable, NPh = NP-hard, + = always embeddable, ? = no result known).

Discussion. The current complexity status of EMBEDk→d is summarized in Table 1. In
our opinion, the most interesting currently open cases are (k, d) = (2, 3) and (3, 3).

These are outside the metastable range, and it took the longest to find an example
showing that they are not characterized by the deleted product obstruction; see [GS06].
That example does not seem to lend itself easily to a hardness reduction, though.

A variation on the proof of our undecidability result (Theorem 1.1) shows that both
EMBED2→3 and EMBED3→3 are at least as hard as the problem of recognizing the 3-
sphere (that is, given a simplicial complex, decide whether it is homeomorphic to S3).
The latter problem is in NP [Iva08, Sch04], but no hardness result seems to be known.

For the remaining question marks in the table (with d ≥ 9), which all lie in the
metastable range, it seems that existing tools of algebraic topology, such as Postnikov
towers and/or suitable spectral sequences, could lead at least to decision algorithms, or
even to polynomial-time algorithms in some cases. Here the methods of “constructive al-
gebraic topology” mentioned below, which imply, e.g., the computability of higher homo-
topy groups, should be relevant. However, as is discussed, e.g., in [RRS06], computability
issues in this area are often subtle, even for questions considered well understood in clas-
sical algebraic topology. We hope to clarify these things in a future work.

Our NP-hardness results are probably not the final word on the computational com-
plexity of the corresponding embeddability problems; for example, some or all of these
might turn out to be undecidable.

Related work. Among the most important computational problems in topology are the
homeomorphism problem for manifolds, and the equivalence problem for knots. The first
one asks whether two given manifolds M1 and M2 (given as simplicial complexes, say)
are homeomorphic. The second one asks whether two given knots, i.e., PL embeddings
f, g : S1

→ R
3, are equivalent, i.e., whether there is a PL homeomorphism h : R3

→ R
3

such that f = h ◦ g. An important special case of the latter is the knot triviality problem:
Is a given knot equivalent to the trivial knot (i.e., the standard geometric circle placed
inR3)?
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There is a vast amount of literature on computational problems for 3-manifolds and
knots. For instance, it is algorithmically decidable whether a given 3-manifold is hom-
eomorphic to S3 [Rub95, Tho94], or whether a given polygonal knot in R3 is trivial
[Hak61]. Indeed, both problems have recently been shown to lie in NP [Iva08, Sch04,
HLP99]. The knot equivalence problem is also algorithmically decidable [Hak61, Hem79,
Mat97], but nothing seems to be known about its complexity status. We refer the reader
to the above-mentioned sources and to [AHT06] for further results, background and ref-
erences.

In higher dimensions, all of these problems are undecidable. Markov [Mar58] showed
that the homeomorphism problem for d-manifolds is algorithmically undecidable for ev-
ery d ≥ 4. For d ≥ 5, this was strengthened by Novikov to the undecidability of rec-
ognizing Sd (or any other fixed d-manifold), as was mentioned above. Nabutovsky and
Weinberger [NW96] showed that for d ≥ 5, it is algorithmically undecidable whether a
given PL embedding f : Sd−2

→ R
d is equivalent to the standard embedding (placing

Sd−2 as the “equator” of the unit sphere Sd−1, say). For further undecidability results,
see, e.g., [NW99] and the survey by Soare [Soa04].

Another direction of algorithmic research in topology is the computability of homo-
topy groups. While the fundamental group π1(X) is well-known to be uncomputable
[Mar58], all higher homotopy groups of a given finite simply connected simplicial (or
CW) complex are computable (Brown [Bro57]). There is also a #P -hardness result of
Anick [Ani89] for the computation of higher homotopy, but it involves CW complexes
presented in a highly compact manner, and thus it does not seem to have any direct con-
sequences for simplicial complexes. More recently, there appeared several works (Schön
[Sch91], Smith [Smi98], and Rubio, Sergeraert, Dousson, and Romero, e.g. [RRS06])
aiming at making methods of algebraic topology, such as spectral sequences, “construc-
tive”; the last of these has also resulted in an impressive software called KENZO.

A different line of research relevant to the embedding problem concerns linkless em-
beddings of graphs. Most notably, results of Robertson, Seymour, and Thomas [RST95]
on linkless embeddings provide an interesting sufficient condition for embeddability of a
2-dimensional complex in R3, and they can thus be regarded as one of the few known
positive results concerning EMBED2→3. We will briefly discuss this in Section 6.

2. Preliminaries on PL topology

Here we review definitions and facts related to piecewise linear (PL) embeddings. We be-
gin with very standard things but later on we discuss notions and results which we found
quite subtle (although they might be standard for specialists), in an area where it is some-
times tempting to consider as “obvious” something that is unknown or even false. Some
more examples and open problems, which are not strictly necessary for the purposes of
the present paper, but which helped us to appreciate some of the subtleties of the embed-
dability problem, are mentioned in Appendix C. For more information on PL topology,
and for facts mentioned below without proofs, we refer to Rourke and Sanderson [RS82],
Bryant [Bry02], or Buoncristiano [Buo03].
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Simplicial complexes. We formally regard a simplicial complex as a geometric object,
i.e., a collection K (finite in our case) of closed simplices in some Euclidean space Rn

such that if σ ∈ K and σ ′ is a face of σ , then σ ′ ∈ K as well, and if σ, τ ∈ K , then
σ ∩ τ ∈ K too. We write V (K) for the vertex set, i.e., the set of all 0-dimensional
simplices of K , and |K| for the polyhedron of K , i.e., the union of all simplices in K .
Often we do not strictly distinguish between a simplicial complex and its polyhedron; for
example, by an embedding of K inRd we really mean an embedding of |K| intoRd .

The k-skeleton ofK consists of all simplices ofK of dimension at mostK . A subcom-
plex of K is a subset L ⊆ K that is a simplicial complex. A simplicial complex K ′ is a
subdivision ofK if |K ′| = |K| and each simplex ofK ′ is contained in some simplex ofK .

Two simplicial complexes K and L are isomorphic if there is a face-preserving bijec-
tion ϕ : V (K)→ V (L) of the vertex sets (that is, F ⊆ V (K) is the vertex set of a simplex
of K iff ϕ(F ) is the vertex set of a simplex of L). Isomorphic complexes have homeo-
morphic polyhedra. Up to isomorphism, a simplicial complex K can be described purely
combinatorially, by specifying which subsets of V (K) form vertex sets of simplices ofK .

We assume that the input to the embeddability problem is given in this form, i.e., as
an abstract finite set system.

Linear and PL mappings of simplicial complexes. A linear mapping of a simplicial
complex K into Rd is a mapping f : |K| → R

d that is linear on each simplex. More
explicitly, each point x ∈ |K| is a convex combination t0v0 + t1v1 + · · · + tsvs , where
{v0, v1, . . . , vs} is the vertex set of some simplex σ ∈ K and t0, . . . , ts are nonnegative
reals adding up to 1. Then we have f (x) = t0f (v0)+ t1f (v1)+ · · · + tsf (vs).

A PL mapping ofK intoRd is a linear mapping of some subdivisionK ′ ofK intoRd .

Embeddings. A general topological embedding ofK intoRd is any continuous mapping
f : |K| → R

d that is a homeomorphism of |K| with f (|K|). Since we only consider
finite simplicial complexes, this is equivalent to requiring that f be injective.

By contrast, for a PL embedding we require additionally that f be PL, and for a linear
embedding we are even more restrictive and insist that f be (simplexwise) linear.

PL embeddings versus linear embeddings. In contrast to planarity of graphs, linear
and PL embeddability do not always coincide in higher dimensions. Brehm [Bre83]
constructed a triangulation of the Möbius strip that does not admit a linear embedding
into R3. Using methods from the theory of oriented matroids, Bokowski and Guedes
de Oliveira [BGdO00] showed that for any g ≥ 6, there is a triangulation of the ori-
entable surface of genus g that does not admit a linear embedding into R3. In higher
dimensions, Brehm and Sarkaria [BS92] showed that for every k ≥ 2, and every d with
k + 1 ≤ d ≤ 2k, there is a k-dimensional simplicial complex K that PL embeds into Rd

but does not admit a linear embedding. Moreover, for any given r ≥ 0, there is such a K
such that even the r-fold barycentric subdivisionK(r) is not linearly embeddable intoRd .
Our Corollary 1.2 is another result of this kind.

On the algorithmic side, the problem of linear embeddability of a given finite simpli-
cial complex into Rd is at least algorithmically decidable, and for k and d fixed, it even
belongs to PSPACE (since the problem can easily be formulated as the solvability over
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the reals of a system of polynomial inequalities with integer coefficients, which lies in
PSPACE [Ren92]).

PL structures. Two simplicial complexes K and L are PL homeomorphic if there are a
subdivision K ′ of K and a subdivision L′ of L such that K ′ and L′ are isomorphic.

Let 1d denote the simplicial complex consisting of all faces of a d-dimensional sim-
plex (including the simplex itself), and let ∂1d consist of all faces of 1d of dimension at
most d−1. Thus, |1d | is topologically Bd , the d-dimensional ball, and |∂1d | is topolog-
ically Sd−1.

A d-dimensional PL ball is a simplicial complex PL homeomorphic to 1d , and a
d-dimensional PL sphere is a simplicial complex PL homeomorphic to ∂1d+1. Let us
mention that a (finite) simplicial complex K is PL embeddable in Rd iff it is PL homeo-
morphic to a subcomplex of a d-dimensional PL ball (and similarly, K is PL embeddable
in |∂1d+1

| iff it is PL homeomorphic to a subcomplex of a d-dimensional PL sphere).
One of the great surprises in higher-dimensional topology was the discovery that sim-

plicial complexes with homeomorphic polyhedra need not be PL homeomorphic (the fail-
ure of the “Hauptvermutung”). In particular, there exist non-PL spheres, i.e., simplicial
complexes homeomorphic to a sphere that fail to be PL spheres. More precisely, every
simplicial complex homeomorphic to S1, S2, S3, and S4 is a PL sphere,3 but there are
examples of non-PL spheres of dimensions 5 and higher (e.g., the double suspension of
the Poincaré homology 3-sphere).

A weak PL Schoenflies theorem. The well-known Jordan curve theorem states that if S1

is embedded (topologically) inR2, the complement of the image has exactly two compo-
nents. Equivalently, but slightly more conveniently, if S1 is embedded in S2, the comple-
ment has two components. The Schoenflies theorem asserts that in the latter setting, the
closure of each of the components is homeomorphic to the disk B2.

While the Jordan curve theorem generalizes to an arbitrary dimension (if Sd−1 is topo-
logically embedded in Sd , the complement has exactly two components), the Schoenflies
theorem does not. There are embeddings h : S2

→ S3 such that the closure of one of the
components of S3

\ h(S2) is not a ball; a well known example is the Alexander horned
sphere.

The Alexander horned sphere is an infinitary construction; one needs to grow in-
finitely many “horns” from the embedded S2 to make the example work. In higher di-
mensions, there are strictly finite examples, e.g., a 5-dimensional subcomplex K of a 6-
dimensional PL sphere S such that |K| is topologically an S5 (andK is a non-PL sphere),
but the closure of a component of |S|\|K| is not a topological ball (see Curtis and Zeeman
[CZ61]).

Thus, one needs to put some additional conditions on the embedding to make a
“higher-dimensional Schoenflies theorem” work. We will need the following version, in
which we assume a (d − 1)-dimensional PL sphere sitting in a d-dimensional PL sphere.

3 The proof for S4 relies on the recent solution of the Poincaré conjecture by Perelman.
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Theorem 2.1 (Weak PL Schoenflies Theorem). Let f be a PL embedding of ∂1d into
∂1d+1. Then the complement |∂1d+1

| \ f (|∂1d |) has two components, whose closures
are topological d-balls.

For a proof of this theorem, see, e.g., [New60] or [Gla71]. A simple, inductive proof
is to appear in the upcoming revised edition of the book [Buo03] by Buoncristiano and
Rourke.

Let us remark that a “strong” PL Schoenflies theorem would claim that under the
conditions of Theorem 2.1, the closure of each of the components is a PL ball, but the
validity of this stronger statement is known only for d ≤ 3, while for each d ≥ 4 it is (to
our knowledge) an open problem.

Genericity. First let us consider a linear mapping f of a simplicial complex K into Rd .
We say that f is generic if f (V (K)) is a set of distinct points inRd in general position.

If σ, τ ∈ K are disjoint simplices, then the intersection f (σ) ∩ f (τ) is empty for
dim σ + dim τ < d and it has at most one point for dim σ + dim τ = d .

A PL mapping of K into Rd is generic if the corresponding linear mapping of the
subdivision K ′ of K is generic.

A PL embedding can always be made generic (by an arbitrarily small perturbation).

Linking and linking numbers. Let k, ` be integers, and let f : Sk → R
k+`+1 and

g : S`→ R
k+`+1 be PL embeddings with f (Sk) ∩ g(S`) = ∅ (so here we regard Sk and

S` as PL spheres). We will need two notions capturing how the images of f and g are
“linked” (the basic example is k = ` = 1, where we deal with two disjoint simple closed
curves in R3). For our purposes, we may assume that f and g are mutually generic (i.e.
f tg, regarded as a PL embedding of the disjoint union Sk tS` intoRk+`+1, is generic).

The images f (Sk) and g(S`) are unlinked if f can be extended to a PL mapping
f̄ : Bk+1

→ R
k+`+1 of the (k + 1)-dimensional ball such that f̄ (Bk+1) ∩ g(S`) = ∅.

To define the modulo 2 linking number of f (Sk) and g(S`), we again extend f to a
PL mapping f̄ : Bk+1

→ R
k+`+1 so that f̄ and g are still mutually generic (but other-

wise arbitrary). Then the modulo 2 linking number is the number of intersections between
f̄ (Bk+1) and g(S`) modulo 2 (it turns out that it does not depend on the choice of f̄ ). In
the following, we will use the phrase “odd linking number” instead of the more cumber-
some “nonzero linking number modulo 2” (although “linking number” itself has not been
properly defined).

These geometric definitions are quite intuitive. However, alternative (equivalent in
our setting but more generally applicable) definitions are often used, phrased in terms of
homology or mapping degree, which are in some respects easier to work with (e.g., they
show that linking is symmetric, i.e., f (Sk) and g(S`) are unlinked iff g(S`) and f (Sk)
are unlinked).

3. Undecidability: Proof of Theorem 1.1

We begin with a statement of Novikov’s result mentioned in the introduction (undecid-
ability of Sd recognition for d ≥ 5) in a form convenient for our purposes.
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Theorem 3.1 (Novikov). Fix d ≥ 5. There is an effectively constructible sequence of
simplicial complexes 6i , i ∈ N, with the following properties:

(1) Each |6i | is a homology d-sphere.
(2) For each i, either 6i is a PL d-sphere, or the fundamental group of 6i is nontrivial

(in particular, 6i is not homeomorphic to the d-sphere).
(3) There is no algorithm that decides for every given 6i which of the two cases holds.

We refer to the appendix in [Nab95] for a detailed proof.
We begin the proof of Theorem 1.1 with the following simple lemma.

Lemma 3.2. Let 6 be a simplicial complex whose polyhedron is a homology d-sphere,
d ≥ 2. (The same proof works for any homology d-manifold.) Let K be the (d − 1)-
skeleton of 6. For every d-simplex σ ∈ 6, the set |K| \ ∂σ is path-connected (here ∂σ is
the relative boundary of σ ).

Proof. By Lefschetz duality (see, e.g., [Mun84, Theorem 70.2]), |6| \ σ is path con-
nected. Indeed, Lefschetz duality yields H 0(|6| \ σ) ∼= Hd(6, σ ) (homology with Z2
coefficients, say). The exact homology sequence of the pair (6, σ ), together with the fact
that σ is contractible, yields Hd(6) ∼= Hd(6, σ ) ∼= Z2.

Next, we claim that if γ is a path in |6| \ σ connecting two points x, y ∈ |K|, then x
and y can also be connected by a path in |K| \∂σ . Indeed, given a d-dimensional simplex
τ ∈ 6 \ σ , we have ∂τ \ σ path-connected. Hence we can modify γ as follows: Letting
a := min{t : γ (t) ∈ τ } and b := max{t : γ (t) ∈ τ }, we replace the segment of γ
between γ (a) and γ (b) by a path η in ∂τ \ σ . Having performed this modification for
every τ ∈ 6 \ σ (in some arbitrary order), we end up with a path connecting x and y that
lies entirely within |K| \ ∂σ . ut

Lemma 3.3. Let d ≥ 2. Suppose that6 is a homology d-sphere, and letK be its (d−1)-
skeleton.

(i) If 6 is a PL sphere, then K PL embeds intoRd .
(ii) If K PL embeds intoRd , then 6 is homeomorphic to Sd .

Proof. Part (i) is clear.
For part (ii), let us suppose that f is a PL embedding of K into Rd . Since K is

compact, the image of f is contained in some big d-dimensional simplex, and by tak-
ing this simplex as one facet of 1d+1, we can consider f as a PL embedding of K
into ∂1d+1. Consider a d-simplex σ of 6. By the weak PL Schoenflies theorem (Theo-
rem 2.1), |∂1d+1

| \ f (∂σ) has two components, whose closures are topological d-balls.
Moreover, since |K| \∂σ is path-connected, its image under f must be entirely contained
in one of these components.

Therefore, we can use the closure of the other component to extend f to a topologi-
cal embedding of σ . By applying this reasoning to each d-face, we obtain a topological
embedding g of 6 into ∂1d+1. It follows for instance from Alexander duality (see, e.g.,
[Mun84, Theorem 74.1]) that g must be surjective, i.e., a homeomorphism. ut
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Proof of Theorem 1.1. The undecidability of EMBED(d−1)→d for d ≥ 5 is an immediate
consequence of Theorem 3.1 and Lemma 3.3. ut

Proof of Corollary 1.2. Let us suppose that there is a recursive function f contradicting
the statement. That is, every (d − 1)-dimensional K with n simplices that PL embeds
in Rd has a subdivision with at most f (n) simplices that embeds linearly. Then, given a
(d−1)-dimensional complexK with n simplices, we could generate all subdivisionsK ′ of
K with at most f (n) simplices (see Acquistapace et al. [ABB90, Proposition 2.15]) and,
using the PSPACE algorithms mentioned in Section 2, test the linear embeddability of
eachK ′ inRd . This would yield a decision algorithm for EMBED(d−1)→d , contradicting
Theorem 1.1. ut

4. Hardness of embedding 2-dimensional complexes inR4

We will reduce the problem 3-SAT to EMBED2→4. Given a 3-CNF formula ϕ, we con-
struct a 2-dimensional simplicial complex K that is PL embeddable in R4 exactly if ϕ is
satisfiable.

First we define two particular 2-dimensional simplicial complexes G (the clause
gadget) and X (the conflict gadget). They are closely related to the main example of
Freedman et al. [FKT94]: X is taken over exactly, and G is a variation on a construction
in [FKT94] (which, in turn, is similar in some respects to an example of Segal and Spież
[SS92], with some of the ideas going back to Van Kampen [vK32]).

4.1. The clause gadget

To constructG, we begin with a 6-dimensional simplex on the vertex set {v0, v1, . . . , v6},
and we let F be the 2-skeleton of this simplex (F for “full” skeleton). Then we make a
hole in the interior of the three triangles (2-simplices) v0v1v2, v0v1v3, and v0v2v3. That
is, we subdivide each of the triangles and from each of these subdivisions we remove a
small triangle in the middle, as indicated in Fig. 1.4 This yields the simplicial complexG.

Let ω1, ω2, ω3 be the three small triangles we have removed (where ω1 comes from
the triangle v0v2v3 etc.). We call them the openings of G and we let OG := {ω1, ω2, ω3}

be the set of openings. Thus, G ∪OG is a subdivision of the full 2-skeleton F .
If we remove from F the vertices v0, v1, v2 and all simplices containing them, we ob-

tain the boundary of the 3-simplex {v3, v4, v5, v6}. Topologically it is an S2, we call it the
complementary sphere of the opening ω3, and we denote it by Sω3 . The complementary
spheres of the openings ω1 and ω2 are defined analogously. The following lemma is a
variation on results in Van Kampen [vK32]:

4 Alternatively, we could also make the clause gadget by simply removing the triangles v0v1v2,
v0v1v3, and v0v2v3 from F . However, the embedding of the resulting complex K for satisfiable
formulas ϕ would become somewhat more complicated.
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v4

v5

v6

v2v1

v0

v3

Sω3

ω2

ω3

ω1

Fig. 1. The clause gadget G, its openings, and one of the complementary spheres.

Lemma 4.1.

(i) For every generic PL embedding f ofG intoR4 there is at least one opening ω ∈ OG
such that the images of the boundary ∂ω and of the complementary sphere Sω have
odd linking number.

(ii) For every opening ω ∈ OG there exists an embedding of G intoR4 in which only ∂ω
is linked with its complementary sphere. More precisely, there exists a generic linear
mapping of the full 2-skeleton F into R4 whose restriction to |G ∪ OG \ {ω}| is an
embedding.

Proof. (i) This is very similar to Lemma 6 in [FKT94]. Let f0 be a generic PL map (not
necessarily an embedding) of F intoR4. Van Kampen proved that∑

{σ,τ }

|f0(σ ) · f0(τ )|

is always odd, where |f0(σ ) · f0(τ )| denotes the number of intersections between the
image of σ and the image of τ , and the sum is over all unordered pairs of disjoint 2-
dimensional simplices σ, τ ∈ F (the genericity of f0 guarantees that the intersection
f0(σ ) ∩ f0(τ ) consists of finitely many points). (See Appendix D for a wider context of
this result.)

Now let us consider a generic PL embedding f of G into R4, and let us extend it
piecewise linearly and generically (and otherwise arbitrarily) to the openings of G. The
resulting map can also be regarded as a generic PL map f0 of F intoR4. For such an f0,
|f0(σ ) · f0(τ )| can be nonzero only if σ contains an opening ω of G and τ belongs to its
complementary sphere Sω (or the same situation with σ and τ interchanged). Thus, for
at least one ω ∈ OG, f0(ω) intersects f (Sω) in an odd number of points, and this means
exactly that f (∂ω) and f (Sω) have odd linking number.

(ii) It suffices to exhibit a generic linear map f0 of F into R4 such that the images
of two disjoint 2-simplices intersect (in a single point), and this intersection is the only
multiple point of f0. Such a mapping was constructed by Van Kampen [vK32]: five of the
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vertices are placed as vertices of a 4-dimensional simplex in R4, and the remaining two
are mapped into the interior of that simplex. ut

4.2. The conflict gadget

To construct X, we start with the 1-dimensional simplicial complex E shown in Fig. 2
(left), consisting of two triangular loops 6a and 6b and an edge c connecting them. We
also fix an orientation of 6a , 6b, and c (marked by arrows). Then we take a disk D
and we attach its boundary to E as indicated in Fig. 2 (right); the disk is triangulated
sufficiently finely so that the result of the attachment is still a simplicial complex. This is
the complex X.

Σa

c Σb

c c

c c

DΣb
Σb

Σa

Σa

Fig. 2. Attaching a disk to the polygonal line E.

We observe that topologically, X is a “squeezed torus” (the reader may want to recall
the usual construction of a torus by gluing the opposite sides of a square; this well-known
construction would be obtained from the attachment as above if the edge c were con-
tracted to a point). Fig. 3 shows such a squeezed torus embedded in R3 (with the loops
6a and 6b drawn circular rather than triangular).

Σa
Σb

c

Fig. 3. A 3-dimensional embedding of the conflict gadget.

Lemma 4.2.

(i) [FKT94, Lemma 7] Let Sa and Sb be PL 2-spheres. Then there is no PL embedding f
of Sa t Sb tX (disjoint union) intoR4 such that
• the 1-sphere f (6a) and the 2-sphere f (Sa) have odd linking number, and so do
f (6b) and f (Sb);
• f (6a) and f (Sb) are unlinked, and so are f (6b) and f (Sa).
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(ii) Let f be a generic linear embedding of E in R3 (not R4 this time) such that f (6a)
and f (6b) are unlinked, and let δ > 0. Then there is a PL embedding f of X
in R3 extending f whose image is contained in the set N = N(f, δ) := N(Ta, δ) ∪
N(f (6b), δ) ∪ N(f (c), δ), where Ta is the triangle bounded by the loop f (6a)
and N(A, δ) denotes the δ-neighborhood of a set A (in R3 in our case).5 (Symmet-
rically, and this is the main point of the construction, we can also embed X into
N(f (6a), δ) ∪N(Tb, δ) ∪N(f (c), δ), thus leaving a hole on the other side.)

For a proof of part (i) we refer to [FKT94] (a few words about the basic approach of the
proof will be said in the proof of Lemma 5.3 below), and for part (ii) to Fig. 3.

4.3. The reduction

Let the given 3-CNF formula be ϕ = C1 ∧ · · · ∧Cm, where each Ci is a clause with three
literals (each literal is either a variable or its negation). For each Ci , we take a copy of the
clause gadget G and we denote it by Gi (the Gi have pairwise disjoint vertex sets). We
fix a one-to-one correspondence between the literals of Ci and the openings ofGi , letting
ω(λ) be the opening corresponding to a literal λ.

Let us say that a literal λ in a clause Ci is in conflict with a literal µ in a clause Cj if
both λ and µ involve the same variable x but one of them is x and the other the negation
x. For convenience we assume, without loss of generality, that two literals from the same
clause are never in conflict.

Let 4 consist of all (unordered) pairs {ω(λ), ω(µ)} of openings corresponding to
pairs {λ,µ} of conflicting literals in ϕ. For every pair {ω,ψ} ∈ 4 we take a fresh copy
Xωψ of the conflict gadget X. We identify the loop 6a in Xωψ with the boundary ∂ω and
the loop 6b with ∂ψ (the rest of Xωψ is disjoint from the clause gadgets and the other
conflict gadgets).

The simplicial complex K assigned to the formula ϕ is

K :=
( m⋃
i=1

Gi

)
∪

( ⋃
{ω,ψ}∈4

Xωψ

)
.

It remains to show that K is PL embeddable inR4 exactly if ϕ is satisfiable.

Nonembeddability for unsatisfiable formulas. This is a straightforward consequence
of Lemmas 4.1(i) and 4.2(i).

Indeed, if f is a PL embedding of K into R4, which we may assume to be generic,
there is an opening in each clause gadget Gi such that f (∂ωi) has odd linking number
with the complementary sphere f (Sωi ); let us call it an occupied opening of Gi . Since ϕ
is not satisfiable, whenever we choose one literal from each clause, there are two of the
chosen literals in conflict. Thus, there are two occupied openings ω ∈ OGi and ψ ∈ OGj
that are connected by a conflict gadget Xωψ .

5 Formally N(A, δ) = {x ∈ R3 : dist(x,A) ≤ δ}, where dist(x,A) is the Euclidean distance of
x from the set A.
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Then the supposed PL embedding f provides us an embedding as in Lemma 4.2(i)
with Sa = Sω, Sb = Sψ , and X = Xωψ . Concerning the assumptions in the lemma,
we already know that f (Sω) and f (∂ω) have odd linking number, and so do f (Sψ ) and
f (∂ψ). It remains to observe that f (∂ω) cannot be linked with f (Sψ ) (and vice versa),
sinceGi contains a disk bounded by ∂ω: for example (refer to Fig. 1), ∂ω3 is the boundary
of the disk consisting of the triangles v0v1v4, v0v2v4, v1v2v4 and the triangles in the
subdivision of v0v1v2 different from ω3. So the lemma applies and K is not embeddable.

Embedding for satisfiable formulas. Given a satisfying assignment for ϕ, we choose a
witness literal λi for each clause Ci that is true under the given assignment (and we will
refer to the remaining two literals of Ci as non-witness ones). No two witness literals can
be in conflict.

We describe an embedding of K into R4 corresponding to this choice of witness
literals.

Let us choose distinct points p1, . . . , pm ∈ R
4. For each i = 1, . . . , m, we let fi be

a generic linear embedding of the clause gadget Gi into a small neighborhood of pi (and
far from the other pj ) as in Lemma 4.1(ii), where the role of ω in the lemma is played
by the witness opening of Gi (i.e., the one corresponding to the witness literal of Ci). In
particular, the interiors of the triangles bounded by fi(∂ω′) and by fi(∂ω′′) are disjoint
from fi(Gi), where ω′ and ω′′ are the non-witness openings of Gi .

Taking all the fi together defines an embedding f of the union of the clause gadgets,
and it remains to embed the conflict gadgets.

To this end, we will assign to each conflict gadget Xωψ a “private” set Pωψ ⊂ R4

homeomorphic to the 3-dimensional set N from Lemma 4.2(ii), and we will embed Xωψ
into Pωψ . Each Pωψ will be disjoint from all other Pω′ψ ′ and also from all the images
f (Gi), except that Pωψ has to contain the loops f (∂ω) and f (∂ψ) where the conflict
gadget Xωψ should be attached. In order to fit enough almost-disjoint homeomorphic
copies of N into the space, we will “fold” them suitably.

We know that for every pair {ω,ψ} of openings connected by a conflict gadget, at
least one of ω and ψ is non-witness. Let us choose the notation so that ω is non-witness
and thus unoccupied in the embedding f .

We will build Pωψ from three pieces: a set Q+ωψ that plays the role of N(Ta, δ) in
Lemma 4.2(ii), a set Qψω that plays the role of N(f (6b), δ), and a “connecting ribbon”
in the role of N(f (c), δ).

Now let ω be an opening of some Gi , witness or non-witness. Let t be the number
of openings ψ that are connected to ω by a conflict gadget. The sets Qωψ and Q+ωψ we
want to construct are indexed by these ψ , but with some abuse of notation, we will now
regard them as indexed by an index j running from 1 to t , i.e., as Qω1 through Qωt (and
similarly for Q+ωψ ).

For concise notation let us write 6 = f (∂ω) and let T be the triangle in R4 having
6 as the boundary. Let ε > 0 be a parameter and let T ε := {x ∈ T : dist(x, ∂T ) ≤ ε} be
the part of T at most ε away from the boundary of T . Since the subdivided triangle in Gi
containing ω in its interior is embedded linearly by f , there is an ε > 0 such that if we
start at a point x ∈ T ε and go a distance at most ε in a direction orthogonal to T , we do
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T ε

Σ

TΣ
T ε

Fig. 4. A free region around the triangle T ; illustration inR3 instead ofR4.

not hit f (Gi). Moreover, if ω is non-witness and thus all of T is free of f (Gi), we can
take any x ∈ T with the same result. Fig. 4 tries to illustrate this in dimension one lower,
where we have a segment T in R3 instead of a triangle T in R4. Thus, there are a set
Qω ⊂ R

4 withQω∩f (Gi) = 6 and a homeomorphism (actually, a linear isomorphism)
h : Qω → T ε×B2 with h(T ε) = T ε×{0}, where 0 is the center of the disk B2. Similarly,
if ω is non-witness, there are Q+ω and h+ : Q+ω → T × B2 with h+(T ) = T × {0}.

w1

w2wt

W1

W2Wt

. . .

Fig. 5. The wedges.

Let W1, . . . ,Wt ⊂ B
2 be disjoint wedges as in Fig. 5, and let wj consist of the two

radii bounding Wj . We set

Qωj := h−1((6 ×Wj ) ∪ (T
ε
× wj )), Q+ωj := (h+)−1((6 ×Wj ) ∪ (T × wj )).

As Fig. 6 tries to illustrate, Q+ωj is homeomorphic to a 3-dimensional neighborhood of T

×(Σ Wj) ∪ (T × wj)

∼=

×

∪ =

×

Fig. 6. Folding a 3-dimensional neighborhood inR4.
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(by a homeomorphism sending T to T ), and Qωj is similarly homeomorphic to a 3-
dimensional neighborhood of 6. Thus, the setsQωj andQ+ωj can indeed play the roles of
N(f (6b), δ) and N(Ta, δ), respectively, in Lemma 4.1(ii).

It remains to construct the “connecting ribbons”: for every conflict gadget Xωψ , we
want to connect a vertex of f (∂ω) to a vertex of f (∂ψ) by a narrow 3-dimensional
“ribbon” (it need not be straight since we are looking only for PL homeomorphic copies
of N ).

We observe that each of the sets Qωj and Q+ωj can be deformation-retracted to the
corresponding loop f (∂ω) or to the corresponding triangle, respectively. It follows that
the complement of the union U of all the Qωj , Q+ωj , and f (Gi) is path-connected (for-
mally, this follows from Alexander duality, since this union is homotopy equivalent to a
2-dimensional space). Since all the embeddings considered are piecewise linear, any two
points on the boundary of U can be connected by a PL path withinR4

\ U .
Thus, the 3-dimensional “ribbon” connecting f (∂ω) to f (∂ψ) can first go within the

appropriate Qωj to a point on the boundary, then continue along a path connecting this
boundary point to a boundary point of Qψj ′ , and then reach f (∂ψ) within Qψj ′ .

In this way, we have allocated the desired “private” sets Pωψ for all conflict gadgets
Xωψ , and hence K can be PL embedded in R4 as claimed. This finishes the proof of the
special case k = 2, d = 4 of Theorem 1.3. 2

5. NP-hardness for higher dimensions

In this section we prove all the remaining cases of Theorem 1.3. The proof is generally
very similar to the case k = 2, d = 4 treated above: we will again reduce 3-SAT us-
ing clause gadgets and conflict gadgets, but the construction of the gadgets and of their
embeddings require additional work.

By the monotonicity of EMBEDk→d in k mentioned in Section 1, it suffices to con-
sider d ≥ 5 and k = d(2d − 2)/3e. In the construction we will often use the integer
` := d − k − 1.

5.1. The clause gadget

The clause gadget G = G(k, `) is very similar to a construction of Segal and Spież
[SS92]. We use the parameters k, `, d as above. For the purposes of the present section
we need that 1 ≤ ` < k and d − ` = k + 1 ≥ 3 (which are easy to verify using the
definitions of k and ` and the assumption d ≥ 5).

For the parameters k, `, d as above, we first define a simplicial complex F = F(k, `)
on the vertex set V := {v0, v1, . . . , vd+1, p} as the union F := F0 ∪ Cp of the following
two sets of simplices:

• F0 is the k-skeleton of the (d + 1)-simplex with vertex set {v0, . . . , vd+1};
• Cp consists of all the (`+ 1)-dimensional simplices on V that contain p.
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v0 v1 v2 v3 v4 v5 v6

p

F0 = 3-skeleton on {v0, . . . , v6}

Cp = all triangles pvivj

Fig. 7. A schematic illustration of F(3, 1).

See Fig. 7 for a schematic illustration; let us also note that for d = 4, k = 2, ` = 1 we
would get exactly the F as in Section 4.1.

Let us consider some σ ∈ Cp. By removing from F all simplices intersecting σ
(including σ ), we obtain the k-skeleton of a (k + 1)-simplex, i.e., an Sk , which we call
the complementary sphere Sσ .

Next, we fix three (` + 1)-dimensional simplices σ1, σ2, σ3 ∈ Cp, say σ1 :=
pv0v2v3 · · · v`+1, σ2 := pv0v1v3 · · · v`+1, and σ3 := pv0v1v2v4 · · · v`+1. As in Sec-
tion 4.1, we make a hole in the interior of each σi , i.e., we subdivide each σi , i = 1, 2, 3,
and we remove a small (`+ 1)-simplex ωi in the middle. This yields the simplicial com-
plex G = G(k, `).

The ωi are again called the openings of G, and we set OG := {ω1, ω2, ω3}. The
complementary sphere Sωi is defined, with some abuse of notation, as the complementary
sphere of the simplex σi ∈ Cp that contains ωi .

Lemma 5.1 (Higher-dimensional version of Lemma 4.1).

(i) For every generic PL embedding f ofG intoRd there is at least one opening ω ∈ OG
such that the images of the boundary ∂ω and of the complementary sphere Sω have
odd linking number.

(ii) For every opening ω ∈ OG there exists a generic linear embedding of G into Rd

in which the boundaries of the two openings different from ω are unlinked with their
complementary spheres.

Proof. Part (ii) is established in the proof of Lemma 1.1 in Segal and Spież [SS92] (gen-
eralizing Van Kampen’s embedding mapping mentioned in the proof of Lemma 4.1(ii)).
They construct a PL embedding of F(k, `) (which they call P(k, `), while their n is our
d − 1), but inspecting the first two paragraphs of their proof reveals that their embedding
is actually linear (in the subsequent paragraphs, they modify the embedding on the inte-
rior of one of the (`+ 1)-simplices from Cp, but this serves only to show the claim about
linking number).

For part (i), it clearly suffices to prove the following:

Claim. For any generic PL mapping g of F in Rd whose restriction to F0 is an em-
bedding, there is an (` + 1)-dimensional simplex σ ∈ Cp such that |g(σ ) ∩ g(Sσ )| is
odd.

This claim follows easily from the proof of Lemma 1.4 in Segal and Spież [SS92].
Indeed, they give a procedure that, given a generic PL map g1 of F into Rd such
that |g1(σ ) ∩ g1(Sσ )| is even for some σ , yields a new generic PL map g2 with
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g2(σ ) ∩ g2(Sσ ) = ∅ and such that there are no new intersections between images of
disjoint simplices (compared to g1).6

Assuming that there is a g contradicting the claim, after finitely many applications of
the procedure we arrive at a generic PL mapping g̃ such that g̃(σ ) ∩ g̃(Sσ ) = ∅ for every
σ ∈ Cp. We claim that then

g̃(τ ) ∩ g̃(τ ′) = ∅ for every τ, τ ′ ∈ F with τ ∩ τ ′ = ∅. (1)

Indeed, if (1) fails for some τ, τ ′, one of τ, τ ′ (say τ ′) must belong toCp, since g restricted
to F0 is an embedding. But then we get τ ∈ Sτ ′—a contradiction. Hence (1) holds. But
no generic PL mapping g̃ satisfying (1) exists according to [SS92] (end of the proof of
Lemma 1.4). This proves the claim and thus also part (i) of Lemma 5.1.

Let us remark that a perhaps more conceptual proof of part (i) can be obtained using
the results of Shapiro [Sha57] on the “generalized Van Kampen obstruction”, but we
would need many preliminaries to present it. ut

5.2. The conflict gadget

Here we construct the conflict gadget X = X(`), which depends only on the parameter `,
and whose dimension is 2`. The conflict gadget X in Section 4.2 is essentially the same
as the following construction for ` = 1, up to minor formal differences. In addition to the
inequalities among the parameters mentioned earlier, here we also need 2` ≤ k (which
again holds in our setting).

In the ` = 1 case we attached a 2-dimensional disk along its boundary to the 1-dimen-
sional complex E. The `-dimensional version of E consists of two disjoint copies6`a and
6`b of the boundary of the (` + 1)-simplex connected by an edge c (see Fig. 8). To this

Σℓ
a

c
Σℓ

b

Fig. 8. A higher-dimensional version of E.

E we are going to attach the (2`)-dimensional ball B2` along its boundary. For ` = 1
the result was topologically a “squeezed” version of the 2-dimensional torus S1

× S1; for
larger ` it is going to be the higher-dimensional “torus” S`×S`, again suitably squeezed.

Attaching a ball to S` ∨ S`. Before defining X itself, we define a certain mapping
g : S2`−1

→ S` ∨ S`, where S` ∨ S` is a wedge of two spheres, to be defined below.

6 The procedure requires d − ` ≥ 3, which is satisfied in our case. In [SS92] this inequality is
reversed by mistake.
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This construction is based on the Whitehead product in homotopy theory. As we will see,
attaching the boundary of B2` to S` ∨ S` via g results topologically in S` × S` (without
any squeezing).

The wedge S`∨S` consists of two copies of the sphere S` glued together at one point.
For our purposes, we represent S` ∨ S` concretely as follows. We consider S` geometri-
cally as the unit sphere inR`+1, we choose a distinguished point s0 = (1, 0, . . . , 0) ∈ S`,
and we let S` ∨ S` be the subspace (S` × {s0}) ∪ ({s0} × S`) ofR`+1

×R
`+1
= R

2`+2.
For ` = 1, we thus get two unit circles lying in perpendicular 2-flats in R4 and meeting
at the point (s0, s0).

To define the map g, we need to represent the ball B2` not as the standard Euclidean
unit ball, but rather as the product B`×B` (which is clearly homeomorphic to B2`). Then
we have

S2`−1 ∼= ∂(B
`
× B`) = (B` × S`−1) ∪ (S`−1

× B`); (2)

see the left part of Fig. 9 for the (rather trivial) case ` = 1. (Indeed, for arbitrary sets
A ⊆ Rm and B ⊆ Rn we have ∂(A× B) = (A× ∂B) ∪ (∂A× B), as is easy to check.)

−→
g

−→
λ ∨ λ(s0, s0)

S1 S1 ∨ S1 L1 ∨ L1

Σ1
b

(s0, s0)

Σ1
a

Fig. 9. Representing S1 as (B1
×S0)∪(S0

×B1) (left); mapping it to S1
∨S1 (middle); squeezing

the S1’s to “lollipops” (right). We note that S1
∨ S1 and L1

∨ L1 actually live inR4.

As is well known, if we shrink the boundary of an n-ball to a single point, the result is
an n-sphere. Let us fix a mapping γ : B` → S` that sends all of ∂B` to the distinguished
point s0 and is a homeomorphism on the interior of B`. Now we are ready to define the
map g. Namely, we define g : B2`

→ S` × S` by

g(x, y) = (γ (x), γ (y)),

where we still consider B2` as B` × B` and x comes from the first B` and y from the
second. Then g is the restriction of g to S2`−1

= ∂B2`.
For the image of g we have, using (2),

g(S2`−1) = g(B` × S`−1) ∪ g(S`−1
× B`) = (S` × {s0}) ∪ ({s0} × S

`) = S` ∨ S`.

It remains to observe that g restricted to intB2` is a homeomorphism onto (S` × S`) \
(S` ∨ S`). Hence, the result of attaching the boundary of B2` to S` ∨ S` via g is indeed
homeomorphic to S` × S` as claimed.

Squeezing. Now we define a “squeezing map” from S` ∨ S` to E. We let the `-lollipop
L` be an `-dimensional sphere of radius 1/2 with attached segment (“stick”) of length 1;
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Lℓ

Sℓ

λ

s0

Fig. 10. The map λ squeezing S` to the lollipop L`.

see Fig. 10. Formally,
L` := ∂B(−s0/2, 1/2) ∪ [0, s0],

where B(x, r) stands for the ball of radius r centered at x. We let λ : S` → L` be the
projection that moves each point of S` in the direction perpendicular to the axis [−s0, s0].

Now, with L` ∨L` := (L`× {s0})∪ ({s0} ×L`), we have the map λ∨ λ : S` ∨ S`→
L` ∨ L` (given by (x, y) 7→ (λ(x), λ(y))). Finally, L` ∨ L` can be identified with the
complex E as above by a suitable homeomorphism, and we arrive at the map

r = (λ ∨ λ) ◦ g : S2`−1
→ E

(where the homeomorphism of L` ∨ L` with E is not explicitly shown).
The clause gadget X is obtained by attaching the boundary of B2` to E via the map r .

Of course, we want X to be a simplicial complex, and so in reality we use a suitable PL
version of the attaching map r (we have not presented it this way since the description
above seems more accessible).

For the forthcoming proof of an analogue of Lemma 4.2, we need the following ob-
servation.

Observation 5.2. Let κ : L` ∨ L` → S` ∨ S` be the quotient map corresponding to
contracting the “stick” c of the double lollipop to a single point. Then the composition
κ ◦ (λ ∨ λ) : S` ∨ S`→ S` ∨ S` is homotopic to the identity on S` ∨ S`.

Sℓ Sℓ

Hℓ ∨Hℓ

Fig. 11. Contracting the wedge of two hemispheres.

Proof. Let H ` := {x ∈ S` : 〈s0, x〉 ≥ 0} be the closed hemisphere centered at s0.
The assertion follows by observing that κ ◦ (λ ∨ λ) is the quotient map corresponding to
contracting the subset H `

∨H ` of S` ∨ S` to a single point; see Fig. 11. ut
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Lemma 5.3 (Higher dimensional version of Lemma 4.2).

(i) (Based on [SSS98, Lemma 2.2]) Let 6`a and 6`b denote the two `-spheres (bound-
aries of (`+1)-simplices) contained in E ⊂ X. Let Ska and Skb be PL k-spheres. Then
there is no PL embedding f of the disjoint union Ska t S

k
b tX into Sd such that

• the `-sphere f (6`a) and the k-sphere f (Ska ) have odd linking number, and so do
f (6`b) and f (Skb );
• f (6`a) and f (Skb ) are unlinked, and so are f (6`b) and f (Ska ).

(ii) Let f be a generic linear embedding of E in7
R

2`+2, and let δ > 0. Then there
is a PL embedding f of X in R2`+2 extending f whose image is contained in the
neighborhood N = N(f, δ) := N(Ta, δ) ∪ N(f (6`b), δ) ∪ N(f (c), δ), where Ta is
the (`+ 1)-dimensional simplex bounded by f (6`a).

Proof. Part (i) follows from the proof of [SSS98, proof of Lemma 2.2] with only mi-
nor modifications. First, before giving a formal proof, we describe the basic approach of
[SSS98], which also applies to the proof of Lemma 4.2(i).

Suppose that a PL embedding f as in (i) above exists. Let C denote the complement
R
d
\ f (Ska t S

k
b ), let r : S2`−1

→ E be the attaching map used in the construction of X,
and let r : B2`

→ X be the extension of r to B2` (formally, r is the quotient map).
The basic strategy is as follows: On the one hand, using the assumptions about link-

ing numbers, one shows that f ◦ r defines a nontrivial element of the homotopy group
π2`−1(C). On the other hand, f ◦ r witnesses that f ◦ r is homotopically trivial—a con-
tradiction.

As in [SSS98], one distinguishes two cases: ` = 1 and ` > 1. In the case ` = 1,
we are dealing with the fundamental group π1(C), and the proof is essentially identical
to that of [FKT94, Lemma 7], i.e., our Lemma 4.2, which we briefly summarize for the
reader’s convenience.

To show that f ◦ r : S1
→ C is homotopically nontrivial, one first observes that

π1(E) is the free group on two generators a and b, and the attaching map r : S1
→ E

corresponds to the commutator aba−1b−1, which is a nontrivial element of π1(E). So
it suffices to show that the map f? : π1(E) → π1(C) induced by the restriction f |E is
injective. To this end, one first considers the homomorphisms f∗1 and f∗2 induced by f |E
in the first and second homology.

By Alexander duality, the complement C has the same homology (with Z2 coeffi-
cients, say) as S1

∨ S1, and thus H1(C;Z2) = Z2 ⊕ Z2 and H2(C;Z2) = 0. For E we
have H1(E;Z2) ∼= Z2 ⊕ Z2 with a basis represented by the two circles 61

a and 61
b . The

assumption on the linking numbers implies that f∗1 is an isomorphism, and f∗2 is triv-
ially surjective. Then the injectivity of the homomorphism f? of the fundamental groups
follows from a theorem of Stallings [Sta65], which finishes the case ` = 1.

7 It follows from our assumptions on d and k that d ≥ 2` + 3. Therefore, when, in the course
of the reduction, we construct an embedding of a complex associated with a satisfiable formula,
we can afford to embed each conflict gadget in its own “private” (2` + 2)-dimensional set. Since
two `-spheres in dimension 2` + 2 are never linked, we do not need to make an explicit unlinking
assumption as in Lemma 4.2.
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In the case ` > 1, the proof that f ◦ r defines a nontrivial element of π2`−1(C)

requires somewhat more advanced machinery. Segal et al. [SSS98] prove essentially the
same assertion as in part (i) of the lemma, with the following differences:
1. X is replaced by X′, which is obtained by attaching B2` to 6`a ∨6

`
b via the map g (as

described above) and hence homeomorphic to S` × S`.
2. The disjoint union Ska t S

k
b is replaced by the wedge8 Ska ∨ S

k
b .

They show that if there were an embedding f of (6`a ∨6
`
b) t (S

k
a ∨ S

k
b ) with the linking

properties as in part (i) of the lemma, f ◦ g would be a nontrivial element of π2`−1(C).
Now we begin with a formal proof of Lemma 5.3. Instead of modifying the proof of

[SSS98], we show how to reduce our assertion to theirs. Suppose there were a bad embed-
ding f of Ska tS

k
b tX as in the lemma. Since the codimension of the image f (Ska tS

k
b tX)

is at least 2, we can grow a k-dimensional finger from f (Ska ) towards f (Skb ) avoiding
f (X) until the finger touches f (Skb ) in a single point. This results in an embedding of
(Ska ∨ S

k
b ) tX. For simplicity, we denote this modified embedding by f as well.

We observe that when pulling the finger, we can pull along a (k + 1)-dimensional
image of Bk+1 filling f (Ska ), and so the images are still linked or unlinked as in the
assumption of the lemma.

Next, consider the image f (E) of the double lollipop in C. We modify f as follows.
We deformation-retract the arc f (c) to its midpoint m, pulling along `-dimensional fin-
gers from the two `-spheres f (6`a) and f (6`b), so that at the end of the deformation,
the fingers touch in the single point m. This describes a continuous deformation of f |E
that only changes f |E on the segment c and in two small neigborhoods Ua and Ub of
the endpoints of c in the `-spheres (these neighborhoods provide the “material” for the
fingers). We have to take care to pull along the parts of B2` attached to Ua and Ub, re-
spectively, i.e., we extend the deformation to a continuous deformation of f on all of X
that changes f only on a small neighborhood V inX of c∪Ua ∪Ub. The whole deforma-
tion can be carried out so that the image of V remains in a small ε-neighborhood of the
original image f (E) throughout the deformation. Let f ′ be the final modified map from
Ska t S

k
b t X into Sd (note that we made no changes on the two k-spheres). The map f ′

maps the “bent stick” c of the double lollipop constantly to m (in particular, it is not an
embedding), and it induces a unique embedding f ′′ : X′ → C such that f ′′ agrees with
f ′ on the interior of B2` and f ′′ ◦κ = f ′ on E, where κ is the map from Observation 5.2.
Moreover, the map f ◦ r = f ◦ (λ ∨ λ) ◦ g : S2`−1

→ C is deformed into the map
f ′′ ◦ κ ◦ (λ ∨ λ) ◦ g : S2`−1

→ C. Thus, f ◦ r and f ′′ ◦ κ ◦ (λ ∨ λ) ◦ g define the same
element of π2`−1(C). However, by Observation 5.2, the latter map is homotopic to f ′′ ◦g.
Thus, f ◦ r and f ′′ ◦ g define the same element of π2`−1(C). But the former is trivial,
as witnessed by f ◦ r , while the latter is not according to [SSS98]—a contradiction. This
completes the proof of (i).

We now turn to the proof of (ii). For easier presentation, we describe an embedding f
that is not a priori PL; it is routine to replace it by a PL embedding.

8 Wedges are used for technical reasons: By a theorem of Lickorish [Lic65], any embedding (PL
or even topological) of a wedge of spheres of codimension at least 3 is unknotted, i.e., ambient
isotopic to a standard embedding.
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Applying a suitable homeomorphism R
2`+2
→ R

2`+2, we may assume that f (E)
is actually L` ∨ L`. Let L

`
denote the `-lollipop with its `-sphere filled (i.e., L

`
:=

B(−s0/2, 1/2) ∪ [0, s0]). It suffices to embed X in the δ-neighborhood of L` ∨ L
`

for
δ > 0 arbitrarily small; actually, for notational convenience, we will eventually get 4δ
instead of δ.

Instead of specifying the embedding f : X → R
2`+2 directly, we define a mapping

f̃ : S` × S`→ R
2`+2 that coincides with λ∨ λ on S` ∨ S` and maps the rest of S` × S`

homeomorphically. Then f can be given as (considering E identified with L` ∨ L`)

f (z) =

{
z for z ∈ E,
f̃ (z) for z 6∈ E.

Writing a point of S`×S` as (x, y), we define f̃ using two auxiliary maps u, v : S`×
[0,∞)→ R

`+1:

f̃ (x, y) :=
(
u(x, dist(y, s0)), v(y, dist(x, s0))

)
.

To define u(x, t), we think of t as time. For t = 0, the image u(S`, t) is the lollipop L`,
while for all t > 0 it is topologically a sphere, which looks almost like the lollipop; see
Fig. 12. Concretely, we set

u(x, t) :=
{
tx + (1− t)λ(x) for 0 ≤ t ≤ δ,
δx + (1− δ)λ(x) for t ≥ δ.

t = 0

Lℓ

t = δ/2 t ≥ δ

Fig. 12. The (images of the) mappings u(∗, t).

t = 0

Lℓ

t = δ t = 2δ t = 3δ

s0

Fig. 13. The (images of the) mappings v(∗, t).

As for v, we let it coincide with u for t ≤ δ (see Fig. 13). For t = 2δ, we set v(x, 2δ) :=
(x1, δx2, δx3, . . . , δx`+1), and for all t ≥ 3δ we set v(x, t) := δ(x − s0) + s0 (i.e., the
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sphere is shrunk by a factor of δ so that it still touches s0). On the intervals [δ, 2δ] and
[2δ, 3δ] we interpolate v(x, t) linearly in t .

The f defined in this way is clearly continuous and coincides with λ ∨ λ on S` ∨ S`.
Next, we want to show f (x, y) 6= f (x′, y′) whenever (x, y) 6= (x′, y′) and none of
x, x′, y, y′ equals s0. First we note that u(x, t) 6= u(x′, t ′) whenever x 6= x′ and t, t ′ > 0,
and thus we may assume x = x′, y 6= y′. Then we just use the injectivity of v(∗, t) for
every t > 0.

It remains to check that the image of f lies close to L
`
∨ L`. The image u(S`, t) is

δ-close to L` for all t , and the image v(S`, t) is 2δ-close to s0 whenever t ≥ 3δ. Thus,
whenever dist(x, s0) ≥ 3δ, we have f (x, y) lying 3δ-close to L` × {s0}.

Next, let us assume dist(x, s0) ≤ 3δ. Then u(x, t) is 3δ-close to s0 for all t , and ob-
serving that v(y, t) always lies δ-close to the filled lollipop L

`
, we conclude that f (x, y)

is 4δ-close to {s0} × L
`
. 2

5.3. The reduction

Having introduced the clause gadget and the conflict gadget, the rest of the reduction is
almost the same as in Section 4.3, and so we mainly point out the (minor) differences.

Given a 3-CNF formula ϕ, the simplicial complex is pasted together from the gadgets
exactly as in Section 4.3; we have dimK = max(k, 2`) = k. For ϕ unsatisfiable, the
nonembeddability ofK is shown using Lemmas 5.1(i) and 5.3(i) instead of Lemmas 4.1(i)
and 4.2(i), but otherwise in the same way as in Section 4.3.

Given a satisfiable formula ϕ, we again begin by embedding the clause gadgets, this
time using Lemma 5.1(ii). For an opening ω of a clause gadget Gi , we can again obtain a
setQω ⊂ R

d withQω∩Gi = 6, where6 = f (∂ω), this time homeomorphic to T ε×Bk

(where T is the (`+1)-dimensional simplex bounded by6 and T ε is the part of it ε-close
to 6). Similarly we can build, for a non-witness opening ω, the setQ+ω homeomorphic to
T × Bk .

Now we need to define the “private pieces” Qωj and Q+ωj , j = 1, . . . , t , within each
Qω and Q+ω , respectively. This time we first choose pairwise disjoint sets B1, . . . , Bt ⊂

∂Bk , each homeomorphic toB`+1 (for this we need k ≥ `+2, which holds in our setting),
we let Wj be the cone with base Bj and apex at the center of Bk , and we let wj be the
boundary of Wj (not including the interior of the base Bj ). We have Wj homeomorphic
to B`+2 and wj to B`+1, and this allows us to construct Qωj homeomorphic to a (2` +
2)-dimensional neighborhood of 6, and Q+ωj homeomorphic to a (2` + 2)-dimensional
neighborhood of T .

The rest of the embedding construction can be copied from Section 4.3 almost verba-
tim. This concludes the proof of Theorem 1.3. 2

6. Linkless embeddings

A PL embedding f of a graphG intoR3 is called linkless if the images of any two vertex-
disjoint cycles inG are unlinked, i.e., each of them bounds a PL disk that is disjoint from
the other.
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Robertson, Seymour, and Thomas [RST93, RST95] showed, establishing a conjecture
of Sachs, that a finite graph G is linklessly embeddable in R3 if and only if G contains
none of the seven graphs in the so-called Petersen family as a minor. Moreover, they show
(confirming a conjecture by Böhme [Böh90]) that every linklessly embeddable graph G
has even a panelled embedding (also called a flat embedding in some sources) into R3,
i.e., a PL embedding such that for every cycle C in G there exists a PL disk D in R3

whose boundary equals f (C) and that is otherwise disjoint from f (G). It follows from the
forbidden minor criterion that linkless embeddability, as well as panelled embeddability,
can be tested in polynomial time (although the algorithm does not find an embedding);
see [RST93, RST95].

The following lemma can be used to relate panelled embeddability to embeddability
of 2-dimensional complexes intoR3.

Lemma 6.1 (Böhme [Böh90]). Let f be a panelled embedding of G into R3, and let
C1, . . . , Cm be a family of cycles in G any two of which are either disjoint or intersect
in a path. Then there exist PL disks D1, . . . , Dm in R3 such that ∂Di = f (Ci) and the
interiors of the Di are pairwise disjoint and disjoint from f (G).

Corollary 6.2. Let K be a 2-dimensional simplicial complex whose 1-skeleton does not
have a minor from the Petersen family (and thus is linklessly embeddable). Then K em-
beds inR3.

Proof. If G is the 1-skeleton of K , then the boundaries of the triangles in K form a
family of cycles as in Lemma 6.1. Hence a panelled embedding of G can be extended to
an embedding of K . ut

We note that the general problem EMBED2→3 can be rephrased as a partially pan-
elled embedding problem for graphs, whose input is a graph G and a family of triangles
C1, . . . , Cm in G, and the question is whether G admits a PL embedding in which each
Ci can be panelled. This in itself does not tell us anything new about the computational
complexity of the problem, of course.

Appendix A. A decision algorithm for EMBED2→2 (sketch)

Given a 2-dimensional simplicial complex K , we want to test whether it is embeddable
in R2. To this end, we can use a characterization of 2-dimensional simplicial complexes
embeddable inR2 due to Halin and Jung [HJ64]. They give a list of seven small simplicial
complexes, denoted by KI through KVII and shown in Fig. 14, such that a 2-dimensional
simplicial complex K is embeddable in R2 iff it does not contain a subdivision of some
of KI–KVIII as a subcomplex.

An inspection of KI–KVIII reveals that they are of three basic types:

(a) KIII is homeomorphic to S2.
(b) KVI is a “disk with a stick”, i.e. a subdivision of a triangle with an edge attached to a

vertex in the middle.
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KI
∼= K5 KII

∼= K3,3 KIII
∼= S2 KIV KV KVI KVII

Fig. 14. The forbidden subcomplexes KI–KVII.

(c) Each of the remaining five types contains a subgraph isomorphic to K3,3 or K5 in the
1-skeleton or in the 1-skeleton of the first barycentric subdivision (see Fig. 15 for the
latter cases).

(A slightly different characterization of 2-dimensional complexes embeddable in S2 can
be found in Mardešić and Segal [MS66]; it is somewhat less convenient for our purposes.)

KIV KV KVII

Fig. 15. KIV and KV contain K3,3, and KVII contains K5.

Thus, the following algorithm decides the embeddability of a given 2-dimensional
complex K intoR2:

First, test if the 1-skeleton of the first barycentric subdivision of K is a planar graph
(this takes care of (c)), and test if the link of each vertex of K is either acyclic or consists
of a single cycle (this deals with (b)).

If both tests yield a positive answer, we know that either K embeds into the plane,
or it contains a subdivision of KIII, i.e., a 2-dimensional sphere. Moreover, since KV is
already excluded as a subcomplex, every edge of K is incident to at most two triangles.
This allows us to test in linear time ifK contains a homological cycle withZ2 coefficients:
Consider the dual graph ofK , whose vertices are the triangles ofK , and two triangles are
adjacent if they share an edge. Since every edge of K is incident to at most two triangles,
every inclusion-minimal homological cycle is an entire connected component of triangles
in the dual graph.

Starting from an arbitrary triangle, we can find its component in linear time (using
depth-first-search, say). If some triangle in the component has a free edge with no other
triangle incident to it, we can discard the entire component and start again. If we can dis-
card all components of triangles in this way, we have also excluded (a), and consequently
K is planar. Otherwise, we have found a collection C of triangles in K such that every
edge is incident to either 0 or 2 triangles of C, i.e., a homological cycle, which witnesses
thatK does not embed inR2 (in fact, by the characterization of Halin and Jung, and since
(b) and (c) are already excluded, we know that any minimial homological cycle we find
must actually be a 2-dimensional sphere).
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These tests can be performed in linear time. We remark that this only gives a decision
algorithm and does not actually construct an embedding. Daniel Král’ (personal commu-
nication) has independently devised a linear-time algorithm, which moreover produces an
embedding.

Appendix B. The deleted product obstruction

Here we recall the Haefliger–Weber theorem and some related material.
Let X be a topological space. The deleted product of X, which we denote by X2

1, is
the following subspace of the Cartesian product X ×X:

X2
1 := X ×X \ {(x, x) : x ∈ X}.

An embedding f : X→ R
d induces a continuous map f̃ : X2

1→ Sd−1 by

f̃ (x, y) :=
f (x)− f (y)

‖f (x)− f (y)‖
.

Moreover, this map is equivariant, which in this particular case means that f̃ (y, x) =
−f̃ (x, y) for all (x, y) ∈ X2

1. Thus, the existence of an equivariant map of X2
1 in Sd−1

is necessary for embeddability of X intoRd .
The Haefliger–Weber theorem shows that, surprisingly, this necessary condition is

also sufficient if X is (the polyhedron of) a k-dimensional simplicial complex and k lies
in the metastable range (mentioned after Theorem 1.3), namely, for k ≤ (2d − 3)/3. See
Haefliger [Hae64] and Weber [Web67] for original sources and, e.g., Skopenkov [Sko06]
for a modern overview, proof sketch, and extensions. Thus, for example, for (k, d) =
(3, 6), (4, 8), (5, 9), etc., the embeddability of a given k-dimensional simplicial complex
intoRd is equivalent to the existence of an equivariant map of the space |K|21 into Sd−1.

For the case d = 2k, the existence of such an equivariant map can be decided using the
first (equivariant) cohomological obstruction, which in this particular case is equivalent
to the Van Kampen obstruction mentioned in Appendix D.

As was suggested by one of the referees, for the case d = 2k − 1, the existence of
an equivariant map is characterized by (an equivariant version of) a theorem of Steen-
rod [Ste47], which involves the first cohomological obstruction plus another apparently
computable invariant (a Steenrod square operation in cohomology). This might also yield
even a polynomial-time decision algorithm, but some computational issues still need to
be checked.

For general k and d , the existence of an equivariant map |K|21 → Sd−1 can be de-
tected, e.g., via the extraordinary Van Kampen obstruction defined in Melikhov [Mel06].
However, the computability of this obstruction remains to be clarified. More generally,
the computation of the cohomotopy set [K, Sm] for a simplicial complex K , or its equiv-
ariant version (which is what we could use for the embeddability question), might be
possible by “dualizing” the methods for computing higher homotopy groups mentioned
in the introduction.

Examples of incompleteness of the deleted product condition. It is known that the
condition k ≤ (2d − 3)/3 defining the metastable range in the Haefliger–Weber theorem
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is sharp, in the following sense: For each pair (k, d) with d ≥ 3 and d ≥ k > (2d − 3)/3,
there exists a finite simplicial complex K of dimension (at most) k that is not PL embed-
dable in Rd , yet such that an equivariant map |K|21 → Sd−1 exists. This was proved in
several papers, dealing with various values of (k, d): Mardešić and Segal [MS67] ((d, d)
for every d ≥ 4), Segal and Spież [SS92] (all values outside the metastable range with
finitely many exceptions), Freedman, Krushkal, Teichner [FKT94] (k = 2, d = 4), Segal,
Skopenkov, and Spież [SSS98] (all remaining cases except for (k, d) = (2, 3), (3, 3)),
and Gonçalves and Skopenkov [GS06] ((k, d) = (2, 3), (3, 3)).

Appendix C. PL embeddings versus topological embeddings

Let us say that TOP and PL embeddability coincide for (k, d) if every finite simplicial
complex of dimension at most k that can be topologically embedded in Rd can also be
PL embedded inRd .

The Alexander horned sphere and the other examples mentioned in Section 2 show
that topological embeddings may exhibit behavior that is impossible for PL embeddings.
However, they do not clarify the relation of the class of k-dimensional complexes PL
embeddable in Rd , i.e., the YES instances of EMBEDk→d , to the class of k-dimensional
complexes topologically embeddable in Rd . If these two classes coincide, we will say
that TOP and PL embeddability coincide for (k, d).

On the positive side, it is known that TOP and PL embeddability coincide for (k, d)
whenever d − k ≥ 3 [Bry72], and also for (k, d) = (2, 3). The latter follows from
Theorem 5 of Bing [Bin59], which shows that the image of a topological embedding of
a 2-dimensional complex in R3 is homeomorphic to a polyhedron PL embedded in R3,
and from a result of Papakyriakopoulos [Pap43] (“Hauptvermutung” for 2-dimensional
polyhedra) that any two 2-dimensional polyhedra that are homeomorphic are also PL
homeomorphic.

However, TOP and PL embeddability do not always coincide: there is an example of
a 4-dimensional complex (namely, the suspension of the Poincaré homology 3-sphere)
that embeds topologically, but not PL, intoR5. For this example we are indebted to Colin
Rourke (private communication); unfortunately, his proof, although short, uses too ad-
vanced concepts to be reproduced here. It would be interesting to clarify in general for
what (k, d) TOP and PL embeddability coincide.

Let us also mention that simplicial complexes do not capture all “finitary” topological
spaces whose embeddability one might want to investigate. An interesting example is
Freedman’sE8 manifold [Fre82], which is a 4-dimensional compact topological manifold
that is not homeomorphic to the polyhedron of any simplicial complex.

Appendix D. The Van Kampen obstruction: An algorithmic perspective

The algorithm for deciding EMBEDk→2k , k 6= 2. Let K be a k-dimensional finite
simplicial complex. We are going to define an object associated with K , the Van Kampen
obstruction oK .
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Let
P := {(σ, τ ) : σ, τ ∈ K, σ ∩ τ = ∅, dim σ = dim τ = k}

be the set of all ordered pairs of disjoint k-dimensional simplices of K . From a rather
pedestrian point of view, which we mostly adopt here, oK is a subset of ZP , i.e., a set
of integer vectors with components indexed by P (in the language of algebraic topology,
oK is an element of a certain cohomology group). First we give a simple combinatorial
description, and later on we will offer a geometric interpretation, which will also explain
some of the terminology.

To define oK we need to fix some (arbitrary) linear ordering ≤ of the vertices of K
(although the final result does not depend on it). We will write a k-dimensional simplex
σ ∈ K as σ = [v0, v1, . . . , vk], meaning that v0 through vk are the vertices of σ in
increasing order under ≤.

First we define one particular vector oγ of oK . The component corresponding to a pair
(σ, τ ) ∈ P , where σ = [v0, v1, . . . , vk] and τ = [w0, w1, . . . , wk], is

(oγ )σ,τ :=


+1 if v0 < w0 < v1 < w1 < · · · < vk < wk,

(−1)k if w0 < v0 < w1 < v1 < · · · < wk < vk,

0 otherwise.

Next, we define a set 8 ⊆ ZP , whose elements we will call the finger move vectors.
The vectors in 8 correspond to pairs (ω, ν) of simplices in K such that one of ω, ν has
dimension k and the other one has dimension k − 1. Formally, we set

Q := {(ω, ν) : ω, ν ∈ K, ω ∩ ν = ∅, dimω + dim ν = 2k − 1},
8 := {ϕω,ν : (ω, ν) ∈ Q}.

To define the component ϕω,νσ,τ , we again write σ = [v0, v1, . . . , vk] and τ =

[w0, w1, . . . , wk]. We set

ϕω,νσ,τ :=


(−1)i if ν = τ , ω = [v0, v1, . . . , vi−1, vi+1, . . . , vk],
(−1)i+k if ω = σ , ν = [w0, w1, . . . , wi−1, wi+1, . . . , wk],
(−1)i+k if ω = τ , ν = [v0, v1, . . . , vi−1, vi+1, . . . , vk],
(−1)i if ν = σ , ω = [w0, w1, . . . , wi−1, wi+1, . . . , wk].

Thus, ϕω,νσ,τ is nonzero only if the (k − 1)-dimensional simplex among ω, ν is a facet of
one of σ, τ and the k-dimensional simplex among ω, ν equals the other.

Now, finally, we can define oK as the set of all vectors that can be obtained from oγ
by adding integer linear combinations of vectors in 8; formally, oK := oγ + spanZ(8).
We say that oK vanishes if it contains the zero vector.

We have the following result, based on ideas of [vK32] and proved independently by
Shapiro [Sha57] and Wu [Wu65], although their description of the Van Kampen obstruc-
tion is different from ours:

Theorem D.1. Let K be a finite k-dimensional simplicial complex, k 6= 2. Then oK
vanishes if and only if K can be PL embedded inR2k .
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This theorem provides a decision algorithm for EMBEDk→2k , k 6= 2. Indeed, it is clear
from the above description that, given K , we can set up oγ and 8 in polynomial time.
The question of whether oK vanishes amounts to testing whether oγ is an integer linear
combination of vectors in 8. This can be done by bringing the matrix with the vectors of
8 as columns to the Smith normal form, for which several polynomial-time algorithms
are available in the literature. The asymptotically fastest deterministic algorithm to date
seems to be the one given in [Sto96]; fast randomized algorithms were given, for instance,
in [Gie01, DSV01]. The latter seem to be particularly efficient in the case of sparse ma-
trices.

Remarks.

1. If oK does not vanish, then K does not embed into R2k even topologically [Sha57],
[Wu65].

2. If oK vanishes, the Van Kampen approach also constructs a PL embedding. How-
ever, nothing seems to be known about the complexity of the resulting embedding (the
number of simplices in a subdivision of K on which the embedding is linear), and it
appears that a straightforward implementation of the construction may lead to an at
least exponential complexity in the worst case.

3. The case k = 2 is indeed an exception; the point of [FKT94] is to provide a 2-
dimensional simplicial complex K that is not embeddable in R4, yet such that oK
vanishes.

4. The various sign rules in the definition of the Van Kampen obstruction are rather un-
pleasant; indeed, as pointed out by Melikhov [Mel06], a number of papers on the Van
Kampen obstruction (including [FKT94]) contain a sign error. It would be much eas-
ier to work over Z2 instead of over the integers (i.e., to reduce all components of the
vectors modulo 2); then instead of using the Smith normal form, we could simply
solve a system of linear equations. However, an analog of Theorem D.1 for the Van
Kampen obstruction reduced modulo 2 is valid only for k = 1 (where better planarity
algorithms exist anyway), while for all k ≥ 3 Melikhov [Mel06] provides examples
of k-dimensional complexes that are not embeddable in R2k but whose Van Kampen
obstruction modulo 2 vanishes.

5. The Van Kampen obstruction can also be defined for embedding of k-dimensional
complexes into Rd , k ≤ d ≤ 2k. The definition is similar to the one given above
but formally more complicated (especially concerning the various signs). We suspect
(although we have no examples or references at present) that the obstruction is incom-
plete whenever d < 2k; that is, that there are nonembeddable complexes for which the
obstruction vanishes. However, it is still true that nonvanishing Van Kampen obstruc-
tion implies nonembeddability, and so we have a potentially useful tool for excluding
many nonembeddable complexes.

6. From the point of view of algebraic topology, oK can be regarded as the first obstruc-
tion in integral cohomology to the existence of an equivariant map of the deleted prod-
uct ofK into S2k−1 (see Appendix B). As such it is an element of a certain equivariant
cohomology group. See, e.g., [Mel06].
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A geometric view of oK . Let f be a generic linear mapping of a finite k-dimensional
simplicial complex into R2k . Let us consider a pair of disjoint k-dimensional simplices
(σ, τ ) ∈ P , σ = [v0, v1, . . . , vk], τ = [w0, w1, . . . , wk]. The images f (σ) and f (τ)
are k-dimensional simplices in R2k , and because of genericity they either are disjoint or
intersect in a single point. Moreover, again by genericity, the union of their vertex sets is
in general position and thus

B :=
(
f (v1)− f (v0), f (v2)− f (v0), . . . , f (vk)− f (v0),

f (w1)− f (w0), f (w2)− f (w0), . . . , f (wk)− f (w0)
)

is an (ordered) basis ofR2k . We define the intersection number of f (σ) and f (τ) as

f (σ) · f (τ) :=

+1 if f (σ) ∩ f (τ) 6= ∅ and B is positively oriented,
−1 if f (σ) ∩ f (τ) 6= ∅ and B is negatively oriented,
0 otherwise.

Considering how permuting a basis influences its orientation, one can check the equality
f (τ) · f (σ) = (−1)kf (σ) · f (τ). Then we define a vector of ∈ ZP by

(of )σ,τ := (−1)kf (σ) · f (τ). (3)

For reasons indicated later on, for every f we have of ∈ oK . The oγ above corre-
sponds to a particular choice of f . Namely, for t ∈ R, let

γ (t) := (t, t2, . . . , t2k) ∈ R2k
;

the set {γ (t) : t ∈ R} is known as the moment curve in R2k . Let V (K) = {u1, . . . , un}

be the list of all vertices of K (ordered according to ≤).

Lemma D.2. Let f be the linear mapping of K into R2k given on the vertex set by
f (ui) := γ (i). Then f is generic and of = (−1)k(k−1)/2oγ , with oγ defined above
Theorem D.1.9

Proof (sketch). It is well known that every set of at most 2k + 1 points on the moment
curve in R2k is affinely independent, and thus the mapping is generic. Considering dis-
joint k-dimensional simplices σ, τ ∈ K and using Gale’s evenness condition [Zie94,
Theorem 0.7], it is easy to see that f (σ) ∩ f (τ) = ∅ unless the vertices of σ and of
τ alternate along the moment curve, in which case f (σ) and f (τ) intersect (in a single
point).

It remains to determine the sign of f (σ) · f (τ), which equals the sign of the determi-
nant of the matrix (written as a list of columns)

[γ (i1)−γ (i0), γ (i2)−γ (i0), . . . , γ (ik)−γ (i0), γ (j1)−γ (j0), γ (j2)−γ (j0), . . . ,

γ (jk)−γ (j0)]

9 We note that if of ∈ oK then −of ∈ oK as well, since we can compose f with a linear
orientation-reversing map R2k

→ R
2k . Hence the (−1)k(k−1)/2 factor does not matter for the

definition.
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for some i0 < j0 < ii < j1 < · · · < ik < jk . If we permute the columns to the ordering
γ (i1) − γ (i0), γ (j1) − γ (j0), γ (i2) − γ (i0), . . . , γ (jk) − γ (j0), the sign is multiplied
by (−1)(

k
2). A continuity argument and a calculation with Vandermonde determinants

show that for any choice of reals x0 < y0 < x1 < y1 < · · · < xk < yk the sign of
det[γ (x1)−γ (x0), γ (y1)−γ (y0), . . . , γ (xk)−γ (x0), γ (yk)−γ (y0)] is always+1. ut

The lemma just proved gives a geometric meaning to the definition of oγ .10 It remains
to explain where the finger move vectors come from. We will also use this opportunity
to outline the main ideas in the proof of Theorem D.1 (see [FKT94] for an insightful
presentation of the proof).

To this end, we first extend the definition of of to a generic PL mapping f of K
into R2k . Let K ′ be a subdivision of K such that f is linear on K . Then we extend the
definition of the intersection number f (σ) · f (τ) by

f (σ) · f (τ) =
∑

σ ′�σ, τ ′�τ

f (σ ′) · f (τ ′),

where the sum is over all pairs (σ ′, τ ′) such that σ ′ is a k-dimensional simplex of K ′

contained in σ and τ ′ is a k-dimensional simplex ofK ′ contained in τ .11 Then of is again
defined by (3).

Van Kampen’s approach to the proof of Theorem D.1 is based on the following geo-
metric claim: Given any two generic PL maps f, g ofK intoR2k , there is a finite sequence
f0 = f, f1, f2, . . . , ft = g of generic PL maps ofK intoR2k such that fi+1 differs from
fi only by a suitably defined elementary move (somewhat analogous to the Reidemeister
moves in knot theory). Then he analyzes the effect of the various kinds of elementary
moves on of ; it turns out that the only kind of move that can possibly affect of is a finger
move.

To describe a finger move, we consider some generic PL mapping f and two disjoint
simplices ω, ν ∈ K with dimω = k and dim ν = k − 1. The finger move corresponding
to ω and ν modifies f by pulling a thin “finger” from f (ω) that wraps around f (ν); see
Fig. 16 for an example with k = 1. The finger can be chosen so that the modified f is
again a generic PL mapping.

A careful analysis of the signs of the newly introduced intersections shows that the
finger move changes of by one of the vectors ϕω,ν , −ϕω,ν , which explains the definition
of ϕω,ν given above. Since any generic PL mapping of K into R2k can be transformed

10 Interestingly, interpreting oK cohomologically and expressing it as a cup product of a one-
dimensional cohomology class, one naturally arrives at the same element oγ ∈ oK .
11 The definition of f (σ)·f (τ) for a linear mapping assumes a fixed linear ordering of the vertices

ofK , which we do not have for the subdivisionK ′. Here it helps to look atK andK ′ geometrically,
assuming that we deal with a geometric realization of K in someRm. Each k-dimensional simplex
σ = [v0, v1, . . . , vk] ∈ K spans a k-dimensional affine subspace U ofRm, and each σ ′ � σ spans
the same subspace. We can thus choose a linear ordering [v′0, v

′
1, . . . , v

′
k
] of the vertices of σ ′ such

that the bases (v1 − v0, . . . , vk − v0) and (v′1 − v
′
0, . . . , v

′
k
− v′0) of U have the same orientation.

This does not necessarily lead to a linear ordering of the whole vertex set of K ′, but the above
definition of f (σ) ·f (τ) needs only that the vertex sets σ and τ are linearly ordered, and so we can
choose a linear ordering for each σ ′ ∈ K ′ separately.
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f(ω)

f(ν)
;

Fig. 16. A finger move.

into any other by a sequence of elementary moves (this statement we have not proved, or
even properly defined, of course, but it is not difficult), it follows that of ∈ oK for all f .
In particular, if f is an embedding, we obviously have of = 0, and thus oK vanishes for
embeddable K . This yields one implication in Theorem D.1.

For the reverse (and harder) implication, we suppose that oK vanishes, which means
that oγ can be expressed as an integer linear combination of finger move vectors. This
means that the generic linear mapping of K into R2k corresponding to oγ can be trans-
formed by a sequence of finger moves to a generic PL mapping g with og = 0. As is
illustrated in Fig. 17, such a g is typically not yet an embedding, since the images of
nondisjoint simplices may intersect, and also the images of disjoint simplices may have
intersections—we only know that the number of intersections always combines to 0 al-
gebraically (taking the signs into account). One then needs a way of removing these two
kinds of intersections. There are three kinds of elementary moves (different from finger
moves) that allow one to remove such intersections; one of them is well known in topol-
ogy as the Whitney trick, and the others are similar. They are guaranteed to work only for
k ≥ 3. (The graph case k = 1 has to be treated separately and it works for a different
reason.12)

−→

f g

Fig. 17. A mapping f of the graph K4 intoR2, with vertices on the moment curve; a finger move
transforms it to a mapping g with og = 0.

Acknowledgments. We would like to thank Colin Rourke for explanations concerning PL topology
and for examples showing the difference between PL embeddability and topological embeddability
mentioned in Section 2. We also thank Michael Joswig, Gil Kalai, Frank Lutz, Alexander Nabu-
tovsky, and Robin Thomas for kindly answering our questions. The second author would also like

12 For graphs this step follows from the Hanani–Tutte theorem [CH34, Tut70], which asserts that
a graph that can be drawn with any two vertex-disjoint edges intersecting an even number of times
is planar. In our language, this says precisely that if the Van Kampen obstruction modulo 2 vanishes,
then the graph is embeddable.
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[Flo34] Flores, A.: Über n-dimensionale Komplexe, die im R2n+1 absolut selbstverschlungen
sind. Ergeb. Math. Kolloq. 6, 4–7 (1932/1934) Zbl 0011.03804

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0729.14040&format=complete
http://www.ams.org/mathscinet-getitem?mr=1069244
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1098.57003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2219001
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0691.55009&format=complete
http://www.ams.org/mathscinet-getitem?mr=0988689
http://www.cs.princeton.edu/theory/complexity/
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1193.68112&format=complete
http://www.ams.org/mathscinet-getitem?mr=2500087
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0106.16604&format=complete
http://www.ams.org/mathscinet-getitem?mr=0100841
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0718.05054&format=complete
http://www.ams.org/mathscinet-getitem?mr=1126225
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0969.52008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1756651
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0526.57013&format=complete
http://www.ams.org/mathscinet-getitem?mr=0715878
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0077.16804&format=complete
http://www.ams.org/mathscinet-getitem?mr=0083733
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0259.57007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0307245
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0986.57021&format=complete
http://www.ams.org/mathscinet-getitem?mr=1886671
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1066.57001&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0009.41104&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0096.37903&format=complete
http://www.ams.org/mathscinet-getitem?mr=0119208
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1050.65044&format=complete
http://www.ams.org/mathscinet-getitem?mr=1840386
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0011.03804&format=complete


Hardness of embedding simplicial complexes inRd 293

[Fre82] Freedman, M. H.: The topology of four-dimensional manifolds. J. Differential Geom.
17, 357–453 (1982) Zbl 0528.57011 MR 0679066

[FKT94] Freedman, M. H., Krushkal, V. S., Teichner, P.: Van Kampen’s embedding obstruc-
tion is incomplete for 2-complexes in R4. Math. Res. Lett. 1, 167–176 (1994)
Zbl 0847.57005 MR 1266755

[Gie01] Giesbrecht, M.: Fast computation of the Smith form of a sparse integer matrix. Comput.
Complexity 10, 41–69 (2001) Zbl 0992.65039 MR 1867308

[Gla71] Glaser, L. C.: A proof of the most general polyhedral Schoenflies conjecture possible.
Pacific J. Math. 38, 401–417 (1971) Zbl 0194.55604 MR 0312513

[Gol08] Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cam-
bridge Univ. Press, Cambridge (2008); http://www.wisdom.weizmann.ac.il/˜oded/cc-
book.html Zbl 1154.68056 MR 2400985
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Zbl 0100.19402 MR 0141106

[HJ64] Halin, R., Jung, H. A.: Charakterisierung der Komplexe der Ebene und der 2-Sphäre.
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Zbl 0864.57009 MR 1403961

[Sch04] Schleimer, S.: Sphere recognition lies in NP. http://www.warwick.ac.uk/˜masgar
(2004)

[Sch91] Schön, R.: Effective algebraic topology. Mem. Amer. Math. Soc. 92, no. 451 (1991)
Zbl 0731.55015 MR 1055531
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72–78 (1932); Berichtigung, ibid., 152–153 JFM 58.0615.02 JFM 58.0615.03

[VKF74] Volodin, I. A., Kuznetsov, V. E., Fomenko, A. T.: The problem of discriminating al-
gorithmically the standard three-dimensional sphere. Uspekhi Mat. Nauk 29, no. 5,
71–168 (1974) (in Russian); English transl.: Russian Math. Surveys 29, no. 5, 71–172
(1974) Zbl 0311.57001 MR 0405426
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Zbl 1149.68033 MR 2334207

[Wu65] Wu, W.-T.: A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Eu-
clidean Space. Science Press, Peking (1965) Zbl 0177.26402

[Zie94] Ziegler, G. M.: Lectures on Polytopes. Springer, Berlin (1995) Zbl 0823.52002
MR 1311028

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0030.41602&format=complete
http://www.ams.org/mathscinet-getitem?mr=0022071¤
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0914.65043&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0849.57009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1295555
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0187.20803&format=complete
http://www.ams.org/mathscinet-getitem?mr=0262110
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=58.0615.02&format=complete
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=58.0615.03&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0311.57001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0405426
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0152.22402&format=complete
http://www.ams.org/mathscinet-getitem?mr=0238330
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1149.68033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2334207
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0177.26402&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0823.52002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1311028

	Introduction
	Preliminaries on PL topology
	Undecidability: Proof of Theorem 1.1
	Hardness of embedding 2-dimensional complexes in R4
	NP-hardness for higher dimensions
	Linkless embeddings

